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SYSTEMS , DEVICES AND METHODS FOR 
MOLECULAR SEPARATION 

[ 0007 ] There is , therefore , a longstanding but currently 
unmet need for systems , devices and methods for producing 
molecular separation devices having superior separation 
characteristics while avoiding the shortcomings of the prior CROSS REFERENCE TO RELATED 

APPLICATIONS art . 

SUMMARY [ 0001 ] This patent application claims the benefit of U . S . 
Provisional Application No . 62 / 380 , 521 as filed Aug . 29 , 
2016 , and U . S . Provisional Application No . 62 / 526 , 100 as 
filed Jun . 28 , 2017 . Both of the above applications are 
incorporated by reference herein . 

TECHNICAL FIELD 
[ 0002 ] The present disclosure relates generally to systems , 
devices and methods useful for efficient separation of a 
plurality of molecular species , and in a particular though 
non - limiting embodiment to molecular separation devices 
comprising porous polycrystalline membrane structures 
having at least one type of nanopore . 

BACKGROUND 

[ 0003 ] Conventional methods of molecular separation and 
purification , including distillation , rectification , extraction 
and crystallization , are both energy intensive and expensive . 
New membrane - based molecular separation processes have 
therefore been attempted to achieve sustainable large - scale 
chemical separation . Unfortunately , conventional polymeric 
membranes have not achieved the level of permeability , 
selectivity , and robustness required for successful commer 
cial implementation . 
[ 0004 ] A considerable body of literature describing 
‘ hybrid ' or “ mixed - matrix ’ membranes has developed over 
the past two decades , in which nanoparticles of a higher 
performance , nanoporous material such as a zeolite , metal 
organic framework ( MOP ) , or two - dimensional layered 
structure are dispersed in polymeric membranes to improve 
performance while maintaining the superior processability 
of polymers . However , the performance of such membranes 
( as defined , for example , by Robeson - type ‘ upper - bound ' 
curves ) has been constrained by their associated polymeric 
matrix . 
10005 ] A broad range of materials such as polymers , 
carbon molecular sieves ( CMS ) , MOFs , and zeolites have 
been fabricated into membranes for propylene separation . 
For example , polymer - based membranes have the advantage 
of improved processability as compared to nanoporous 
crystalline membranes , but suffer from a permeability - se 
lectivity trade - off defined by the Robeson upper bound 
curve . In an effort to achieve improved membrane perfor 
mance beyond this upper bound , hybrid ( or ' mixed - matrix ' ) 
membranes formed by dispersing highly selective and per 
meable molecular sieve zeolite , CMS , or MOF materials 
into the polymeric matrix have also been attempted . 
[ 0006 ] However , the transport physics of mixed - matrix 
membranes ( as described , e . g . , by the Maxwell model ) 
shows that the performance of such membranes is ultimately 
constrained by the properties of the polymeric matrix . 
Assuming sufficiently high loading ( e . g . , > 40 vol % ) of the 
dispersed phase in the polymer , incremental improvement in 
performance can be obtained over the baseline matrix poly 
mer . However , manufacture of robust and defect - free mixed 
matrix membranes with the required highly dispersed phase 
loadings has proven more difficult than anticipated . 

[ 0008 ] A molecular separation device comprising a 
porous , polycrystalline membrane material , and a porous , 
nanocrystalline material , wherein the nanocrystalline mate 
rial is dispersed within the polycrystalline membrane mate 
rial , and wherein the nanocrystalline material provides a 
plurality of nanoporous structures . The polycrystalline 
membrane material and the nanocrystalline material form a 
mixed - matrix . The device can be permselective . In embodi 
ments , the device is free of polymers formed from organic 
monomers . The polycrystalline membrane material may be 
free of polymers formed from organic monomers . Likewise , 
the nanocrystalline material may be free of polymers formed 
from organic monomers . The molecular separation device 
may comprise a completely nanoporous structure . 
[ 0009 ] The device is configured to separate molecular 
species from liquids , gases and mixtures of liquids and 
gases . The device may be configured to separate azeotropes . 
The porous , polycrystalline membrane material may com 
prises a metal - organic framework ( MOP ) or covalent 
organic framework ( COF ) . The porous , nanocrystalline 
material may comprise a zeolite , MOF , or COF . The nanoc 
rystalline material dispersed within the polycrystalline 
membrane material may be further dispersed in a polymeric 
membrane to form a mixed - matrix membrane . 
[ 0010 ] Exemplary methods for producing molecular sepa 
ration devices are also provided . The methods include 
providing a porous , nanocrystalline material , and disposing 
the porous , nanocrystalline material in electrochemical com 
munication with a growing nanoporous membrane material . 
An exemplary method comprises growing a porous poly 
crystalline membrane material from precursors , providing a 
porous , nanocrystalline material , and dispersing the porous , 
nanocrystalline material into the growing porous polycrys 
talline membrane material . The porous polycrystalline mem 
brane can comprise an MOF or a COF . The MOF can 
comprise ZIF - 8 . The porous , nanocrystalline material can 
comprises a zeolite , MOF , or COF . A surface of the zeolite , 
MOF , or COF nanocrystalline material can be functionalized 
with amines or other groups to improve chemical compat 
ibility of the nanocrystalline material with the polycrystal 
line material . 
10011 ] A wide variety of materials , fabrication methods , 
commercially viable uses , and methods and means for 
enhancing the performance of such devices are also dis 
closed . 

