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Abstract: The main objective of this paper is to establish the extension of an extended fractional derivative operator
by using an extended beta function recently defined by Parmar et al. by considering the Bessel functions in its kernel.
We also give some results related to the newly defined fractional operator, such as Mellin transform and relations to

extended hypergeometric and Appell’s function via generating functions.

Key words: Hypergeometric function, extended hypergeometric function, Mellin transform, fractional derivative,
Appell’s function

1. Introduction

Recently, the applications and importance of fractional calculus have received more attention. In the field of
mathematical analysis, fractional calculus is a powerful tool. Various extensions and generalizations of fractional
derivative operators were recently investigated in [7, 8, 10, 16].

Euler’s beta function is defined by

1
B(oy,09) = /t"l_l(l —t)°271dt, Re(o1) >0, Re(oz) >0, (1.1)
0

and its relation with the gamma function is given by

['(01)l'(02)

Blov, o) = [(oy +02)

The Gauss hypergeometric and the confluent hypergeometric functions are defined (see [15]) by

Sl n
o1)n(02)pn 2
o F1 (01,092,035 2) = E (1) (2)n 1():3() 2)nﬁa |z <1, o01,02,03 € C,—03 ¢ Ny (1.2)
n=0 n '
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and

09)pn 2"
503 ot |z| <1, 09,03 € C,—03 ¢ Np. (1.3)

o0
191 (025035 2) = Z
n=0

The Appell series or bivariate hypergeometric series is defined by

- (Ul)m+n(02)m(03)nxmyn
Fi(o1,09,03;04;2,y) = E , 1.4
1( R y) m,n=0 (0'4)m+nm!n! ( )

for all 01,09,03,04 € C,—04 ¢ Ny, |z| < 1,|y| < 1. The integral representations of (1.2), (1.3), and (1.4) are
respectively given by

1—\ 1
2Pl o) = o @ [t e s (15)
0

F(UQ)F(O'?, — 09
Re(o3) > Re(oz) > 0, |arg(l — 2)| < 7, and

['(o3) ! -1 3—0a—1
P e z) = — % 1o2=1(] _ p)os—oa—lzt 44 16
191(025 033 2) [(02) (03 — 0a) /0 ( ) e ) (1.6)

Re(o3) > Re(o2) > 0,

I'(o4)

. —\ms o1—1 _ 4\oa—0o1—1 _ )2 _ —os . .
['(01)l (04 — 01) (1 -1) (1 —at)"72(1 —yt)~ 7> dt (1.7)

Fy(01,02,03;04;2,y) =

o _

Chaudhry et al. [2] introduced the extended beta function as

B(01,00:p) = By(o1,05) = | 771 (1 — )7 e 77 dt, (1.8)

o — _

where Re(p) > 0,Re(o1) > 0,Re(o2) > 0. If p = 0, then B(o1,02;0) = B(o1,02). The extended hypergeo-

metric and confluent hypergeometric functions are defined in [3] as

Bp(og +n,03 — 02)
B(o3,03 — 02)

o0 zn
Fy(o1,00;0352) = Y (@) 7 (1.9)

n=0
and

By(o2 +n,03 — 03) 2"

Py (025 0332) = Z —, (1.10)

B(O’Q,O’g—Ug) n!

n=0

where p > 0. Also, in [3], the authors gave the integral representations of the extended hypergeometric and

confluent hypergeometric functions as

1 ! —
Fy(o1,09;03;2) = ) / t727 11 — )32 (1 — 2t) "t exp (t(l pt)) dt, (1.11)
0 —

B(o2,03 — 02
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p >0, Re(oz) >Re(oz) >0, Jarg(l—2)| <7

and
O, (092,03;7;2) = _ /1 t727 1 — )72 Lexp (zt b > dt, (1.12)
B(o2,03 —02) Jo t(1—1)
p >0, Re(oz) > Re(oz) > 0.
The extended Appell function is defined (see [11]) by
Fi(o1,02,03;04;2,y;p) = i Bp(ng?—JT;;Tz)_ %) (02)m(03)n%7 (1.13)

n=0

where p > 0, and its integral representation is given by

Fi(01,02,03,04;2,y;p) =

1 1 —p
[ T A=) T (1 —at) T (1 — yt) P ex ( )dt,
B [ T a0 a0y e (1
(1.14)

p >0, Re(oq) >Re(o1) >0, Jarg(l—2a)|<m, |arg(l—1y)|<m.

