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EARTHQUAKE RESISTANCE OF 
NEW TYPE VIADUCT STRUCTURE 

Eiji Wakita Masayoshi Sato 
National Gunma College of Technology, National Research Institute for Ear- 

580, Toriba-machi, Maebashi, th Science and Disaster Prevention, 
Gunma, 371-0845, JAPAN Tukuba, 305-0006, JAPAN 

Takashi Tazoh 
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ABSTRACT 

An experiment and a numerical analysis were carried out in order to examine the earthquake resistance of a new type viaduct structure. 

The experiment was a dynamic centrifuge modeling which used the viaduct model of the rates l/50 of a scale. The 3-dimensional finite 

element analysis was performed in order to confirm the results of the dynamic centrifuge modeling. At the results, new knowledge was 

obtained with regard to the viaduct structure. 

1NTRODUCTlON 

The Kobe earthquake occurred big damages in many railroad 

viaducts in 1996 in Japan. It becomes the important issue to 

secure the earthquake resistance of the viaducts in Japan. The 

adoption ofthe CFT as the pillar of the viaduct is a good way of 

the improvement of the earthquake resistance. The CFT is an 

abbreviated word ofthe Concrete Filled steel Tube (Shioya et al., 

1999). The feature of the CFT is the big toughness and the high 

earthquake resistance that is brought by filling up with concrete 

within a steel pipe. Furthermore, it is conventionally common to 

use the connection beam (Fig. I) as the structure of the viaduct. 

However, removing the connection beam can form a new type 

viaduct structure. If it possible to omit the connection beam, the 

construction ofviaduct can be more economically attained by the 

short time for the completion. The experiment and the numerical 

analysis were carried out to research the behavior at the time of 

an earthquake. The objects of the experiment and the numerical 

analysis are the conventional type and the new type of structure 

mentioned above. In this paper, the rationality and the applica- 

bility of them will be examined by using those results. 

OUTLlNE OF DYNAMIC CENTRIFUGE MODELING 

The height of the object viaduct is 11.4m. The lengths of the 

object viaduct are both 1 Om in the right-angled and the parallel 

direction of the viaduct. The pile length is 17m. The ground is 
consisted with 2 layers. The upper layer is the sot? sand layer of 

l5m and the lower layer is the support layer. The CFT pillar is 

a steel tube that is filled with concrete and the diameter is 800mm. 

The pile is steel tube that is filled with concrete and the diameter 

is IOOOmm. The upper beam and the connection beam are the 

reinforced concrete of 1 250mmw X 900mmH. The beam weight 

and train weight are taken into consideration as the loads that 

contribute to the inertia power at the time of an earthquake. 
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Fig. 1. Viaduct modelfor experiment and arrangement of 
instruments (Case equipped with connection beam) 

Fig. 1 shows one of the models that were used for the ex- 

periment. This case is equipped with the connection beam as 

shown in the figure. The dynamic centrifuge modeling was 

executed using a one-tiff ieth-scale model of two spans of the 

viaduct-pile-ground system. The earthquake vibration was 
given from one direction at the right angle to the viaduct. The 

pipe that corresponds to the CFT pillar was made with the 

stainless steel. This pipe was filled with mortar and the di- 

ameter was 16 mm. The unit weight of the reinforced con- 
crete and the unit weight of the aluminum are almost a same 

size, therefore the aluminum was adopted as the material of 

the upper beam and the connection beam. Lead boards were 

set on the upper beam. The total weight of the boards was 

105N. It corresponds to the train live load. The surface 30cm 

of the ground was formed with silica sand. The relative den- 

sity of the ground is 70%. 



The support layer was made of poor compounded 
soil cement. The pile was modeled with a stainless 
steel pipe of 34cm length and 20mm diameter. The 
pile head was fixed on the bottom of the CFT pillar. 
The tip ofthe pile was inserted into the support layer 
with the length of the twice of the pile diameter. 
Table I shows the similarity rule that was used for 
the dynamic centrimge modeling. The experiment 
results mentioned later will be displayed using the 
values converted into the real size, for example time 
and acceleration. There are two cases for the ex- 
periment. In this paper, the liquefaction of the 
ground is not dealt with as the object of the ex- 
amination. One of them is the Case 1 equipped with 
the connection beam. Another one is the Case 2 
without the connection beam. In order to grasp the 
response characteristic on the frequency of the 
viaduct, the following 4 kinds of waves were used as 
the input waves. (1) El-Cetro seismic wave, lOOGal, 
(2) 0.6Hz of Sin wave, 50Gal, ten waves, (3) I .OHz 
of Sin wave, lOOGal, ten waves, (4) 2.OHz of Sin 
wave, 1 OOGal, ten waves. 

