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1 Introduction

For a continuous function / on [0, 1], Bernstein [1] defined a linear positive operator in or-
der to provide a very simple and elegant proof of the Weierstrass approximation theorem,
namely

B, (%) = (”)xku-x)"kh(f), xe[0,1].
0 k n

k=

In order to approximate continuous functions on [0, 00), Szdsz [2] introduced the operator

S k
Sullx) = me-mh<f), (1.1)

! n
k=0 k

provided the infinite series on the right-hand side converges. Later on, for / € C[0, c0) and
0 < B <1, Jain [3] proposed a modification of the operators given in (1.1), namely

PO (h; %) = ZLffk’(x)hG), (1.2)

k=0

k-1
8) nx(nx + kB) _ .«
1w = T et
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with the partition of unity

oo
Y LW =1.
k=0

It is observed that the Jain operator (1.2) includes the Szész operator (1.1) as a special case
for B = 0. Recently, Gupta and Greubel [4] also proposed the Durrmeyer type modification
of the operators given in (1.2) as

Zoo (Lupoh) p)

B) (17: ) — nk’

Dn (h}x) - <L(ﬂ) >Ln’k(x))
k=0 nk?

where
h,g = h g dt.

They showed that these operators converge to /# without any restriction on 8. The mo-
ments for these operators were obtained by using Tricomi’s hypergeometric functions and
Stirling numbers of first kind, and some approximation properties of these operators were
proved.

In the literature, many authors have discussed the approximation behavior of different
summation-integral type operators (see [5, 6]). For 0 < 8 <1 and ¢ > 0, Acu and Gupta
[7] introduced mixed Durrmeyer type operators for x € [0, c0) as

o0 00 -1 o)
Pﬁ’“(h;x):Z( /0 Lf,}_l(t)dt) Pui(,€) fo LB (Oh(8)dt + ppolx, h(0), (1.3)

k=1
where
(—x)k
Pui(x,0) = Trbfﬁ ()
and
e, ifc=0,
¢n,c(x) =

(1 +cx)e, ifc>0.

They determined the degree of approximation by means of the modulus of continuity and
a weighted space. The authors also studied the approximation of functions having deriva-
tives equivalent with a function of bounded variation. It is observed that the operator
defined by (1.3) has two special cases:

(1) If ¢ppc(x) = e and B = 0, then the Phillips operators are obtained [8].

(2) If ¢e(x) = (1 + cx)™/¢ and B = 0, then one gets the Baskakov—Szasz operators [9].
Zeng and Piriou [10] initiated the study of Bézier variant of Bernstein operators. Zeng
and Chen [11] estimated the rate of approximation for Bézier—Bernstein—Durrmeyer op-
erators. Zeng and Tao [12] considered Bézier—Baskakov—Durrmeyer operators for o > 1
and obtained the rate of convergence. For some other contributions in this direction, we
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refer to [13-21]. Motivated by the above research, we introduce the Bézier variant of the
operator (1.3) as

00 -1
PP () Z( / NG dt) R®)(x,0) / Yl ©h() dt + R (x, )h(0)
k=1 0
= / KPE(xt)h(t) de, (1.4)
0
where a > 1,
oo
R (%,€) = L1k (6,0)]" = [Lukr (0] with Lx(x,¢) = Y i, 0),
j=k

and

oo 00 -1
K r):Z( / JANG) dt) R (x, )LL) () + R (x,0)8(0),
0

k=1

8 being the Dirac delta function. For a = 1, we note that P55 (h;x) = P2 (; %).

Recently, Acar et al. [22] considered the Bézier variant of Bernstein—Durrmeyer type op-
erators and studied the degree of approximation of functions having derivative of bounded
variation. The order of approximation of summation-integral type operators for functions
with derivatives of bounded variation is estimated in [13, 23-27].

The aim of this paper is to investigate the weighted approximation properties and a di-
rect approximation result by means of the Ditzian—Totik modulus of smoothness wyr (4; t),
0 < t <1, and the rate of convergence for functions having a derivative of bounded vari-
ation for the operators given by (1.4). Throughout this paper, C denotes a constant which
may be different at each occurrence.

2 Preliminaries

In the sequel, the following auxiliary results are used to prove the main results of the paper.

