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A Novel Method for Determination of Dielectric
Properties of Materials Using a Combined Embedded
Modulated Scattering and Near-Field Microwave
Techniques—Part I: Forward Model

Dana Hughes and Reza Zoughi, Senior Member, IEEE

Abstract—The use of combined embedded modulated scattering
technique and near-field microwave nondestructive testing tech-
niques is investigated as a novel method for evaluating the dielectric
properties of a material. The forward formulation for determining
the reflection coefficient at the aperture of a waveguide radiating
into a dielectric half-space in which a PIN diode-loaded dipole (i.e.,
modulated scattering technique probe) is embedded is presented.
This formulation is based upon calculating the near-field coupling
between the waveguide and the dipole as a mutual impedance.

Index Terms—Dielectric material characterization, embedded
sensors, microwave nondestructive testing, modulated scattering
technique.

1. INTRODUCTION

EAR-field microwave nondestructive testing and evalu-
Nation (NDT&E) techniques have shown to be effective
means for inspection of various materials and structures, with
applications in the areas of civil infrastructure, industrial
process control, materials evaluation, aeronautical, and naval
applications [1]. Near-field microwave NDT techniques offer
several advantages over traditional NDT techniques, and are
often the ideal method to use when inspecting certain types of
materials or structures (e.g., thick sandwich composite struc-
tures). Measurements may be performed in a one-sided and
non-contact manner. Microwave signals are capable of pene-
trating into thick and layered dielectric slabs or half-spaces,
and are sensitive to variations in the geometrical and material
properties of the layers [2]. While microwave techniques are
not capable of penetrating conducting materials, investigation
of surface flaws in metals, such as the presence of corrosion,
pitting or fatigue cracking is possible, either on bare metal,
or under a layer of paint, primer, or a dielectric slab [3]-[5].
Near-field microwave measurements, using microwave probes,
provide geometrical information about an interior flaw which
correlates well with the spatial geometry of the structure
under investigation, and interpretation of the microwave signal
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requires little or no operator expertise. Finally, microwave mea-
surement devices may be designed to be robust, portable and
low power, and capable of being used in harsh environments.

Extensive research into the investigation of cement-based
structures has shown the capability of microwave techniques
for determining several important parameters related to these
structures, such as the water-to-cement (w/c), sand-to-cement
(s/c), and course aggregate-to-cement (ca/c) ratios [6]-[9].
Furthermore, as these parameters are used to determine the
compressive strength of cement-based materials, microwave
measurements may be correlated to the compressive strength of
a structure. As microwave techniques are sensitive to the chem-
ical state of a material, these are ideal for cure-state monitoring
of cement and other materials [7]. Microwave techniques are
also very sensitive to the ingress of water and salt water, which
may cause corrosion of steel reinforcement in cement-based
structures [10]-[12].

Microwave techniques are also capable of investigating com-
posite panels and sandwich structures. These techniques have
been shown to be capable of determining the presence and spa-
tial extent of delamination, disbond, and impact damage in these
structures [2], [13], [14]. Furthermore, it is possible to accu-
rately determine the thickness or dielectric properties of a com-
posite panel, or a dielectric slab either backed by free-space or
a metal plate [13]. As with cement-based materials, microwave
techniques are also sensitive to the state of cure of the epoxy
resin, as well as capable of detecting ingress of water in either
foam or areas of impact damage [15]. Finally, the polarization
of the microwave signal allows for determinations of the orien-
tation of fibers in composites.

Microwave techniques, as described above, are based on de-
termining the dielectric properties of a material, through the
measurement of the reflected signal from a structure (i.e., the re-
flection coefficient). For near-field microwave NDT techniques,
this is often measured at the aperture of an open-ended rect-
angular waveguide probe. The (relative to free-space) dielec-
tric property of a material is a complex parameter (i.e., &, =
el — jel’) consisting of its permittivity (i.e., real part), which
represents the material’s ability to store microwave energy, and
its loss factor (i.e., imaginary part), which represents the ma-
terial’s ability to absorb microwave energy. These parameters
correlate to the chemical structure of the material under investi-
gation, and, in the case of a material consisting of a mixture of
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several constituents, may be represented as effective dielectric
properties using an appropriate dielectric mixing model.

