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ABSTRACT

Proportionate normalized least mean squares (PNLMS) is an 

adaptive filter that has been shown to provide exceptionally fast 

convergence and tracking when the underlying system 

parameters are sparse. A good example of such a system is a 

network echo canceller. Principal components based PNLMS 

(PCP) extends this fast convergence property to certain non-

sparse systems by applying PNLMS while using the principal 

components of the underlying system as basis vectors.  An 

acoustic echo canceller is a possible example of this type of non-

sparse system.  Simulations of acoustic echo paths and 

cancellers indicate that PCP converges and tracks much faster 

than the classical normalized least mean squares (NLMS) and 

fast recursive least squares (FRLS) adaptive filters.  However, 

when a basic parameter, like room temperature, changes, the 

underlying acoustic structure of the room changes as well and 

principal components of the room responses at one temperature 

are very different from those at another.  This paper addresses 

this problem by using multiple sets of principle components as 

basis vectors and performing PNLMS in each basis set.  Each set 

of principle components are derived from the room at a different 

temperature. The new algorithm, multiple principal components 

PNLMS (MPCP) is a generalization of PNLMS++.  Simulations 

show the potential effectiveness of the approach. 

1. INTRODUCTION 

Proportionate normalized least mean squares (PNLMS) 

algorithm [1, 2, 3] is an adaptive filter that converges and 

tracks much faster than the classical normalized least 

mean squares (NLMS) adaptive filter when the solution is 

sparse in non-zero terms.  Developed independently, the 

exponentiated gradient (EG) adaptive filter [4] is very 

similar to PNLMS. The connection between the two 

algorithms is demonstrated by Benesty [5].  

PCP (principal components PNLMS), exploits the fact 

that the sparseness of a vector is a function of the chosen 

basis set.  It is well known that a given set of random 

vectors may be expressed most succinctly as a linear 

combination of the principal components [6] of the 

generating random process, i.e., the eigenvectors of the 

random vectors’ covariance matrix.  By choosing the 

principal components of a statistical sampling of solution 

vectors as a basis set, the solutions may be represented 

more sparsely than otherwise.  Thus, PNLMS operating 

under such a basis set converges faster than under the 

original basis set.

In [7] the efficacy of PCP was demonstrated by 

applying it to a simulation of the acoustic echo 

cancellation (AEC) problem.  One problem with applying 

PCP to AEC is that the speed of sound in air changes by 

as much as 1% with as little as five degrees centigrade 

change in temperature.  This dramatically alters the room 

impulse response statistics; meaning the principal 

components at one temperature are quite different from 

those at another.  Therefore, PCP will not perform well 

over even a modest temperature range.  We address this 

by generalizing the technique used in PNLMS++ [2].  

There, both PNLMS and NLMS adaptive techniques were 

used to adapt the coefficients of a telephone network echo 

canceller.  The concern was that in rare cases where the 

echo response was not sparse, PNLMS converged slower 

than NLMS.  By efficiently implementing both 

techniques, we obtained fast convergence for sparse echo 

paths and standard convergence for dispersive echo paths. 

With MPCP, we perform multiple adaptations using PCP 

with basis sets obtained from the room at different 

temperatures, thus obtaining fast convergence over a 

range of environments. 

2. PNLMS 

First, we briefly review the PNLMS adaptive filter under 

the guise of the echo cancellation problem.  The signals, 
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vectors, and matrices used in this paper are as follows:

� �x n  is the far-end signal which excites the echo path,

is the excitation vector, the

true echo path impulse response vector is

, is the near-end signal, or near-end 

noise,  is the combination of the

echo and the near-end signals, is

the adaptive filter coefficient vector,

� � � � � �, , 1
T

n x n x n L� � � � ��x � 	

0, ,
T

ep Lh h ��h � nv

	


 �1

� � � � � �T

epy n n v n� �x h

� � � � � �0 1,...,
T

Ln h n h n�� � ��h

� � � � � � � �1Te n y n n n� � �x h  is the error or residual-echo

signal, � � � � � �� 0 1, , Ln diag g n g n��G � is the diagonal

individual step-size matrix, � , is the “stepsize” parameter

and is chosen in the range, 0 1�� � , and � is a small

positive number known as the regularization parameter.

