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A Fuzzy Logic Based Approach to Direct Load Contro 
K. Bhattacharyya (Student Member, IEEE) and M. L. Crow (Senior Member, IEEE) 

Department of Electrical Engineering 
University of Missouri-Rolla 

Rolla, MO 65401 

Abstract 
Demand side management programs are strategies designed to 
alter the shape of the load curve. In order t o  successfully im- 
plement such a strategy, customer acceptance of the progmm i s  
vital. I t  i s  thus desirable to design a model f o r  direct load con- 
trol which m a y  accommodate customer preferences. This  paper 
presents a methodology for optimizing both customer satisfac- 
t ion  and utility unit commitment savings, based o n  a fuzzy  load 
model for the direct load control of appliances. 

Key Words: Direct load control, fuzzy logic, unit commitment 

1 Introduction 
Rapid changes are occurring in both the operation and 
business sector of the electric utility industry. These in- 
clude: 1) changes in the composite makeup of power sources 
and generating facilities, 2) changes in the manner in which 
electricity is sold and transmitted by its suppliers, and 3) 
changes in the way electricity is distributed and finally pur- 
chased by consumers. Two major trends are driving these 
changes [l]: 

0 Increased competi t ion among electricity suppli- 
ers. The 1992 Energy Policy Act mandated open ac- 
cess transmission, and created a class of exempt whole- 
sale generators. Electric utilities have responded by 
restructuring in order to compete in the marketplace 
more effectively. Along with an increase in wheeling, 
many utilities are turning towards offering more CUS- 

tomer service options. One such service option is price 
incentives for customers who participate in load man- 
agement programs. In the competitive marketplace, 
customer satisfaction with service will play a greater 
role than it ever has previously. 

e Growth  in the electricity demand. The 1994 An- 
nual Energy Outlook projects that an additional 115 gi- 
gawatts of generating capacity will be needed to meet 
a 25% increase in demand by 2010. Transmission and 
distribution facilities, however, are not projected to be 
able to meet this demand. Therefore, the industry will 
face an increasing need to rely on load management 
programs in order to satisfy the demand at critical 
times during the day and season. 

95 SM 500-9 PWRS A paper recommended and approved 
by the IEEE Power System Engineering Committee of the 
IEEE Power Engineering Society for presentation at 
the 1995 IEEE/PES Summer Meeting, July 23-27, 1995, 
Portland, OR. Manuscript submitted August 1, 1994; 
made available for printing April 28, 1995. 

Load management programs are progr 
tionally alter the load shape of the customer by delib- 
erate utility intervention [2]. As the electricity market 
changes, many utilities will need to be more proactive in 
the stature they take in implementing load management 
programs. The most common load 
is end-use equipment control, which i 
load control (DLC). The purpose of 
load curve by cycling customers’ lar 
pliances, such as air conditioners and water heaters. One 
critical area which will be of paramount importance in the 
new, competitive marketplace, is customer input and sat- 
isfaction. Also, in order to achieve maximum cost benefits, 
a DLC dispatch schedule must be coordinated with utility 
economic considerations such as unit commitment and eco- 
nomic dispatch. In this paper, a new approach to DLC is 
proposed in which customer preferences are accommodated 
while concurrently maximizing the savings of the utility. 

In the competitive operation and business climate, any 
load model which is used as a basis for establishing a DLC 
dispatch schedule must consider the customers’ preferences 
up front, and not as a secondary issue. The load model 
should be versatile enough to capture the spectra of prefer- 
ences, and simple enough for successful i 
easy interpretation of the results. It sh 
mechanism for accounting for feedback 
as comfort and economic levels evolve and change. 

The method proposed by Hsu [3] classifies customers into 
N cycling groups, each with a fixed cycling capacity. The 
method proposed by Cohen [4] models the DLC cycling as 
a change in energy demand. These methods tacitly assume 
that all customer gr are identical and homogeneous. 
They do not account ustomer variation in preferences, 
such as maximum te ature tolerances, maximum tem- 
perature deviations, and differences in cycling group capac- 
ities. Alternately, some researchers have 
designed to  model DLC strategies [5][6]., 
ods are useful in analyzing the 
easily implemented. This pap 
and approach to direct load 
techniques which optimizes the trade-off 
preferences, utility resources, and uncert 
The first part of this paper is devoted to deriving a fuzzified 
load model for use in direct load control. The remainder 
will discuss the implementation of this load model. 

