MISSOURI
E Missouri University of Science and Technology

Scholars' Mine

Electrical and Computer Engineering Faculty

Research & Creative Works Electrical and Computer Engineering

01 Sep 2007

A Memetic Algorithm Configured Via a Problem Solving
Environment for the Hamiltonian Cycle Problems

X.S. Chen
Meng-Hiot Lim

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

X. S. Chen et al., "A Memetic Algorithm Configured Via a Problem Solving Environment for the Hamiltonian
Cycle Problems," Proceedings of the IEEE Congress on Evolutionary Computation, 2007, Institute of
Electrical and Electronics Engineers (IEEE), Sep 2007.

The definitive version is available at https://doi.org/10.1109/CEC.2007.4424821

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F789&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F789&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/CEC.2007.4424821
mailto:scholarsmine@mst.edu

A Memetic Algorithm Configured via a Problem Solving
Environment for the Hamiltonian Cycle Problems

X.S. Chen, M. H. Lim, D. C. Wunsch II, Member, IEEE

Abstract—Algorithm Development Environment for
Permutation-based problems (ADEP) is a software
environment for configuring meta-heuristics for solving
combinatorial optimization problems. This paper describes the
key features of ADEP and how the environment was used to
generate a Memetic Algorithm (MA) solution for Hamiltonian
Cycle Problems (HCP). The effectiveness of the MA algorithm
is demonstrated through computer simulations and its
performance is compared with backtracking and other
heuristic techniques such as Simulated Annealing, Tabu
Search, and Ant Colony Optimization.

I. INTRODUCTION

Many real-world problems are known to be non-
deterministic polynomial-time (NP) hard. Such
problems are computationally intractable by conventional
deterministic search algorithms. It is therefore not surprising
that in recent years, researchers have begun to consider
meta-heuristic algorithms such as Ant Colony Optimization,
Genetic Algorithm, Tabu Search, Simulated Annealing and
Memetic Algorithm. Still, in line with the potential
complexity posed by the intractability of the problems,
research have in recent years focused on hybridizing
different search techniques to derive more powerful search
algorithms. In general, such hybridization attempts to
cultivate desirable search characteristics by drawing on a
synergistic combination of global and local searches. One
common direction is to combine genetic algorithms with at
least one local search. Such an approach is also commonly
referred to as memetic algorithms where the local search is
akin to a meme, or in the context of a society, a unit of
cultural information that is being passed on [1, 2, 3, 4 and 5].
One of the main issues faced by system developers of
memetic algorithms is that there seem to be no “one size fits
all” type of search algorithms [6, 7]. In other words, for any
given memetic algorithm with a particular parametric setting,
it is unlikely that it will perform equally well for all the
problems of the same class. Hence, it is common to mix and
match between meta-heuristics, or at least one meta-heuristic
and one local search technique. The process of configuring
such hybrid algorithms can be made easier if there is a
X.S.Chen is with School of EEE, Nanyang Technological University,
637553 Singapore.(e-mail: chen0040@ntu.edu.sg)
M.H. Lim is with School of EEE, Nanyang Technological University,
637553 Singapore.(e-mail: emhlim@ntu.edu.sg)
D. C. Wunsch II is Dept. of Electrical & Computer Engineering,

University of Missouri — Rolla, Rolla MO 65409 (email:
dwunsch@ece.umr.edu)

1-4244-1340-0/07/$25.00 ©2007 IEEE

computational platform to facilitate the algorithm design
process. Our work here considers how such an environment
can facilitate the design of algorithm for the Hamiltonian
Cycle Problem (HCP).

The state of the art research on meta-heuristic algorithms
has made significant advancement in the last two decades.
This coupled with the technological advancement in
computational hardware have opened up avenues to explore
problems of complexity level that were previously
considered insurmountable. In this regards, rapid design and
development of meta-heuristic algorithms has become an
important and challenging issue. The current meta-heuristic
algorithm development methodology usually requires
significant effort in codes generation and modifications. As a
result, the quality of the meta-heuristic algorithm that solves
a NP hard problem may be far from optimal in terms of
performance. This is likely due to the fact that the designer
may not have the resources or resolve to fine tune the
algorithm. It is also likely that the programmer may not
possess the necessary experience and knowledge on meta-
heuristic algorithms to effectively make the necessary
improvement.