Lemma 1 (see [7]) For the mth order moment Pg‘c(t’”;x), m=0,1,2, we obtain

(1) P*(L) =1

(2) P(x) = (1= B)x+ L2 (1 - ¢, (0));

(3) PE(%50) = (1- p21a? + 200) o W20y 0D (1 — g, ().
Consequently,for the rth order centml moment (L, r(x) pie ((t-=%)";%),r=0,1,2, one has

(1) ,u o) =

2) Mn 1(96) —ﬂx + (1 Bnc());

3) ,u “(x) = [B% + lnﬂ) Ja? + 2= —B2+B34282-B)ncx) .. | B*(B=B)1-Gnc®)

H(1-p) S T )

Lemma 2 (see [7]) If 8 = B(n) — 0 as n — oo and lim,_, o np(n) =1l € R, then
(1) lim, s nuff,’f(x) =—Ix;
(2) lim,_ o n,uf’g(x) =x(cx + 2);
(3) lim,_ o0 ’1211«52( ) = 3x2(cx + 2)2.
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Remark 1 1t is observed that
Pg,f!(l;x) = ZRH‘TIZ(x, ) = [I,,,o(x, c)]a - |:an,/<(9€» c):| =1, (2.1)
j=0

since }fo Prilx,c) = 1.

Let Cg[0, 00) denote the space of all continuous and bounded functions on [0, c0), where
the norm is defined by

Il = sup [h(x)|.
[0,00)
Lemma 3 For every h € Cg[0, 00), we have
[P < .

Lemma 3 can easily be proved using (2.1).

Remark 2 We observe that

0< RS’,‘,Z(x, ¢) = [In,k(x’ C)]a - [In,k+1(x’ C)]a
< a (L, ¢) = L1 (x,0))

= apui(x,c),
in view of the inequality
|u0‘ —b"‘| <ala-b| forO0<a,b<l,a>1.
Hence, from (1.4), we get
|PP<(h3x)| < aPl¥(1); ).
3 Main results

For x € (0,00), t € [0,00), and 0 < r < 1, as we can see in Ozarslan and Duman [28], the
Lipschitz type space is defined as

o |t —x|"
Lipy,(r) := {h € C[0,00) : |h(t) —h(x)| EM(L‘ +x3;’/2 }

In the following theorem, we obtain the rate of convergence of the operators Pgé for func-
tions in Lipj}(r).

Theorem 1 Let i € Lipy,(r) and r € (0, 1]. Then, for all x € (0,00), we have

Be /2
|PP<(h;x) — h(x)] SaM(M) '
X
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Proof Using Remark 2, we get

|PE< (h(1);x) — h(@)| < PE<(|h(e) - h(x)];

9

< aPPe(|h(t) - h(x)|;x)

pof 1E="
<aMP) C((t +x)’/2’x

aM
<& —Phe(|t - x|";%). (3.1)

Taking p = = and q = 5= and applying Hélder’s inequality, we obtain

PRIt — x5 2) < (PPt — 20%2) ) PP (12732)) 7 = ()™ (3.2)
Combining (3.1) and (3.2), we get

Bic r/2
|PB< (h(2);x) h(x)|§aM<ﬂ%(x)>

This completes the proof. O

In the following, we present some weighted approximation results. First, we recall some
basic notations. Let By[0,00) = {/: [0,00) — R : |i(x)| < My(1+x?) for all x € [0,00)}. Fur-
ther, let C,[0, 0o) be the subspace of B, [0, 00) consisting of continuous functions defined

on [0,00). The norm in C,[0, 00) is given by

il = sup 12

x€[0,00) 1+ xZ )
Also, let

|h(x)]

x~>oo + x2

C9[0,00) := {h € C,[0,00) : is ﬁnite}.

The next theorem provides us the degree of approximation of Pff, in terms of the classical

modulus of continuity for the functions in the weighted space C;[0, 00).

Theorem 2 For h € C,[0,00), we have

[PEE () — ()| < 4oy (1 +52) il ) + (1 + Vo (B 1f5®),

where wp.1(h;8) is the modulus of continuity of h on [0,b + 1].
Proof From [29], for x € [0,b] and ¢ > 0, we obtain

| — x|

|1(8) = ()| < 4My (e - 2)>(1 +2%) + (1 " )wb+1(h; ).