2 The Load Model 
Many utilities summer peak due to the large contribution 
of central air conditioning loa 
loads have been credi 

0885-8950/96/$05.00 0 1995 IEEE 
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spread black-out [7], and have contributed to brown-outs 
in several instances. Controlling the operation of central 
air conditioners is one means of reducing the peak load. 
The control is typically achieved by a utility signal (radio 
or fiber optic) that disables the air conditioner compressor 
and compressor fan. The controlled air conditioners are 
segmented into groups in which one or more groups are 
off, while the remainder are on. At the conclusion of the 
‘offtime,” the disabled air conditioners are switched back 
to an active state, while a different group is disabled. This 
group arrangement permits the total utility load to remain 
effectively uniform. 

The load control period usually lasts between four to ten 
hours per day, depending on the duration of the utility peak 
load. Following the load control period, the air conditioner 
is permitted to run until the house temperature reaches the 
thermostat setting. This postcontrol period is referred to 
as the Upayback” period. 

During the load control period, the house interior tem- 
perature may rise several degrees higher than if the air 
conditioner were not controlled. This implies that the cus- 
tomer must endure a certain degree of discomfort during 
the cycling of the air conditioning load. Thus, in order to 
effectively capture all aspects of the customer preferences, 
there are a number of parameters which must play a dom- 
inant role in the evolution of a load model. They are: 

e 

e 

e 

e 

e 

2.1 

The normal temperature or ambient energy content 
that the customer prefers (ambient criteria), 
The maximum temperature deviation or energy con- 
tent that the customer is willing to tolerate (comfort 
criteria), 
The distribution of the cyclable load, 
Residential thermal loss, and 
Payback amount. 

The Ambient and Comfort Criteria 
In order to quantify customer preferences, two criteria are 
defined. The first is the ambient criteria, which is a mea- 
sure proportional to the ambient internal temperature a 
customer or group of customers prefer. The second is the 
comfort criteria, which is a measure proportional to the 
maximum temperature a customer will comfortably toler- 
ate. These preferences tend to be non-specific and vary 
from customer to customer. These preferences may be ob- 
tained via survey by the utility, by monitoring actual ser- 
vice and customer thermostatic adjustments, or by request- 
ing that the customer keep a diary of perceived comfort lev- 
els throughout the control and post-control periods. These 
preferences may overlap and may vary over time due to 
various outside influences. Thus, characterizing these pref- 
erences is well suited to a fuzzified environment which may 
account for non-specific quantities, or a range of quantities. 

To achieve a load model which may account for cus- 
tomer preferences, a global distribution is first designated 
in which all customer preferences will lie. Similar to the 
approach in [4], this distribution is defined in terms of en- 
ergy requirements. According to the nature of the load, 

global maximum and minimum levels for both ambient and 
comfort energy are defined. These energy levels are then 
divided into a number of fuzzy templates. These fuzzy 
subsets are given linguistic names like SMALL, MEDIUM, 
LARGE, etc. A SMALL ambient energy level would most 
likely correspond to those customers who prefer very cool 
ambient temperatures, perhaps in the range of 65’F to 
69’F. These ranges will probably vary from utility to 
utility depending on geographic differences such as normal 
outside high temperature, humidity levels, and time zone. 
These fuzzy subsets define the Global Ambience Fuzzy Sub- 
set and the Global Comfort Fuzzy Subset. 

The total customer area under DLC may then be broken 
into a number of cycling groups based on criteria such as 
geographic (feeder) location or the nature of the load. The 
customers in each cycling group are then characterized by 
their their ambience and comfort levels. For example, in 
group A, 40% of the consumers might have a SMALL ambi- 
ent energy requirement, 50% may have MEDIUM and 10% 
may have LARGE energy requirements. The reason for do- 
ing so is to allow for a certain degree of uncertainty that 
the customer may have if asked to specify exact figures. It 
should be noted that the distribution specification obtained 
for the ambient energy level need not be the same as that 
for the comfort energy level. For example, a customer may 
prefer a high thermostatic setting (LARGE ambient) but 
will not tolerate large deviations (SMALL comfort). 