RESULTS OF DYNAMIC CENTRIFUGE MOD- 
ELING AND ITS CONSlDERATlON 

To the beginning, in order to grasp the frequency 
characteristic of the viaduct-pile-ground system, a 
minute sweep vibration was given of the accelera- 
tion 2Gal. Fig. 2 shows the transfer function of the 
top (A-S3) of the viaduct against the ground base 
(A-GO). A peak is seen near by 0.7Hz at the case 
equipped with the connection beam. The peak is 
seen near by 0.6Hz at the case of structure without 
the connection beam. 

15 I , I , I , I 
- : -CASE-l I _________ CASE-2 _ 

0 1 2 3 4 

Frequency (Hz) 

Fig. 2. Transfer function of top of viaduct 
against ground base 

Cpper structure 

Case with cdnne 

._.______ 
connection beam 

IO 20 30 40 
Time (s) 

They are the first natural frequencies of the viaducts. The peak 
that is seen near by 2Hz is the first natural frequency when the 
strain level is in the early stages ofthe shear modulus ofthe soil. 
Fig. 3 shows the time history response of the base input ac- 
celeration 0.6Hz-50Gal of Sin wave. 

Fig. 3. Time history response of acceleration of viaduct top and 
bending strain of CFT pillar and pile head 

Fig. 3 shows the time history response of the acceleration of the 
viaduct top and the bending strain of the CFT pillar and the pile 
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head. The figure is displayed in piles so that it may be easy to 

compare between the case equipped with the connection 

beam and the case without the connection beam. The input 

accelerations (Fig. 3d) are mostly in agreement between the 

case equipped with the connection beam and the case without 

the connection beam. However, a short cycle noise broke out 

at 14 - 19 seconds. This phenomenon caused the input ac- 

celeration to small a value as 50 Gals. This phenomenon is 

due to the limit of the vibration capability in the low fre- 

quency range of the vibration machine. The case equipped 

with the connection beam is lager than the case without the 

connection beam (Fig. 3a) with regard to the acceleration 

response of the viaduct top (A-S3). It is based on the vibra- 

tion mode differing by the existence of the connection beam. 

The bending strain (Fig. 3b) ofthe upper part (CFT-3) of the 

CFT pillar is also influenced by the existence of the connec- 

tion beam with regard to the magnitude of the acceleration of 

the viaduct top. Fig. 4 shows the distribution of the bending 

strains of the CFT pillar and the pile at the time with which 

these strains indicated the maximum values. You can find the 

following fact with Fig. 3 and Fig. 4. There are especially 

large differences between the case equipped with the con- 

nection beam and without the connection beam with regard to 

the bending strain at the lower part (CFT-I) ofthe CFT pillar 

and at the pile head (Pile-5). It can be inferred that this 

phenomenon was caused as follows. The position ofthe beam 

becomes a fixed condition closely in the case equipped with 

the connection beam. At the result, a big force is produced at 

the CFT pillar. As opposed to it, the behavior of the case 

without the connection beam is resembled in the jutting pile 

action subjected a lateral load. In consequence, the bending 

strain shows a continuous change between the CFT pillar and 

the pile head. It should be observed that the strain reached to 

0.15% at the lower part of the CFT pillar. Although the vi- 

bration acceleration is as small as SOGals, this phenomenon 

was occurred in the case equipped with the connection beam. 

This strain level is equivalent to the yield strain of the mate- 

rial. The big difference arises in the action of the viaduct by 

the existence of the connection beam. This big difference is 

because the frequency of the input wave is equivalent to the 

first natural frequency of the viaduct as mentioned above. 

-2oL I I 
-2000 0 

Bendmg strain (x18) 
2000 

beam 
beam 

Fig. 4. Distribution of bending strains of CFTpillar and pile 

Except mentioned above cases, the influence of the existence of 

the connection beam did not appear notably at the case of the 

El-Centro seismic wave and I .OHz Sin wave. The detail ex- 

amination will be shown in the following chapter 4 by including 

the numerical analysis results. 