Currently, the dielectric properties of a material may be de-
termined in a variety of ways using microwave NDT techniques
[1]. The calculation of reflection coefficient of a rectangular
waveguide radiating into a dielectric half-space, and the inverse
problem of determining the dielectric constant of the half-space
from its measured reflection coefficient, have been investigated,
including consideration for the effects of higher order modes at
the waveguide aperture [16]. The theoretical modeling of an-
alyzing multilayered structures using both open-ended waveg-
uides and coaxial probes has been investigated [17], [18]. Ac-
curate determination of the dielectric properties of a section of
waveguide filled with solid, liquid, or granular materials has also
been formulated [19].

The combined use of near-field microwave NDT techniques,
using an open-ended rectangular waveguide probe, and em-
bedded modulated scattering technique (MST), using a PIN
diode-loaded dipole, has been proposed as a novel means of
determining the dielectric properties of a material in which the
probe is embedded [20]. Previous investigations have produced
encouraging results, showing that this technique would be
a potentially beneficial addition to the toolbox of dielectric
property characterization of materials [21]. This technique
would allow for embedding a probe in critical locations within
a structure for more sensitive measurements at the areas of
interest. Furthermore, as this probe remains embedded in the
structure, the presence of defects or variations in the material
may be monitored over time, in order to observe changes in
the properties of a defect or dielectric property change in the
material.

The proposed embedded MST technique has several advanta-
geous attributes over other techniques [21], [22]. The technique
allows for localized measurement of the dielectric properties of
a material. Thus, the probe may be placed in a critical location,
such as near a rebar or a composite joint, where sensitive mea-
surements are necessary. Furthermore, the signal from the MST
probe can be easily distinguished (as will be seen) and since the
measurements are coherent (i.e., magnitude and phase), aver-
aging over a short period of time increases the signal-to-noise
ratio of the measurements significantly. This allows for an in-
crease in the sensitivity of the measurement. Finally, the use of
an array of probes allows for rapid measurement over a large
area.

II. APPROACH

For this investigation, a thin, near-resonant dipole, centrally
loaded with a PIN diode (i.e., the MST probe), is embedded in an
infinite half-space of a material, as shown Fig. 1. The PIN diode
is modulated between a forward- and reverse-biased state using
a pair of thin modulation wires connected to a square-wave gen-
erator operating at a low frequency (i.e., 0.5 to a few hertz). The
load impedance modulates between a forward- and reverse-bi-
ased impedance as a function of time. Thus, a microwave signal
incident upon the MST probe will be scattered while tagged with
this modulation waveform.
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Fig. 1. Geometry of an MST probe embedded in a dielectric half-space and
illuminated by an open-ended rectangular waveguide radiator.

As seen in Fig. 1, the MST probe is illuminated by an open-
ended rectangular waveguide, which is located at the surface of
the half-space and calibrated at the plane of the aperture. The
incident field from the waveguide radiator will be scattered by
the MST probe, part of which will propagate back, encoded
or tagged with the modulation waveform, to the aperture of
the waveguide. This provides for a modulated reflection at the
aperture, which combines with the static reflection due to the
boundary between the surface of the dielectric half-space and
the waveguide aperture. Fig. 2 shows an example of the mag-
nitude and phase of the modulated reflection coefficient, over
several cycles of the modulation waveform, with the MST probe
embedded in a half-space of fine sand. Fig. 2 shows the reflec-
tion coefficient measured by an HP8510C vector network ana-
lyzer (VNA) for a time span of about 10 seconds. During this
time the VNA recorded 401 measurement points [as labeled in
the horizontal axes of Fig. 2(a) and (b)]. Approximately half of
these points correspond to the high state reflection coefficient
and the other half to the low state (as shown).

