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Abstract
Recently, a mixed hybrid operator, generalizing the well-known Phillips operators and
Baskakov–Szász type operators, was introduced. In this paper, we study Bézier variant
of these new operators. We investigate the degree of approximation of these
operators by means of the Lipschitz class function, the modulus of continuity, and a
weighted space. We study a direct approximation theorem by means of the unified
Ditzian–Totik modulus of smoothness. Furthermore, the rate of convergence for
functions having derivatives of bounded variation is discussed.

MSC: 26A15; 40A35; 41A25; 41A36

Keywords: Baskakov–Szász type operators; Rate of convergence; Bounded variation;
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1 Introduction
For a continuous function h on [0, 1], Bernstein [1] defined a linear positive operator in or-
der to provide a very simple and elegant proof of the Weierstrass approximation theorem,
namely

Bn(h; x) =
n∑

k=0

(
n
k

)
xk(1 – x)n–kh

(
k
n

)
, x ∈ [0, 1].

In order to approximate continuous functions on [0,∞), Szász [2] introduced the operator

Sn(h; x) =
∞∑

k=0

(nx)k

k!
e–nxh

(
k
n

)
, (1.1)

provided the infinite series on the right-hand side converges. Later on, for h ∈ C[0,∞) and
0 ≤ β < 1, Jain [3] proposed a modification of the operators given in (1.1), namely

P(β)
n (h; x) =

∞∑

k=0

L(β)
n,k(x)h

(
k
n

)
, (1.2)

where

L(β)
n,k(x) =

nx(nx + kβ)k–1

k!
e–(nx+kβ)
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with the partition of unity

∞∑

k=0

L(β)
n,k(x) = 1.

It is observed that the Jain operator (1.2) includes the Szász operator (1.1) as a special case
for β = 0. Recently, Gupta and Greubel [4] also proposed the Durrmeyer type modification
of the operators given in (1.2) as

D(β)
n (h; x) =

∞∑

k=0

〈L(β)
n,k , h〉

〈L(β)
n,k , 1〉L(β)

n,k(x),

where

〈h, g〉 =
∫ ∞

0
h(t)g(t) dt.

They showed that these operators converge to h without any restriction on β . The mo-
ments for these operators were obtained by using Tricomi’s hypergeometric functions and
Stirling numbers of first kind, and some approximation properties of these operators were
proved.

In the literature, many authors have discussed the approximation behavior of different
summation-integral type operators (see [5, 6]). For 0 ≤ β < 1 and c ≥ 0, Acu and Gupta
[7] introduced mixed Durrmeyer type operators for x ∈ [0,∞) as

Pβ ,c
n (h; x) =

∞∑

k=1

(∫ ∞

0
L[β]

n,k–1(t) dt
)–1

pn,k(x, c)
∫ ∞

0
L[β]

n,k–1(t)h(t) dt + pn,0(x, c)h(0), (1.3)

where

pn,k(x, c) =
(–x)k

k!
φ(k)

n,c(x)

and

φn,c(x) =

⎧
⎨

⎩
e–nx, if c = 0,

(1 + cx)–n/c, if c > 0.

They determined the degree of approximation by means of the modulus of continuity and
a weighted space. The authors also studied the approximation of functions having deriva-
tives equivalent with a function of bounded variation. It is observed that the operator
defined by (1.3) has two special cases:

(1) If φn,c(x) = e–nx and β = 0, then the Phillips operators are obtained [8].
(2) If φn,c(x) = (1 + cx)–n/c and β = 0, then one gets the Baskakov–Szász operators [9].

Zeng and Piriou [10] initiated the study of Bézier variant of Bernstein operators. Zeng
and Chen [11] estimated the rate of approximation for Bézier–Bernstein–Durrmeyer op-
erators. Zeng and Tao [12] considered Bézier–Baskakov–Durrmeyer operators for α ≥ 1
and obtained the rate of convergence. For some other contributions in this direction, we
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refer to [13–21]. Motivated by the above research, we introduce the Bézier variant of the
operator (1.3) as

Pβ ,c
n,α(h; x) =

∞∑

k=1

(∫ ∞

0
L[β]

n,k–1(t) dt
)–1

R(α)
n,k(x, c)

∫ ∞

0
L[β]

n,k–1(t)h(t) dt + R(α)
n,0(x, c)h(0)

=
∫ ∞

0
Kβ ,c

n,α(x; t)h(t) dt, (1.4)

where α ≥ 1,

R(α)
n,k(x, c) =

[
In,k(x, c)

]α –
[
In,k+1(x, c)

]α with In,k(x, c) =
∞∑

j=k

pn,j(x, c),

and

Kβ ,c
n,α(x; t) =

∞∑

k=1

(∫ ∞

0
L[β]

n,k–1(t) dt
)–1

R(α)
n,k(x, c)L[β]

n,k–1(t) + R(α)
n,0(x, c)δ(t),

δ being the Dirac delta function. For α = 1, we note that Pβ ,c
n,α(h; x) = Pβ ,c

n (h; x).
Recently, Acar et al. [22] considered the Bézier variant of Bernstein–Durrmeyer type op-

erators and studied the degree of approximation of functions having derivative of bounded
variation. The order of approximation of summation-integral type operators for functions
with derivatives of bounded variation is estimated in [13, 23–27].