Page 5 of 17
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Applying Remark 2 and the Cauchy—Schwarz inequality, we get
1
’Pﬁc (h;x) | < 4M;,(1 +x )Pf; ((t — x)z;x) + a)b+1(h;8)(1 5 (aum( ))1/2)

<4aM;(1+ xz)ufﬁ(x) + a)b+1(h:5)<1 {(an( ))1/2)

Choosing § =/, 2( x), we get the desired result. O

To determine the rate of convergence for functions in Cg [0, 00), Yiiksel and Ispir [6]
introduced the weighted modulus of continuity as

QU= wp Dok
x€[0,00),0<n<8 1+ (x + 71)

In the following lemma, we state the properties of the weighted modulus of continuity
Q(h;9).

Lemma 4 (see [6]) Leth e Cg[O, 00). Then the following results hold.
(1) Q2(k;6) is monotonically increasing in 5.
(2) limg_ o+ Q(8) = 0.
(3) Foreach m e N, Q(h;ms) < mQ(h;6).
(4) Foreach A € [0,00), Q(h;A8) < (1 + A)Q(/;8).

Theorem 3 Leth € C(Z)[O, 00), B =B(n) = 0asn— cowithlim, . np=1€R,andb>0.
Then

i oy (PAeU) ~ )|
wae[o,lzo) (1 +x2)t+b

Proof Let x¢ € [0,00) be arbitrary but fixed. Then

|Phs () — h(x)|
x€[0,00) 1+ x2)1+b

o PR —h@) P () — h)
- X< (1 + x2)l+b x5%0 (1 + x2)1+b
Pha(1+ %) ()|
ﬁ,c . n,o ’
< 1P 0) = @) o + Wl S =55 + S0P (g (33)
Since |h(x)| < ||4]|2(1 + £2), we have
Al
woy (L +22)10 = (14 ag)b
Let & > 0 be arbitrary. We choose x to be so large that
Al e
—. 3.4
(L+a3)b 6 (3.4)
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For ¢ > 0, there exists #; € N such that

|P5,’§(1+t2;x)—(1 +x for all n > n;.

) e
<
) 3liAll2
Hence, using (3.4), we get

I ol ) S
sup ——— sup —m—m— + X +
2 Ay = MR ey 311l

1 e
< ||kl su +
= ”2x>£)((1 +a2)b " 3|k, (1 +x2)1+b)

< ] ( ! ¢ )
sup| ———+ ——
= W P\ 222 " 3pl,

_ e e
T (L+ad) 3
€
<-. 3.5
=5 (3.5)
Applying Theorem 2, we can find #n, € N such that
| PP (s ) — )| oy o < = (3.6)
ma ' Cloxo) < 3’ :
for all # greater than equal to #,. Combining (3.3)—(3.6), we obtain
|Pr (%) = h(x)|
x€[0,00) 1+ x2)1+b
This proves the required result. g

In the following theorem, we establish the rate of convergence of the operators Pfé in

terms of the weighted modulus of continuity €2.

Theorem 4 Let h e Cg[O, 00). If B = B(n) — 0 as n — oo and lim,_, o nB(n) =1 € R, then,

for sufficiently large n, we have

Pht(hix) —h 1
Sup M < CQ (h; _>,
xef000) (1 +x2)2 vn

where C is a positive constant independent of h and n.

Proof For x € (0,00) and § > 0, using the definition of weighted modulus of continuity and

Lemma 4, we have

|1(e) = h@)| < (1+ (% + lx— 21)*)Q(hs | — x])

|t —xl

<2(1+x°)(1+(-x)7) <1 + )Q(h;S).
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Applying PE< (%) to both sides of the above inequality, we can write
|PP<(h3x) — h(x)]

<2(1 +x2)§2(h;5)<1 + PBE((¢ - %)% x) + PBE <(1 +(t-x)?) 't;x' ;x>). (3.7)

From Lemma 2, for sufficiently large #, it follows that
n,u%(x) < Cx(cx+2) and nzufi(x) < Cx*(ex +2)?, (3.8)

where C is a positive constant. Now, applying the Cauchy—Schwarz inequality in the last
term of (3.7), we obtain

phe ((1 +(t-x)%) It;x| ;x)

(rpulys@) "

=

(anle@) " (anls ). (3.9)

S| =
+
Oo|b—‘

Combining estimates (3.7)—(3.9) and taking

1
=21 ++vaC+2aC) and §=——,
Jn

we reach the required result. O

Now our aim is to discuss the rate of convergence in terms of the unified Ditzian—Totik
modulus of smoothness wyr (#,£), 0 < T < 1. First, we define the Ditzian—Totik modulus
of smoothness and the Peetre K-functional. Let ¢(x) = +/%(2 + ¢x) and % € Cg[0,00). The
modulus wyr (i,£), 0 < T <1, is defined as

o (t) = sup  sup ‘h(“w;(x))_h(x_ j¢r(x))
)