NUMERICAL ANALYSIS MODEL FOR 3D-FEM 

A 3-dimensional finite element analysis of the viaduct was car- 

ried out for the purpose to confirm the phenomenon that was seen 

in the experiment. The analysis is the equivalent linear analysis 

considering the time history response. Fig. 5 is the numerical 

analysis model that corresponds to the model for the dynamic 

centrifuge modeling. The portion ofthe viaduct is expressed with 

the beam-mass system element. The portion of the ground is 

expressed with the linear elastic element. In this numerical 

analysis, the target ground range was set up by considering the 

stress influence. As the boundary conditions of the lateral side of 

the model, the horizontal direction is free and the vertical di- 

rection is fixed. The time history wave was given as the input at 

the bottom of the model. This wave is equivalent to the wave that 

was used in the dynamic centrifuge modeling. 

Fig. 5. Analysis model for 3-dimentional time historical finite 
element method 

Table 2. List of parameter values of soil used for numerical 
analysis 

Layer Item Adopted value 

Young modulus 89 MN/m2 

1 Poisson ratio 0.4 

Damping factor 0.15 

Young modulus 745 MN/m’ 
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CHOICE OF PARAMETER VALUES OF SOIL 

Table 2 is the list of the parameter values of soil used for the 
numerical analysis. These values were set up according to the 
strain level of the soil to perform the equivalent linear analysis. 
The concrete procedure is as follows. In the dynamic centri- 
fuge modeling, the ground up to GL-ISm was made of the 
silica sand and was coordinated as the relative density is equal 
to 70%. This situation is almost equivalent to N=l6 ofN-value. 
Then, the shear wave speed of the sandy soil can be inferred 
using the equation that is printed in the offtcial design manual 
of the road bridge in Japan ( Japan Road Society, 1990 ). The 
maximum shear modulus can be presumed as follows by using 
this equation. 

v, = 80Nli3 = 80 x 16”3 g 200m/s (1) 
The modified Ramberg-Osgood model ( Tatsuoka et al., 1979 ) 
is assumed as the relationship between the shear strain and the 
shear modulus. This assumption leads the following expression 
of the relations. 

G,, = p V,’ = 0.1836 x 2002 = 7350 kN I rn2 (2) 

G 1 

c;,= I +alyG(’ 

P= 2 ?-r hmax 
2 - ~ ha, 

(3) 

(4) 

(5) 

jdopted Value for analysis 

Fig. 6. Relation between the shear strain y and 
shear modulus G by modified Ramberg-Osgood 
model 

where, y OS=1 .58 X 10e4 , h,,=0.24. Fig. 6 shows the relation 
between the shear strain y and shear modulus G, The mark’o’ 
is displayed on the curve of Fig. 6. This mark’s location is ob- 
tained as follows. First, the finite element analysis for the 
l-dimensional ground model was executed considering the 
nonlinear stress-strain relationship and the time history. At the 
result, the distribution of the shear strain in the ground was ob- 
tained. There, ’ y ma’ means the maximum value of the shear 
strain at the each depth. The effective value of the shear strain is 
assumed as ‘0.65 y max’. The effective values of the shear strains 
are plotted on the X-axis of Fig. 6. Then, ‘0’ marks are displayed 
at the position on the curve that intersect the vertical lines ex- 
tended from there. The values of the shear modulus and the 
damping coefficients were set up as equivalent to the ‘O’mark 
of Fig. 6. It is presumed that these values correspond to the 
strain of the soil at the time of the vibration. The mean value of 
them is expressed by using a line in Fig. 6. The values of Table 
2 are obtained in this way and are used for the analysis. 

NUMERICAL ANALYSIS RESULTS 

Fig. 7 and Fig. 8 were obtained by using the 0.6Hz Sin wave as 
the input seismic wave. Fig. 7 shows the bending moment dis- 
tribution of the case equipped with the connection beam. Fig. 8 
shows the bending moment distribution of the case without the 
connection beam. The analysis results of Fig. 7 and Fig. 8 etc. are 
arranged in Table 3. Table 3 is made by picking up the maximum 
values of the displacement and the bending moment at the each 
part of the structure. 

( unit : kNm ) 

Fig. 7. Bending moment distribution of case equipped 
with connection beam (Numerical analysis 
result that was obtained by using the 0. 6h’z 
Sin wave as the input seismic wave) 
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In Table 3, the numbers outside of the parenthesis are the 
results of the numerical analysis. The numbers inside of the 
parenthesis are the results of the centrifuge modeling. First, the 
discussion will be start from the numerical analysis results 
shown in Table 3. The case without the connection beam yields 
smaller values than the case equipped with the connection 
beam with regard to the maximum values of the lateral dis- 
placement and the moment of the pillar. 