m 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0012 ] FIG . 1A shows a scanning electron microscope 
image ( SEM ) and crystal size distribution ( inset ) of calci 
nated MFI nanoparticles according to an example embodi 
ment of the disclosure . 
[ 0013 ] FIG . 1B shows a series of powder X - ray diffraction 
( XRD ) patterns according to an example embodiment of the 
disclosure . 
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[ 0014 ] FIG . 2 shows cross - section SEM images and 
energy dispersive X - ray ( EDX ) elemental map overlays 
( red : Zn , green : Si ) according to an example embodiment of 
the disclosure . 
[ 0015 ] FIGS . 3A - G show a series of SEM images and 
EDX elemental maps according to an example embodiment 
of the disclosure . 
[ 0016 ] FIGS . 4A - F show images of a poly ( amide ) imide 
( PAI ) hollow fiber support / substrate and formation of a 
completely nanoporous mixed - matrix - membrane before and 
after PAI removal according to an example embodiment of 
the disclosure . 
[ 0017 ) FIGS . 5A - E shows SEM images and EDX element 
maps of a ZIF - 8 / MFI membrane flake according to an 
example embodiment of the disclosure . 
[ 0018 ] FIGS . 6A - B are graphical illustrations of a series of 
nuclear magnetic resonance spectra ( NMR ) according to an 
example embodiment of the disclosure . 
[ 00191 FIG . 7A shows predictive and experimental mea 
surements of CzH6 permeability and CzHZ / C2H , permselec 
tivity according to an example embodiment of the disclo 
sure . 
[ 0020 ] FIG . 7B shows experimental measurements com 
paring C2H / C2H , separation performance between various 
molecular separation devices according to an example 
embodiment of the disclosure . 

DETAILED DESCRIPTION 
[ 0021 ] The following detailed description of various 
embodiments of the instant disclosure will be enhanced by 
reference to the accompanying drawings , which illustrate 
specific though non - limiting aspects or features of the dis 
closure , and example methods by which they may be prac 
ticed . While the illustrative embodiments are described with 
particularity , it will be understood that various other modi 
fications can be made by those skilled in the art without 
departing from the scope or spirit of the instant disclosure . 
Accordingly , it is not intended that the scope of the claims 
appended hereto be limited to the examples and descriptions 
set forth herein , but rather that the claims be construed as 
encompassing one or more of the patentably distinct features 
disclosed within the present specification , including logical 
and functional equivalents thereof . 
[ 0022 ] Systems , devices and methods for molecular sepa 
ration are generally disclosed herein . Generally , the molecu 
lar separation devices disclosed herein comprise a composite 
structure including at least two porous materials . In certain 
embodiments , one of the porous materials may comprise 
intergrown or contiguous grains of polycrystalline material 
ranging from micron , to sub - micron , to nano - scale in size , 
and are further configured to form a continuous membrane . 
[ 0023 ] In various embodiments , the porous membrane 
material also comprises a second porous material , such as an 
occluding crystalline material , interspersed therein . In one 
embodiment , the occluding crystalline material is nano - scale 
in size , though in other embodiments the material is either 
larger or smaller for improved efficacy in various applica 
tions . 
[ 0024 ] Generally , the molecular separation device dis 
closed herein comprises a composite assembly having a 
porous , polycrystalline membrane interspersed with a 
porous , crystalline material . In one embodiment , the 
molecular separation device is a permselective nanoporous 