ADERP is short for algorithm development environment for
permutation-based problems, and was developed to address
the need for rapid generation of efficient algorithms that
target the real-life problems [8]. Currently ADEP is capable
of generating and auto-configuring MA solutions for
combinatorial optimization problems with permutation string
solution representation. With ADEP, the user only needs to
modify the objective/fitness function to convert the codes for
solving the target problem. The time to implement the bulk
of codes for the MA operators such as crossover, mutation,
selection, fitness scaling, population update, etc. can be
devoted to other more productive solution integration tasks.
ADEP allows users to focus on the high-level problem
abstraction, significantly reducing the algorithm
development time and effort in designing and implementing
the meta-heuristic algorithm to solve the problem.

The rest of this paper is organized as follow. In Section 2,
we describe some of the more important features of ADEP
from the viewpoint of algorithms design and development.
Section 3 gives an overall introduction on the Hamiltonian
cycle problem. In Section 4, we present some simulation
results to give an indication of the performance level that is
achievable by an algorithm configured in the ADEP

2766

Authorized licensed use limited to: University of Missouri. Downloaded on January 15, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

environment before concluding this paper in Section 5.

II. FEATURES OF ADEP

Users interact with ADEP through a GUI (developed
using MFC in VC++ 6) on which the various operators of a
meta-heuristic algorithm are represented as components in a
flow chart. The flow for data creates a simplified view of the
process flow in the meta-heuristic algorithm, and the user
interaction with the ADEP is through the modification or
insertion of components in the work flow. The work flow of
ADERP is illustrated in Figure 1.

m
__and expectations

- e

L

Automatically
configure

Algarithm
configuration

Code generator

Source codes

Figure 1: Work flow of ADEP

The work flow in ADEP is designed so as to minimize
users’ time in designing the algorithm and allow users to
focus on the application of the algorithm to solve the
intended problem at hand.

II. ADEP PROCEDURE LIBRARY

The procedure library of ADEP encapsulates a wide range
of meta-heuristic routines. In the procedure library, the
procedures, routines, parameters, etc. associated with the
algorithm are organized and managed systematically though
a novel tree structure named Left Variation — Right Property
(LVRP) tree structure.

The LVRP tree structure works as follows. At the top
level, an algorithm is divided into functional components
(such as “Crossover”, “Mutation” components as shown in
Figure 2 of Section IV for the Memetic Algorithm). All the
properties, routines and attributes within a functional
component are grouped to form a tree structure in such way
that each functional component has a “Variation” and a
“Property” tree branch. The “Variation” tree branch enlists a
collection of operators while the “Property” tree branch
represents the common features of the particular operator as
its children. Take the functional component “Offspring

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Producer” for the Memetic Algorithm as an example, the
“Variation” branch of the “Offspring Producer” may contain
“Crossover” and “Cloning” as its children while the
“Property” branch may contain “Parent(s) Selection” as it
child. [8]

The “Variation” and “Property” tree branch can have
other branches. For instance, the “Crossover” can have

“Uniform”, “Order-1”, “l-point” as its “Variation” and
“Crossover Rate” as its “Property” while “Parent(s)
Selection” can have “Random”, “Roulette Wheel”,

“Tournament” as its “Variation”. This rule is recursively
applied as the system guides a user to configure a feasible
algorithm [8]. In such a way, a complex algorithm
configuration is broken down into a number of configurable
“Variation” and “Property” objects.