The results of the individual preferences may be obtained 
by truncating the global fuzzy subsets in accordance with 
the obtained percentage levels. These truncated fuzzy sub- 
sets are the Local Fuzzy Subsets, which are unique for each 
group under DLC. 

2.2 The Distribution of Cyclable Loads 
The distribution of the cyclable load within a utility defined 
DLC area is not a specific quantity, but also depends on 
the number of residences in the defined area, the types of 
units in the residences, the thermal energy transfer levels of 
the residences, and other outside influences as well. Many 
DLC approaches in the literature [3][4], have assumed the 
customer load under DLC to be homogeneous, with fixed 
capacities and preferences under all operating and weather 
conditions. The load model proposed herein attempts to 
rectify these shortcomings with a more flexible load model 
which may account for both customer preferences and vari- 
ances in the load itself. 

In each group of customers, the devices under DLC will 
encompass a range of power ratings. In addition, each spe- 
cific load type may have a different frequency of occurrence. 
For example, within a group N, there may by NI units cor- 
responding to a power rating of PL1, N2 units correspond- 
ing to PLz, and N, units corresponding to PL,. If N,,, 
is the largest number of units corresponding to a specific 
rating, then all ratings may be normalized with respect to 
N,,,. The resultant load template is then defined by: 

(PLi lppL; )=  (..I“-) v i € [ &  ..., n] (1) 
“ o z  

where 0 5 p p ~ .  5 1 is the membership value of the 
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load PLi and PL1, . . . , PL, is the range of the cyclable 
load. Note that the membership function p p ~ ;  denotes the 
strength of the membership of the load PLi in the range of 
possible loads. A high value of p p ~ ,  implies that PLi has a 
high frequency of occurrence. If the values of the member- 
ship value are limited to either 1 (definitely occurring) or 
0 (definitely not occurring), then the membership function 
has been defuzzified to a crisp or non-fuzzy set. 

2.3 Fuzzy Rules For Load Transitions 
Each DLC group is now described by three fuzzy templates 
which comprise the load model for that group. These tem- 
plates are: the local ambience fuzzy subset, the local com- 
fort fuzzy subset, and the load template. In the section 2.5, 
fuzzy rules will be used to map tpese subsets onto another 
fuzzy template for cycling period, or offtime. This template 
will then be used in coordination with a similar template 
for payback to establish the cycling times and commitment 
order for the DLC groups. 

Each group within the DLC ar.ea will have a unique off: 
time Toe associated with it. This offtime will depend on 
the transition between the local fuzzy ambient and comfort 
templates. These transitions are defined as a series of if- 
then rules which govern the transition from one template 
to another. A typical fuzzy rule to calculate offtime is: 

If ( E ,  = SMALL) and ( E ,  = SMALL) then o to^ = SMALL) 

This particular rule implies that if a customer prefers a 
cooler ambient temperature (E ,  = SMALL) and will not 
tolerate large temperature deviations ( E ,  = SMALL) then 
the subsequent offtime should be small o to^ = SMALL). 
These fuzzy rules are common to all groups. As customer 
preferences vary, the application of these rules to different 
groups will yield different fuzzy offtime templates. 

2.4 Effect of Thermal Losses 
The load distribution model derived in Sectiob 2.2 accounts 
for the range of cyclable load within a group. In this sec- 
tion, this model will be modified to account for thermal 
losses. Although detailed space conditioning models are 
generally available for steady-state and transient building 
analysis, a simplified model is often adequate to account 
for heat loss. Thermal losses from residences depend on a 
number of factors, but the two significant contributing fac- 
tors are size and insulation. One straightforward method 
to account for thermal losses in the previous model is to in- 
troduce a bias into the base load rating of the device, based 
on size and age of the residence, where it is assumed that 
the level of insulation is directly proportional to the age 
of the structure. This assumption of correlating age and 
insulation factor may not be valid in some specific cases, 
but over the large number of residences within a group, it 
is a valid generalization. 