III. FORMULATION OF THE FORWARD PROBLEM

The forward formulation of calculating the modulated reflec-
tion coefficient measured at the aperture of the waveguide, in
the presence of an embedded MST probe, is based on calcu-
lating the coupling between the waveguide aperture and the em-
bedded dipole everywhere, including the near-field of the wave-
guide radiator [21]. The formulation presented here is general in
terms of the near- and far-field regions of the waveguide radi-
ator and is valid for all locations of the MST probe relative to
the waveguide radiator. In this investigation, this is performed
by calculating the mutual impedance between the two using the
induced electromotive force method [21], [23], [24]. This re-
quires the knowledge of the radiated fields from the first antenna
(i.e., the waveguide aperture) and the ideal current distributions
on the second antenna (i.e., the dipole) due to a signal fed at the
terminal of the first antenna (i.e., the waveguide radiator). This
technique assumes the material is linear and isotropic (i.e., the
relationship between the waveguide radiator and MST probe is
reciprocal), and requires a well-defined port for both antennas,
which is the case both with a waveguide aperture and a dipole
antenna.
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Fig.2. Example of the (a) magnitude and (b) phase of the modulated reflection
coefficient over several cycles of the modulation waveform.

A. Radiation From a Waveguide Aperture

The far-field radiation from an open-ended rectangular wave-
guide aperture has been determined in the past based on calcu-
lating the equivalent currents on the aperture, and the radiated
electric and magnetic fields from the vector potentials due to
these currents [25]. Here, a similar approach is used; however,
the near-field components of the radiated fields are included in
the derivation in order for these to be valid at all locations in
front of the waveguide radiator. The center of the waveguide
aperture is located at the origin, with the broad dimension (i.e.,
a) of the waveguide orientated along the = axis and the narrow
dimension (i.e., b) along the y axis, as in Fig. 3.

For most applications, the flange may be considered an infi-
nite ground plane. While any waveguide mode may be used in
this investigation, dominant (i.e, TE;¢) mode is used here. The
tangential electric and magnetic field distributions on the aper-
ture are given as

Eap($,7 yl) = (1 + FS>V11€y(J7/~, y/)

y

ﬁ“p(xl,yl) = (1 - Fs)Vllﬁz(xlvyl)

x

(1a)
(1b)
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Geometry and coordinate system for a waveguide aperture mounted on

Fig. 3.
a flange.

where V7, is defined as the complex amplitude coefficient rep-
resenting the magnitude and phase of the electric and magnetic
field at the aperture of the waveguide, which may be consid-
ered the voltage at the aperture. The characteristic impedance
of the waveguide is present in the orthonormal distribution of
the tangential magnetic fields. I'; is the reflection coefficient at
the aperture of the waveguide radiating into a half-space of the
material (i.e., without the MST probe), and may be measured
or calculated using a variety of method previously investigated,
and will not be described here [16], [17]. e, and h, are the tan-
gential orthonormal electric and magnetic field distributions for
the dominant mode and are given as [26], [27]

2 T e
— ! N _ oot - / -
ey(z',y') = Uabsm(aw +2) (2a)
ha(z',y) :iﬂgsin (ELE/-}- z) (2b)
A Zo \ ab a 2

the characteristic impedance of the waveguide Z is given as

k
%zéz 3)

where 7 is the intrinsic impedance of the material filling the
waveguide, and

B= i =k @)

and

ke = (&)

s
a

From the electric and magnetic field distributions given in
(1a) and (1b), the equivalent electric and magnetic currents on
the aperture of the waveguide are given as

(6a)
(6b)

—= N TP s AP
Js=nxH =%2xH

— . ap s L AP
M,=—-nxFE =-2xFE".

As the flange of the waveguide is considered an infinite ground
plane, the introduction of the image of these currents simplifies
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Fig. 4. (a) Electric current distribution on the aperture of the waveguide, (b)

equivalent magnetic current distribution for this, (c) removal of the infinite
ground plane and inclusion of the image current, and (d) combination of the
equivalent current and an image current.

the derivations. This results in a doubling of the magnetic cur-
rent, and nullification of the electric current, as shown in Fig. 4
[28].

The electric vector potential may be determined at a point
outside the aperture by

P = £ [ [ S

where k and R are given by

k = wy/Hoeo(el, — jeil) @®)

o—JkR

ds’ 7)

and

R = \/x—:v

The primed coordinates are the source coordinates on the aper-
ture of the waveguide, and the unprimed coordinates are the ob-
servation coordinates outside of the aperture.