The aim of this paper is to investigate the weighted approximation properties and a di-
rect approximation result by means of the Ditzian–Totik modulus of smoothness ωφτ (h; t),
0 ≤ τ ≤ 1, and the rate of convergence for functions having a derivative of bounded vari-
ation for the operators given by (1.4). Throughout this paper, C denotes a constant which
may be different at each occurrence.

2 Preliminaries
In the sequel, the following auxiliary results are used to prove the main results of the paper.

Lemma 1 (see [7]) For the mth order moment Pβ ,c
n (tm; x), m = 0, 1, 2, we obtain

(1) Pβ ,c
n (1; x) = 1;

(2) Pβ ,c
n (t; x) = (1 – β)x + β(2–β)

n(1–β) (1 – φn,c(x));

(3) Pβ ,c
n (t2; x) = (1 – β)2[x2 + x(1+cx)

n ] + (1+4β–2β2)
n x + β2(3–β)

n2(1–β) (1 – φn,c(x)).
Consequently, for the rth order central moment μ

β ,c
n,r (x) = Pβ ,c

n ((t – x)r ; x), r = 0, 1, 2, one has
(1) μ

β ,c
n,0(x) = 1;

(2) μ
β ,c
n,1(x) = –βx + β(2–β)

n(1–β) (1 – φn,c(x));

(3) μ
β ,c
n,2(x) = [β2 + c(1–β)2

n ]x2 + 2–4β–β2+β3+2β(2–β)φn,c(x)
n(1–β) x + β2(3–β)(1–φn,c(x))

n2(1–β) .

Lemma 2 (see [7]) If β = β(n) → 0 as n → ∞ and limn→∞ nβ(n) = l ∈R, then
(1) limn→∞ nμ

β ,c
n,1(x) = –lx;

(2) limn→∞ nμ
β ,c
n,2(x) = x(cx + 2);

(3) limn→∞ n2μ
β ,c
n,4(x) = 3x2(cx + 2)2.
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Remark 1 It is observed that

Pβ ,c
n,α(1; x) =

∞∑

k=0

R(α)
n,k(x, c) =

[
In,0(x, c)

]α =

[ ∞∑

j=0

pn,k(x, c)

]α

= 1, (2.1)

since
∑∞

j=0 pn,k(x, c) = 1.

Let CB[0,∞) denote the space of all continuous and bounded functions on [0,∞), where
the norm is defined by

‖h‖ = sup
[0,∞)

∣∣h(x)
∣∣.

Lemma 3 For every h ∈ CB[0,∞), we have

∥∥Pβ ,c
n,α(h; ·)∥∥≤ ‖h‖.

Lemma 3 can easily be proved using (2.1).

Remark 2 We observe that

0 < R(α)
n,k(x, c) =

[
In,k(x, c)

]α –
[
In,k+1(x, c)

]α

≤ α
(
In,k(x, c) – In,k+1(x, c)

)

= αpn,k(x, c),

in view of the inequality

∣∣aα – bα
∣∣≤ α|a – b| for 0 ≤ a, b ≤ 1,α ≥ 1.

Hence, from (1.4), we get

∣∣Pβ ,c
n,α(h; x)

∣∣≤ αPβ ,c
n
(|h|; x

)
.

3 Main results
For x ∈ (0,∞), t ∈ [0,∞), and 0 < r ≤ 1, as we can see in Özarslan and Duman [28], the
Lipschitz type space is defined as

Lip∗
M(r) :=

{
h ∈ C[0,∞) :

∣∣h(t) – h(x)
∣∣≤ M

|t – x|r
(t + x)r/2

}
.

In the following theorem, we obtain the rate of convergence of the operators Pβ ,c
n,α for func-

tions in Lip∗
M(r).

Theorem 1 Let h ∈ Lip∗
M(r) and r ∈ (0, 1]. Then, for all x ∈ (0,∞), we have

∣∣Pβ ,c
n,α(h; x) – h(x)

∣∣≤ αM
(

μ
β ,c
n,2(x)
x

)r/2

.
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Proof Using Remark 2, we get

∣∣Pβ ,c
n,α
(
h(t); x

)
– h(x)

∣∣≤ Pβ ,c
n,α
(∣∣h(t) – h(x)

∣∣; x
)

≤ αPβ ,c
n
(∣∣h(t) – h(x)

∣∣; x
)

≤ αMPβ ,c
n

( |t – x|r
(t + x)r/2 ; x

)

≤ αM
xr/2 Pβ ,c

n
(|t – x|r ; x

)
. (3.1)

Taking p = 2
r and q = 2

2–r and applying Hölder’s inequality, we obtain

Pβ ,c
n
(|t – x|r ; x

)≤ {Pβ ,c
n
(
(t – x)2; x

)}r/2{Pβ ,c
n
(
1

2
2–r ; x

)} 2–r
2 =

(
μ

β ,c
n,2(x)

)r/2. (3.2)

Combining (3.1) and (3.2), we get

∣∣Pβ ,c
n,α
(
h(t); x

)
– h(x)

∣∣≤ αM
(

μ
β ,c
n,2(x)
x

)r/2

.