The bias in the load is accomplished through a series of 
additional fuzzy rules. After defining size and age tem- 
plates similar to the ambient and comfort templates, and a 
template corresponding to the coefficient of thermal losses 
( T ! ) ,  the effective coefficient of thermal losses I'f, is defined 
as a fuzzy function of the application of the fuzzy rules to 

fuzzy rule to determine 

If (AGE is NEW) an 

lower than the base load rati 
for all possible fuzzy rules to 
of thermal loss for all combi 
groups under consideration. 

where -yi is an element of the fuzzy te 
to the coefficient of thermal losses, 
the membership value of ~i , and pa, 
sponding members 
of the fuzzy templates. 

2.5 OEtime Calculation 
The offtime is dependent on t oad distribution, cus- 
tomer preferences, and the loss demographics. The tem- 
plates defined above and the fuzzy rules may be merged by 
a weighted normalization of the offtime on the basis of the 
fuzzy templates. This is given by the lowing relationship: 

where m represents the number of 

more flexibility in cho 
For example, a utility 

troid method: 
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of these stages be optimized for customer satisfaction, and 
may therefore not be equal. 

The load area under DLC is divided into a number of 
groups. Each group is assumed to have a different cycling 
capacity depending on the curstomer demographics. If GN 
is the group under direct load control at stage N,  the load 
reduction LL)LC(N) is the cyclable load corresponding to 
this group. Note that when N 5 K or N 2 K + M + 1, 
then the load reduction is zero (LDLc(N)  = 0). 

As discussed in the previous section, each group has a 
unique cycling time corresponding to the preferences as de- 
fined by the customers of that group. When the control pe- 
riod for a group is over, the energy difference is paid back. 
The net restoring demand for this group is determined by 
the fuzzy template corresponding to the energy difference 
and the defuzzified cycling time of the next group. A pay- 
back schedule based on the typical 60, 30, 10% payback 
pattern is modified to account for differences in offtime. 
Thus, the payback corresponding CO L D L C ( N )  is: 

2.6 Payback 
Following the load control period, the air conditioners are 
permitted to catch up and reduce the residences ambient 
temperature. back to the desired setting. Thia postcontrol 
period is the payback period, in which the deferred energy 
must be paid back into the system. Reported valued of en- 
ergy payback percentages are lower in the northern states 
(Detroit Edison 25%, American Electric Power 50%) and 
higher in the southern utilities (Arkansas P&L and Mis- 
sissippi P&L report almost 100%) [8]. In this study, a 
payback fraction of 100% was assumed for all calculations. 
This could be generalized easily for lower payback fractions. 
It is also assumed that this payback starts immediately af- 
ter the control period and lasts approximately three time 
intervals beyond the control period. A typical payback pat- 
tern over these three intervals is SO%, 30%, and 10% [5] [SI. 
This implies that 60% of the deferred energy is paid back 
in the first interval following the control period, 30% is the ' 
second interval and 10% in the third interval. This payback 
pattern may be altered in a straightforward manner to ac- 
count for specific utilities patterns in the fuzzy algorithm. 

Since 100% payback of deferred energy is assumed, the 
payback template will correspond directly to the offtime 
template. The payback intervals are fractions of the off- 
time corresponding to each group. The payback template 
is given as: 

(5) 

where N is the number of devices in the group and p is the 
fraction of energy (0.6,0.3,0.1) being repaid in that specific 
time interval. The template corresponding to payback is 
identical to the fuzzy template for offtime with time on 
the x-axis replaced by energy. The payback at stage j for 
group i is obtained by dividing the defuzzified energy by 
the offtime of the group being cycled. Since this offtime is 
usually different than the offtime for group i, the payback 
will probably be different than the load being cycled off. 
This difference is typically small and does not significantly 
impact the overall solution. 

Using equation (4), the crisp value of the energy template 
can be obtained for the specific time interval under consid- 
eration. The value of cycle time and energy may then be 
input directly into a modified unit commitment algorithm 
as discussed in the next section. 