An NLMS adaptive filter iteration involves the

following two steps:

, (1)� � � � � � � �Te n y n n n� � x h

the error calculation, and 

, (2) � � � � � � � � � � � �1

1 Tn n n n n e n� �
�

� �� � � �� 	h h x x x

the coefficient vector update. PNLMS is similar, except

that in the coefficient vector update a proportionate

diagonal matrix, , whose elements are roughly

proportionate to the magnitude of the coefficient vector,

( )nG

� �1n �h , is used to window the excitation vector, � �nx ,

� � � �

� � � � � � � � � � � �
1

1

T

n n

n n n n n e n�
�

� � �

� �� � 	

h h

G x x G x ��
 (3) 

where,

� � � �� �, , 1pn f n� ��G h �

�
 (4) 

and is a nonlinear function described by

the series of steps in Table 1. The computational

complexity of the steps of Table 1 is approximately L

operations per sample period as step (a) need not be done 

every sample period and the normalization in step (d) can 

be absorbed in to the relaxation parameter,

� �� , , 1pf n� � �h

�  in equation

(3).

Table 1: � �� �, , 1pf n� � �h

Step Calculation

a � � � �� max 0 1max , 1 , , 1p LL h n h n L� �� � � ��

b � �� maxmax , 1 0 1i iL h n i L� �� � � � �

c 1

1

0

L

i

i

L �
�

�

� �

d � � 1,
/ 0ii i

n L i L�� � � � � �� 	G 1

When is sparse and eph � �1n �h converges to it, the

filter becomes effectively shorter because of � �nG ’s

windowing of � �nx .  Since shorter adaptive filters 

converge faster than longer ones, PNLMS’s convergence 

is accelerated.  On the other hand, when  is dispersive,

PNLMS has no advantage over NLMS, in fact its

convergence is significantly slower.  PNLMS++ [2] and 

IPNLMS [3] were designed to improve the convergence

rate for dispersive impulse responses so that they

converge at least as fast as NLMS.

eph

3. PNLMS WITH ARBITRARY BASIS SET 

In this section, we investigate how PNLMS may operate

under any arbitrary basis set.  In the next section, we 

discuss how to find that basis set which makes the

solution that PNLMS seeks sparse. 

Let us rotate the acoustic impulse response with a

linear transformation, say, 

 (5) ep ep�b Uh

where is an L-by-L unitary matrix. We may then make

the following substitution in equations (1) and (2),

U

� � � �1 Tn n 1� � �h U b  (6) 

and

� � � �Tn �x U s n  (7) 

Then, (1) can be rewritten as

� � � � � � � �1Te n y n n n� � s b �  (8) 

and (2) as 

� � � �

� � � � � � � �
1

1T T

T T T

n n

n n n e n� �
�

� � �

� �� �� 	

U b U b

U s s UU s
 (9) 

Multiplying both sides of (13) from the left by and

recalling that for unitary matrices, , where is the

identity matrix,

U
T�I UU I

 (10) � � � � � � � � � � � �1

1 Tn n n n n e� �
�

� �� � � �� 	b b s s s n

Equations, (8) and (10) represent NLMS in the

transformed domain.  We may now apply PNLMS by

defining a proportionate diagonal matrix as a function of

� �1n �b ,

� � � �� �, , 1pn f n� ��M b �  (11) 

In addition, the PNLMS coefficient update in the

transform domain becomes,

� � � �

� � � � � � � � � � � �
1

1

T

n n

n n n n n e n� �
�

� � �

� �� �� 	

b b

M s s M s
 (12) 

