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Electron-ion momentum spectroscopy is used to investigate the correlated electronic and nuclear motion
in fragmentation of H2 in 4 3 1014 W�cm2, 25 fs laser pulses at 795 nm. Reaction channel dependent
photoelectron spectra indicate that besides the main, stepwise H2 ionization H2

1 dissociation mechanism
resulting in the products H�1s� 1 H1 1 e2 a second new mechanism has to be assumed. The momen-
tum distribution of H1 ions in the dissociation channels H�1s� 1 H1 1 e2 and 2H1 1 2e2 is found
to be independent of the kinetic energy of the photoelectrons.

DOI: 10.1103/PhysRevLett.89.013001 PACS numbers: 33.80.Rv, 33.80.Wz

Since the first experimental investigation on molecular
hydrogen exposed to high intensity light pulses [1], a
series of experiments concentrated on the analysis and
interpretation of either photoelectron spectra or the angle
resolved kinetic energy distribution of charged H1 pho-
todissociation products. Similar to atoms, photoelectron
distributions showed above threshold ionization (ATI)
and resonance structures, induced by ac-Stark shifting
molecular energy levels [2] which enhance multiphoton
ionization [3]. Besides simple photoionization with the
formation of H2

1, charged dissociation products H1

were always found [1,4–7], demonstrating that photo-
electrons emerge from different excitation pathways of
the molecule. It is commonly accepted that dissociation
starts after photoionization of the neutral molecule.
Dissociation pathways are effective one- and two-photon
dissociation, also known as bond softening and above
threshold dissociation [1] (mechanisms introduced by
[8,9]), and Coulomb explosion occurring after removal of
the second electron from the molecule [4]. The existence
of Coulomb explosion was confirmed by Frasinski et al. in
an experiment where correlation among photoions was
investigated [4] using covariance mapping [10]. With the
same technique it was tried to explore electron-ion and
electron-electron correlation [4].

In order to selectively record photoelectron spectra for
different dissociation channels, to reveal the interplay be-
tween electronic and nuclear motion for the various H2
fragmentation pathways, and to identify possible electron-
electron correlation in the Coulomb explosion channel,
we performed a kinematically complete experiment. The
vector momenta of all charged fragments emerging from
single ionization/dissociation events were measured in co-
incidence for a large part of the final state momentum
space, i.e., for all relevant energy sharings and relative
emission angles of all emerging fragments. In this Letter

we present a partial kinematical analysis for the reaction
channels:

H2 ! H2
1 1 e2 , (1)

H2 ! H1 1 H 1 e2 , (2)

H2 ! H1 1 H1 1 e2 1 e2. (3)

For all three channels electron spectra are measured, and
the dependence of the H1 ion momenta on the kinetic en-
ergy of the photoelectrons is investigated for reactions (2)
and (3). Surprisingly, the electron kinetic energy distri-
butions for channels (1) and (2) differ significantly, lead-
ing to the conclusion that besides the main, well accepted,
stepwise H2 ionization/dissociation mechanism a second
mechanism has to be active.

Our experimental setup was based on cold target re-
coil ion momentum spectroscopy (COLTRIMS) [11]. It
was identical to the one we used to investigate strong field
nonsequential atomic photoionization [12], now completed
with a combined time-of-flight multelectron spectrometer
to form a “reaction microscope” [11]. A homogeneous
magnetic field (B � 4.9 3 1024 T), parallel to an electric
field (E � 2 V/cm) for ion and electron extraction, was
applied over the electron drift tube to guide electrons with
large momentum component �p� perpendicular to the spec-
trometer axis to the electron detector. Electrons were first
accelerated over a path of 10 cm, then passed a 10 cm field
free drift tube until they finally hit a multichannel plate de-
tector equipped with a position sensitive multihit delay-line
anode. With this setup it was possible to detect all photo-
electrons with j �p�j # 0.8 a.u. and momenta parallel to the
spectrometer axis pjj $ 21.1 a.u. (electrons and ions are
assigned a positive pjj if initially they were emitted into
the direction where the e2 detector was mounted). H1

ions hitting the ion detector have a maximum momen-
tum perpendicular to the spectrometer axis j �p�j � 3 a.u. if
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pjj , 0 and j �p�j � 2.3 a.u. if pjj . 0. All H2
1 ions were

detected, irrespective of the momentum they gain in the
H2 photoionization step. From the measured positions and
times of flight the complete momentum vector for any in-
dividual electron and ion is obtained [11]. Detecting elec-
trons and ions simultaneously over a large part of the final
momentum space allowed us to perform a complete kine-
matical analysis of the breakup of molecular hydrogen into
charged fragments.