This completes the proof. �

In the following, we present some weighted approximation results. First, we recall some
basic notations. Let B2[0,∞) = {h : [0,∞) →R : |h(x)| ≤ Mh(1+x2) for all x ∈ [0,∞)}. Fur-
ther, let C2[0,∞) be the subspace of B2[0,∞) consisting of continuous functions defined
on [0,∞). The norm in C2[0,∞) is given by

‖h‖2 = sup
x∈[0,∞)

|h(x)|
1 + x2 .

Also, let

C0
2[0,∞) :=

{
h ∈ C2[0,∞) : lim

x→∞
|h(x)|
1 + x2 is finite

}
.

The next theorem provides us the degree of approximation of Pβ ,c
n,α in terms of the classical

modulus of continuity for the functions in the weighted space C2[0,∞).

Theorem 2 For h ∈ C2[0,∞), we have

∣∣Pβ ,c
n,α(h; x) – h(x)

∣∣≤ 4αMh
(
1 + x2)μβ ,c

n,2(x) + (1 +
√

α)ωb+1

(
h;
√

μ
β ,c
n,2(x)

)
,

where ωb+1(h; δ) is the modulus of continuity of h on [0, b + 1].

Proof From [29], for x ∈ [0, b] and t ≥ 0, we obtain

∣∣h(t) – h(x)
∣∣≤ 4Mh(t – x)2(1 + x2) +

(
1 +

|t – x|
δ

)
ωb+1(h; δ).
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Applying Remark 2 and the Cauchy–Schwarz inequality, we get

∣∣Pβ ,c
n,α(h; x) – h(x)

∣∣ ≤ 4Mh
(
1 + x2)Pβ ,c

n,α
(
(t – x)2; x

)
+ ωb+1(h; δ)

(
1 +

1
δ

(
αμ

β ,c
n,2(x)

)1/2
)

≤ 4αMh
(
1 + x2)μβ ,c

n,2(x) + ωb+1(h; δ)
(

1 +
√

α

δ

(
μ

β ,c
n,2(x)

)1/2
)

.

Choosing δ =
√

μ
β ,c
n,2(x), we get the desired result. �

To determine the rate of convergence for functions in C0
2[0,∞), Yüksel and Ispir [6]

introduced the weighted modulus of continuity as

�(h; δ) = sup
x∈[0,∞),0<η<δ

|h(x + η) – h(x)|
1 + (x + η)2 .

In the following lemma, we state the properties of the weighted modulus of continuity
�(h; δ).

Lemma 4 (see [6]) Let h ∈ C0
2[0,∞). Then the following results hold.

(1) �(h; δ) is monotonically increasing in δ.
(2) limδ→0+ �(h; δ) = 0.
(3) For each m ∈N, �(h; mδ) ≤ m�(h; δ).
(4) For each λ ∈ [0,∞), �(h;λδ) ≤ (1 + λ)�(h; δ).

Theorem 3 Let h ∈ C0
2[0,∞), β = β(n) → 0 as n → ∞ with limn→∞ nβ = l ∈R, and b > 0.

Then

lim
n→∞ sup

x∈[0,∞)

|Pβ ,c
n,α(h; x) – h(x)|

(1 + x2)1+b = 0.

Proof Let x0 ∈ [0,∞) be arbitrary but fixed. Then

sup
x∈[0,∞)

|Pβ ,c
n,α(h; x) – h(x)|

(1 + x2)1+b

≤ sup
x≤x0

|Pβ ,c
n,α(h; x) – h(x)|

(1 + x2)1+b + sup
x>x0

|Pβ ,c
n,α(h; x) – h(x)|

(1 + x2)1+b

≤ ∥∥Pβ ,c
n,α(h; x) – h(x)

∥∥
C[0,x0] + ‖h‖2 sup

x>x0

Pβ ,c
n,α(1 + t2; x)
(1 + x2)1+b + sup

x>x0

|h(x)|
(1 + x2)1+b . (3.3)

Since |h(x)| ≤ ‖h‖2(1 + x2), we have

sup
x>x0

|h(x)|
(1 + x2)1+b ≤ ‖h‖2

(1 + x2
0)b .

Let ε > 0 be arbitrary. We choose x0 to be so large that

‖h‖2

(1 + x2
0)b <

ε

6
. (3.4)
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For ε > 0, there exists n1 ∈N such that

∣∣Pβ ,c
n,α
(
1 + t2; x

)
–
(
1 + x2)∣∣ <

ε

3‖h‖2
for all n ≥ n1.