To summarize, the PCP algorithm is shown in Table 2 

where we have added the intermediate step, 

� � � �n n�p M s , (13) 

to specify a more efficient calculation of (12). 
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Table 2: PCP 

Step Computation Complexity

a � � � �n n�s Ux L2

b � � � � � � � �1Te n y n n n� � �s b L

c � � � �� �, , 1pn f n� �� �M b L

d � � � �n n�p M s L

e � � � � � � � �1

1 Tn n n e� �
�

� �� � � �� 	b b p s p n 2L

4. FINDING PROPER BASIS VECTORS 

Up to this point we have viewed the solution vector, ,

as fixed. In practical applications though, it is almost

always time varying.  Therefore, we now add a time index

to the solution vector and view it as the output of a 

random process.  As such, we may use the well know tool

of PCA (principal components analysis) to find the most

efficient, i.e. sparse, representation of 

eph

� �ep nh

� �ep nh .  That is, 

letting the L-length column vector, , be the 

principal component of the random process, we can

express

kw thk

� �ep nh  as 

(14)
1

,

0

( ) ( ) ( )
L

ep k k ep ep

k

n b n
�

�

� ��h w Wb n

where  is an L-by-L unitary matrix whose  column

is .  According to PCA, if we define the solution

process covariance matrix as 

W thk

kw

� ( ) ( )T

hh ep epE n n�R h h (15)

and its diagonal decomposition as

 (16) T

hh �R WDW

where  is diagonal and  is unitary, then the columns

of represent the principal component vectors and the

corresponding diagonal elements of  are proportional to

the probable contribution of that component.  Most

importantly,  tends to be sparser than

D W

W

D

( )ep nb � �ep nh .

Therefore, a good choice for  in (5) is .U TW

So to find for the acoustic echo cancellation 

problem, we can build a sample covariance matrix from

many observations of ,

U

� �ep nh

 (17) 
0

ˆ ( ) ( )
P

T

hh ep ep

k

k k
�

� �R h h

and define

(18)ˆ T�U W

where  is the unitary matrix in the diagonal

decomposition of .

Ŵ

ˆ
hhR

5. MPCP 

Finally, we turn to updating the coefficient vector under

multiple sets of basis vectors.  As indicated above, an 

example application where multiple basis sets are useful is 

the acoustic echo problem where each basis set 

corresponds to a different ambient temperature. Let us

consider the case where we wish to adapt the coefficients 

at K distinct temperatures.  At each temperature, , we 

will develop off-line, and in the manner of section 4, an

optimal rotation matrix, .  The idea is to update the

coefficient vector under each of these rotations. Under

one of the rotations, the coefficient vector is sparse and 

PNLMS will yield fast convergence.  Under the other

rotations, the coefficient vector is not sparse, and 

convergence will be slower.  Overall, the speed of 

convergence will be dominated by the sparse rotation. 

k

kU

As with PNLMS++ [2] we may implement the different

coefficient updates by 1) alternating between them in

different sample periods, or 2) updating the vector using

all the rotations in a singe sample period, or a combination

of 1) and 2).  Here, we describe the method of alternating

between updates in different sample periods.

First let us define the coefficient vector under the kth

rotation matrix, , as kU

( ) ( )k kn n�b U h . (19) 

With this definition it is easy to see that we can express

 in terms of by applying( )k nb 1( )k n�b

 (20) , 1 1( ) ( )k k k kn � ��b T b n

where

, 1 1

T

k k k k� ��T U U . (21) 

The , 1k k �T  matrices can be computed off-line when the

s are calculated.  MPCP is summarized in Table 3. kU

Table 3: MPCP 

Step Computation Complexity

a mod mod( ) , ( 1)K Kk n m n� � � ~

b � � � �k kn n�s U x L2

c � � � �,1 1k k m mn n� � �b T b L2

d � � � � � � � �1T

k ke n y n n n� � �s b L

e � � � �� �, , 1p kn f n� �� �M b L

f � � � �kn n�p M s L

g � � � � � � � �1

1 T

k k kn n n e� �
�

� �� � � �� 	b b p s p n 2L
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6.  SIMULATIONS 

We simulated the process of an object moving about a

room with the image-derived model for finding acoustic

impulse responses [8].  The microphone and speaker

positions were fixed (as is often the case in normal

speaker-phone use) and a perfectly absorbing spherical

object was located at random positions about the room.