+ (y —y')? + 22. 9)

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 6, DECEMBER 2005

From these, the electric and magnetic fields outside the aper-
ture can be calculated by

Ep(z,y,2) = — év x F(z,y,z) (10a)

_ 1 _

HF($7y’Z):_]u}—/AE [kzF(JZ7y7 )+V(V (.’E Y,z )]
(10b)

Substituting (1), (6b), and (7) into the above, and accounting for
the image of the magnetic current (i.e., doubling this value), the
total fields radiated by a flange-mounted aperture are as shown
in (11a)—(11e) at the bottom of the page. Finally, if the mode
voltage V7, is expressed explicitly in the equations, the electric
and magnetic field distributions for the orthonormal modes on
the aperture ¢’ and A’ can be defined and are given by

(12a)
(12b)

E(e.y.2) = Vure'(z.y.2)
F(.’E, Y, Z) = ‘/llﬁl(xa Y, Z)

Details of this derivation, including the derivation for higher
order modes, are available elsewhere and will not be repeated
here [21].

B. Determination of the Current Distribution on the Dipole

In order to calculate the ideal current distribution on a dipole
embedded in a generally lossy media, the method of moments
may be employed in conjunction with the Pocklington’s integral
equation for the scattering from a thin wire antenna [29]-[31].
For this, a thin dipole antenna, orientated along the z axis and
centered at the origin, with a voltage drop across a delta-gap at
the center of the dipole, is located in a generally lossy material,
as shown in Fig. 5. The dipole has length [ and radius a, and the

E,(z,y,2)
b/2 eiij
/ / EP (', y") x T(_ij — 1)(2)dy' da’ (11a)
z'=—a/2Jy'=—b/2
E.(z,y,z)
b/2 e—JkR
/ / By’ y)(y —y) X —pg—(=7kR — 1)dy'do’ (11b)
’——a/2 y'=—b/2
(z,y,2)
_ J
2w
a/2 b/2 12 e—JkR L€ —jkR ) e—IkR .
-//z_a/l __b/Q{ EgP(x!y) 7 — Bz y ) (—2))” —z— (K’ R*+j3kR+3) + Eg¥(z', y/) 7 (ij—{—l)}dyda:
(11¢)
Hy(x Y, 2)
b/2 e—ikR
/ / 2y ) (x— 2"y —y) x (—k*R? + j3kR + 3)dy da’ (11d)
27rw;¢ —y ’:—b/2
H, (x y z)
b2 / e MR 22 Il
Eapx sy )z —x')z X —k“R* + j3kR + 3)dy'dx (11e)
27“‘)# /z’——a/z /y’:—b/Z il ) R ( )
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Fig.5. Current distribution on a dipole of length / and radius @ due to a voltage
fed at the center terminal.

voltage fed at the terminal port (i.e., at the center of the dipole)
is V22.

The current distribution along the length of a dipole, due to an
incident electric field, can be expressed as an integral equation
as [25]

1/2
L

where I, (z') is the current distribution along the center of the
dipole and R is the distance from a source point on the line of
current to an observation point on the surface of the wire, and is
given as

o—JkR

L (<) 4T RS

[(1+ jkR)(2R* — 3a®) + (kaR)?] d2’

= —jweo(el — je!)Ei(p=a,z) (13)

R= V@5 (=2)

for a sufficiently thin wire and E‘(p = a,z) is generally the
incident electric field on the surface of the wire. In this investi-
gation, this will consist of only the electric field at the center of
the wire due to the voltage drop at the feed terminal.

The current distribution in the integral equation can be deter-
mined though the application of the method of moments [29].
The dipole is divided into N segments, and the current on each
segment is approximated using a set of basis functions, and the

(14)
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satisfying the electric field in (13) at each segment. For this in-
vestigation, the current is approximated using a set of piecewise
functions, namely

N-1
L) = Inga(?) (15)
n=0

where g,,(2') is the basis function for the dipole, given by

17 Zn_%szlszn‘i'%
gn(2') = (16)
0, otherwise
and Az is the segment length given by
A : (17)
z=—.
N

The electric field across the delta-gap due to the voltage drop
across it is tested using collocation (i.e., a Dirac delta function
at the center of the segment).