During the user configuration stage, the user-specified
features are added as the leaf nodes in the corresponding
sub-trees of the LVRP. When the configuration is done, the
code engine traverses the generated LVRP tree structures by
depth-first traversal strategy to achieve a complete genetic
algorithm. To improve the performance a generated MA for
a particular type of problem, the code engine includes
automatic algorithm optimizer. The automatic algorithms
optimizer adopts meta-Lamarckian Learning (adaptive
strategies for MA control that converge during training stage,
to a set of operators chosen to locally improve the next
chromosome [6, 7]). One of these strategies is the biased
roulette wheel strategy MA-S2. The biased roulette strategy
is a stochastic approach that makes use of knowledge gained
online to form biases on the local methods (in terms of
LRVP, the optimal “Variation” and the “Property” of each
sub-tree that should be used for the particular problem).
During the training stage, initially each local method is first
given an equal opportunity to hybridize with the GA in
optimizing the unseen parent chromosomes. After the initial
stage, the probability that a local method will be chosen to
work on any subsequent chromosome is biased according to
its previous performance, which now changes dynamically
as the search progresses. In this way, good configuration
“Variation” and “Property” are rewarded with a higher
chance of being selected in the next iteration and this
preference is accumulated in a probabilistic and statistical
manner until the evolutionary process converges with a few
root-leaf paths dominating the trees by large relative
preference values along them.

I. HAMILTONIAN CYCLE PROBLEM

The Hamiltonian Cycle Problem is NP-Complete (NP-C),
which involves finding in a graph a cycle that contains all
the vertices of the graph without visiting any of the vertices
twice [9]. Hamiltonian cycles are named after William
Rowan Hamilton who invented the Icosian Game, now also
known as Hamilton's puzzle [10].

The Hamiltonian Cycle Problem is one of the most studied
NP-C problems due to its complexity and it has a number of
variants such as the traveling salesperson problem,

2767

Authorized licensed use limited to: University of Missouri. Downloaded on January 15, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

Satisfiability problem (SAT), the knight’s tour and graph
coloring.

In proving the Hamiltonicity [9, 10] of a graph, Posa [11]
was one of the first to consider the Hamiltonicity of random
graphs and proved that a random graph G€ G with

m=cnlogn has a high probability of containing a

Hamiltonian cycle if ¢ is sufficiently large. Shamir [12]
proved that his algorithm finds a Hamiltonian path on

Ge G, in O(n®) timeif

m:l(logn+cloglogn),c>3)
n

where m is the number of nodes and 7 is the number of
edges.

There are two major classes of Hamiltonian cycle
algorithms: polynomial time heuristic algorithms and
backtracking algorithm. The backtracking algorithm is a
standard approach in solving Hamiltonian cycle problem.
However, search by backtracking is computationally
intractable. Heuristic algorithms on the other hand are fast,
running in linear or low-order polynomial time by using
general rule of thumbs and/or randomization. Heuristic HCP
algorithms include Ant Colony Optimization [13,14], Neural
Network [15], Tabu Search, Simulated Annealing,
Undirected Hamiltonian Cycle algorithm (UHC, formulated
by Angluin and Valiant) [16], HAM (Hamiltonian heuristic
algorithm formulated by Bollobas, Fenner, and Frieze)[17,
18] and so on.

One practical use of HCP is the site visitation sequencing
problem for an Unmanned Reconnaissance Aerial Vehicle
(URAV). URAVs can cover a large set of spatially
distributed sites that are present within its site envelope.
Given S being the set of reconnaissance sites that the URAV
should survey, it is a general requirement that a URAYV visits
the useful vicinity of each site exactly once, and lands back
safely at the take-off zone or one of the other benign landing
zones that are within its flight envelope. If the URAV
returns to the take-off site, the problem becomes one of
finding the Hamiltonian cycle. If no Hamiltonian cycle is
uncovered, the solution becomes the longest path {LP}
between take-off and landing sites. An acceptable solution
to this problem is essential in choosing “minimal risk”
waypoints for the URAV flight path [19-21].

Our focus is to develop a memetic algorithm (MA) for
finding the longest path. The solution of the site visitation
sequencing problem for a single URAV can be represented
by an integer permutation. This is suitable for ADEP which
was designed to handle permutation string structure. The
ADEP environment automatically generates MA source
codes using the specified parameters. The outcome is a set
of platform-independent C++ source codes that can be
compiled into a console application program. The source
codes only need minor modification to be embedded into
Windows application. The domain specific knowledge
pertaining to the problem is incorporated into the MA

2768

application via the evaluation on the fitness function codes.