structure characterized , generally , as a semipermeable mem 
brane capable of ion exchange . 
[ 0025 ] In various non - limiting example embodiments 
described herein , the specification generally discloses 
embodiments of the present disclosure comprising molecu 
lar separation devices having a mixed - matrix membrane , 
and further comprising a plurality of nanocrystalline mem 
bers configured for molecular separation of specific target 
molecules , e . g . , liquids or gases . The molecular separation 
devices generally comprise at least two nanoporous mate 
rials configured to form a polycrystalline membrane having 
nanocrystalline pores . The example embodiments disclosed 
herein are non - limiting , and it is understood that the mate 
rials forming the molecular separation devices disclosed 
herein may be selected from any other suitable materials . 
For example , the molecular separation devices disclosed 
herein may comprise materials including MOFs ; zeolitic 
materials , e . g . , ALPO , SAPO ; silicalites ; mixed metal 
oxides ; various nanocrystalline , zeolite MFI , and combina 
tions thereof , e . g . , MOF - zeolite ; MOF1 - MOF2 , and MOF1 
MOF2 - zeolite . 
[ 0026 ] In one example embodiment , a nanoporous mate 
rial comprising a nanocrystalline , metal - organic framework 
( MOF ) and a nanocrystalline , zeolite MFI is provided , 
wherein associated MOF nanoparticles form a nanocrystal 
line membrane with zeolite MFI nanoparticles dispersed 
therein , and the MOF nanoparticles contacting the zeolite 
MFI nanoparticles form a permselective nanoporous struc 
ture . 
[ 0027 ] Other embodiments comprise a porous , polycrys 
talline membrane material , and a porous , nanocrystalline 
material in which the nanocrystalline material is dispersed 
within the polycrystalline membrane material to form nano 
porous structures . As such , example embodiments further 
comprise a mixed - matrix of porous , polycrystalline mem 
brane material and nanocrystalline material . 
[ 0028 ] Still further embodiments of the molecular sepa 
ration device disclosed herein have a range of porosity . 
Other embodiments comprise completely nanoporous , 
mixed - matrix membranes ( MMMs ) consisting of a nanop 
orous polycrystalline membrane matrix having other nano 
porous crystalline nanoparticles dispersed therein . In 
embodiments , varying degrees of selected amounts of filler 
nanoparticles are incorporated into the polycrystalline mem 
ber matrix to provide different degrees of molecular sepa 
ration selectivity , such as from about 10 % to about 98 % by 
weight filler nanoparticles . For example , in certain embodi 
ments the molecular separation device includes ZIF - 8 and : 
greater than about 10 % by weight MFI nanoparticles ; 
greater than about 20 % by weight MFI nanoparticles ; 
greater than about 30 % by weight MFI nanoparticles greater 
than about 40 % by weight MFI nanoparticles ; greater than 
about 50 % by weight MFI nanoparticles ; greater than about 
60 % by weight MFI nanoparticles ; greater than about 70 % 
by weight MFI nanoparticles ; greater than about 80 % by 
weight MFI nanoparticles ; greater than about 90 % by weight 
MFI nanoparticles ; greater than about 95 % by weight MFI 
nanoparticles ; or greater than about 98 % by weight MFI 
nanoparticles . 
[ 0029 ] The ZIF - 8 is nanoporous , and has its own selec 
tivity and permeability towards gases . The incorporated MFI 
is also nanoporous and also has its own selectivity and 
permeability . Together , the two nanoporous materials form a 
semi - continuous nanoporous membrane structure that has a 
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separation performance that is some combination of the 
properties of each material . For example , the combination 
may have certain ranges of pore sizes . For example , in some 
combinations , the molecular separation device may have 
pores ranging in size from about 0 . 1 nm to about 1000 nm . 
In other embodiments , pore sizes range from about 0 . 1 nm 
to about 100 nm . In still other embodiments , pore sizes range 
from about 0 . 1 nm to about 10 nm . In still other embodi 
ments , pore sizes range from about 0 . 1 nm to about 1 nm . 
[ 0030 ] In still further embodiments , the molecular sepa 
ration device comprises a polymer - free , crystalline , all 
nanoporous structure . For example , ZIF - / MFI is polymer - 
free . The crystalline , all - nanoporous structure does not 
contain any polymer material , with polymer material being 
defined as polymers formed from organic monomers , such 
as polypropylene , polyimide , polysulfones , and polysilox 
anes . 
[ 0031 ] In still further embodiments the molecular separa 
tion device is used in a plurality of chemical separation 
applications and related processes , e . g . , separation of closely 
related molecular species . Further example embodiments 
comprise a molecular separation device capable of separat 
ing molecules sharing a high degree of structural and 
chemical similarity . In one specific though non - limiting 
embodiment , a molecular separation device is provided for 
separation of an olefin - class molecular species from a par 
affin - class molecular species , e . g . , propylene / propane . 
[ 0032 ] Olefins are typically produced in the petrochemical 
industry by , e . g . , steam , thermal or catalytic " cracking ” of 
paraffin - class molecular species , followed by repeated com 
pression and distillation processes that separate the complex 
vapor mixtures . Overall , the process is effective but highly 
energy - intensive , and may be the single largest energy 
consumer and greenhouse gas contributor in the chemical 
sector . Thus , highly selected , membrane - based molecular 
separation devices such as those disclosed and claimed 
herein will contribute to energy - efficient alternatives for 
conventional olefin / paraffin separation systems . 
10033 ) . Selected combinations of MOF and zeolite enable 
the molecular separation devices to separate mixtures of 
various properties and components , including mixtures of 
light gases , aqueous solutions of alcohols , mixtures of water 
and hydrocarbons , e . g . , alkanes or higher alcohols , as well 
as mixtures of hydrocarbons , e . g . , alcohol / alcohol , alcohol / 
alkane or alkane / alkane . Conventionally , such mixtures have 
been separated by distillation , but also by other methods 
such as absorption and adsorption . 
[ 0034 ] However , distillation processes are energy con 
suming and cannot economically produce high purity com 
pounds . For example , in the case of the separation of ethanol 
and water , the maximum ethanol purity that can be achieved 
in an economically viable manner is 95 % ethanol , due to the 
presence of an azeotrope of the ethanol / water mixture that 
prevents purity above 96 % ethanol without additional 
expensive measures . In addition , in case of dilute mixtures , 
i . e . , relatively low amounts of ethanol disposed in water , 
large amounts of the water will need to be removed . Mem 
brane - based molecular separation devices may provide an 
advantageous , alternative to liquid separation , e . g . , azeo 
trope separation . 
[ 0035 ] Other example embodiments provide molecular 
separation devices for the separation of fluid mixtures . The 
fluid mixture can be any mixture of liquids or gases . In 
certain embodiments , the molecular separation device is 