2
Osj=t :i:/¢ e[Ooc

’

and the appropriate K-functional is given by

b

Kye (1) = inf {I11-gll +¢[¢"¢

where W; is the subspace of the space of locally absolutely continuous functions g on
[0, 00), with [|¢7¢’|| < oo. By [30, Theorem 2.1.1], there exists a constant N > 0 such that

N‘1w¢r (h,t) < Kyt (h,t) < Nwgr (h, t). (3.10)
Theorem 5 Ifh € C[0, 00), then

|PP<(h3%) — h(x)| < Cwyr (h, M)

i

for sufficiently large n, where C is independent of h and n.
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Proof By the definition of Ky (%, t), there exists a function g € W; such that

¢lr
\/_

(3.11)

1-t
lh-gl + =2 ¢ (x)).

||¢f g = 2Ky (h T

We can write

PP (hs2) — )| < | PPE(h - )| + PP (g52) — g(0)] + |g) — )|

<2|lh-gll + P (g;x) - g(x)| (3.12)
Since g € W, we obtain
t
g(t) =gx) + G(t), where G(¢) := / g (u)du,
and so
|Ple(gix) - g)| < Plc(IGli). (3.13)

By applying Holder’s inequality, we get

/xt ¢§l(uu)

(3.14)

[l

G| =< lo7¢]

<|lo°g |t —x""

Now

[5

| ilE= 7=

- 2|\/Z—~/a_cl(\/21+—cx+ J%)

2|t — x| 1 1
} ﬁ+ﬁ(m+m>

- 21t x|( 1 1 )
+ ’
T oVr \V2+ex V2+ct

the inequality |a + b|* <|a|" +|b|*, 0 <t <1, and (3.14) imply

2 o7 |||t - 1 1 ’
G0 < loTg'lll xl( . )
x7/2 V2+cex  A2+ct

S2f||<z>fg’|||t—x|( 11 ) (3.15)

x7/2 2+cex)™?  (2+ct)?

Thus, from (3.13), (3.15), and the Cauchy—Schwarz inequality, we get

[Pl (g5%) — g()]

2%[lp7g | 1 1
<=—=—PP(lt-ux :
T X2 £~ Qre 2 @rary )"
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2lgrgll( 1 5 e g -
= xT/2 ((2 + Cx)rlz \/au’n,g + \/a,un,;\/Pn,ci ((2 +ct) T;x)
=2 [¢7g [\ anfs| o) + a2 P2 + ety i) | (3.16)

Note that for each x € (0, 00),

PEE((2+ct) %) > (2+cx)" asn—> 0o,
and thus, for ¢ > 0, there exists 19 € N such that

Pf; ((2 + ct)”;x) <2+cx)"+¢ forall n> n,.
Choosing € = (2 + ¢x)™7, we obtain

Pf; ((2 + ct)_T;x) <2(2+cx)" forall m> ng.

Therefore, using (3.8) and (3.16), we get

|Phalg®) -g)| <27 |¢"¢| \/@{Wr(@ + V22722 + cx) )
C
a9

for sufficiently large #. Thus, from (3.12), (3.17), and (3.11) (in that order), we find

C
|PE (%) — h(x)| < 201k - gll +27(1 + V/2)||¢"g | ¢ (%), “7

, AWy L,
sc{||h—g||+ 7 H¢gH}

P (x))
ﬁ )

where C’ = max{2,27(1 + +/2)v/aC} and C = 2C'. By using relation (3.10), we reach the
required result. O

Lastly, we obtain the convergence rate for functions having derivatives equivalent with
a function of bounded variation. Let DBV[0, c0) be the class of functions 4 € B,[0, 00)
having a derivative of bounded variation on every finite subinterval of [0, c0). The function
h € DBVI0, 00) has the representation

hx) = /0 "ty de + h0),

where j is a function of bounded variation on each finite subinterval of [0, 00). For this

purpose, we use the following auxiliary result.
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Lemma 5 For fixed u € (0,00) and sufficiently large n, we have

v Cu(2
Sﬁc(u,v) —/ I(ﬁg(u;t)dtfay(u—v)ﬂ, 0<v<u, (3.19)
and
© Cu(2
“g‘ﬂc(u,w)—/ Kﬁﬁ(u;t)dtfam(w—u)‘z, U< W< 00, (3.20)
w n

where C is a positive constant.

