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Abstract

Software metrics can be used to objectively quantify
the quality of software components and systems, allevi-
ating quality and risk concerns and raising assurance in
component-based systems. In this paper, we present a
graph-based model for component-based software develop-
ment. We assume that a number of components have been
characterized in terms of non-functional metrics of impor-
tance to the software system being developed, and that the
interfaces connecting various components have been simi-
larly characterized. The emphasis of this work is on cost
and quality of the system under development, and reaching
an acceptable compromise between the two.

1. Introduction

The paradigm shift to commercial off-the-shelf (COTS)
components appears inevitable, necessitating drastic
changes to current software development and business
practices [6]. Quality and risk concerns currently limit the
application of COTS-based software (CBSs) to non-critical
applications [29]. New approaches to quality and risk man-
agement are needed to handle the growth of CBSs [4, 28].
With software development proceeding at unprecedented
speed, in-house development of all system components may
prove too costly in terms of both development resources
and time, as witnessed by the outsourcing trend currently

0This research was supported by the National Science Foundation un-
der Grant No. EIA-9972883, and by the e-Enterprise Center at Purdue
Discovery Park.

present in commercial software development. Large-scale
component reuse and COTS component acquisition can
generate savings in development resources, which can then
be applied to quality improvement, such as enhancements
to reliability, availability, and ease of maintenance.

In this paper, we present a graph-based model for
component-based software development (CBSD). We as-
sume that a number of components have been characterized
in terms of non-functional metrics of importance to the soft-
ware system being developed, and that the interfaces con-
necting various components have been similarly character-
ized. The emphasis of this work is on cost and quality of
the system under development, and reaching an acceptable
compromise between the two. The objective of component
selection is to find a set of components that meets all func-
tional requirements of the system while achieving the best
tradeoff between non-functional metrics.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a summary of related literature. In Section
3, we present a graph-based model for the optimization of
CBSD, and formulate the selection of components as an op-
timization problem. We conclude the paper by summarizing
the findings in Section 4.

2. Related Work

Considerable research has been conducted in software
metrics in the past decade, especially on reliability models,
cost estimation, and application of software metrics [7, 8].
The bulk of this research is restricted to traditional, not
component-based software systems. A framework for cohe-
sion measurement in object-oriented systems has been used
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in [5] to empirically explore relationships between design
coupling, cohesion, and inheritance measures for object-
oriented (OO) systems. Both studies, which are related to
the heavily-cited “C and K” suite of OO metrics proposed in
[9], focus on OO measures, and require at least class-level
access to program code. This may prevent the applicability
of the proposed metrics to COTS components only accessi-
ble through interfaces at the component level.

The cost and quality metrics of greatest interest to this
paper are adapted from [24], which identifies a set of man-
agement, requirements, and quality metrics for component-
based software development. The research in [22] inves-
tigates metrics-guided software reuse, which is related to
quality management in our research, but the emphasis is on
reuse decisions, not quality. This study served as a back-
ground for our research on metrics-guided quality manage-
ment.

Very little, if any, research has been conducted on the
economics of quality in CBS development. Cost models
for software reuse have been widely studied, but quality is
largely ignored in these studies. COCOMO 2.0 [3] takes
software reuse into account, and allows the use of logical
lines of code (LLOC) as the standard measure. This model
has limited applicability to CBSs, as COTS software, li-
braries, and auto-generated code are excluded when count-
ing the LLOCs. Where possible, COCOMO 2.0 can be used
to estimate some component-level cost factors for CBSs.

The Constructive COTS (COCOTS) model [2], a CO-
COMO derivative, can be used to estimate effort and sched-
ule for CBS development. Of relevance to our work is the
assessment sub-model of COCOTS, which is intended for
use in the initial stages of development, and is aimed at se-
lecting the most suitable COTS component from a set of
candidates. COCOTS can currently yield effort estimates
only; schedule estimation is yet to be incorporated into the
model.

Estimation of COTS integration costs has been per-
formed in [13]. A cost model for software reuse is proposed
in [19]. The research in [11] compares in-house develop-
ment to COTS acquisition by adjusting costs to their net
present value. All three studies perform cost-benefit analy-
sis for software reuse, but none of them discusses the quality
of the integrated system.