Hence, using (3.4), we get

‖h‖2 sup
x≥x0

Pβ ,c
n,α(1 + t2; x)
(1 + x2)1+b ≤ ‖h‖2 sup

x≥x0

1
(1 + x2)1+b

((
1 + x2) +

ε

3‖h‖2

)

≤ ‖h‖2 sup
x≥x0

(
1

(1 + x2)b +
ε

3‖h‖2(1 + x2)1+b

)

≤ ‖h‖2 sup
x≥x0

(
1

(1 + x2)b +
ε

3‖h‖2

)

≤ ‖h‖2

(1 + x2
0)b +

ε

3

≤ ε

2
. (3.5)

Applying Theorem 2, we can find n2 ∈ N such that

∥∥Pβ ,c
n,α(h; x) – h(x)

∥∥
C[0,x0] <

ε

3
, (3.6)

for all n greater than equal to n2. Combining (3.3)–(3.6), we obtain

sup
x∈[0,∞)

|Pβ ,c
n,α(h; x) – h(x)|

(1 + x2)1+b < ε.

This proves the required result. �

In the following theorem, we establish the rate of convergence of the operators Pβ ,c
n,α in

terms of the weighted modulus of continuity �.

Theorem 4 Let h ∈ C0
2[0,∞). If β = β(n) → 0 as n → ∞ and limn→∞ nβ(n) = l ∈R, then,

for sufficiently large n, we have

sup
x∈[0,∞)

|Pβ ,c
n,α(h; x) – h(x)|

(1 + x2) 5
2

≤ C�

(
h;

1√
n

)
,

where C is a positive constant independent of h and n.

Proof For x ∈ (0,∞) and δ > 0, using the definition of weighted modulus of continuity and
Lemma 4, we have

∣∣h(t) – h(x)
∣∣ ≤ (1 +

(
x + |x – t|)2)

�
(
h; |t – x|)

≤ 2
(
1 + x2)(1 + (t – x)2)

(
1 +

|t – x|
δ

)
�(h; δ).
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Applying Pβ ,c
n,α(·; x) to both sides of the above inequality, we can write

∣∣Pβ ,c
n,α(h; x) – h(x)

∣∣

≤ 2
(
1 + x2)�(h; δ)

(
1 + Pβ ,c

n,α
(
(t – x)2; x

)
+ Pβ ,c

n,α

((
1 + (t – x)2) |t – x|

δ
; x
))

. (3.7)

From Lemma 2, for sufficiently large n, it follows that

nμ
β ,c
n,2(x) ≤ Cx(cx + 2) and n2μ

β ,c
n,4(x) ≤ Cx2(cx + 2)2, (3.8)

where C is a positive constant. Now, applying the Cauchy–Schwarz inequality in the last
term of (3.7), we obtain

Pβ ,c
n,α

((
1 + (t – x)2) |t – x|

δ
; x
)

≤ 1
δ

(
αμ

β ,c
n,2(x)

)1/2 +
1
δ

(
αμ

β ,c
n,4(x)

)1/2(
αμ

β ,c
n,2(x)

)1/2. (3.9)

Combining estimates (3.7)–(3.9) and taking

C = 2(1 +
√

αC + 2αC) and δ =
1√
n

,

we reach the required result. �

Now our aim is to discuss the rate of convergence in terms of the unified Ditzian–Totik
modulus of smoothness ωφτ (h, t), 0 ≤ τ ≤ 1. First, we define the Ditzian–Totik modulus
of smoothness and the Peetre K-functional. Let φ(x) =

√
x(2 + cx) and h ∈ CB[0,∞). The

modulus ωφτ (h, t), 0 ≤ τ ≤ 1, is defined as

ωφτ (h, t) = sup
0≤j≤t

sup
x± jφτ (x)

2 ∈[0,∞)

∣∣∣∣h
(

x +
jφτ (x)

2

)
– h
(

x –
jφτ (x)

2

)∣∣∣∣,

and the appropriate K-functional is given by

Kφτ (h, t) = inf
g∈Wτ

{‖h – g‖ + t
∥∥φτ g ′∥∥},

where Wτ is the subspace of the space of locally absolutely continuous functions g on
[0,∞), with ‖φτ g ′‖ < ∞. By [30, Theorem 2.1.1], there exists a constant N > 0 such that

N–1ωφτ (h, t) ≤ Kφτ (h, t) ≤ Nωφτ (h, t). (3.10)

Theorem 5 If h ∈ CB[0,∞), then

∣∣Pβ ,c
n,α(h; x) – h(x)

∣∣≤ Cωφτ

(
h,

φ1–τ (x)√
n

)

for sufficiently large n, where C is independent of h and n.
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Proof By the definition of Kφτ (h, t), there exists a function g ∈ Wτ such that

‖h – g‖ +
φ1–τ (x)√

n
∥∥φτ g ′∥∥≤ 2Kφτ

(
h,

φ1–τ (x)√
n

)
. (3.11)

We can write

∣∣Pβ ,c
n,α(h; x) – h(x)