The room was perfectly rectangular with different

reflection coefficients on each wall, ceiling, and floor. 

With each new location, the impulse response was

measured and added into the sample covariance matrix

Fig. 1 shows a typical impulse response from the

speakerphone simulation.  The optimal transform of the

vector is shown in Fig. 2.  Clearly, the transformed

version is sparser. The room simulation parameters were

as follows:

� the room dimensions were 6.4’ by 8’ by 6.4’, 

� the reflection coefficients of the 6 walls were 

0.91, 0.87, 0.95, 0.85, 0.8, 0.6, 

� the radius of the spherical absorbing object was

1.2’,

� the source (loudspeaker) was located at

coordinates, (0.64’, 3.2’, 3.2’), where the origin,

(0,0,0) was at the front lower left corner (the 

positive directions were back, up, and right),

� the microphone was located at coordinates

(0.64’,4.8’,3.2’).

The sampling rate in most simulations in this paper was 8

kHz.  The only exception was the internal sampling rate of 

the room simulation, which was 80 kHz, but the final

impulse response was sub-sampled to 8 kHz. 

Fig. 3 we use the sparseness measure,

2
21

1

( )S �
x

x
x

(22)

to compare the sparseness of 100 room impulse responses 

before and after having been transformed by the room’s

principal components.  Note: ranges from21( )S x 1
L

 to

one for maximally dispersive and maximally sparse

vectors, respectively. The 100 different responses were 

generated by moving the absorbing object randomly

around in the room. The transformed impulse responses

were consistently sparser than the untransformed ones. 

Fig. 4 shows the convergence of PCP compared to

NLMS and FRLS [9]. The algorithms in these simulations

use the following parameters: ,512L � 0.2� � , .01� � ,

. The effective length of the forgetting factor,.01p� � � ,

in the FRLS algorithm is 2L .  The initial convergence of

PCP is much faster than NLMS and FRLS even though

the untransformed impulse response is dispersive.  At 2.5

seconds, the echo path is changed. Fig. 4 shows that the

re-convergence of PCP is again faster than NLMS or

FRLS.

Figure 5 shows the convergence of MPCP compared to

PCP and NLMS.  MPCP operates with two rotation

matrices, one trained at 20°C and another at 21°C. PCP

operates only at 20°C.  At 2.5 seconds the temperature in

the room is abruptly changed from 20°C to 21°C.  The 

initial convergence of PCP and MPCP is the same, both 

faster than NLMS, indicating that there is little penalty in

alternating the types of updates.  When the temperature

changes, however, PCP converges slower than NLMS,

while MPCP maintains fast convergence. 

7. COMPUTATIONAL ISSUES 

In the simulations above, we first calculated the solution

covariance matrix off-line and then used an eigen-

decomposition to find the transforms to make the

solutions sparse.  The calculation of the covariance matrix

can be done in real time by periodically adding outer

products of good echo path estimates to the current 

solution covariance matrix.  Finding the eigenvectors of

the solution covariance matrix is an  problem, but

the eigenvectors do not need to be calculated very often.

If the locations of the microphone and loudspeaker do not

change, perhaps the calculation only needs to be done 

once per day or so. 

30{ }L

8. CONCLUSIONS

The simulations presented in this paper provide

evidence that MPCP can be used effectively in the 

problem of acoustic echo cancellation in environments

with some temperature variation. Though the

computational complexity is high compared to NLMS and 

FRLS, there is a distinct advantage in the speed of 

convergence over both of these established algorithms.
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