IV. MEMETIC ALGORITHM

To develop HCP algorithm using ADEP, the PSE was first
used to generate the MA code framework, which was then
configured to find the longest path by incorporating the
appropriate objective function of the MA algorithm. The
generic MA has a framework as shown in Figure 2. After the
population initialization, the population is evaluated and the
termination condition is checked. If the termination
condition is not met, the population is allowed to evolve
further. In each generation, offspring are produced from the
parent population using several genetic operators (crossover,
mutation, and local search) and the population is replaced
with the offspring. When the termination condition is met,
the chromosome with the highest fitness value is returned
which contains the sequence of vertices on the graph. This
sequence of vertices represents the longest path.

‘ Population Initialization ‘

Evaluation

Termination condition?

For i = 1to population size

Parents Selection
< |

‘ Crossover (probability Pc) 7

Yes)\ No

Child(i)=Crossover(

Parent 1, Parent 2) CHIE)S Feneii]

v

‘ Mutation (probability Pm) 7 ‘

A

Yes No

Child(i) remains the same

Child()=Mutate(Child(/))

v

‘ Local Search (Child(i)) ‘

v

4‘ Increment Generation Counter ‘

Figure 2: Generic framework of the Memetic Algorithm

The ADEP-generated memetic algorithm represents the
vertices of the graph by integer permutation string [22, 23].
In the chromosome, each gene represents a vertex on the
graph. The position within the string dictates the visitation
sequence of the graph’s vertices. In the population
evaluation, the objective/fitness function calculates the
length of the longest substring/path in the chromosome by
checking the connectivity between adjacent genes (i.e. the

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: University of Missouri. Downloaded on January 15, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

successive edges of the traversed vertices along the visitaton
sequence) in linear time. Since the goal is to maximize the
length of the longest path, the fitness value of the
chromosome is set to the length of the longest path in the
chromosome. The local searcher as configured by the
automatic optimizer of the ADEP environment is a two-gene
swap method which repeatedly swaps two genes in the
chromosome to vary the topology of the search space. Other
configured local methods include local methods such as
single chromosome replacement over the parent population.

V. COMPUTER SIMULATION
The ADEP-generated MA was tested on a dataset
comprising of 14 sparse graphs with edge densities (Ed)
ranging from 0.0398 to 0.1947. All 14 graphs in their
graphic and adjacency matrix representations are available
online [24]. Out of the 14 graphs, 7 are Hamiltonian while
the remaining 7 are non-Hamiltonian. There are 10 graphs
derived through special modifications to the Tutte graph
[25]. Table 1 shows the experimental results of MA
simulation on these graphs with the last column of the table
showing the maximum known path length. Each graph is
labeled as G(m,n). The * symbol indicates that the graph is
Hamiltonian. The results were obtained in MS Windows XP
that ran on an OPTIPLEX GX520 PC Desktop with 3.39
GHz Intel Pentium 4 CPU and 512 MB RAM. Simulations

for each algorithm involve 10 independent runs.

TABLE 1
Simulation results of MA for solving the different HCPs
Avg. CPU Avg. longest

Longest path Max. known

Graphs time (s) path obtained path length
G(15,20) 0.08 14.0 14 14
G(20,30)* 0.11 20.0 20 20
G(20,37)* 0.10 20.0 20 20
G(46,69) 1.43 45.0 46 46
G(46,71)* 1.15 453 46 46
G(46,93)* 1.53 45.7 46 46
G(49,96) 0.98 48.0 48 48
G(49,142) 0.96 48.0 48 48
G(100,197) 4.29 95.5 98 99
G(100,197)* 5.29 97.8 100 100
G(100,203)* 4.17 96.6 99 100
G(100,207) 6.88 97.4 98 99
G(100,217) 9.75 97.9 99 99
G(100,217)* 6,23 98.2 99 100

In Table 1, it is shown that, for problems with size no
more than 48, which is considered “very large” for many real
applications, it is basically not a problem for the memetic
algorithm to uncover the longest known path or Hamiltonian
cycle within 1.6 seconds of computational time. For larger
problems with 100 nodes, the resulting MA showed
respectable performance in uncovering solutions that are
very close to the longest path or Hamiltonian cycle, and the

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

computational time is less than 10 seconds. For all the 14
graphs tested, the solutions with maximal length or
{maximal length-1} were found.