∣∣≤ ∣∣Pβ ,c
n,α(h – g; x)

∣∣ +
∣∣Pβ ,c

n,α(g; x) – g(x)
∣∣ +
∣∣g(x) – h(x)

∣∣

≤ 2‖h – g‖ +
∣∣Pβ ,c

n,α(g; x) – g(x)
∣∣. (3.12)

Since g ∈ Wτ , we obtain

g(t) = g(x) + G(t), where G(t) :=
∫ t

x
g ′(u) du,

and so

∣∣Pβ ,c
n,α(g; x) – g(x)

∣∣≤ Pβ ,c
n,α
(|G|; x

)
. (3.13)

By applying Hölder’s inequality, we get

∣∣G(t)
∣∣≤ ∥∥φτ g ′∥∥

∣∣∣∣
∫ t

x

du
φτ (u)

∣∣∣∣≤
∥∥φτ g ′∥∥|t – x|1–τ

∣∣∣∣
∫ t

x

du
φ(u)

∣∣∣∣
τ

. (3.14)

Now

∣∣∣∣
∫ t

x

du
φ(u)

∣∣∣∣ ≤
∣∣∣∣
∫ t

x

du√
u

∣∣∣∣

(
1√

2 + cx
+

1√
2 + ct

)

= 2|√t –
√

x|
(

1√
2 + cx

+
1√

2 + ct

)

=
2|t – x|√

t +
√

x

(
1√

2 + cx
+

1√
2 + ct

)

≤ 2|t – x|√
x

(
1√

2 + cx
+

1√
2 + ct

)
,

the inequality |a + b|τ ≤ |a|τ + |b|τ , 0 ≤ τ ≤ 1, and (3.14) imply

∣∣G(t)
∣∣≤ 2τ‖φτ g ′‖|t – x|

xτ /2

(
1√

2 + cx
+

1√
2 + ct

)τ

≤ 2τ‖φτ g ′‖|t – x|
xτ /2

(
1

(2 + cx)τ /2 +
1

(2 + ct)τ /2

)
. (3.15)

Thus, from (3.13), (3.15), and the Cauchy–Schwarz inequality, we get

∣∣Pβ ,c
n,α(g; x) – g(x)

∣∣

≤ 2τ‖φτ g ′‖
xτ /2 Pβ ,c

n,α

(
|t – x|

(
1

(2 + cx)τ /2 +
1

(2 + ct)τ /2

)
; x
)
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≤ 2τ‖φτ g ′‖
xτ /2

(
1

(2 + cx)τ /2

√
αμ

β ,c
n,2 +

√
αμ

β ,c
n,2

√
Pβ ,c

n,α
(
(2 + ct)–τ ; x

))

≤ 2τ
∥∥φτ g ′∥∥

√
αμ

β ,c
n,2

{
φ–τ (x) + x–τ /2

√
Pβ ,c

n,α
(
(2 + ct)–τ ; x

)}
. (3.16)

Note that for each x ∈ (0,∞),

Pβ ,c
n,α
(
(2 + ct)–τ ; x

)→ (2 + cx)–τ as n → ∞,

and thus, for ε > 0, there exists n0 ∈ N such that

Pβ ,c
n,α
(
(2 + ct)–τ ; x

)≤ (2 + cx)–τ + ε for all n ≥ n0.

Choosing ε = (2 + cx)–τ , we obtain

Pβ ,c
n,α
(
(2 + ct)–τ ; x

)≤ 2(2 + cx)–τ for all n ≥ n0.

Therefore, using (3.8) and (3.16), we get

∣∣Pβ ,c
n,α(g; x) – g(x)

∣∣≤ 2τ
∥∥φτ g ′∥∥

√
αCφ2(x)

n
{
φ–τ (x) +

√
2x–τ /2(2 + cx)–τ /2}

≤ 2τ (1 +
√

2)
∥∥φτ g ′∥∥φ1–τ (x)

√
αC
n

(3.17)

for sufficiently large n. Thus, from (3.12), (3.17), and (3.11) (in that order), we find

∣∣Pβ ,c
n,α(h; x) – h(x)

∣∣≤ 2‖h – g‖ + 2τ (1 +
√

2)
∥∥φτ g ′∥∥φ1–τ (x)

√
αC
n

≤ C′
{
‖h – g‖ +

φ1–τ (x)√
n
∥∥φτ g ′∥∥

}

≤ CKφτ

(
h,

φ1–τ (x)√
n

)
, (3.18)

where C′ = max{2, 2τ (1 +
√

2)
√

αC} and C = 2C′. By using relation (3.10), we reach the
required result. �

Lastly, we obtain the convergence rate for functions having derivatives equivalent with
a function of bounded variation. Let DBV[0,∞) be the class of functions h ∈ B2[0,∞)
having a derivative of bounded variation on every finite subinterval of [0,∞). The function
h ∈ DBV[0,∞) has the representation

h(x) =
∫ x

0
j(t) dt + h(0),

where j is a function of bounded variation on each finite subinterval of [0, ∞). For this
purpose, we use the following auxiliary result.
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Lemma 5 For fixed u ∈ (0,∞) and sufficiently large n, we have

ξβ ,c
n,α (u, v) :=

∫ v

0
Kβ ,c

n,α(u; t) dt ≤ α
Cu(2 + cu)

n
(u – v)–2, 0 ≤ v < u, (3.19)

and

1 – ξβ ,c
n,α (u, w) =

∫ ∞

w
Kβ ,c

n,α(u; t) dt ≤ α
Cu(2 + cu)

n
(w – u)–2, u < w < ∞, (3.20)

where C is a positive constant.