It is clear that if p =0, then (1.9)—(1.14) reduce to the well-known hypergeometric, confluent hypergeometric,
and Appell series and their integral representations, respectively.
For various extensions and generalizations, the readers may follow the recent work [1, 4, 9]. Parmar et

al. [13] introduced the extended beta function as

2p ! _3 _3 P
v(o1,003p) =/ — [ 721 =) 2K 1 | | dt, 1.15
oo =\ 2 [t o in, () (115)

where K, 1(-) is the modified Bessel function of order v + 1. Clearly, when v = 0, (1.15) reduces to (1.8)

by using the fact that K 1 (2) = y/3z¢ %. Also, the extended hypergeometric and confluent hypergeometric

functions, and their integral representations, are as given in [13]:

Fpo(01,02;03;2) = Z:(cn)nﬂy(g2 1,03 ~ 92ip) i, (1.16)

B(o2,03 — 02) n!

n=0

p,v >0, Re(os) >Re(o2) >0, |z <1,

q)pm (0_2;0_3;2) — Z/BU(O—Z‘i‘n;O—S*O—Q;p)Zi, (117)

~  Bloz,03—02) nl

p,v >0, Re(os) > Re(o2) >0,

/2p 1 ' oat os—02—3 o P
F,,(01,09;03;2) = ?m/o £ 8 (1 — )73 5 (1 — 2t) Ky (t(lt)>dt, (1.18)
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p,v >0, Re(os) > Re(oz) >0, |arg(l—2)| <m,
and

2p 1 Lo s o2 p
e A [ NEK dt, 1.19
T /3(02703—02)/0 g )  exp(zt) vt <t(1—t)> ( )

q)p,v (02; g3; Z) =

p,v >0, Re(oz) > Re(oz) > 0.
They also obtained the transformation formula for extended confluent hypergeometric functions as
@, ,(02,03;7; 2) = €D, (03 — 02; 03; —2). (1.20)

It is clear that, when v =0, (1.16)—(1.19) reduce to the extended hypergeometric and confluent hypergeometric

functions, and their integral representations are given in (1.9)(1.12) by using the fact that Ki(z) = /5"~
Recently, Dar and Paris [5] introduced Appell’s hypergeometric function by
By po(01,02,0310432,y) = Fi14(01,02,03; 0452, 3 p)
Blor+m+n,o4 —0o1) z™y"
= > (02)m(03)n ( ) (1.21)

mon—=0 B(o1,04 — 01) nlm!’

where |z] <1, |y| <1, 01,092,03,04 € C, —04 ¢ Ny.
In the same paper [5], they gave its integral representation as
Fl,p,v(gla 02,03,04;Z, y)

1 . )
_ 22;)/ toli%(l _ t)0'4*0'1*%(1 _ tm)*o'z(]_ _ ty)fU3Kv+% (p> dt7 (122)
0

T B(o1,04 — 01 t(1—1t)

where Re(p) > 0, v > 0, Re(o4) > Re(o1) > 0, |arg(l — z)| < 7, and |arg(l — y)| < . Obviously, when
v =0 in (1.21) and (1.22), we get the extended Appell function and its integral representation (see (1.13) and
(1.14)) by using the fact that K1 = y/5-€” 7. Similarly, when v =0 and p =0, (1.21) and (1.22) reduce to

the well-known classical Appell function and its integral representation.

2. Extension of the fractional derivative operator

In this section, we define a further extension of the extended Riemann-Liouville fractional derivative.