Care was taken to have less than one breakup reaction
in each laser shot on the average in order to ensure that
fragments emerge from a single molecule. The momen-
tum spectrometers were therefore mounted in an ultra-
high vacuum chamber with a base pressure of less than
5 3 10211 mbar. Hydrogen was admitted as a supersonic
molecular beam [12] with a density in the focal spot of the
light beam of about 108 molecules�cm3.

The hydrogen molecules were excited by pulsed Ti:sap-
phire laser radiation intersecting the molecular beam at
right angle. The light pulses with 795 nm center wave-
length and 25 fs pulse width were generated by a Kerr-lens
mode locked oscillator and amplified to pulse energies of
up to 600 mJ at 1 kHz repetition rate. The beam was fo-
cused with an on-axis spherical mirror (f � 100 mm) to
a spot size with 8 mm in diameter (FWHM). The light
intensity in the focal spot was set to 4 3 1014 W�cm2 and
the width of the molecular beam sheet along the light beam
axis to �50 mm. The spatial intensity variation along the
light beam axis within the molecular beam is estimated to
be at most 10% of the maximum intensity.

Figure 1 shows the photoelectron kinetic energy distri-
butions in the reaction channels (1), (2), and (3). Electrons
emitted into a range of polar angles u between 0 and 25±

with respect to the direction of polarization of the light
beam, towards the electron detector are included. For re-
action channel (1) all electrons found together with an H2

1

ion are taken into account, without any further restriction
on the H2

1 momentum. Only conservation of the total
momentum restricts the accepted events to ions with a mo-
mentum opposite to that of the corresponding electron. For
channels (2) and (3) the events included in the spectra are
further restricted by the geometric angle of acceptance for
H1 ions (see above). The coincidence criterion is the de-
tection of at least one H1 ion. The spectrum shown for
reaction (2) encompasses the H2

1 dissociation channels
known as effective one- and two-photon dissociation for
excitation near 795 nm ([7] and references cited therein).
In the channel (3) spectrum (Coulomb explosion) all events
are included where one or two electrons were detected after
double ionization of H2. In case of two electrons only the
kinetic energy of the electron arriving first at the detector
is plotted. The spectra were recorded at a light intensity of
4 3 1014 W�cm2. The energy bin size is 150 meV [chan-
nel (1)] and 300 meV [channels (2),(3)], respectively. To
reveal the overall properties of the kinetic energy distri-
butions, the number of events per energy bin is displayed
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FIG. 1. Reaction channel selective electron kinetic energy dis-
tributions for reactions (1), (2), and (3). Only events with the
electron emitted into a cone with acute angle 25± along the light
polarization vector are included. The light pulse intensity was
4 3 1014 W�cm2 .

on a logarithmic scale. Missing data points between 8 and
12 eV correspond to an electron time of flight where the
transverse momentum resolution drops to zero due to the
cyclotron motion in the applied magnetic field.

At low electron kinetic energies we find a pronounced
ATI structure in channel (1). Remnants of such a structure
are also found in the two dissociation channels (2) and (3).
In Fig. 1 they are barely visible due to the large energy
bin size chosen in order to display the high energy part of
these spectra.

On the average (disregarding the low energy ATI struc-
ture) the simple photoionization spectrum of H2 [reaction
(1)] shows a characteristic dependence on the electron
kinetic energy. On a logarithmic scale the electron yield
decreases approximately linearly with increasing Ekin,e

with an abrupt increase in the slope at Ekin,e � 18 eV.
Beyond Ekin,e � 28 eV practically no electrons were
detected. This “cutoff” may be understood by con-
sidering the light intensity Isat where ionization of H2
saturates in a 25 fsec light pulse. From measurements of
Thompson et al. [7] Isat is calculated to be approximately
2.5 3 1014 W�cm2. This is significantly lower than
the intensity Imax used. Neutral H2 molecules do not
experience intensity levels in the light pulses beyond
Isat. Thus, Isat, and not Imax, determines the highest drift
energy photoelectrons from reaction (1) may gain by
acceleration in the light pulse. For the bulk of electrons
which directly leave the molecule without rescattering
on the ion core the highest final energy accessible is
Ekin,e � 2Up�Isat� � E2

sat�2v2 (with Esat the electric
field strength of the light wave at saturation). This estimate
relies on the realistic assumption that electrons enter the
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ionization continuum with a kinetic energy which is small
compared to the energy gain by subsequent accelera-
tion. At the H2 saturation intensity 2Up � 30 eV. This
is in good agreement with the observed cutoff of the H2
photoionization spectrum [(1) in Fig. 1]. Elastic rescat-
tering of the electron on the H2