Applying the set of basis and testing functions to (13), the
problem may be expressed as a set of IV linear equations with
N solutions, and may be expressed as

2] 1] = [V]

where I is an IV element vector consisting of the approximations
for the current at each segment, Z is an N X N matrix repre-
senting the impedance between two segments along the dipole,
given as shown in (19) at the bottom of the page.

Finally, V' is an N element vector representing the testing
function for the voltage fed at the terminal and is given as

(18)

—jwsg(si—j&:;’)i, m=np
Vi =

0, otherwise

(20)

In order to determine the current distribution, the impedance
matrix in (18) is inverted and multiplied by the solution, namely

21

This provides for the coefficients for the current approximation
I,,, given in (15), from which the current distribution may be
determined. If the voltage is expressed explicitly, an admittance
function along the length of the dipole may relate this current to
the voltage fed at the delta-gap, given as [21]

associated coefficients for the basis functions are determined by 1.(z) = VoY, (2). (22)
rZn+AzZ/2 67ij(zm,z')
T :/ = [(1+ R (2m, 2)) 2Rz, 2')? — 30%) + (kaR (2, 2'))?] d2’ (19)

Jzpn—NDz/[2 4”TR(Zm7 Z/)
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Fig. 6. Geometry of the combined circuit and electromagnetic form of the
reciprocity theorem applied to two antennas.

C. Calculation of the Mutual Impedance Between the
Waveguide Aperture and Dipole

Several methods for calculating the mutual impedance be-
tween two antennas have been investigated in the past [23], [24],
[32]-[35]. Here, a mixed form of the reciprocity theorem is em-
ployed. The reciprocity theorem in pure circuit form relates two
ports of a circuit as

Vislii = Vailns. (23)

In pure electromagnetic form, the reciprocity theorem repre-
sents the interaction between two antennas, as shown in Fig. 6.
This may be expressed in its most general and useful form as

/// (Fl-jg—ﬁl-ﬁg)dv:/// (By- 71— Ho T, )dv
JJv v 24)
which gives rise to the idea of the reaction between two an-

tennas, expressed as (1,2), and is defined as

(1,2) ///V | Ty — T - ) dv
<2’1>:///v (B, -7, — T, - 71, dv.

The combined form of the reciprocity theorem relates the ra-
diated fields from one antenna to the voltage and current on the
port of another [23], represented by

(25a)

(25b)

Vorlae = — (1,2). (26)

This allows for the expression of the mutual impedance be-
tween the two antennas given by

= L

Considering the dipole as antenna 2, the electric current density
Js consists only of the line current given in (22). This simplifies
(27) to

Z21 =

72 — Fl 'Mg)d’l). (27)

1 1/2

Iadz. (28)

51z, _1/2

Explicitly expressing the voltage incident in the waveguide and
across the feed gap of the dipole, as in (12) and (22), the voltages
may be taken outside the integral, and combined with the current
variables, resulting in

1/2 .

Zon = —Z11 2 / e7'(2) - Ya(2)dz. 29)

—1/2
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Fig. 7. (a) Representation of the interaction of the two antennas as an
impedance network, (b) equivalent T-network for this, and (c) equivalent
loaded transmission line, when considering the load impedance and waveguide
feed.

This provides for the mutual impedance between the wave-
guide aperture and dipole antenna in well-defined terms.

D. Impedance Matrix Representation and Reflection
Coefficient Calculation

The interaction between the waveguide port (i.e., the aper-
ture) and the terminal port of the dipole may now be expressed
in terms of an impedance matrix, as shown in Fig. 7(a). Since the
material in which the dipole is embedded is assumed to be linear
and isotropic (i.e., the relationship between the waveguide aper-
ture and dipole is reciprocal), the mutual impedance between
these two ports is the same (i.e., Z2; = Z12). This allows for the
impedance matrix to be expressed as a T-network, as shown in
Fig. 7(b) [27]. Attaching the load impedance Z, (i.e., the PIN
diode) at port 2 and the waveguide feed at port 1, with charac-
teristic impedance Z,,, the interaction between the two antennas
becomes a loaded transmission line problem, as in Fig. 7(c).