In [16], the reliability of a software system is estimated
based on the reliability of its components. This study em-
ploys a “function call graph” to depict the interaction be-
tween components, similar to our graph-based CBS model.
Contrary to our work, it does not assume serial execution of
components. The reliability estimation performed is more
general than our estimation, but is the only focus of the re-
search. It does not address the estimation of other quality
metrics or the development process.

The tradeoff between cost and reliability has been widely

studied, and several formulations for optimizing software
reliability have been proposed. In [12], system-level relia-
bility has been evaluated as a function of component-level
failure intensities, and the optimization problem seeks to
minimize the total cost of achieving the desired reliability
by allocating specific failure intensities to the components.
This approach may be applicable to the development of sim-
ilar formulations for other software metrics.

In [7], a method is proposed for estimating the develop-
ment costs of a software module, taking into account the
target reliability. A decomposition technique is used to es-
timate the cost of development, based on an estimate of the
number of faults that need to be found and fixed in order to
achieve the desired reliability. This model only considers
the costs of coding and testing, and as such, does not pro-
vide a comprehensive method for allocating effort to qual-
ity initiatives. Other studies [1, 30] determine optimal re-
lease strategies based on reliability and cost criteria, but do
not provide a unified approach to optimizing more than one
component of quality.

Off-the-Shelf Option (OTSO) [15] is a method support-
ing the search, evaluation and selection of reusable soft-
ware. This method relies on the use of multilevel program-
ming in its optimization. For the reasons explained in Sec-
tion 3, this technique is of limited applicability to situations
where several of the criteria are of comparable importance.
In addition, the OTSO method does not provide a metric set
that can be used in the evaluation criteria, and does not ex-
plicitly determine the factors contributing to the quality of
the CBS.

An optimization model for developing a modular soft-
ware system is presented in [14]. This study shares a ba-
sic assumption with our work: the system is assumed to be
comprised of a set of serially executed modules, where each
module is configured with only one COTS product. The ob-
jective function of the model minimizes the system develop-
ment cost. This study does not consider quality factors other
than failure rate in the analysis. Due to the integer program-
ming approach taken in solving the optimization problem,
this method cannot be easily generalized to consider addi-
tional quality factors.

In [18], the optimization of CBSD is formulated in a
manner similar to our formulation. Priorities are then spec-
ified for various non-functional attributes, and a bargaining
game is used to find one Pareto-optimal configuration for
the CBS. This approach is prone to the shortcomings de-
scribed for the weighted sum method in Section 3.2, as it
eliminates the insight gained by allowing a choice between
multiple Pareto-optimal system configurations.

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05) 
0-7695-2347-1/05 $20.00 © 2005 IEEE 



3. Optimization of CBSD

Metrics-guided quality management can involve for-
mulating software development decisions as optimization
problems, and solving the resulting problems. For exam-
ple, for the metrics representing quality costs, quality, and
complexity, a tradeoff can be achieved where a high-quality
CBS is developed at low cost, without becoming overly
complex.

We consider the main decision in component-based soft-
ware development to be acquisition of the most suitable
components. We assume that a family of systems (FOS)
is available for each functionality desired for the software
system. Each family provides a number of pre-packaged
candidate components for incorporation into the CBS. For
example, family A is composed of M software components
(available alternatives), denoted by A1,A2, ...,AM . We as-
sume that the functional attributes of each candidate in the
family fulfill the functional requirements of the CBS; hence,
the choice among candidate components is based solely on
non-functional attributes. This assumption does not lead to
any loss of generality, as a simple feasibility check can dis-
qualify any candidates that do not meet the functional re-
quirements. In this paper, the metrics of interest are relia-
bility, complexity, and cost, due to their critical role in the
viability of a commercial software system.

We are making two simplifying assumptions regarding
the CBS:

1. The families of systems have non-overlapping func-
tionality. Thus, exactly one component is chosen from
each family to design the CBS.

2. The components are connected serially, i. e., each com-
ponent is interfaced to at most two other components.

We maintain that neither assumption leads to a signifi-
cant loss of generality. The first assumption can be justified
by selecting components of suitable granularity. The sec-
ond assumption is justified for systems where components
communicate through shared objects in addition to their ex-
plicit interfaces, so the mathematical tractability gained by
the simplification is not at the expense of a significant de-
parture from reality. In related literature, [14] makes very
similar assumptions in studying CBSs.