3 The DLC Dispatch Schedule 
In DLC, it is desired to cycle the load in a manner which 
reduces the peak load in such a way as to minimize some 
objective function. This function is typically chosen in co- 
ordination with a unit commitment or economic dispatch 
strategy. The groups under direct load control are typically 
cycled on and off in stages which span the entire DLC in- 
terval, which is typically several hours. The control period 
may be divided into M stages which start a t  stage (K f 1) 
and terminate a t  stage ( K + M ) .  In most applications, each 
of the M stages is of equal duration (typically 15 or 30 min- 
utes) [3]-[6]. In this paper, it is proposed that the duration 

where E ~ D L c ( N )  corresponds to p payback of the energy 
deficiency, where p may take on values 0.6 for k=l ,  0.3 for 
k=2, and 0.1 for k=3. Although 100% energy payback is 
attempted, the actual energy paid back may not be exactly 
the same as the energy difference after load control. This 
is due to the nature of the problem in which the payback 
periods vary and the N + 1 stage will rhost likely be of 
different length than the N and N + 2 stages. This dif- 
ference is typically small and does not significantly impact 
the dispatch schedule. 

Including the effects of the payback schedule, the modi- 
fied system load as a consequence of direct load control at 
any stage N is given: 

&et(N) = Lactual(N) - LDLC(N) + LPB(N 1) 
+LPB(N - 2 )  + LPB(N - 3) (7) 

This load model may now be used, along with the crisp 
offtime values, as input to a unit commitment strategy. 
The approach used in this paper is similar to the approach 
proposed in [3]. 

In order to calculate a unit commitment schedule and 
DLC dispatch strategy with the minimum production cost, 
a recursive dynamic programming algorithm [9] is used to 
compute the minimum cost at stage N with state j: 

C(N,j) = min (FC(N,j)+ SC(N-l ,R:N, j ) tC(N-1 ,R))  (8) 

where 
C(N,j) = least cost- to arrive at state (N,j) 
FC(N#j) = fuel cost for state (NJj) 
SC("-l,R:N,j) = start-up cost from state (N-1,R) 

to state (N,j) 
( R )  = set of feasible states at stage N-1 

The fuel cost FC(N,j) is obtained by economically dispatch- 
ing the units on-line in state j a t  stage N to meet the load 
demand for state j. ,The optimal unit commitment schedule 
is then traced backward. 
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I 1 

gure 1: Global Fuzzy Temp1 

this algorithm, a ified dynamic prog 
(DP) atmroach is used to solve the dispatch problem with 
DLC. 1; is necessary to modify the traditionaCDP approach 
due to the uncertainty involved with the payback quan- 
tities and the variances in the offtimes. The traditional 
DP programming assumes constant time intervals between 
stages. This assumption is no longer valid. From equation 
(6), the amount of payback required at a given stage de- 
pends on the offtime selected for that stage, which in turn 
is dependent on the group selected for load control at that 
stage. In order to perform a complete DP trace of this 
dispatch problem, several commitment stages correspond- 
ing to the group which yields a minimum cost need to be 

en stage. Thus, without modification, the 
conventional DP approach rapidly becomes computation- 
ally overwhelming. In order to keep the dimensionality of 
the problem under control, a “greedyn strategy is adopted 
which chooses the local minimum. 

4 Illustrative Example 
The proposed methodology for DLC is illustrated in this 
section for a simple system study. In this system, the to- 
tal system peak demand is 600 MW. In this example, the 
cyclable load will be divided into five groups, where each 
group is assumed to have 5000 devices ranging from 1 to 10 
kW. Each group is also demographically diverse; the resi- 
dences range from 0 to 50 years old, and from 1000 fta to 
3000 ft2 floor space. The demograph 
to weight the range of load to yield 
load as discussed in section 2.4. 

Table 1 represents the classification of energy templates 
for ambience and comfort into three fuzzy templates: 
SMALL, MEDIUM and LARGE. For-the purpose of illus- 
tration, these fuzzy templates are assumed to be triangular 
in shape with the maximum membership value correspond- 
ing to the mid-point of the energy template for the base 
case. These then define the global fuzzy subsets for the 
example system. 