Proof Applying Remark 2 and using (3.8), we have

5C(u V) —/ K’S”u t)de

Vu—t\?
< / (—) KPe(u; ) de
0 u-v ’
= (u—v)_Z/ (u—t)zl(,f;f(u;t)dt
0

- Pha((t - w)?u) - aulys(u)
(w-v?2 = (u—-v)?

Cu(2
<SR
n

showing (3.19). Similarly, applying Remark 2 and using (3.8), we get

1- sﬁc(u,w)—f K,f;f(u;t)dt

< /oo<t_”> KPE(us)dt

w—=u)" f (u—t)zl(,‘i;f(u;t)dt

_ Phal=0%u) _ ousw)
w-wp = (w-up

“u Cu(2 + cu) w2,

n
showing (3.20). O

Theorem 6 Let h € DBV[0,00). Then, for every x € (0, 00) and sufficiently large n, we have

PP (1.2) - h()| < ﬁlh’(xﬂ ¢ ol ()] | L)

(1) h’(x—)| /aCx(i + ¢x)

aC(2 + ¢x) % (\/ h’)

k=1
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+— < \/ h’) aC(Z + %) | (2x) — h(x) - xh'(x+)|

. |h’(x+)| /oer(i+ cx)

( M + |h(x)|>aCx(2+cx)
+ | 4M + 3 ,
x n

where \/? h(x) represents the total variation of h on [a, b), M is a constant, and I, is defined

by

W) -H(x-), if0<u<x,
hy(u) =40, ifu=x, (3.21)
W(u)—H(x+), ifx<u<oo.

Proof For any h € DBV|[0, ), from (3.21), we may write

W (u) = H.(u) + 1 (W (x+) + ah' (x-))
oa+1

1, ., , a-1
+ E(h (x+)—h (x—)) (sgn(u —x) + " )

+1
+5,(u) [h’(u) - %(h’(m) + h’(x—))], (322)
where
l 1, ift=ux,
(Sx(t) =
0, ift+#x.

Since Pf,’é(l;x) =1, using (1.4), for every x € (0, 00), we get
Pff; (%) — h(x) = / K,’Z;f(x; £)(h(e) - h(x)) dt
0

_ / " K t)( / W du) dr. (3.23)
0 x

From (3.22) and (3.23), we get

P4 (3 %) — ()

:/ I(’Sc(x,t)/ [h/ u)+

X (sgn(u —x) + *- 1) +6,(u) |:h’(bl) - l(h’(x+) + h/(x—))] du:| de
a+1 2

(h (x+) + ok (x-)) + ;( "(x+) = B (x-))

=C1+Cy + C3 + CPE(H,,x) + DEE (M, %),
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where

C, - / ” ( / t Ll (W () + o (x-)) du)Kﬁg(x; 1 ds,
0 X

o+

1
+1

) du) dt,
Cs = /000 </:<h’(u) - %(h’(x+) + h/(x—))>8x(u) du)](}ﬁg(x; t)dt,
Cfé (h;,x) = /Ox (/xth;(u) du)](ﬁ;f(x; t)dt,

C = /ool(ﬁg(x; t) (/[ %(h’(?ﬁ) - h/(x—)) (sgn(u —X) + Z
0 x

and

00 t
DP< (., x) =/ (/ K (u) du>1(£;f(x; t)dt.
x X

Obviously,

- /Ooo(ft<h/(”) _ %(h/(x+) + h/(x—))>5x(u) du)l(ﬁzf(x; t)dt = 0.

Next, using (1.4), we get

a+1

C = /oo</t L(h’(gﬁ) + ozh/(x—)) du)[(ﬁ;f(x; t)dt
0 x

1, / % C
=— (W (x+) + ah' (x-)) /0 (t _x)l<;f,;x (x; 1) dit

== 1 : (K (x+) + ol (x=)) LS ((t - )3 %)

and

G = /Ool(ﬁ;f(x; t)(/t %(h/(x+) - K (x-)) (sgn(u—x) M 1) d“) dt
0 x

o+

- %(h/(m) - W (x-)) [_ /Ox (/t" (sgn(” —x)+ Z : i) du)Kf,If(x; t)de

o0 t ) ”e1 . ]
' /x (/x (Sgn(u Dt s 1) d”>1<n,a (x;1)dt

< L|h/(x+)—h/(x—)|/ |t - x| KPS (x; ) dt
a+1 0 ’

o ! / C
= m’h (x+)—h (x—)‘Pf}'a(|t—x|;x).

