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A PSO with Quantum Infusion Algorithm for Training
Simultaneous Recurrent Neural Networks

Bipul Luitel and Ganesh Kumar Venayagamoorthy

Abstract— Simultaneous Recurrent Neural Network (SRN)
is one of the most powerful neural network architectures well
suited for estimation and control of complex time varying
nonlinear dynamic systems. SRN training is a difficult problem
especially if multiple inputs and multiple outputs (MIMO) are
involved. Particle swarm optimization with quantum infusion
(PSO-Q)J) is introduced in this paper for training such SRNs. In
order to illustrate the capability of the PSO-QI training
algorithm, a wide area monitor (WAM) for a power system is
developed using a multiple inputs multiple outputs Elman SRN.
The SRN estimates speed deviations of four generators in a
multimachine power system. Since MIMO structured SRNs are
hard to train, a two step approach for training is presented
with PSO-QI. The performance of PSO-QI is compared to that
of the standard PSO algorithm. Results demonstrate that the
SRN trained with the PSO-QI in the two step approach tracks
the speed deviations of the generators with the minimum error.

I. INTRODUCTION

IMULTANEOUS Recurrent Neural Network (SRN) are

known to be a powerful class of neural network
architectures. As the name signifies, the recurrence is
instantaneous i.e. many times within a sampling period [1].
The SRN provides response of a dynamic nonlinear system
even when the weights are fixed and therefore is more
appropriate for approximating more complex nonlinear
systems with less number of neurons. The SRNs have the
capability of approximating non-smooth functions which
cannot be approximated by conventional Multilayer
Perceptrons (MLPs) [2]. Because of the inherent recursive
calculation involved in SRN, they are hard to train using
traditional training algorithms such as backpropagation
through time, which suffer from local minima [3].
Computational Intelligence (CI) based algorithms have got
popularity in training of neural networks because of their
ability to find global solution in multi-dimensional search
space. Swarm and evolutionary based algorithms like
Particle Swarm Optimization (PSO) have shown promises in
training of SRNs. A hybrid of PSO and Evolutionary
Algorithm (EA) called the PSO-EA is used in engine data
classification in [3]. By combining the best features of the
participating individual algorithms, hybrid algorithms are
more robust and have been used in various kinds of
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optimization problems.

An electric power grid is a geographically large
interconnected network of generators, transmission lines,
real and reactive power compensators, loads etc. Power
sources and generators are widely dispersed in a modern
power system configuration. For the stability and security of
the power system, distributed control agents are employed to
provide reactive control at several places on the power
network through Power System Stabilizers (PSSs),
Automatic Voltage Regulators (AVRs), Flexible AC
Transmission Systems (FACTS) devices, etc. Although local
optimization is achieved by the control agents such as PSSs
and AVRs, the lack of coordination among the local agents
may cause serious problems such as system oscillations
(inter-area) in the power network.

Wide Area Control System (WACS) scheme is proposed
in [4, 5] in order to minimize the problems encountered in a
distributed power network. The increasing complexity and
highly nonlinear nature of the power system today requires a
Wide Area Monitor (WAM) for fast and accurate
monitoring, for effective control of power networks with an
adaptive WAC. This is important for different purposes such
as reinforcement of power system based on accurate
feedback signals obtained during analysis of system
dynamics, coordinated approach for the execution of fast
stabilizing actions in case of sever network disturbances etc.
[6] The WAM provides information to the WAC which then
sends appropriate control/feedback signals to the distributed
agents in the power network based on some predefined
objective functions.

In this study, quantum principle obtained from Quantum
PSO (QPSO) has been combined with traditional PSO to
form a new hybrid algorithm called as PSO with Quantum
Infusion (PSO-QI). A multiple inputs multiple outputs
(MIMO) SRN is used to implement the WAM for a two area
multimachine system. Since training of a MIMO SRN is
computationally complex, a two step training approach is
suggested. It is shown through results that PSO-type
algorithms can be used to train SRNs. It has been shown in
literatures that hybrid algorithms perform better in training
of complex neural network architectures [6]. Hence, this
study focuses on improving the hybrid technique for
accuracy. To improve the training accuracy in implementing
a MIMO WAM, PSO-QI is used to train the network using
the two step approach. The following sections of the paper
are arranged as follows: Multimachine power system is
described in Section 2. In Section 3, local and wide area
monitors are described. PSO-QI algorithm is described in
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Section 4. Results and discussion are given in Section 5 and
conclusion in Section 6.