The values for the impedance matrix of the T-network in
Fig. 7(b) can be calculated as

Ziw=Z4+ Z. (30a)
Zio =Zo1 = Z. (30b)
Zoo =Zyp + Z. (300)

where Z1; and Zjo are the input impedances of the wave-
guide aperture and dipole, respectively, and Z»; is the mutual
impedance between the two, as given in (29). The input
impedance for the dipole can be calculated from the method of
moments formulation given earlier, and the input impedance of
the waveguide aperture can be calculated from the measured
static reflection coefficient, which is the reflection coefficient at
the aperture of the waveguide without the MST probe present
(i.e., the waveguide is radiating in a half-space of the dielectric
material). This reflection coefficient may either be measured or
calculated using a previously established method [16], [17].
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Zq, 2y, and Z. can be calculated from (30a)—(30c) and are
the impedance values used in the T-network. With the load
impedance attached, as in Fig. 7(c), the total input impedance
of the waveguide aperture (i.e., the input impedance with the
MST probe present) can be calculated as

Z(Zy+ Z1)
Tin =Lg+ ———-"" 31
v+ Z.+ 7, G1)
from which the reflection coefficient can be calculated as
Zin — Zo
==t - 32

which can be used to calculate the modulated reflection coef-
ficient for the forward- and reverse-biased states of the MST
probe.

IV. MEASUREMENT RESULTS FOR THE FORWARD
FORMULATION

To demonstrate the potential of this proposed technique, mea-
sured and calculated results were compared for the case of an
MST probe in free-space and when embedded in fine sand, re-
spectively. For this, the MST probe was centrally loaded with a
commercially available PIN diode [36].

A. Free-Space Measurements

Free-space measurements were made at 10 GHz using an
X-band waveguide radiator, with an MST probe located at sev-
eral distances in front of the waveguide. The probe consisted of
a 1.5-cm-thin dipole antenna loaded with a PIN diode. At this
frequency, the forward- and reverse-biased impedance of the
PIN diode are approximately 10+ 570 2 and 20— 320 €2, respec-
tively [36], [37]. For this case, the static reflection coefficient
was measured to be I'y = 0.233/ — 75.4° using an HP8510C
vector network analyzer with the waveguide radiator calibrated
at its aperture. Static reflection coefficient refers to the reflec-
tion coefficient measured at the rectangular waveguide aperture
in the absence of an MST probe (i.e., rectangular waveguide
aperture radiating into free-space). Calibration refers to the mea-
surements having been referenced to the rectangular waveguide
aperture as opposes to the input of the network analyzer. This is
a standard procedure and is accomplished by using well-char-
acterized waveguide loads (short, matched, and line extension).

Fig. 8(a) and (b) shows the magnitude and phase of reflection
coefficient, measured at the aperture of the waveguide, as a func-
tion of the distance between the waveguide and the MST probe,
along the center of the aperture (see Fig. 1). As can be seen, the
measured values compare well with the calculated values, ex-
cept when the MST probe is very near the radiating waveguide
aperture.

The discrepancy between the measured and calculated values
near the waveguide may be primarily attributed to the theoretical
formulation not accounting for multiple reflections between the
MST probe and the waveguide flange. This may be accounted
for by modeling the image of the dipole due to the ground plane
(i.e., the flange of the waveguide). Also, accounting for higher
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Fig. 8. Comparison of the measured and calculated (a) magnitude and
(b) phase of forward- (FB) and reverse-biased (RB) reflection coefficient.

order modes may provide for some variation when near the aper-
ture of the waveguide. Further discrepancy may be due to nu-
merical errors in integration, as well as approximation of the
current distribution on the dipole.

B. Dielectric Half-Space Measurements

Comparisons between the measured and calculated reflection
coefficient values for an MST probe embedded in a half-space of
fine sand, at S-band (2.6-3.95 GHz), were also conducted. The
average dielectric constant of sand over S-band was measured
using a two-port completely filled waveguide technique to be
e, = 2.76 — 70.03 [19]. Measurements were made using a
large enough volume of sand so that it could be considered a
half-space, with an MST probe of length [ = 2.3 cm embedded
at a depth (i.e., d) of 5 cm.