1 ion core may give rise
to electrons with a kinetic energy higher than 2Up [13].
Detecting no electrons in this energy range means that the
probability of rescattering without destroying the H2

1 ion
is at least 3 orders of magnitude smaller than for direct
electron ejection.

In the Coulomb explosion channel (3) and surprisingly
also in the dissociation channel (2) the electron kinetic
energy distributions show a completely different behavior
(Fig. 1). The most prominent difference is found for
electron kinetic energies higher than 2Up�Isat�. A signifi-
cant amount of electrons appears here in the dissociation
channel. In this energy range the electron kinetic energy
distribution looks very similar to the spectrum in channel
(3). One would have expected a photoelectron spectrum
similar to that of reaction (1); i.e., the spectrum in the
dissociation channel should also terminate near 2Up�Isat�
if ionization of H2 strictly precedes dissociation of the
molecule by the proposed mechanisms effective one-
and two-photon dissociation of H2

1 ([7] and references
cited therein). Contrary, it extends out to �50 eV which
corresponds approximately to 2Up�Imax� � 50 eV with
Imax being the light pulse peak intensity. Even if dissoci-
ating H2

1 states are assumed to be populated efficiently
at a somewhat higher intensity level in the light pulse,
H2 depopulation at the saturation intensity for ionization
should terminate the electron kinetic energy distribution
in the dissociation channel also close to 2Up�Isat�.

What is the mechanism that allows the photoelectron
to gain significantly more energy in reaction (2) than in
(1)? We will discuss two possibilities: (1) ionization and
dissociation are strictly sequential, and (2) the electron
becomes excited into a bound state and stays near the
H2

1 ion core while dissociation of the excited complex
already proceeds. Electric field ionization is appropriate
to describe the H2 ionization step near the H2 equilibrium
internuclear separation. The final kinetic energy of the
electron is thus mainly determined by the drift energy
it acquires. This in turn depends on the phase of the
oscillating electric field when it becomes free with small
initial momentum. For strictly sequential ionization/
dissociation rescattering has to be assumed for an electron
to reach Ekin,e . 30 eV. After elastic or inelastic scatter-
ing on its parent ion core, it may gain an energy which
is significantly higher than 2Up�Isat� by acceleration in
the light pulse [up to �10Up�Isat� [13] ]. Two kinds of
rescattering scenarios may be responsible for the fast pho-
toelectrons. Inelastic scattering with vibrational excitation
of the H2

1 ion into states dissociating in the light pulse
may happen. As is known from experiments H2

1 ions
are created in vibrational levels y � 0, 1 in the H2 pho-

toionization step [14]. They are difficult to dissociate and
would be good candidates for this mechanism. Assuming
this mechanism means that it should have a probability at
least 1 order of magnitude higher than rescattering without
dissociation of H2

1, as can be seen from the electron
spectra [channels (1) and (2)]. Besides this mechanism,
an enhanced elastic scattering probability for dissociating
ions may be envisaged. After the electron enters the
ionization continuum it gets accelerated and then returns
to the ion core within the span of time of one oscillation
period (T � 2.6 fsec) of the light wave. Meanwhile the
internuclear separation R increases, especially fast for
already dissociating ions, starting near the H2 equilibrium
internuclear separation (R � 1.4 a.u. [15]) where H2

1 is
formed in a vertical transition by ionization of H2. This
increase in R may give rise to an enhanced scattering cross
section and therefore an enhanced yield of fast electrons in
reaction (2) compared to simple ionization [channel (1)].