( unit : kUm 

Fig. 8. Bending moment distribution of case without 

connection beam (Numerical analysis result 

that was obtained by using the 0. 6Hz Sin wave 

as the input seismic wave) 

Table 3. Numerical analysis results and experiment 

results CO. 6Hz Sin innu t seismic wave case) 
Maximum Maximum 

Axis force 
Fwst natural 

Location displacement bending frequency 

(mm) moment CkNm) 
(kN) 

(Hz) 

Top of pillar 103 (150) 2587 (2450) 519 

Structure ( 

equipped 
Connect_ Bottom of pillar IO 2607 (2940) 519 

0.63 

ion beam 
Pile head IO 39 (196) 872 

) 1 Top Of pi”ar ) 99 (90) ) 1833 (1960) ) 363 1 

You can see the numerical analysis results coincide quanti- 
tatively and qualitatively with the experiment results in Tu- 
ble 3 for the matter. However, the case without the connec 

tion beam yields larger values than the case equipped with the 
connection beam with regard to the bending moment of the pile 
head. But, if you compare with the degree of the total stress 
considering the axis force, the difference is small between the 
two cases. It is not possible to reduce the pile diameter on a large 
scale, because the diameter is restricted by the other conditions 
(Ex. the bearing capacity). As a conclusion, it turns out that the 
case without the connection beam is more safety than the case 
equipped with the connection beam. The maximum stress and the 
maximum displacement are both small in the case without the 
connection beam. Generally speaking, this result leads a con- 
clusion that the connection beam is not necessary for the viaduct 
structure. Now, the discussion will be followed by the Case using 
the El-Centro wave as the input seismic wave. The numerical 
analysis was put into practice using the El-Centro wave as the 
input seismic wave. Table 4 shows the analysis results that were 
arranged paying attention to the maximum values of the moment 
and the displacement in each part of the structure. In Table 4, the 
numbers outside of the parenthesis are the results of the nu- 
merical analysis. The numbers inside of the parenthesis are the 
results of the centrihtge modeling. The experiment results coin- 
cide with the numerical analysis results quantitatively and 
qualitatively. Namely it is guessed that numerical analysis has 
given the almost appropriate solution. In Table 4 , the case of the 
El-Centro seismic wave and the 0.6Hz of Sin wave are written 
together. According to it, the amplitude of the 0.6H.z Sin wave 
Case is the half of the El-Centro seismic wave’s amplitude. 
Nevertheless, the farmer’s values are 5 - IO times of the latter’s 
with regard to the displacement and the bending moment. As 
compared with the matter, the difference is small among the 
cases of the El-Centro seismic wave, nothing to do with the ex- 
istence of the connection beam. These facts lead the following 
estimation. In the case of 0.6Hz Sin wave, the frequency is close 
to the first natural frequency of the viaduct, therefore, the in- 
fluence of the existence of the connection beam is remarkable. 
As opposed to it, because the main frequency of the input wave 
is not close to the first natural frequency of the viaduct, the dif- 
ference is not clear among the cases of the El-Centro seismic 
wave nothing to do with the existence of the connection beam. 

Table 4. .Wumerical analysis results and experiment 

results @l-Centro input seismic wave case) 

Paper No. 8. I 1 5 



CONCLUSION 

Generally, it is recognized that the stability of the viaduct 
equipped with the connection beam is higher than the viaduct 
without the connection beam. However, according to the results 
of the centrifuge modeling and the numerical analysis that were 
carried out this time, it was checked that this fact is not neces- 
sarily right. The results ofthe experiment and analysis induce the 
following conclusion. The structure without the connection 
beam is not inferior to the structure equipped with the connection 
beam at the viewpoint of the earthquake resistance. Especially, 
there is a case that the structure equipped with the connection 
beam causes considerably big stress and displacement. This 
phenomenon is caused by the frequency characteristic of the 
input seismic wave stands near by the first natural frequency of 
the viaduct. On the contrary, such a phenomenon is not seen 
about the structure without the connection beam. It was con- 
firmed that the analysis results of the 3-dimensional finite ele- 
ment method coincide quantitatively and qualitatively with the 
experiment results of the dynamic centrifuge modeling. 
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