Proof Applying Remark 2 and using (3.8), we have

ξβ ,c
n,α (u, v) =

∫ v

0
Kβ ,c

n,α(u; t) dt

≤
∫ v

0

(
u – t
u – v

)2

Kβ ,c
n,α(u; t) dt

= (u – v)–2
∫ v

0
(u – t)2Kβ ,c

n,α(u; t) dt

≤ Pβ ,c
n,α((t – u)2; u)

(u – v)2 ≤ αμ
β ,c
n,2(u)

(u – v)2

≤ α
Cu(2 + cu)

n
(u – v)–2,

showing (3.19). Similarly, applying Remark 2 and using (3.8), we get

1 – ξβ ,c
n,α (u, w) =

∫ ∞

w
Kβ ,c

n,α(u; t) dt

≤
∫ ∞

w

(
t – u
w – u

)2

Kβ ,c
n,α(u; t) dt

= (w – u)–2
∫ ∞

w
(u – t)2Kβ ,c

n,α(u; t) dt

≤ Pβ ,c
n,α((u – t)2; u)

(w – u)2 ≤ αμ
β ,c
n,2(u)

(w – u)2

≤ α
Cu(2 + cu)

n
(w – u)–2,

showing (3.20). �

Theorem 6 Let h ∈ DBV[0,∞). Then, for every x ∈ (0,∞) and sufficiently large n, we have

∣∣Pβ ,c
n,α(h; x) – h(x)

∣∣ ≤ 1
α + 1

∣∣h′(x+) + αh′(x–)
∣∣
√

αCx(2 + cx)
n

+
α

α + 1
∣∣h′(x+) – h′(x–)

∣∣
√

αCx(2 + cx)
n

+
αC(2 + cx)

n

[
√

n]∑

k=1

(x+ x
k∨

x– x
k

h′
x

)
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+
x√
n

(x+ x√
n∨

x– x√
n

h′
x

)
+

αC(2 + cx)
nx

∣∣h(2x) – h(x) – xh′(x+)
∣∣

+
∣∣h′(x+)

∣∣
√

αCx(2 + cx)
n

+
(

4M +
M + |h(x)|

x2

)
αCx(2 + cx)

n
,

where
∨b

a h(x) represents the total variation of h on [a, b], M is a constant, and h′
x is defined

by

h′
x(u) =

⎧
⎪⎪⎨

⎪⎪⎩

h′(u) – h′(x–), if 0 ≤ u < x,

0, if u = x,

h′(u) – h′(x+), if x < u < ∞.

(3.21)

Proof For any h ∈ DBV[0,∞), from (3.21), we may write

h′(u) = h′
x(u) +

1
α + 1

(
h′(x+) + αh′(x–)

)

+
1
2
(
h′(x+) – h′(x–)

)(
sgn(u – x) +

α – 1
α + 1

)

+ δx(u)
[

h′(u) –
1
2
(
h′(x+) + h′(x–)

)]
, (3.22)

where

δx(t) =

⎧
⎨

⎩
1, if t = x,

0, if t = x.

Since Pβ ,c
n,α(1; x) = 1, using (1.4), for every x ∈ (0,∞), we get

Pβ ,c
n,α(h; x) – h(x) =

∫ ∞

0
Kβ ,c

n,α(x; t)
(
h(t) – h(x)

)
dt

=
∫ ∞

0
Kβ ,c

n,α(x; t)
(∫ t

x
h′(u) du

)
dt. (3.23)

From (3.22) and (3.23), we get

Pβ ,c
n,α(h; x) – h(x)

=
∫ ∞

0
Kβ ,c

n,α(x; t)
∫ t

x

[
h′

x(u) +
1

α + 1
(
h′(x+) + αh′(x–)

)
+

1
2
(
h′(x+) – h′(x–)

)

×
(

sgn(u – x) +
α – 1
α + 1

)
+ δx(u)

[
h′(u) –

1
2
(
h′(x+) + h′(x–)

)]
du
]

dt

= C1 + C2 + C3 + Cβ ,c
n,α
(
h′

x, x
)

+ Dβ ,c
n,α
(
h′

x, x
)
,
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where

C1 =
∫ ∞

0

(∫ t

x

1
α + 1

(
h′(x+) + αh′(x–)

)
du
)

Kβ ,c
n,α(x; t) dt,

C2 =
∫ ∞

0
Kβ ,c

n,α(x; t)
(∫ t

x

1
2
(
h′(x+) – h′(x–)

)(
sgn(u – x) +

α – 1
α + 1

)
du
)

dt,

C3 =
∫ ∞

0

(∫ t

x

(
h′(u) –

1
2
(
h′(x+) + h′(x–)

))
δx(u) du

)
Kβ ,c

n,α(x; t) dt,

Cβ ,c
n,α
(
h′

x, x
)

=
∫ x

0

(∫ t

x
h′

x(u) du
)

Kβ ,c
n,α(x; t) dt,

and

Dβ ,c
n,α
(
h′

x, x
)

=
∫ ∞

x

(∫ t

x
h′

x(u) du
)

Kβ ,c
n,α(x; t) dt.