To evaluate the performance of the MA algorithm, it is
essential to do a comparison on the performance to other
HCP algorithms. Here the same graph dataset was tested
using standard backtracking algorithm and other standard
heuristic algorithms. Five other types of HCP algorithms
were developed and tested on the same set of sparse graphs.
The HCP algorithms include standard backtracking
algorithm, Tabu Search, Ant System and Simulated
Annealing algorithm.

Since the ADEP-generated MA algorithms was developed
with minimal modification in the generated codes, for a fair
comparison in performance, the HCP algorithms used should
also have a form as “generic” as possible instead of being
fine-tuned to solve the problem. The 4 testing algorithms
were therefore developed in such a way that they all have
similar structures and share a common framework that
include common classes such as CProblem, CRandom, and
so on. This was done to minimize the variance in
performance of the algorithms.

The standard backtracking algorithm was derived by
creating a number of Tracer objects which move from a
starting vertex in the graph and proceed to the next vertex by
checking the connectivity with the rest of the vertices. When
no connectivity is found, the Tracer object backtracks to the
previous move and look for a different connected vertex. The
algorithm iterates until it finds a Hamiltonian cycle and if no
Hamiltonian cycle is found in the graph, it returns the
longest path as the solution.

The Tabu Search and Simulated Annealing algorithm
were designed such that they share the same objective
function as that of the ADEP genetic algorithm. Since these
two algorithms were neighborhood search algorithms, they
were designed to have similar class structure and methods.
Both neighborhood search algorithms deploy two-gene swap
technique and obtain the new neighborhood solution by
selecting the best in the neighborhood of the current solution.
The two algorithms were run for 10000 iterations before
termination.

In the Tabu search algorithm, the recency Tabu table
incorporates a Tabu tenure of randomly variable size for
diversification and the aspiration function bypasses the Tabu
for Tabu move steps that outperform the current solution (i.e.
the solution has a higher objective value than the current
solution).

The Simulated Annealing algorithm sets the initial
annealing temperature to 10. The annealing temperature is
then decreased by multiplying it with a delta value of 0.99
per iteration. The entropy function has the form

E
of exp(— Tj , where E is the energy or objective value of

the solution and T is the annealing temperature. The best
solution obtained in the neighborhood of the current solution

2769

Authorized licensed use limited to: University of Missouri. Downloaded on January 15, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

is selected to replace the current solution if the probability is
E
greater than exp(— ? or if the annealing temperature is

lower than 10E-4 and the best neighborhood solution has a
higher objective value.

The Ant System algorithm was designed to have 200 ants
uniformly distributed among the vertices of the graph. The
ants will traverse the graph and find the longest non-repeated
path it can reach before it becomes inactive. After all the ants
become inactive, the pheromone table is updated by
pheromone evaporation followed by having each ant drop
pheromone on the path they visit. The amount of pheromone
is weighted by the length of the path the ant traverses. The
ant determines the next vertex to move based on the
following pseudo-random state transition rule [26]:

a«_ B
p(cl.|s‘”)=z T;).Tn'i.n
ceNls?) T i

where 7, and 77, are respectively the pheromone value and

7>V¢ € N(s”) 2

the heuristic value associated with the vertex ¢, . In the ACO
algorithm developed, & is set to 1 and ﬂ is set to 5. These
values are the weights of the pheromone value and the

heuristic value respectively. s” represents all the vertices
that have not yet been visited. The evaporation rate of the
algorithm is set to 0.5.

2770

Table 2 presents the experimental results of the ADEP-
generated memetic algorithm and the 4 comparison
algorithms in uncovering the longest path in terms of wall
clock time. The values in the table are in the form a (b, #)
where a is the longest path uncovered and b is the wall clock
time. The # sign indicates the longest path uncovered by the
algorithm in reaching the maximum known path length of
the particular HCP.