The enhanced e 2 H2
1 scattering cross sections which

have to be assumed may be questionable. They are not
needed for a mechanism based on delayed ionization of
H2. In a first step the electron gets excited to a bound
state. From atoms it is known that excited Rydberg states
with a not too low principal quantum number are stable
against strong field photoionization [16]. Like the H2

1

ion, H2 Rydberg molecules may dissociate in the strong
light pulse. Experiments at 526 nm excitation wavelength
indicated that dissociating H2 Rydberg states become
populated by strong field excitation [17]. The dissociation
mechanism is the same as for the ion, a strong, at a cer-
tain internuclear separation (here R � 4.5 a.u.) resonant,
dipole coupling between the 1ssg and 2psu H2 core elec-
tron states. The coupling induces a core electron charge
oscillation between the nuclei and therefore a strong
dipole moment oscillating in time. It reaches �2 a.u.
at R � 4.5 a.u. [18]. The oscillating dipole may kick off
the Rydberg electron with high probability compared with
the small ionization probability through direct interaction
of the Rydberg electron with the light pulse. This ioniza-
tion mechanism should be most effective for dissociating
molecules which reach and even pass the internuclear
separation with strong resonant charge oscillation. The
time elapsing between excitation of the electron to the
Rydberg state at the H2 equilibrium internuclear separa-
tion and the internuclear separation reaching the critical
value is long enough for the intensity level in the light
pulse to rise significantly into the regime higher than the
saturation intensity for H2 ionization. Ionization of the
Rydberg electron then directly results in a drift energy of
the photoelectron beyond 2Up�Isat� without the necessity
to assume further rescattering.

This mechanism is supported by the electron kinetic
energy distribution in the Coulomb explosion channel
(Fig. 1). To the right of the cutoff energy for simple
ionization [28 eV, channel (1)] the distribution functions
for reaction channels (2) and (3) show a very similar
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FIG. 2. Correlation plot of the electron kinetic energy Ekin,e
versus the H1 ion momentum pjj measured in coincidence for
the reactions (2) and (3). The experimental conditions are the
same as in Fig. 1. On top the integral H1 momentum distribu-
tion is shown.

dependence on the kinetic energy. Ionization of H2
1

which results in Coulomb explosion preferentially also
occurs near the internuclear separation where the electron
charge oscillation is strong [19]. It therefore happens at
similar intensity levels creating electrons with similarly
high drift energy.

The electron kinetic energy distributions (Fig. 1) have
been extracted from Fig. 2. For the dissociation chan-
nels (2) and (3) it shows the number of events sorted
according to the kinetic energy of the photoelectron
(Ekin,e) and the momentum parallel to the light polariza-
tion direction of the H1 ion (pjj) detected in coincidence
with the electron. The solid angle of emission of the
electron is the same as in Fig. 1. Events from H2 double
ionization and subsequent Coulomb explosion [channel
(3)] are found in the ion momentum intervals �225 a.u.,
212 a.u.� and �12 a.u., 25 a.u.�. H2

1 dissociation [chan-
nel (2)] contributes in the interval �212 a.u., 12 a.u.�. As
in Fig. 1, the horizontal gap in Fig. 2 is the energy range
where the electron energy resolution drops to zero.

The measured distribution function clearly shows that
the H1 momentum distribution does not depend signifi-
cantly on the kinetic energy of the photoelectron for chan-
nel (2), as well as for channel (3). The final kinetic energy
of the electron is a measure of the light intensity I�t0� at
the time t0 when it enters the ionization continuum via the
relation Ekin,e � Up�I�t0�� �1 2 cos2vt0�. Here it is as-
sumed that the initial electron momentum can be neglected
compared to its drift momentum and it does not rescatter.
Thus, a certain energy can be reached only if the instan-
taneous intensity in the light pulse I�t0� is high enough.
The spectrum in Fig. 2 therefore indicates that the ion mo-

mentum distribution is insensitive to the intensity level in
the light pulse where H2 is photoionized dissociation starts
and double ionization of H2 initiates Coulomb explosion.

In conclusion, the simultaneous measurement of ion and
electron momenta for single strong field H2 fragmentation
events allowed the measurement of fragmentation chan-
nel selective electron kinetic energy distributions and of
the correlation function for the electron kinetic energy and
the momentum of H1 ions formed in coincidence in re-
actions (2) and (3). The channel selective electron energy
distributions indicate that a new H2 ionization mechanism
has to be assumed to interpret the differences found in
the fragmentation channels (1) and (2). This mechanism
has to be able to account for the fast electrons in reaction
(2). It is certainly active together with stepwise sequen-
tial ionization/dissociation of H2. The relative importance
of both mechanisms at low electron energies cannot be
judged from the data. The results show that COLTRIMS is
capable of allowing a complete kinematical analysis of
strong field molecular processes.
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