Table 2 illustrates ho 
from the global fuzzy 
subsets specific to each 
truncated in accordance with the customers 

I I LARGE I 30 I LARGE I 20 I 
L 

0 5 ~  04  

ences. Figures 1 and 2 illustrate 

there exist th 
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No. 
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5 

Figure 4: Global Fuzzy Subsets Biased for Lower Temper- 
ature Conditions 

Cycle Time Cy c 1 in g 
(Minutes) Capacity (MW) 

34.9 15.7 
31.1 27.6 
29.2 36.2 
27.6 38.5 
26.5 41.1 

of transitions. The final template for group 1 is shown as 
the solid line in Figure 3. Upon defuzzification, the cycle 
time of group 1 is 34.9 minutes. The crisp values of cycle 
time and cyclable load for all groups in the example are 
given in Table 3. 

4.1 Effect of External Temperature 
The fuzzy subsets are defined for a specific reference tem- 
perature, say 90°F. As the outside temperature deviates 
from the reference temperature, the subsets must also re- 
flect this change. Deviation from the reference temperature 
may be reflected by biasing the global fuzzy templates ei- 

2001 100 ' 
. 10 11 12 13 14 15 16 17 18 19 

l i m o f h d n y  
OrinmlLoadCmve - M o d i f r d W C h v c  ------ 

Figure 5: Original vs. Modified Load Curve 
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ther to the left or the right depending on lower or higher 
temperature conditions. 

For example, if the external temperature were lower than 
the reference temperature, the fuzzy subsets would be bi- 
ased towards the left to account for this difference. The 
new fuzzy subsets, which correspond to 0.3 on the tem- 
perature template, are as shown in Figure 4. The biased 
offtime template for these subsets is given as the dashed 
line in Figure 3. This time template shows a stronger bias 
towards time intervals of longer duration. Thus the effect 
of temperature is reflected in the membership values of the 
time durations. Note that the z-axis does not change. This 
is because the minimum and maximum energy levels do not 
change. However, the distribution of these elements in the 
fuzzy template is modified. The effect is then reflected ' 
in the membership values of the individual time intervals. 
Upon defuzzification, the cycle time is 35.7 minutes. 

4.2 Dispatch Schedule 
To demonstrate the effectiveness of the proposed DLC ap- 
proach, the production cost savings are compared with unit 
commitment without DLC. The results are tabulated in 
Table 4. For the case without DLC, the total fuel cost 
for a period of 8 hours is 82698 monetary units (R). The 
production cost with the proposed methodology is 81333 R 
where the actual control period extends from 13:OO to 1500 
hours. Note that the energy payback extends for approx- 
imately 90 minutes more. The net savings obtained using 
the proposed methodology is 1.64%. Figure 5 compares the 
original load pattern with the modified load pattern. 

These results may not be directly compared to a con- 
ventional DLC unit commitment problem which focuses 
entirely on utility 'savings, such as the one discussed in 
[3]. This proposed method has a different optimization 
approach, namely that of altering the cycling intervals to 
maximize customer satisfaction in addition to utility sav- 
ings. Second, the cyclable load is considered to be non- 
uniform in both range and distribution, whereas most ap- 
proaches assume uniform cyclable loading throughout the 
system. Lastly, the algorithm also incorporates residential 
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Table 4: Comparison of Production Cost (in R) for Unit Commitment with and wi 

presented in this paper may not be directly compared to 
conventional studies, the results obtained for the example 
system are encouraging and compare well with established 
methods. 

5 Conclusions April 1982. 

agement Scheduling,” 
vol. 3, no. 2, May 1988, p 

[5] S. H. Lee, C. L. Wilkins, 
Appliance Load Control A 

A new load model is proposed for the dispatch of direct 
load control. In the proposed load model, provisions are 
made for customer preferences such as minimum and max- 
imum acceptable temperature to increase customer accep 
tance of the load management program. These preferences 
are quantified and appropriately represented using fuzzy 
logic. The load model also accounts for the range of de- 
vices and thermal differences within cycling groups. This 
load model is then used in computation of the cycling time 
and net restored energy corresponding to each group. The 
crisp cycling time and net restored energy are incorporated 
into an optimization procedure to yield a strategy to sched- 
ule the groups for minimum production cost. 
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