Figures 3, 4 show the plot of the performance of the
ADEP generated memetic algorithm and the 4 comparison
algorithms in uncovering the longest path obtained and the
time spent. Figure 3 contains the comparisons for HCPs of
G(15, 20), G(20, 30)*, G(20, 37)*. Figure 4 shows the
performances of the algorithms on the HCPs with 100
vertices. Due to the brute-force nature of the backtracking
algorithm, only the simulation results for the first 6 sets of
graphs were able to be obtained in reasonable amount of
time. Since the rest of the simulation results for backtracking
algorithm took too long a time to be generated, they are not
included here for comparison.

Figure 5 shows the performances of the 5 HCP algorithms
in terms of the wall clock time.

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: University of Missouri. Downloaded on January 15, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

longest path length

TABLE 2

Performances of the four algorithms in uncovering the longest path in terms of wall clock time

Graphs Backtracking iﬁgi:ig Tabu Search OAp rgn?i(;:i?gn
G(15,20) 14 (0.08s,#) 14 (0.062s, # 14(0.046s,#) 14 (0.015s, #)
G(20,30)* 20 (0.05s,#) 19 (0.156s) 20(4.359s,#) 19 (0.015s)
G(20,37)* 20 (0.05s,#) 18 (0.187s) 20(1.297s,#) 19 (0.015s)
G(46,69) 46 (9.32s,#) 36 (3.719s) 40 (4.703s) 44 (25.843s)
G(46,71)* 46 (0.08s,#) 29 (3.547s) 40 (16.5s) 45 (28s)
G(46,93)* 46 (110.0s,#) 27 (3.453s) 41 (3.61s) 45 (39.109s)
G(49,96) NA 34 (5. 078s) 45(7.25s) 48 (40.593s, #)
G(49,142) NA 44 (3.047s) 39(7.219s) 48 (0.344s, #)
G(100,197) NA 33 (38.365) 78(141.485s) 97 (75.343s)
G(100,197)* NA 31 (51.25s) 23(35.828s) 96 (1655.672s)
G(100,203)* NA 57 (80.953s) 34(51.958s) 93 (154.75s)
G(100,207) NA 49 (76.25s) 71(120.218s) 96 (1064.906s)
G(100,217) NA 63 (86.844s) 49(88.324s) 96 (1454.86s)
G(100,217)* NA 56 (84.359s) 34 (75.61s) 89 (453.906s)

* indicates that the graph has known Hamiltonian cycle

Perbrmance Comparison in tenms of Longest Path uncowerad

dataset index

Figure 3: Longest Path uncovered by the five algorithms on HCP with 15 and 20 vertices

(15,

E==d Aco

1 ADEP-hdé&

chtrackin
mulated Snnealing
Tabu Search

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: University of Missouri. Downloaded on January 15, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

2771

Perbrmance Comparison in tems of Longast Path uncowersd

longest path length
m @
2 =1
T T

&
T

Backtracking
Simulated Annealing
[EEEE] Tabu 5 earch

G0, 197 G100, 167F {100, 2087

dataset index

301

04, 207,

GO0, 247 G109, 2T7F

Figure 4: Longest Path uncovered by the five algorithms on graphs with 100 vertices

Performance Comparison in terms of Wall Clock

1800 T T T T T T

Bac ktracking
1600
Sirmulated Annealing
Tabu Search

ACO

[JaDEP-MA

1400

1200

wiall clock
o o 3
o o o
o o {=]

.
o
=]

(5]
=1
=]

| P

| L
G158, 20y GIZ0, 30} (20, 57) G486, 69)

a6, 71 D46, 237 G0, TGI8, 14216100, 197) 61

3 -é?}?}(iﬁﬁ éaa)’&mo. O'FjG{'EO 217 {3{‘10. T

dataset index

Figure 5: Wall clock time spent by the five different algorithms in uncovering the longest paths on the set of graphs

Figure 3 shows the performance of the 5 algorithms in
terms of the longest path uncovered on the graphs with 15
and 20 vertices. In this figure, the number of vertices in the
graphs is relatively low, the 5 algorithms have similar
performance in that they can uncovered the max-known or
near-max-known path length of these graphs

Figure 4 shows the simulation result of the algorithms on
the graphs with 100 vertices. The results of the backtracking
algorithms are not included in the figure since the problems
are not solvable within reasonable time. It is seen in this
figure that the performance of the Simulated Annealing and
Tabu Search algorithms were lagging behind in terms of the
longest path uncovered. ACO and MA are still close in
performance in terms of uncovering the longest path.