used to separate liquid mixture including water and / or at 
least one hydrocarbon compound . In other embodiments , the 
molecular separation device is used to separate gaseous 
mixtures , but not limited to , nitrogen , oxygen , carbon diox 
ide , methane , hydrogen , ethane , ethylene , hydrogen sulfide , 
sulfur dioxide , and / or halogens . 
[ 0036 ] Still other example compounds for separation 
using the molecular separation devices of the present dis 
closure comprise hydrocarbons and oxygenates . Hydrocar 
bons are molecules consisting of carbon and hydrogen 
atoms , and may be either aliphatic or aromatic . Aliphatic 
hydrocarbons include alkanes , alkenes and alkynes , and may 
be linear , branched or cyclic . Aromatics include mono 
aromatics , poly aromatics , and substituted mono and poly 
aromatics , e . g . , benzene , toluene , styrene and ethylbenzene . 
[ 0037 ] Oxygenates are hydrocarbonaceous compounds , 
which , in addition to carbon and hydrogen atoms , include 
one or more oxygen atoms . Examples of suitable oxygenates 
include alcohols , aldehydes , ketones , esters and ethers . The 
oxygenates may be primary , secondary or branched oxygen 
ates . 
[ 0038 ] One example embodiment provides molecular 
separation devices capable of separating mixtures of 
molecular species based on pervaporative separation , which 
is a processing method for the separation of mixtures of 
liquids by partial vaporization through a membrane . In other 
embodiments the molecular separation devices comprise a 
selective membrane barrier disposed between two phases of 
the mixture , e . g . , the liquid - phase feed and the vapor - phase 
permeate . Other embodiments of the molecular separation 
device are configured to allow separation of target molecular 
species of the liquid mixture to transfer through the mem 
brane by vaporization . Other embodiments of the molecular 
separation device are configured to allow separation of 
target molecular species , including a mixture of two liquids 
having a constant boiling point and composition throughout 
distillation , e . g . , azeotropes . Still further embodiments are 
configured to allow separation of target molecular species 
from gases . Still other embodiments are configured to allow 
separation of target molecular species from mixtures of 
liquids and gases . 
[ 0039 ] Generally , pervaporative separation is based on a 
difference in the transport rate of individual components 
through the membrane . The molecular differences between 
components of a mixture create a chemical potential differ 
ence that can be used to drive separation of mixtures . For 
example , where the chemical potential differences exist in a 
liquid mixture , a liquid feed / retentate constitutes a remain 
der of the liquid that does not permeate , i . e . , vapor permeate , 
through the membrane . Chemical potential differences may 
be expressed in terms of fugacity , given by Raoult ' s law for 
a liquid , and by Dalton ' s law for ( an ideal ) gas . 
[ 0040 ] Further example embodiments provide molecular 
separation devices comprising nanoparticles having a high 
performance nanoporous material , e . g . , zeolite , MOF , or 
two - dimensional layered structures . In still further embodi 
ments , the molecular separation devices comprise two or 
more associated nanoporous materials dispersed in a poly 
meric membrane or on the surface of a polymeric support in 
order to improve separation performance while maintaining 
the processing advantages associated with the use of poly 
mers , for example a mixed - matrix membrane comprising a 
polymeric membrane occluded by an MOF phase that is 
loaded with zeolite nanoparticles . 
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[ 0041 ] The advent of MOF molecular sieves has created 
potential for more scalable membrane fabrication processes 
under relatively benign conditions . MOFs consist of metal 
centers connected by coordination bonds to organic linker 
molecules , and have been used to grow crystalline mem 
branes through techniques similar to those developed for 
zeolitic membranes , as well as more recent flow - processing 
or interfacial growth techniques , such as Interfacial Micro 
fluidic Membrane Processing ( IMMP ) methods discussed 
below . The zeolitic imidazolite framework ( ZIF ) subclass of 
MOFs has been found to be particularly effective for adsorp 
tive and membrane separations , because of its tunable pore 
size and chemistry , and relatively good thermal and chemi 
cal stability . For example , the nanoporous structures within 
a ZIF membrane may allow separation of gases and liquids 
having similar molecular characteristics . 
[ 0042 ] In fact , the vast range of MOF structures , e . g . , 
ZIFs , allows for rational design , synthesis , and modification 
of MOF structures to produce membrane - based molecular 
separation devices to specifically separate liquids and gases , 
e . g . , by either adsorptive separations or diffusion - based 
membrane separations , or a combination of both . 
[ 0043 ] In addition , ZIF membrane processing can be scal 
able for industrial use . For example , scalable production of 
ZIF membranes can be achieved by synthesizing membranes 
on the outer surfaces of porous polymeric poly ( amide 
imide ) hollow fibers having a ~ 250 um outer diameter by a 
seeded growth process at mild conditions ( 65° C . in metha 
nol solutions ) . 
[ 0044 ] Alternatively , production of molecular sieving 
membranes on the inner surfaces of the hollow fibers , while 
much more challenging to grow , are better suited for scal 
able fabrication and industrial uses . For example , mem 
branes grown on the inner surfaces of the hollow fibers 
frequently have the ability to be bundled in close proximity 
while avoiding membrane - membrane contact points and 
interfaces that lead to defects during synthesis . 
[ 0045 ] However , ZIF membranes have limitations . For 
example , ZIF membranes produced using a single - linker 
ZIF material , for example , allow only discrete changes in 
pore size and adsorption characteristics by varying the 
linker , e . g . , an imidazolate linker . Since diffusion - based 
molecular separations are extremely sensitive to small ( < 0 . 1 
Å ) changes in the effective pore size , only limited diffusive 
separations are possible with single - linker ZIF membranes . 
A specifically designed ZIF membrane must therefore be 
produced for each new separation target . 
[ 0046 ) Similarly , adsorptive separations are sensitive to 
small changes in the hydrophilicity or organophilicity of the 
ZIF , which are difficult to design de novo . Accordingly , there 
is a need for an alternative to ZIF membranes having a 
single - linker species ; therefore , embodiments of the instant 
disclosure provide a structurally advanced molecular sepa 
ration more broadly applicable to industrial molecular sepa 
ration needs . 
0047 ] Example embodiments of the molecular separation 
devices disclosed herein comprise a MMM having a crys 
talline membrane matrix , e . g . , ZIF - 8 , and a crystalline 
dispersed phase , e . g . , zeolite MFI configured to form nano 
porous structures . 
[ 0048 ] In other example embodiments , the molecular 
separation devices are produced using an interfacial micro 
fluidic membrane processing ( IMMP ) method . IMMP pro 
cessing methods offer a versatile platform for fabrication of 