3.1. A Graph-Based Model for CBSD

Figure 1 depicts a graph-based representation of the
component selection problem. The candidate components
are represented as nodes. The components belonging to
each family of systems are enclosed within a dashed line.
The interface between two components is represented as an
edge. As we are selecting at most one component from each

FOS, there are no edges between candidates from the same
family. Associated with each node are the component-level
metrics of interest. In this paper, the metrics of interest are
complexity, reliability, and acquisition cost, denoted by l, r,
and c, respectively. Similarly, a number of metrics are asso-
ciated with each edge; for this paper, we are interested in the
integration cost, complexity, and reliability of the integra-
tion code. Integration code can be purchased as middleware
or developed in-house. In either case it can be characterized
by the three aforementioned metrics.
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B2
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C1

C2

C3

D1

D2

D3
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E2

family A

family B
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component
metrics

sample configuration

Figure 1. Graph-based representation of the
component selection problem.

For both components and integration code, we are defin-
ing reliability, r(x), as the probability of failure-free oper-
ation of the program or program segment x. Complexity,
l(x), is defined as the number of interacting modules in the
component or integration code x. The cost, c(x), associ-
ated with a component (node) x is acquisition cost, whereas
the cost c(xi, xj) associated with an edge (integration code)
(xi, xj) represents the cost of acquiring integration middle-
ware or developing the necessary integration code in-house.

We assume that the component vendor has provided
specifications that include the needed metric values. In the
absence of such data, the developers of the CBS need to
measure the metric values by testing the component. The
majority of this testing is black-box testing, as the source
code of COTS components is typically inaccessible. Any
metrics that cannot be measured by testing have to be esti-
mated by simulation, or by extrapolating values from field
use of prior versions or similar components from the same
vendor. If the integration code is acquired as middleware,
the same discussion applies to metric values for the edges
of the graph. For in-house integration code, metric values
are measured by white-box testing of the code.

A sample CBS configuration has been outlined in Figure
1. The ultimate objective of optimizing the CBSD process
depicted in this figure is guiding the selection of such a sys-
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tem configuration, which contains a single component from
each family, along with the integration code required for
interfacing the selected components. The problem can be
considered an extension to the shortest path problem, where
instead of the single “length” objective, multiple objectives
are optimized for the path traversing all families.

3.2. Formulation of CBSD as an Optimization Prob-
lem

We assume that all of the candidate components and in-
terfaces fulfill the functional requirements for their respec-
tive FOSs. The goal of the CBSD problem at hand is finding
a system configuration that satisfies the following three ob-
jectives:

1. maximizing system reliability, R(x), which corre-
sponds to minimizing system risk,

2. minimizing system complexity, L(x), and

3. maintaining system cost, C(x), within budget limits.

In this context, a system configuration refers to a set
comprised of one component from each FOS, along with
the interfaces required for linking consecutive components.
It is readily apparent that the objectives may conflict, as
the most reliable system configuration may not be the least
complex. This conflict of objectives is typical of many sys-
tem design decisions. Such problems lend themselves to
multi-objective optimization (MOO) techniques, which op-
timize a number of criteria simultaneously [27]. A multi-
objective optimization problem (MOP), in its general form,
can be formally stated as:

Min/Max φm(x), m = 1, 2, . . . , M ;
s.t. gj(x) ≥ 0, j = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . ,K;
x

(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, . . . , n.

A solution x is a vector of n decision variables: x =
[x1, x2, . . . , xn]T. The bounds placed on x constitute the
decision variable space D, simply denoted as the decision
space. gj(x) and hk((x)) are constraint functions. A so-
lution x must satisfy all J + K constraints, as well as the
variable bounds, to be considered a feasible solution. The
goal of the problem is finding the best tradeoff among the
set of M objective functions, {φ1(x), φ2(x), . . . , φM (x)}.

For component-based software development, each deci-
sion variable, xi, in the vector x corresponds to one com-
ponent of the system. The value of xi corresponds to
the choice of a particular candidate from an FOS. For a
component-based system with n components, the decision
vector is x = [x1, x2, . . . , xn]T. The objectives of the opti-
mization can correspond to various system-level metrics of

interest. In this paper, the focus is on reliability, complex-
ity, and cost. The constraints for the problem can arise from
system requirements, budget restrictions, or similar design
considerations.