II. MULTIMACHINE POWER SYSTEM

The practical power system is a complex system with
thousands of buses, several hundreds of generators and
interactions between multiple areas with several inter-area
modes of oscillations. The two-area power system [7] of Fig.
1 is a test system which is commonly used to show the
effectiveness of controllers in damping slow mode
oscillations. The two-area system with the WAM (Fig. 1)
consists of two fully symmetrical areas linked together by
two transmission lines. Each area is equipped with two
identical synchronous generators rated 20kV/900 MVA. All
the generators are equipped with identical speed governors
and turbines and AVRs and exciters (Fig. 2). Generators G1,
G2, G3 and G4 are all equipped with PSSs. The switch S1
(Fig. 2) can be used to provide training and auxiliary control
signals to the generators. The switch S2 (Fig. 2) is used to
add the PSS signal to the excitation system. The loads are
represented as constant impedances and split between the
areas in such a way that Area 1 is transferring about 413
MW to Area 2. Three electromechanical modes of
oscillation are present in this system; two inter-plant/intra-
areca modes, one in each area, and one inter-area low
frequency mode [8]. The nonlinear behavior of the complete
power system in Fig. 1 is simulated in detail in the
PSCAD/EMTDC environment (PSCAD, 2004) for this
study. The parameters of the two area system are given in

[3].
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Fig. 1: Two-area power system with a WAM predicting the speed
deviations of generators G1, G2, G3 and G4.
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Fig. 2: Block diagram of the AVR-exciter model and showing the interface
to the WACS.

III. WIDE AREA MONITOR

A WAM implemented in this work consists of a three
“layered” Elman SRN. An Elman SRN has its feedback
from the hidden layer output to the context layer inputs. It
has an input layer with 8 input nodes, a hidden layer node
with 15 hidden nodes and an output layer with 4 output
nodes. Being an Elman network, it also has a context layer
with 15 nodes whose inputs are the outputs of the
corresponding hidden layer nodes. Fig. 3 shows the Elman
SRN used as WAM.
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Fig. 3: Elman SRN used in the WAM.

Then inputs to the SRN are the current deviations in
reference voltage V,, (Fig. 2), caused by the PRBS
excitation, of the four generators. The previous step speed
deviations of these generators are also the other set of inputs.
The SRN WAM receives these inputs every 10 ms (100 Hz),
which is possible with today’s phasor measurement unit
technology [3]. The hidden nodes have sigmoid activation
function and the output nodes are linear. In vector notation,
an Elman SRN is implemented as follows [9]:

H(,k) = f(A*I(t,k)+B* Ht,k-1)+ K) (1)

O()=g(C*H(t,k)+K') Whenk=R  (2)
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where [ = [4Vref, Aw;] for i =1 to 4 is the set of inputs, H is
the set of outputs from the hidden nodes and O =

[01,02,03,04] = [Aw,Aw:,Aws,Aws] is the set of

outputs. 4 contains weights from input layer to the hidden
layer, B contains weights from context layer to the hidden
layer, C contains weights from hidden layer to the output
layer, k is the time index of internal recurrence, ¢ is the time
index of the input sample, R is the total number of internal
recurrences, K and K’ are the biases, f and g are the two
activation functions.

The WAM under considerations is a MIMO system and
identification of such system is very difficult. Hence a two
step procedure for training the MIMO SRN is implemented.
In Step1, SRN as shown in Fig. 3 is used and is trained using
PSO and PSO-QI to obtain the input and output weights. In
Step 2, the input weights obtained in Step 1 are kept fixed,
and the same SRN is trained to obtain the output weights,
with only one output at a time. The output of the WAM is
the predicted values of the speed deviation for the current
sample.