molecular separation devices including , e . g . , MMMs , in a 
single step on scalable hollow fiber supports . 
100491 . The use of IMMP processing methods can over 
come previously known challenges associated with produc 
ing or growing a defect - free polycrystalline nanoporous 
membrane matrix , while simultaneously incorporating crys 
tals of a second nanoporous material with negligible inter 
facial defects . 
10050 ] In one example embodiment , use of IMMP meth 
odologies allow for production of an MMM - based molecu 
lar separation device wherein a surface - treated nanoparticle 
of the zeolite MFI is incorporated in situ during growth of 
a polycrystalline membrane of the MOF ZIF - 8 . 
[ 0051 ] Various other embodiments integrate the growth 
process of nanoporous polycrystalline membrane matrices 
with inclusion of one or more dispersed phase materials . For 
example , an MOF material , e . g . , ZIF - 8 , can be characterized 
as a molecular sieving material with excellent propylene / 
propane permeation selectivity ( > 100 ) , and used in the 
fabrication of high - quality membrane - based molecular sepa 
ration devices . However , the propylene permeability of 
ZIF - 8 ( ~ 390 Barrer at 308 K ) is relatively low among 
nanoporous materials . To improve on the permeability of 
MOF membrane , additional nanoparticles , e . g . , a zeolite 
MFI , are also incorporated . 
[ 0052 ] Further embodiments comprise synthetic produc 
tion of zeolite nanoparticles . In various embodiments , the 
zeolite synthesis employs reagents and materials including 
( but not limited to ) : tetrapropylammonium hydroxide 
( TPAOH , 20 % and 40 % w / w aqueous solution and 1M ) ; 
tetraethylorthosilicate ( TEOS , 98 % ) ; propane - 1 , 3 - diamine ; 
1 - Octanol ( 99 % ) ; and deionized water . 
[ 0053 ] In one example embodiment , the zeolite synthesis 
is performed by generating a precursor solution comprising 
TEOS , TPAOH ( 40 % ) and water at a molar ratio of 1 
TEOS : 0 . 36 TPAOH : 20 H20 . In further embodiments the 
TEOS is added dropwise into an aqueous TPAOH solution 
while stirring until the mixture becomes completely trans 
parent , e . g . , for about 1 hour . In still further embodiments 
additional DI water is added to the transparent solution 
while stirring for a predefined period of time , e . g . , for about 
24 hours , in order to achieve a desired molar ratio . 
[ 0054 ] In other embodiments a hydrothermal reaction is 
achieved in a Teflon - lined Parr autoclave at about 150° C . 
for about 96 hours . In further embodiments still , the result 
ing MFI crystal suspension is centrifuged , washed with 
water , and then dried at about 100° C . in order to recover the 
crystals , which are then further calcined at about 550° C . for 
about 8 hours in air in order to remove TPA cations occlud 
ing pores . 
[ 0055 ] In one example embodiment , zeolite nanoparticles 
are further processed to modify the zeolite nanoparticle 
surface . Surface functionalization is accomplished by treat 
ing the zeolite with an organic compound , e . g . , amine . 
Organic functionalization of zeolite nanoparticles , e . g . , MFI , 
is then performed under neat conditions as presently known 
in the art or under other conditions future devised offering 
similar efficacy . 
[ 0056 ] In other embodiments , MFI particles are function 
alized with an amine molecule , e . g . , 1 , 3 - diaminopropane . In 
one specific though non - limiting embodiment , 200 mg of 
calcined silicate - 1 nanoparticles are degassed at about 150° 
C . for about 24 hours in a 100 ml flask . Subsequent to 
degassing , about 10 ml of an amine , e . g . , 1 , 3 - diaminopro 
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action followed by thermal crosslinking of the PDMS at 
about 120° C . for about 2 hours under Ar flow through the 
bore of the PAI hollow fiber . For permeation measurements , 
a 50 : 50 hydrocarbon feed mixture is introduced through the 
bore side at about 10 mL / min while an Ar sweep gas flowed 
across the shell side at about 10 mL / min to collect the 
permeate . A gas chromatograph with TCD and FID detectors 
is then used to determine the composition of the permeate . 
Permeation data should be measured for three different 
membranes synthesized under the same conditions for each 
case in order to obtain statistically significant average result 
data . 
10061 ] In one example embodiment , permeation measure 
ments are calculated based on known and / or experimental 
results . In various embodiments , the Maxwell model , e . g . , 
Egn . Si , defines MMM permeability in terms of the perme 
abilities of the individual phases and the volume fraction of 
the dispersed phase : 