Definition 2.1 The Riemann—Liouville fractional derivative of order w is defined by

DU f(x) “#=ldt, Re(p) > 0. (2.1)

For the case m — 1 < Re(p) < m, where m € N, we have

LI} = D ) = g { s | FOE =) R 0. 22)

dz™
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Definition 2.2 (See [11]) The extended Riemann—Liowville fractional derivative of order u is defined by

D4 f(@iph = s [ 0= e (— s Yt Re( > 0 (2.3

For the case m —1 < Re(p) < m, where m € N, we have

qm
dx’m

_ d‘ﬁ {F(_M1+ o /O ") — ) exp (%) dt} . Re(y) > 0. (2.4)

Du{f(2);p} = DL f(z); p}

Definition 2.3 (See [1]) We define

1 x
D1 f(x);p,q} = m/ FE) (@ —1t) " Texp <m - > dt, Re(u) > 0. (2.5)
—H) Jo
For the case m — 1 < Re(u) < m, where m € N, we have

DL(/(2):p.a} =~ D ()i}

_ di {F(_u1+ - /O FB) @ - L exp (—pf - (xqf t)) dt} . Re(n)>0. (26)

A new extension of the Riemann—Liouville fractional derivative of order p as follows.

Definition 2.4 The extension of the extended Riemann—Liouville fractional derivative of order i is defined as

DU f(x);p.q, N p} = / f) (@ —t) YR [A p,——} \Fy [/\ pi— (xqft)]dt, Re(u) > 0. (2.7)

For the case m — 1 < Re(u) < m, where m € N, we have

OL(()p.a. A0} = D f(@):p.0 M)

where Re(p) > 0, Re(p) > 0, and Re(q) >0

Next, we give an extension of the extended Riemann-Liouville fractional derivative operator (2.2) of order

u as follows.

Definition 2.5 The extension of the extended Riemann—Liouville fractional derivative of order u is defined as

O1{f(x)ip,v} = 2”‘”’32 /f Y E (@ — )R (%) dt, Re(p)>0.  (29)
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For the case m — 1 < Re(u) < m, where m € N, it follows that

m

DLF(r):pv) = S DU () p,0)

= dd;n {\/2];71“(_;+ — /0“’ FOE 2 (@ —t) K, (t(ﬁzjt)) dt}, (2.10)

where Re(p) > 0, Re(p) > 0 and v > 0.

Remark 2.1 The following observations are clear.

(i) If v =0, then Definition 2.5 reduces to the extended fractional derivative defined in Definition 2.2 by using
the fact that Ki(z) = \/5-e7*.

(i) If v =10 and p =0, then Definition 2.5 reduces to the Riemann—Liouville fractional derivative defined in
Definition 2.1.

Now we prove a result concerning the extension of the fractional derivative.

Theorem 2.1 We have

D" p, v} = Wz"_“, Re(p) > 0. (2.11)

Proof From (2.9), we have

2

2pz2 1 ST 3 Pz
Hf M. — th—2 —t)H 2 1 t
Qz{z ,p,U} T F(_M) /0 (Z ) v+§ <f(2 _ t)) d

—zu) [2p22 1 ! 2
R [t s w et ()
7 D(—p) Jo 2 \uz(z — uz)

‘n—[/o“" B

_ ) H3 p
= 1—wu) 2Kv+% (u(l—u))du’
which shows (2.11). O

Theorem 2.2 Let Re(p) > 0 and suppose that f is analytic at the origin with its Maclaurin expansion given
by f(z) = > 00 anz™, where |z| <& for some § > 0. Then

DU f(2);ip v} =D an®{z";p,v}. (2.12)
n=0

Proof Using the series expansion of f in (2.7) gives

5 5 1 2 0 L 3 2
DE{f(2);p,v} = \/?F(—u) /0 Z ant" "2 (z =) TFT2K 1 <t(fz_t)> dt.
n=0
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As the series is uniformly convergent on any closed disk centered at the origin with its radius smaller than §,

the series is on the line segment from 0 to a fixed z for |z| < §. Thus, we may integrate term by term to find

Z@” {\/? oy e R () dt}

- ianfgg{zn;pvv}a

n=0

DU{f(2);p,v}

which shows (2.12). O
Theorem 2.3 We have
DI 1 - 2) P p,v} = Mz“_l 2P (B s 2) (2.13)
z LN ) F(/,L) 1;p,v sy M )

where Re(u) > Re(n) >0 and |z| < 1.