IV. PARTICLE SWARM OPTIMIZATION WITH QUANTUM
INFUSION

Particle swarm optimization with quantum infusion is a
new approach to hybridization of PSO and Quantum Particle
Swarm Optimization (QPSO) [10]. Here, the quantum
principle in QPSO is used to create a new offspring. After
the position and velocity of the particles are updated using
standard PSO equations, a randomly chosen particle from
PSO’s pbest population is utilized to carry out the quantum
operation; and thus, create an offspring by mutating the
gbest. The fitness of the offspring is evaluated and the
offspring replaces the gbest particle of PSO only if it has a
better fitness. This ensures that the fitness of the gbest
particle is equal to or better than its fitness in the previous
iteration. Thus, it is improved and pulled towards the best
solution over iterations. By infusing the quantum theory to
the standard PSO, a new hybrid algorithm is evolved which
incorporates the best features of the respective individual
algorithms and thus a better fitness is achieved. In PSO-QI,
fast convergence property obtained by PSO in the first few
iterations, and the convergence to a lower average error
property obtained by QPSO, have been combined and hence
the performance is significantly improved, as is shown in the
results and figures below. It is described below in detail.

PSO is an evolutionary-like algorithm developed by
Eberhart and Kennedy in 1995 [11]. It is a population based
search algorithm and is inspired by the observation of
natural habits of bird flocking and fish schooling. In PSO, a
swarm of particles moves through a D dimensional search
space. The particles in the search process are the potential
solutions, which move around a defined search space with
some velocity until the error is minimized or the solution is
reached, which is decided by the fitness function. The
particles reach to the desired solution by updating their

position and velocity according to the PSO equations. In
PSO, each individual is treated as a volume-less particle in
the D-dimensional space, with the position and velocity of
the i" particle represented as:

xi= (x,-px,-2, ........ ,xiD) (3)
vi = (vjl ’vi2 seesseres ’viD) (4)

v (t+D)=wv, () +crand (P, (t)—x, (1))
* czrand2 (Pgd (OREMQ)) )

X+ =x,)+v,+1) (6)

These particles are randomly initialized over the search
space with initial positions and velocities. They change their
positions and velocities according to (5) and (6) where ¢,
and c, are cognitive and social acceleration constants
respectively, rand,() and rand,() are two random functions
uniformly distributed in the range of [0,1] and w is the
inertia weight introduced to accelerate the convergence
speed of PSO [11]. Vector P; = (Pij, Pigyeceeeeeneeenne ,Pip) is the
best previous position (the position giving the best fitness
value) of particle i called the pbest, and vector Py = (P,
Pogoiiiiiicn, , Pgp) is the position of the best particle
among all the particles in the swarm and is called the gbest.
Xis Vi Pia are the d dimension of vector of x, v, P.. PSO
has been shown in the flowchart in Fig. 3.

QPSO was introduced by Sun in 2004 [12]. According to
the uncertainty principle, position and velocity of a particle
in quantum world cannot be determined simultaneously.
Thus QPSO differs from standard PSO mainly in the fact
that exact values of x and v cannot be determined. In
quantum mechanics, a particle, instead of having position
and velocity, has a wavefunction given by:

y(r.n) Q)
which has no physical meaning but its amplitude squared
gives the probability measure of its position in any one

dimension r at time ¢. The governing equation of quantum
mechanics is the Schrodinger’s equation given by:

., 0 "
Jhgw(r,t) =Hr)y(r,t) (8)

where H is a time-independent Hamiltonian operator given
by:

A 2
H(@r)= —h—V 2+ V() )
2m

where 7 is Planck’s constant, m is the mass of the particle
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and V),(r) is the potential energy distribution [13]. Based on
the probability density function, a particle’s probability of
appearing in position x can be determined. Therefore in
QPSO, a Delta-potential-well based probability density
function has been used with center of the well at point J =
(1, ja --» jp) in order to avoid explosion and help the particles
in PSO to converge [14]. Assuming a particle in one-
dimensional space having its center of potential at J,
normalized probability density function Q and distribution
function Dy can be obtained [15]. Let y=x-j, then the form of
this probability density function is given as follows and
depends on the potential field the particle lies in:

00) =%e‘2‘y'“ (10)

D)= [ Q()dy=e™"* an

where the parameter L is the length of the potential field
which depends on the energy intensity and is called the
creativity or imagination of the particle that determines its
search scope [14]. L can be evaluated as the distance
between the particles’ current position and point J as
follows:

L=28|J—x] (12)

The parameter f is the only parameter of the algorithm. It
is called the creativity coefficient and is responsible for the
convergence speed of the particle. In QPSO, search and
solution spaces are two unique spaces of different quality.
So a mechanism is necessary to map the position of a
particle in the search space to the solution space. This is
called ‘collapsing’ and is achieved by applying the Monte
Carlo simulation. This has been explained in [12] as follows.

Let s be any random number uniformly distributed
between 0 and 1/L. For a uniform random number u in the
interval [0, 1], s is defined as:

(13)
Now, equating (10) and (13), the following relation is
achieved:

-2/ L
u=e W

(14)
y:igln(l/u) (15)

The position equation is given as follows:

x:Ji—g—ln(l/u) (16)

where the particle’s local attractor point J has coordinates
given by the following equation:

J (=P () +a,Py (1) an
where a; = a/(a + b) and a, = b/ (a + b), and a and b are two
uniformly distributed random numbers.
From (12) and (15), the new position of the particle is
calculated as:
x+D)=JO£L|J@)—x@)|In(l/u) (@18)
This Delta-Potential-well based quantum PSO is called
the QDPSO in [12]. This has been improved further by

defining a mainstream thought [15] or the Mean Best
Position, mbest, as:

mbesi(t) = %il’, ®)

(1< 13
_(S;g](t),....,S§RD<t>)

(19

where S is the size of the population, D is the number of
dimensions and P; is the pbest position of each particle. Now
the position update equation in (18) is given as (20), where
the addition or subtraction is carried out with 50%
probability:

x(t+1)=J(t) £ | mbest(t)— x(t) | In(1/u) (20)

By using (17) this can also be written as follows to show
the mutation on gbest:

x(t+1)= aIPgd O +o, P, (1)

21
+ B| mbest(t)—x(t) | In(1/u) @
PSO-QI is comparable to Estimation of Distribution PSO
(EDPSO) [16] where new particle is created based on the
probabilistic models of the search space. Hence the PSO-QI
mutations are more likely to produce better offspring than
other random mutation techniques.

V. STUDIES AND RESULTS

An Elman SRN based wide area monitor is developed in
this paper. A forced training is carried out in which all four
generators are subjected to a PRBS excitation and their
corresponding speed deviations are measured. One thousand
data samples obtained in ten seconds are used for the
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training. Previous samples of each generator’s speed
deviation are fed as input to the SRN along with the
deviations in the reference voltage of the generators due to
the PRBS excitation. The SRN outputs are one step ahead
predicted values of speed deviations. The SRN is trained
using PSO and PSO-QI. In Step 1 of the two step training
process, SRN has been trained using all the inputs and
outputs. In Step 2, the input weights obtained from the first
approach have been kept fixed and the SRN is trained only
for the output weights, one at a time for each output. After
the network has been trained, it has been tested on the same
dataset. For both training algorithms, Mean Squared Error
(MSE) between the output of the SRN and the actual output
of the generator has been used as the measure of fitness. For
each generator i, MSE for Step 1 can be written as (22).

4
MSE, = l21\4515,.
443 (22)

where,

N A
MSE, == (A0, (k) - A, (k)
Nig (23)

where 4 is the actual output of the generator and dw i
the predicted output from the SRN at sample . Eq. (23)
gives the MSE for Step 2. Fig. 4 shows the distinction
between the two steps of training SRN. The outputs are
evaluated and compared in terms of their mean squared error
as well as the absolute relative error. The absolute relative
error (ARE) is defined as (24).

_lAa®-20®)|
T [Aa®

where the symbols have the same meaning as (23).

ARE
@4

Step One

Number of inputs = n
Number of hidden nodes = m
Number of outputs =r
Dimension=n*m+m*r

Determine:
Input weights W
Output weights V

Step Two

Yes
For counter i,
Isi==r?