Pf + 2Pm – 20 ( Pm – Pf ) ] 
PMMM = P ~ P + 2P - P - P 

( S1 ) 

re 

pane , is then added . The flask is optimally ( though not 
necessarily ) connected to a dry distillation head , and then 
purged with nitrogen for several minutes . Distillation is then 
conducted in a heated , silicone oil bath at about 95° C . for 
about 48 hours while stirring in order to functionalize the 
zeolite . In other embodiments , the zeolite is collected by 
centrifugation , washed with MeOH , dried , and then 
degassed at about 150° C . under vacuum for about 24 hours 
in order to remove unreacted organic molecules physisorbed 
in the pores . 
[ 0057 ] In another example embodiment , the established 
IMMP methodology further comprises poly ( amide - imide ) 
( PAI ) macroporous hollow fibers used as a support or 
substrate for producing molecular separation devices . The 
PAI hollow fibers can be produced by presently known , 
conventional spinning processes . Such PAI hollow fibers 
typically have a pore size of about ~ 400 nm and room 
temperature N2 permeance of about > 70 , 000 gas permeation 
units . In one embodiment , a plurality of pre - treated , func 
tionalized MFI nanoparticles are then added to a solution of 
zinc nitrate hexahydrate / 1 - octanol solution , e . g . , 0 . 0185 mol 
Zn2 + / L , and sonicated to achieve dispersion of the function 
alized MFI crystals . In one specific though non - limiting 
embodiment , the concentration of MFI nanoparticles in the 
resultant solution is about 2 . 75 g / L . 
[ 0058 ] Various other embodiments comprise molecular 
separation devices having mixed - matrix membranes 
( MMMs ) , wherein the matrix further comprises a nanop 
orous material and the dispersed phase is also a nanocrys 
talline nanoporous material . Together , the polycrystalline 
matrix and nanocrystalline dispersed phase materials inter 
act to form a molecular separation device having an all 
nanoporous composite structures . 
[ 0059 ] Other embodiments comprise molecular separation 
devices having an improved performance range that offer 
enhanced permeability and / or selectivity as compared to 
previously known , conventional materials . For example , 
relative to conventional polymers , the permeability of nano 
porous materials are 2 - 3 orders of magnitude higher than 
polymers , while the molecular selectivity may be 1 - 2 orders 
of magnitude higher . Therefore , embodiments within the 
scope of the present disclosure may comprise molecular 
separation devices for separation closely related compounds , 
e . g . , such as propylene / propane , that surpass any previously 
defined Robeson upper bound curves by including an appro 
priate combination of two or more ) nanoporous materials . 
[ 0060 ] In various example embodiments , permeation mea 
surements are made in order to evaluate or compare con 
ventional molecular separation devices to molecular sepa 
ration devices produced according to the methods of the 
present disclosure . In one embodiment , separation proper 
ties of binary , equimolar ( 50 / 50 ) C3H / C2H , mixture per 
meation are evaluated for pure ZIF - 8 membranes and ZIF 
8 / MFI MMMs at about 25 - 120° C . The permeation 
measurements can be conducted in a steady - state ‘ Wicke 
Kallenbach ' mode , i . e . , sweep gas on the permeate side , with 
an IMMP fabrication module also directly acting as a 
permeation membrane module . Before permeation measure 
ments , fiber cross sections disposed at both ends of the 
membrane are sealed to prevent the feed stream from 
bypassing the membrane by permeation through the fiber 
cross - section at the two ends . Sealing of PAI hollow fibers 
promotes conduction by infiltrating the cross section of the 
fiber with a 9 wt % PDMS / heptane solution via capillary 