Proof By direct calculation, we have

_ _ _ 2p2z2 1 £ s _ 3 pz?
D7 L1 = 2)Ppo) = 7/ t"2(1—t ﬁ,2'—75“"21(1)1( dt
{z""(1-2) F=0 = ), (1=1)""(z—1) G
g3 2
:MLPZQL o /Zt"—%(l—t)—ﬂ(l—3)“—’7—%K (P2 ) ae.
™ T(u—mn) Jo z e \t(z — 1)
(t zu 2p/ n—2 < )
\/ ul2(1 —uz 1—w)h™"™ 2KU —— | du.
D(p—n) ) ) +2 \ u(l — )

Using (1.16) and after simplification, we get the required proof. O

Theorem 2.4 We have

DI (1~ az) (1~ bz) Fp,v} = FEZ% 2UR(n, @, B s az, bz p,v), (2.14)

where Re(p) > Re(n) > 0, Re(a) >0, Re(B) >0, |az| <1, and |bz| < 1.

Proof To prove (2.14), we use the power series expansion

(1—az) (1 —bz)"" = Z Z m( )m (bz)”

m=0n=0 n!
Now, applying Theorem 2.3, we obtain
DIHLH 1 — az)"*(1 — bz)~ = i i (a)m (b)nQW*”{z”+m+"*l' v}
z 7p7 A . m! n' z ’p?
et s ), @7 O Bpu(ntm A= n) pymins
m:On:O " m! nl (p—mn)
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Now, applying (1.21), we get

I'(n)
L)

DI (1 az) (1= b2) i} = HTUR(n, @, B; piaz, bz p, v),

which shows (2.14). O

Theorem 2.5 We have the Mellin transform formula

ZW—HQT—lr(T*U)F(T+U+1)

Val(—p)

MDY (2");p—r} = Bn+r+1,r—p), (2.15)

z;p,v

where Re(n) > —1, Re(u) > 0, Re(r) > 0.

Proof Applying the Mellin transform to (2.9), we have

MO8 (M)p— 1) = / PO () dp

L [t oge

vl
is
+
[N
Y
~
—~
Q=3
‘ N[\g
~
~—
N—
jol
=
—
o
bS]

L(=p) Jo
2" H\/E ! 3 e 1 p
= w2 (1l —u)"HF2 (/ prTEK, 1 ( )dp) du. 2.16
i Jo T o\ —w (210
Next,
(oo} p (oo}
/0 PrTIK, (u(l — u)> dp=u""2(1 —u)t2 /o WK, 1 (w) dw
=t (1— )Y 2r<’”2”)r(r+;’“), (2.17)
where w = ﬁ, Re(r —v) > 0, Re(r+v) > —1 (see [2, 13]). Using (2.17) in (2.16), we obtain
ZW*HQT*1F(T_U)F(T+U+1) 1
Mot ET)ip—rt = 2 2 /u”"'rl—ur_“_ldu
{2l 2 7} VAT () ,
Zn—ugr—lr(r;v)F(L;rl)
== ﬂ(n*‘r4‘lyr“M%
VL (—p)
which is (2.15). O
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Theorem 2.6 We have the Mellin transform formula

D G OO

WF()

where Re(a) > 0, Re(u) <0, Re(r) >0, Re(r) >0, and |z] < 1.

27‘711'\(

M{@“)pv 1—2)_a);p—>r} = Blr+1,r—p)oFy (a,r+Lir—p+1;2), (2.18)

Proof Using the power series for (1 — z)~® and applying Theorem 2.5 with n = n, we find

(=2 p—=r} =) (@ pf {®,.,(")ip =1}

M {2t (( —

n=0

2r71F(ﬂ) T+ 'u

which shows (2.18). O

3. Generating relations and some further results

In this section, we derive some generating relations of linear and bilinear type for extended (p, v)-hypergeometric

functions.