Figure 5 shows that ACO algorithms took the longest time
to uncover the longest path length whereas ADEP-generated
MA algorithms was the fastest in uncovering the longest
path among the 5 HCP algorithm in terms of wall clock
time.

2772

The simulation results of the 5 algorithms show that the
ACO and ADEP-generated MA algorithms have the best
performances among the 5 algorithms compared in terms of
the longest paths uncovered. However, it is seen in Table 1
and Table 2 that ADEP-generated MA algorithm
outperformed ACO algorithm in terms of wall clock time.
Moreover, the ADEP-generated MA algorithm was better at
uncovering the maximum path length than ACO on these 14
sparse graphs as can be seen in Table 3. In addition, ADEP-
generated algorithms took a shorter time in uncovering the
longest path than the ACO algorithm.

VI. CONCLUSION
In this paper, a MA for HCP was configured in the ADEP
environment. The algorithm was tested against 14 sparse
graphs with edge densities (Ed) ranging from 0.0398 to
0.1947 and number of vertices ranging from 15 to 100, the
results were compared with that of the backtracking and 3
other heuristic algorithms. It was shown that the MA took

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: University of Missouri. Downloaded on January 15, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

less than 10 seconds of computation time and an average 1.6
seconds average time to come up with optimal or near-
optimal solution. When compared with other HCP
algorithms such as backtracking, Simulated Annealing, Tabu
search and ACO, the ADEP generated algorithm showed
superior performance in terms of both the longest path
uncovered and the wall clock time to uncover the path.

The configuration and development of the HCP MA
algorithm in ADEP and subsequent computer simulation
demonstrate that the ADEP dramatically reduces the time
required in developing and formulating the competitive and
optimal MA algorithm for the real-world problems. The
solution methodology was shown to deliver high level of
performance, competitive and even superior in performance
to the handcrafted algorithms. The demonstration on
development and the subsequent computer simulation of MA
algorithm configured in the PSE open up avenue for PSE to
address the optimization needs of other NP-hard problems.

ACKNOWLEDGMENTS

The authors acknowledge the funding support of
Singapore Technologies Engineering Pte Ltd in this work.

REFERENCES

[1] Pablo Moscato, “On Evolution, Search, Optimization, Genetic
Algorithms and Martial Arts: Towards Memetic Algorithms”, Caltech
Concurrent Computation Program 158-79, California Institute of
Technology, 1989.

[2] Y.S.Ongand A.J. Keane, “A domain knowledge based search advisor
for design problem solving environments”, Engineering Applications
of Artificial Intelligence, 2002, Vol. 15, No. 1, pp. 105-116.

[3] Z. Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane and K. Y. Lum,
“Combining Global and Local Surrogate Models to Accelerate
Evolutionary Optimization”, IEEE Transactions On Systems, Man and
Cybernetics - Part C, Vol. 37, No. 1, Jan. 2007, pp. 66-76.

[4] Z. Zhu, Y. S. Ong and M. Dash, “Wrapper-Filter Feature Selection
Algorithm Using A Memetic Framework”, IEEE Transactions On
Systems, Man and Cybernetics - Part B, vol. 37, no. 1, Feb 2007.

[5] J. Tang, M. H. Lim and Y. S. Ong, "Diversity-Adaptive Parallel
Memetic Algorithm for Solving Large Scale Combinatorial
Optimization Problems", Soft Computing Journal, Vol. 11, No. 9, pp.
873-888, July 2007.

[6] Y.S. Ong and A. J. Keane, Meta-Lamarckian Learning n Memetic
Algorithm, IEEE Transactions On Evolutionary Computation, Vol. 8,
No. 2, pp. 99-110, April 2004.

[7] Y.S.Ong, M. H. Lim, N. Zhu and K. W. Wong, “Classification of
Adaptive Memetic Algorithms: A Comparative Study, IEEE
Transactions On Systems, Man and Cybernetics — Part B”, Vol. 36, No.
1, pp. 141-152, February 2006.