Obviously,

C3 =
∫ ∞

0

(∫ t

x

(
h′(u) –

1
2
(
h′(x+) + h′(x–)

))
δx(u) du

)
Kβ ,c

n,α(x; t) dt = 0. (3.24)

Next, using (1.4), we get

C1 =
∫ ∞

0

(∫ t

x

1
α + 1

(
h′(x+) + αh′(x–)

)
du
)

Kβ ,c
n,α(x; t) dt

=
1

α + 1
(
h′(x+) + αh′(x–)

)∫ ∞

0
(t – x)Kβ ,c

n,α(x; t) dt

=
1

α + 1
(
h′(x+) + αh′(x–)

)
Pβ ,c

n,α
(
(t – x); x

)
(3.25)

and

C2 =
∫ ∞

0
Kβ ,c

n,α(x; t)
(∫ t

x

1
2
(
h′(x+) – h′(x–)

)(
sgn(u – x) +

α – 1
α + 1

)
du
)

dt

=
1
2
(
h′(x+) – h′(x–)

)[
–
∫ x

0

(∫ x

t

(
sgn(u – x) +

α – 1
α + 1

)
du
)

Kβ ,c
n,α(x; t) dt

+
∫ ∞

x

(∫ t

x

(
sgn(u – x) +

α – 1
α + 1

)
du
)

Kβ ,c
n,α(x; t) dt

]

≤ α

α + 1
∣∣h′(x+) – h′(x–)

∣∣
∫ ∞

0
|t – x|Kβ ,c

n,α(x; t) dt

=
α

α + 1
∣∣h′(x+) – h′(x–)

∣∣Pβ ,c
n,α
(|t – x|; x

)
. (3.26)

Combining (3.23)–(3.26), applying Remark 2 and the Cauchy–Schwarz inequality, and us-
ing (3.8), we obtain

∣∣Pβ ,c
n,α(h; x) – h(x)

∣∣

≤ 1
α + 1

∣∣h′(x+) + αh′(x–)
∣∣(αPβ ,c

n
(
(t – x)2; x

))1/2 +
α

α + 1
∣∣h′(x+) – h′(x–)

∣∣
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× (αPβ ,c
n
(
(t – x)2; x

))1/2 +
∣∣Cβ ,c

n,α
(
h′

x, x
)∣∣ +

∣∣Dβ ,c
n,α
(
h′

x, x
)∣∣

≤ 1
α + 1

∣∣h′(x+) + αh′(x–)
∣∣
√

αCx(2 + cx)
n

+
α

α + 1
∣∣h′(x+) – h′(x–)

∣∣

×
√

αCx(2 + cx)
n

+
∣∣Cβ ,c

n,α
(
h′

x, x
)∣∣ +

∣∣Dβ ,c
n,α
(
h′

x, x
)∣∣. (3.27)

Now we estimate Cβ ,c
n,α(h′

x, x) and Dβ ,c
n,α(h′

x, x). Since

∫ b

a

d
dt

ξβ ,c
n,α (x, t) dt ≤ 1 for all [a, b] ⊆ [0,∞),

substituting y = x – x/
√

n and applying Lemma 5, we get

∣∣Cβ ,c
n,α
(
h′

x, x
)∣∣ =

∣∣∣∣
∫ x

0

(∫ t

x
h′

x(u) du
)

dtξ
β ,c
n,α (x, t)

∣∣∣∣ =
∣∣∣∣
∫ x

0
ξβ ,c

n,α (x, t)h′
x(t) dt

∣∣∣∣

≤
∫ y

0

∣∣h′
x(t)
∣∣∣∣ξβ ,c

n,α (x, t)
∣∣dt +

∫ x

y

∣∣h′
x(t)
∣∣∣∣ξβ ,c

n,α (x, t)
∣∣dt

≤ αCx(2 + cx)
n

∫ y

0

( x∨

t
h′

x

)
(x – t)–2 dt +

∫ x

y

( x∨

t
h′

x

)
dt

≤ αCx(2 + cx)
n

∫ y

0

( x∨

t
h′

x

)
(x – t)–2 dt +

x√
n

( x∨

x– x√
n

h′
x

)

=
αCx(2 + cx)

n

∫ x– x√
n

0

( x∨

t
h′

x

)
(x – t)–2 dt +

x√
n

( x∨

x– x√
n

h′
x

)
.