We have assumed that system reliability, R(x), can be
represented by the product of the component and interface
reliability for every component and interface in the sys-
tem. We further assume that complexity is additive, i. e.,
the overall system complexity, L(x), can be obtained by
adding the complexity of all components and interfaces in
the system. We assume that system cost, C(x), is similarly
additive. These assumptions are very common in software
engineering literature [12, 17, 21, 26].

Reliability is assumed to be multiplicative, as it repre-
sents the probability of failure-free operation. Complexity
is assumed to be additive, as the total number of interfaces
resulting from the integration of a number of software mod-
ules is no greater than the sum of the number of interfaces in
the individual modules. The minimum acceptable value of
reliability, maximum acceptable value of complexity, and
maximum acceptable value of cost are denoted as Rmin,
Lmax, and Cmax, respectively.

Using the above notations, the problem of optimizing
CBSD for a system of n components is formally stated as
follows:

Min φ1(x) = L(x) =
∑n

i=1 l(xi) +
∑n−1

j=1 l(xj , xj+1)
Min φ2(x) = −R(x) = −∏n

i=1

∏n−1
j=1 r(xi)r(xj , xj+1)

s.t. g1(x) = 1 + φ1(x)
Rmin

≤ 0
g2(x) = φ2(x)

Lmax
− 1 ≤ 0

g3(x) =
∑n

i=1
c(xi)+

∑n−1

j=1
c(xj ,xj+1)

Cmax
− 1 ≤ 0

x1
i ≤ xi ≤ xpi

i , i = 1, 2, . . . , n.

The solution, x, is a vector of n decision variables:
x = [x1, x2, . . . , xn]T, where each xi represents the can-
didate chosen from FOS i, which is assumed to contain pi

candidate components.
As the scalar concept of “optimality” does not directly

apply to the multi-objective setting, Pareto-optimal [23] so-
lutions are found. A Pareto-optimal solution is one that can-
not be improved with respect to any one objective without
worsening some other objective; hence, the optimal com-
promise is reached between the various objectives. In con-
trast to scalar optimization problems, which typically have a
single solution, MOPs generally have many Pareto-optimal
solutions, which are collectively referred to as the Pareto
front. Any solution in the Pareto front is by definition non-
dominated. A solution x(1) is said to dominate another so-
lution x(2) if x(1) is no worse than x(2) in all objectives,
and is strictly better than x(2) in at least one objective.

Formulating component-based software development as
a MOP, and solving the MOP by finding the Pareto front,
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yields a better understanding of the tradeoffs among vari-
ous attributes of the system. One common technique for
finding the Pareto front of MOPs involves combining the
multiple objectives into one scalar objective whose solution
is provably Pareto-optimal point for the original MOP. The
most common example of this technique is the weighted
sum method, where a positively weighted convex sum of
the objectives,

∑M
i=1 αiφi(x), αi > 0, i ∈ {1, 2, ...,M}, is

minimized [10]. For CBS quality management, the weights
are chosen to represent the relative importance of the met-
rics. The selection of appropriate weights is critical to this
approach.

In multilevel programming, which is another commonly
used technique, the objectives are ordered according to the
their relative importance. The optimization then begins by
finding the optimizers of the first objective function and re-
cursively proceeds to find the optimizers of all of the objec-
tive functions, using the optimizers of the previous step as
the decision space for the current step. The study in [15]
applies this method to the selection of COTS components
in CBSD.

This approach is useful when the hierarchical order
among the objectives is of prime importance, not the con-
tinuous tradeoff among them. However, objectives lower
in the hierarchy become very tightly constrained and often
numerically infeasible, so that the less important objectives
wield no influence on the final quality. Hence, multilevel
programming should be avoided in cases where a sensible
compromise among the metrics is sought [20].

Our solution of choice is evolutionary programming, in
particular, genetic algorithms. Our approach is described in
[25].

4. Conclusions

This paper proposed a graph-based model for
component-based software development. This model
can guide the selection of components from a family
of candidates, where the objective of the selection is
to develop a system that satisfies given non-functional
requirements. The model proposed guides this selection by
identifying the components that will collectively achieve
the best tradeoff among the metrics desired for the system.
This technique results in a quality management method that
can alleviate concerns regarding uncertainty in the cost and
quality of a component-based system.
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