[8] Xu Yilaing, PhD Thesis “Meta-Heuristic Algorithm Development for
Combinatorial Optimization within an Integrated Problem Solving
Environment”, NTU, 2007

[9] W. T. Tutte, "On Hamiltonian Circuits.," Journal of the London
Mathematical Society, vol. 21, pp. 98-101, 1946.

[10] Hamilton, William Rowan, "Account of the Icosian Calculus".
Proceedings of the Royal Irish Academy, 6 1858

[I1] L. Posa. “Hamiltonian Circuit
Mathematics 14:359-364, 1976.

in random graphs”. Discrete

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

[12] Eli Shamir. “How many edges make a graph Hamiltonian?
“Combinatorica, 3(1):123-131, 1983.

[13] Dorigo, V. Maniezzo, A. Colorni, “The Ant System: Optimization by
a Colony of Cooperating Agents,” IEEE Trans. on Systems, Man, and
Cybemetics-Part B vol. 26 (1996), 29-41.

[14] Wagner, 1.A.; Bruckstein, A.M, “Hamiltonian(t)-an ant-inspired
heuristic for recognizing Hamiltonian graphs”, Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999 Congress on,
Vol.2, Iss., 1999 Pages:-1469 Vol. 2

[15] Mehta, S.; Fulop, L. "A neural algorithm to solve the Hamiltonian
cycle problem" Neural Networks, 1990., 1990 IJCNN International
Joint Conference on, Vol., Iss., 17-21 Jun 1990 Pages:843-849 vol.3

[16] D. Angluin and L. G. Valiant. “Fast probabilistic algorithms for
Hamiltonian circuits”. System Sci. 18(2):155-193, 1979.

[17] Basil Vendegriend, “Finding Hamiltonian cylces: Algorithms, graphs
and performance”, Department of Computing Science, Edmonton,
Alberta, Spring 1998.

[18] B. Bollobas, T. I. Fenner, and A. M. Frieze. “An algorithm for finding
Hamiltonian paths and cycles in random graphs”. Combinatoria,
7(4):327-341, 1987.

[19] M. Jun and R. D. Andrea, “Path Planning for UAVs in Uncertain and
Adversarial ~ Environments”, Cooperative ~ Control: ~ Models,
Applications and Algorithms: Kluwer, 2003.

[20] A. Richards, J. Bellingham, M. Tillerson, and J. How, "Co-ordination
and Control of Multiple UAVs," AIAA Guidance, Navigation and
Control Conference, Monterey, CA, 2002.

[21] R. W. Beard, T. W. McLain, and M. Goodrich, "Coordinated Target
Assignment and Intercept for Unmanned Aerial Vehicles," 1EEE Intl.
Conf. on Robotics and Automation, Washington DC, 2002.

[22] K. K. Lim, Y. S. Ong, M. H. Lim, A. Argarwal, “Hybrid Ant Colony
Algorithm for Path Planning in Sparse Graphs”, Soft Computing, In
Review process.

[23] A. Agarwal, M. H. Lim, Y. L. Xu and Y. S. Ong. “Evolutionary Graph
Mining for the Discovery of Site Visitation Sequences for a Single
URAV”. The second International Conference on Computational
Intelligence, Robotics and Autonomous Systems, Singapore, 2003

[24] "Graph
http://www.ntu.edu.sg/home/asysong/sparse/default.htm

Dataset™:

[25] W. T. Tutte, "On Hamiltonian Circuits.," Journal of the London
Mathematical Society, vol. 21, pp. 98-101, 1946.

[26] M. Tim Jones, “Al Application Programming”, Charles River Media,
2003

2773

Authorized licensed use limited to: University of Missouri. Downloaded on January 15, 2009 at 15:34 from IEEE Xplore. Restrictions apply.

	A Memetic Algorithm Configured Via a Problem Solving Environment for the Hamiltonian Cycle Problems
	Recommended Citation

	A memetic algorithm configured via a problem solving environment for the Hamiltonian cycle problems IEEE Congress on Evolutionary Computation