where PMMM is permeability in the mixed - matrix membrane ; 
Pm and P , are the permeabilities of the matrix phase , e . g . , 
ZIF - 8 and the particulate / dispersed phase ( here MFI ) , 
respectively ; and Q is the volume fraction of the dispersed 
phase . 
[ 0062 ] The permeability of any species ( i ) in a given phase 
can then be expressed , e . g . , using Eqn . S2a below as a 
product of diffusivity ( D ) and solubility ( S ; ) , with the 
solubility being calculated at a given partial pressure ( Pi ) 
using an adsorption isotherm such as the Langmuir iso 
therm , e . g . , Eqn . S2b . 

P = S ; XS ; ( S2a ) 

( S2b ) - C - Csat , ibi S ; = - = Pi 1 + bipi 

Here C , is the adsorbed concentration at equilibrium , Csati is 
the Langmuir capacity constant , and bi is the Langmuir 
affinity constant . 
[ 0063 ] Other example embodiments comprise molecular 
separation devices having a dispersed phase having superior 
molecular permeability and increased permeability even at 
moderate loadings without significant loss in selectivity . In 
embodiments of the present disclosure , the molecular sepa 
ration device may be configured to have a pore - size ranging 
from about 0 . 1 nm to about 1 nm . In other embodiments of 
the present disclosure , the molecular separation device may 
be configured to have a pore - size ranging from about 0 . 1 nm 
to about 100 nm . In embodiments of the present disclosure , 
the molecular separation device may be configured to have 
a pore - size ranging from about 0 . 1 nm to about 10 nm . In 
various other embodiments , the molecular separation device 
is configured to have a pore - size ranging from about 0 . 1 nm 
to about 1 nm . In one specific though non - limiting embodi 
ment , a molecular separation device having pure - silica 
( SiO2 ) form of zeolite MFI , e . g . , silicate - 1 , as the dispersed 
phase material is provided . MFI is , in general , a medium 