Theorem 3.1 We have the generating relation

(oo}

>

n=0

. z
2F1,p, atn,Biy;2)t" = (1—1)"" 2 F1p, <O[7ﬂ;’7; 1—t) ; (3.1)

where |z| < min(]1,1 —¢]), Re(a) > 0, Re(y) > Re(8) > 0.

Proof Consider the series identity

(1—2)—f]“=(1—t) [1— : }a.

Thus, the power series expansion yields

S

Multiplying both sides of (3.2) by z°~! and then applying the operator D27 .

Y on both sides, we get

- 1(1_1;)”].
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Interchanging the order of summation and the operator ©2-7 | we have

zp1m

i (O g5 [P 1=z et = (1 - )DL

n! Z;p,v Z;p,v
n=0

B=1 (1 _ c -
(= ] |
Thus, by applying Theorem 2.3, we obtain (3.1). O

Theorem 3.2 We have the generating relation

o0

Z

zt
2P (6 =, 517 2) " = (1= (0,8 85— i) (33

where |t| < Re(d) > 0, Re(8) > 0, Re(y) > Re(a) > 0.

1+|t\

Proof Consider the series identity

2 -8
N-(1-2) " =01-t" {1+ 1_2} .

Using power series expansion on the left-hand side, we have

io: (B)n (1—2)™"=(1- t)—ﬂ |:1 et :| - . (3.4)

| _
= n! 1—t

Multiplying both sides of (3.4) by z*~!(1 — 2)~% and then applying the operator D7 v on both sides, we get

“1(1 = )3 <1 B 1—_22)1 |

where Re(a) > 0 and |zt| < |1 —t|. Thus, by Theorem 2.2, we obtain

2oL = 2)70 (1 - 1_Ztt)_6] .

Applying Theorem 2.4 on both sides, we get (3.3). O

n' zZip,v

02,0 i(ﬁ)”zala—z)””t"] -9

n=0

i (B)n D0 [ (1 - z)“”‘"] th=(1-t)Poo 7

n! Z;p,v Z;p,v
n=0

Theorem 3.3 We have

n

DI04 {z”*lEﬁ,é(z)} = T—n ZO F(V(Z)i ) Bpo(n+mn,p— n)%, (3.5)

where v,0,pu € C, Re(p) > 0, Re(q) > 0, Re(u) > Re(n) > 0, Re(A) > 0, Re(p) > 0, and Ef 5(2) is the
Mittag—Leffler function (see [14]) defined as

ZTL

E Z FW)M) - (3.6)
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Proof Using (3.6) in (3.5), we obtain

Z;p,v

DI [EL 5 (2)] = DI

o~ (W 2"
Zn 1 {Z " }] .
— I'(yn+9) n!
By Theorem 2.2, we have

n—p | n—1pn — S (“)” n—p [,n+n—1
DI {z E%,;(z)}_;)w{@ [y

Applying Theorem 2.1, we get (3.5). O

Theorem 3.4 We have

(aiaAi)l,m;
DIk L, E
(ﬂjv )1 ny
-1 H T(a; + Ak) P
Z Z L /3]+B kﬁp,v(”""k?ﬂ_n)H? (37)

where Re(p) > 0, Re(q) > 0, Re(u) > Re(n) > 0, Re(A) > 0, Re(p) >0, and ,V,,(2) denotes the Fox—Wright
function (see [6, pp. 56-58] defined by

(cviy Ai)1,m; 1™ Ty 4 Aik) 2
m\I/n = m\I/n ,anl 7 3.8
7 (Bj> Bj)1,n; : z;) [ T(8; + Bjk k!’ (3.8)

Proof Applying Theorem 2.1 and following the same procedure used in the proof of Theorem 3.3, we obtain
(3.7). O

4. Concluding remarks
In this paper, we defined an extension of the extended fractional derivative operator. We conclude that when
v = 0 and using the fact that K 1 = y/55¢ %, all results established in this paper reduce to the results

related to the extended Riemann-Liouville fractional derivative operator defined in [12]. Also, when v = 0 and

p =0, we get the results related to the classical Riemann—Liouville fractional derivative operator.
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