Page 13 of 17

(3.24)

(3.25)

(3.26)

Combining (3.23)—(3.26), applying Remark 2 and the Cauchy—Schwarz inequality, and us-

ing (3.8), we obtain

|PP<(h3x) — h(x)]

1/2
= +

1 1 !h’(x+) + ah/(x—)| (ozP,‘f’C ((t - x)z;x))

— [l () — (x|
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x (aPhe((t—x52)) " + | Chic (o )| + [ D (o)

aCx(2 + cx)

<L W) + ak (o) E W ) - H ()|
a+1 n 1

o+
Cx(2
A ) DB 0, | 27

Now we estimate Cf,’of(h;,x) and Dg,’; (M., x). Since
/ ,‘?of(x, t)dt <1 forall [a,b] C [0,00),
substituting y = x — x/4/n and applying Lemma 5, we get
[ ([ asiien]-| [ aisomioad
/ 11,0 |6, 1) de + / 11,0 |65x, 2)| e
aCx(2 +cx) , *(\ ,
< / (\/h) dt+/ <\/hx)dt
< M /:(\t/h;)(x— H72de + % (‘_\x/x h;)
N

eCeey [ (\/h/)@c ot %(\/h/)

Substituting u = x/(x — t), we obtain

aCx(2 +cx) (¥ Ua o\ aCx2+cx) . [V"(\")
f/O (x-12) <\t/hx dt:#x /1 \_/ﬁhx du

[Vl

3 ocC(2+cx) Z(V h)

| ()| =

Thus,
[v/7] x
C
|CPe (M, )| < o (2+cx) ;(vh> n(\/ h;), (3.28)
1 \x— 7%

Again, using the Cauchy—Schwarz inequality, integration by parts, and applying Lemma 5
to estimate D'g; (M, x), we get

(/ K (u) du)K}z;j(x; t) dt{

( / h’(u)du) d.(1- sﬁﬁ(x,t))’

D (oo %)




Agrawal et al. Journal of Inequalities and Applications (2018) 2018:29 Page 15 of 17

< / " OKPGs0) de] + 1|
2x

/ Kﬂcx,t)dt’

+ W (x+)| </oo(t—x)2l(,fof(x, £) dt)
2

aC(2 + cx)
+ —_—
nx
aCx(2 + cx)
+ -
n

+

x+
f () dt‘
X

2
/ (W (u) = W (x+)) du

X

[,

Dﬁé (i, x) is estimated in a manner similar to Cnﬂof (i, x). Putting t = x + x/u and using
(3.8), we get

(t—x)2H " (t) dt‘
NG

|Die (W, x) |<Mf (1+2)KPi(xst)de

+ [ / KEe(s0)de + ()] L2+ <0

aC(2 + cx) / X N /
+ T |h(2x) - h(x) —xh (x+)| + ﬁ (‘\x/ h")

aC(2 + cx)
+ —_—
n

2x
/ (t—x)72H.(2) dt‘

N

SM/ (1+t (ﬂ”(x, dt+|h(x)|/ (ﬂ”(x,
2%

. |h’(x+)| /aCx(i+ cx)

aC(2 + cx) / X 7 /
i L v (\/ h")

(7
+ L(z i Z( \/ h) (3.29)

k=1 x

For ¢t > 2x, we have ¢t < 2(¢ — x) and x < ¢ — x. Now, using (3.8), we obtain

M / PRI ) de+ (M + | h(%)]) / KP<(xt)de
2x

2%

00 _y © (t—x)2
<4M | (t—x)K)S(xt)de+ (M + |h(")|)/ o)
2x

2x

KPi(xt)de

<4aM f (t—x)’K[s (o 6)de + % f (=% K] (x 1) de
0 0

_ (4M .\ M + |h(x)| ) aCx(2 + cx)‘
x2 n

Combining this with (3.27)—(3.29) yields the desired result. O



Agrawal et al. Journal of Inequalities and Applications (2018) 2018:29 Page 16 of 17

4 Conclusion

The Bézier variant of a sequence of mixed hybrid operators has been introduced and the
rate of convergence by means of the Lipschitz class and the modulus of continuity has been
established. The weighted approximation properties and a direct approximation theorem
have been obtained. The approximation of functions with derivatives of bounded variation
has been studied.
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