Dimension=m

I

Use input weights: W
Determine:
Output weights V;

e

Fig. 4: Two step training of SRN.

In [6], it is shown that a third order model is enough to
represent the power system under consideration. Since four
of such systems are being considered here, the network
should be able to model four third order systems in order to
correctly identify the whole system. From trial and
experience, a network with the following parameters is used,
but is not claimed to be optimal.

Input Nodes (n) = 8 (4 PRBS, 4 speed deviations)
Hidden Nodes (m) = 15

Output Nodes (r) =4 (Step 1), 1 (Step 2)
Number of samples (V): 1000

The following parameters are used for PSO and PSO-QI:
cp,Cr=2

w = linearly decreasing from 0.9 to 0.4

Population Size: 30

Number of iterations: 20

p = linearly increasing from 0.5 to 1

Dimension (D) = 405 (Step 1), 15 (Step 2)

The speed deviation output obtained while testing is
plotted along with the actual output. The plots shown are for
any random trial. Fig. 5 shows the PRBS input to the
generator G1. Similar inputs are applied to the other
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generators simultaneously. The speed deviation prediction of
G1 obtained from the SRN trained using Step 1 is shown in
Fig. 6. The figure shows the ability of PSO-QI to better train
the neural network and hence it predicts the output more
accurately. The same output after the SRN is further trained
in Step 2 is shown in Fig. 7. This figure clearly shows a
significant amount of improvement in the prediction by both
the algorithms. However, the output of PSO-QI is more
close to the actual output than PSO. Similar comparison of
the outputs of generators G2, G3, and G4 for the two step
training process are shown in Figs. 8 to 13. The numerical
values of MSE averaged over 10 trials are compared in
Table 1. These results show that PSO-QI performs better
than PSO in both steps. It also confirms that SRN trained in
Steps 1 and 2 is able to predict the speed deviations much
better than the SRN trained in Step 1 alone. Although
training of MIMO neural network is difficult and
computationally complex, using the proposed two step
training process and PSO-QI algorithm, better accuracy in
training is achieved.
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Fig. 5: PRBS input to G1.
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TABLEI
COMPARISON OF RESULTS OBTAINED IN TWO STEPS
Mean ARE MSE (107)
; Ste Ste Ste Ste
S Algorithm Ong ng Ong ng
I PSO 0.1186 | 0.0321 2.50 0.27
PSO-QI 0.1240 | 0.0265 1.99 0.24
I PSO 0.1092 | 0.0360 2.75 0.38
PSO-QI 0.1296 | 0.0300 2.24 0.27
1 PSO 0.2039 | 0.0612 3.59 0.27
PSO-QI 0.1996 | 0.0425 2.81 0.16
v PSO 0.2173 | 0.0593 3.03 0.38
PSO-QI 0.1852 | 0.0494 2.61 0.19
N PSO 0.1622 | 0.0471 2.96 0.32
: PSO-QI 0.1596 | 0.0371 2.41 0.21

VI. CONCLUSION

A new algorithm PSO with quantum infusion and a two
step approach for training MIMO SRNs has been presented
in this paper. By implementing quantum mechanical concept
in mutation of the gbest particle, PSO-QI produces offspring
more intelligently, than other evolutionary techniques with
random mutation, in the vicinity of the solution and thus
increasing the speed of convergence. The performance of the
PSO-QI algorithm was compared to that of PSO in terms of
the mean squared error between the actual and the predicted
outputs and the absolute relative error at each sample.
Results show that a MIMO SRN performance is improved
significantly with PSO-QI and the two step training
approach. These significant improvements in SRN
performance are at the cost of more training time.

It has been shown that a MIMO SRN can be effectively
used as a wide area monitor in multimachine power systems
to predict the speed deviations of the generators. For further
research, it is important to study if any improvement in
reducing the number of iterations required for training in
Step 2 to that of Step 1. The application of such training
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approach in other MIMO problems also needs to be
explored. Along the lines of power system, comparison of
multiple local monitoring units with a single wide area
monitor and consideration of transmission delays in the
prediction time are also topics of future research.
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