Table I shows the measured static reflection coefficient, and
the forward- and reverse-biased impedance values for the PIN
diode used, and shows this comparison between the measured
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TABLE 1
COMPARISONS OF CALCULATIONS AND MEASUREMENTS AT 3 GHZ FOR SAND

&’-je” 2.76-j0.03 Ziwa 447 +j532Q

I, (meas) 0.385/2-166.25°  Zrev 1.71-570.7 Q

Fya(meas)  0.364£-169.09° Tna(cale)  0.377.£-169.23°

e (meas)  0.384./-167.89° T (calc)  0.385./-167.24°
TABLE 1II

COMPARISONS OF CALCULATIONS AND MEASUREMENTS AT 3.5 GHZ FOR SAND

g’ -je” 2.76-j0.03 Z, 4.93 +j65.2Q
I, (meas) 0.337£-165.92° Z,, 1.83 - j50.3 Q
I',,(meas) 0.356£-161.79° T, (calc) 0.362£-160.68°
[ (meas)  0.312£-164.76°  T'wv (calc)  0.317.£-164.20°

and calculated forward- and reverse-biased reflection coeffi-
cients at 3 GHz [36], [37]. As can be seen, the measured and
calculated values agree well.

Measurements were conducted at 3.5 GHz as well. Table II
summarizes the parameters used in the measurements, and
shows the comparison between the measured and calculated
forward- and reverse-biased reflection coefficients at 3.5 GHz.
Again, the measured and calculated values agree well.

From the results shown for both free-space and when the MST
probe is embedded in a half-space of sand, the forward model
provides for an accurate means of calculating the modulated
reflection coefficient. Some discrepancy between the measured
and calculated values in free-space exists when the MST probe
is very near the waveguide aperture. This is primarily due to
a) not considering the image of the dipole due to the flange of
the waveguide and b) not taking higher order modes into ac-
count. As observed, this effect reduces rapidly as the distance
between the waveguide and probe increases (i.e., d). Thus, this
effect may not be an issue for the case of an embedded probe
in practice, as the probe is usually embedded a few centimeters
inside the material. Additional potential error in the calculated
reflection coefficient may arise from inaccurate measurement of
the static reflection coefficient at the radiating waveguide aper-
ture. It has been observed that the modulated reflection coeffi-
cient is sensitive to variations in this value [38]. This poses a
potential problem for materials that are inhomogeneous or con-
tain scattering objects, as these will cause variations in the static
reflection coefficient as a function of the position of the wave-
guide radiator. However, this problem may be overcome by av-
eraging the measurement over several locations on the dielectric
half-space.

V. CONCLUSION

The formulation of the reflection coefficient at the aperture of
an open-ended rectangular waveguide, radiating into a dielectric
half-space in which an MST probe, consisting of a dipole cen-
trally loaded with a PIN diode, is embedded was presented. This
formulation provides for a novel means of measuring the dielec-
tric properties of a material at microwave frequencies and pro-
vides for an additional tool for material evaluation (as described
in detail in Part IT of this paper). This formulation is based upon
the interaction between the waveguide and dipole probe, which
is calculated utilizing the reciprocity theorem in electromag-
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netics. The formulation of the forward model is based upon this
theorem, which was presented here.

The measurements conducted using an MST probe in free-
space and in sand agree very well with the calculations from the
model. This shows the validity of the forward model, and the
potential for using this technique in the investigation of dielec-
tric materials.

As mentioned earlier, there are several advantages to using
this technique over traditional microwave measurements. The
MST probe may be placed in critical locations inside a structure,
which would focus the measurement around these areas. The
modulated signal may be coherently measured and averaged,
which increases the signal-to-noise ratio and ultimately the sen-
sitivity of the measurements. Finally, arrays of MST probes may
be used to investigate large regions.

As shown with the free-space measurements, there is a dis-
crepancy between the measured and calculated values when the
MST probe is very near the waveguide. This is primarily at-
tributed to not accounting for the multiple reflections between
the waveguide and MST probe and the higher order modes. This
may be accounted for by including the image of the dipole due
to the waveguide flange, which would affect the current distri-
bution and input impedance of the dipole itself and the higher
order modes. Also, it was observed that the measurements were
sensitive to variations in the static reflection coefficient. Thus,
this measurement needs to be an accurate representation of the
material in front of the probe. This may require an average mea-
surement of this reflection coefficient.
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