Substituting u = x/(x – t), we obtain

αCx(2 + cx)
n

∫ x– x√
n

0
(x – t)–2

( x∨

t
h′

x

)
dt =

αCx(2 + cx)
n

x–1
∫ √

n

1

( x∨

x– x
u

h′
x

)
du

≤ αC(2 + cx)
n

[
√

n]∑

k=1

( x∨

x– x
k

h′
x

)
.

Thus,

∣∣Cβ ,c
n,α
(
h′

x, x
)∣∣≤ αC(2 + cx)

n

[
√

n]∑

k=1

( x∨

x– x
k

h′
x

)
+

x√
n

( x∨

x– x√
n

h′
x

)
. (3.28)

Again, using the Cauchy–Schwarz inequality, integration by parts, and applying Lemma 5
to estimate Dβ ,c

n,α(h′
x, x), we get

∣∣Dβ ,c
n,α
(
h′

x, x
)∣∣ ≤

∣∣∣∣
∫ ∞

2x

(∫ t

x
h′

x(u) du
)

Kβ ,c
n,α(x; t) dt

∣∣∣∣

+
∣∣∣∣
∫ 2x

x

(∫ t

x
h′

x(u) du
)

dt
(
1 – ξβ ,c

n,α (x, t)
)∣∣∣∣
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≤
∣∣∣∣
∫ ∞

2x
h(t)Kβ ,c

n,α(x; t) dt
∣∣∣∣ +
∣∣h(x)

∣∣
∣∣∣∣
∫ ∞

2x
Kβ ,c

n,α(x; t) dt
∣∣∣∣

+
∣∣h′(x+)

∣∣
(∫ ∞

2x
(t – x)2Kβ ,c

n,α(x; t) dt
)1/2

+
αC(2 + cx)

nx

∣∣∣∣
∫ 2x

x

(
h′(u) – h′(x+)

)
du
∣∣∣∣ +
∣∣∣∣
∫ x+ x√

n

x
h′

x(t) dt
∣∣∣∣

+
αCx(2 + cx)

n

∣∣∣∣
∫ 2x

x+ x√
n

(t – x)–2h′
x(t) dt

∣∣∣∣.

Dβ ,c
n,α(h′

x, x) is estimated in a manner similar to Cβ ,c
n,α(h′

x, x). Putting t = x + x/u and using
(3.8), we get

∣∣Dβ ,c
n,α
(
h′

x, x
)∣∣ ≤ M

∫ ∞

2x

(
1 + t2)Kβ ,c

n,α(x; t) dt

+
∣∣h(x)

∣∣
∫ ∞

2x
Kβ ,c

n,α(x; t) dt +
∣∣h′(x+)

∣∣
√

αCx(2 + cx)
n

+
αC(2 + cx)

nx
∣∣h(2x) – h(x) – xh′(x+)

∣∣ +
x√
n

(x+ x√
n∨

x
h′

x

)

+
αC(2 + cx)

n

∣∣∣∣
∫ 2x

x+ x√
n

(t – x)–2h′
x(t) dt

∣∣∣∣

≤ M
∫ ∞

2x

(
1 + t2)Kβ ,c

n,α(x; t) dt +
∣∣h(x)

∣∣
∫ ∞

2x
Kβ ,c

n,α(x; t) dt

+
∣∣h′(x+)

∣∣
√

αCx(2 + cx)
n

+
αC(2 + cx)

nx
∣∣h(2x) – h(x) – xh′(x+)

∣∣ +
x√
n

(x+ x√
n∨

x
h′

x

)

+
αC(2 + cx)

n

[
√

n]∑

k=1

(x+ x√
n∨

x
h′

x

)
. (3.29)

For t ≥ 2x, we have t ≤ 2(t – x) and x ≤ t – x. Now, using (3.8), we obtain

M
∫ ∞

2x
t2Kβ ,c

n,α(x; t) dt +
(
M +

∣∣h(x)
∣∣)
∫ ∞

2x
Kβ ,c

n,α(x; t) dt

≤ 4M
∫ ∞

2x
(t – x)2Kβ ,c

n,α(x; t) dt +
(
M +

∣∣h(x)
∣∣)
∫ ∞

2x

(t – x)2

x2 Kβ ,c
n,α(x; t) dt

≤ 4M
∫ ∞

0
(t – x)2Kβ ,c

n,α(x; t) dt +
(M + |h(x)|)

x2

∫ ∞

0
(t – x)2Kβ ,c

n,α(x; t) dt

=
(

4M +
M + |h(x)|

x2

)
αCx(2 + cx)

n
.

Combining this with (3.27)–(3.29) yields the desired result. �
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4 Conclusion
The Bézier variant of a sequence of mixed hybrid operators has been introduced and the
rate of convergence by means of the Lipschitz class and the modulus of continuity has been
established. The weighted approximation properties and a direct approximation theorem
have been obtained. The approximation of functions with derivatives of bounded variation
has been studied.
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