US 2018 / 0056246 A1 Mar . 1 , 2018 

pore zeolite with an interconnected quasi - 3D network of 
channels having an average pore size of about 0 . 55 nm . 
[ 0064 ) According to various other embodiments , MFI 
nanocrystals of highly uniform size , e . g . , about 141 - 19 nm , 
are synthesized according to known methods or otherwise , 
and then characterized by SEM and XRD to confirm both 
their crystallinity and size distribution . See , for example , 
FIG . 1 . Specifically , FIG . 1 illustrates the powder XRD 
pattern of the membrane having characteristic peaks for both 
MFI and ZIF - 8 . 
[ 0065 ] Using an IMMP methodology , MFI nanocrystals 
can also be directly incorporated , e . g . , dispersed , into the of 
ZIF - 8 membranes along one or more inner surfaces of a 
macroporous PAI hollow fiber support during the membrane 
growth phase . 
[ 0066 ] Example molecular separation devices produced 
according to the processes disclosed herein allow crystalli 
zation of MOF membranes at a liquid - solid interface created 
at or near the PAI hollow fiber surface . Crystallization of 
MOF membranes are controlled by manipulating the supply 
of reactants including , e . g . , Zn2 + ions in 1 - octanol ; 2 - meth 
ylimidazole linkers in water ; and in an opposing - reactants 
geometry from the bore and shell side of the fiber , respec 
tively . 
[ 0067 ] Other example embodiments comprise MFI nano 
particles pre - treated with an amine , e . g . , 1 , 3 - diaminopro 
pane , in order to improve interaction between the Zn2 + ions 
and the MFI / zeolite surfaces . Facilitating surface interac 
tions induces the zeolite surfaces to participate in ZIF - 8 
membrane growth , leading to incorporation of MFI into the 
ZIF - 8 membrane matrix . 
[ 0068 ] In further embodiments , pre - treatment of MFI 
nanoparticles with an amine , e . g . , 1 , 3 - diaminopropane , 
comprises one amine group capable of reacting with the 
external surface silanol group of a zeolite nanoparticle , and 
a second amine group capable of forming a complex with 
Zn2 + ions . In certain embodiments , failure to pre - treat MFI 
nanoparticles may prevent efficient incorporation of MFI 
nanoparticles into growing ZIF - 8 membranes , and produc 
tion of a loosely packed layer as shown in FIG . 2 . 
100691 . In other example embodiments , a ZIF - 8 / MFI 
MMM is characterized . For example , FIGS . 3A and 3B 
show low - magnification cross - sectional SEM images indi 
cating the formation of a ZIF - 8 / MFI MMM as a continuous 
layer on an inner surface of a hollow fiber support . FIGS . 3C 
and 3D show EDX elemental maps for Si and Zn , respec 
tively , based upon FIG . 3A , which further indicates uniform 
dispersion of both MFI and ZIF - 8 in the cross - section of the 
MMM . In FIG . 3D , the Zn signal appears throughout the 
bore cross - sectional area due to the large surface signal from 
the membrane inside the fiber . In the example embodiment 
of FIG . 3E , a high - magnification SEM image of the MMM 
cross - section is shown , in which MFI nanoparticles are 
observed embedded in the ZIF - 8 membrane . In the example 
embodiments of FIGS . 3F and 3G , EDX elemental mapping 
based upon the SEM image of FIG . 3E is shown , thereby 
confirming the localization of MFI ( Si ) and ZIF - 8 ( Zn ) to the 
same membrane layer . 
[ 0070 ] Another example embodiment comprises a 
molecular separation device having a plurality of nanocrys 
talline members configured form a mixed - matrix of nanop 
orous structure along bare PAI support fiber as shown in 
FIGS . 4A and 4B . However , in other embodiments the PAI 
support fiber is used only as a temporary or transient support 

structure . In one example embodiment , a molecular separa 
tion device comprises a nanoporous structure formed by 
mixing a plurality of crystalline nanoparticles , so that a 
plurality of nanoporous structures form along the PAI sup 
port fiber . Sufficient additional processing will remove the 
PAI support fiber altogether ( or nearly so ) , thereby resulting 
in a crystalline molecular separation device . In one specific 
embodiment of the technique , the PAI support fiber is 
dissolved using a solvent , e . g . , dimethylformamide ( DMF ) . 
[ 0071 ] When the transient PAI support fiber is removed by 
dissolution , the residual MMM “ skin ” will remain as a result 
of the process . See , for example , FIG . 4 . In such manner , a 
residual MMM skin comprising a molecular separation 
device is achieved , and can be recovered for further char 
acterization . In the example embodiments of FIGS . 4C , 4D , 
and 4E , optical microscopic images of MMM “ flakes ” are 
shown at increasing magnification ; FIG . 4F comprises a still 
higher magnification SEM image of the MMM flake . 
[ 0072 ] In the example embodiment of FIG . 5 , SEM imag 
ing and EDX mapping of the recovered MMM flakes are 
shown that confirm the MMM morphology . For example , 
FIGS . 5A and 5B are SEM images showing MFI nanopar 
ticles embedded in a ZIF matrix , while FIGS . 5C , 5D , and 
5E show EDX mapping of Si and Zn with intimate contact 
of zeolite and ZIF phases in the form of a single hybrid 
membrane . 
[ 0073 ] In the embodiment of FIG . 6A , 29Si DP - MAS 
NMR spectra of MFI nanoparticles and the ZIF - 8 / MFI 
MMM flakes with an approximately - 115 ppm chemical 
shift characteristic of MFI are clearly visible , thereby con 
firming the presence of MFI nanoparticles in the flakes . In 
the example embodiment of FIG . 6B , 13C CP - MAS NMR 
spectra of ZIF - 8 crystals , bare PAI hollow fiber , MFI nano 
particles before and after pre - treatment with 1 , 3 - diamino 
propane , ZIF - 8 membrane flakes , and ZIF - 8 / MFI MMM 
flakes are shown . Functionalization of MFI nanoparticles by 
pre - treatment with amine 1 , 3 - diaminopropane is also evi 
dent from the peaks at 42 and 39 ppm , which correspond to 
the carbons attached to the amine group and the middle 
carbon respectively . 
[ 0074 ] The 13C chemical shifts for crystalline ZIF - 8 [ Zn 
( 2 - MeIM ) 2 ] are known to be associated with the methyl 
group carbon , the carbon located between two nitrogen 
atoms of the imidazolate , and the two carbons of the 
imidazolate ring , respectively . These chemical shifts are 
seen in the pure ZIF - 8 membrane flakes , produced according 
to an exemplary embodiment of the present disclosure . 
Characterization of ZIF - 8 / MFI MMM shows the ZIF - 8 
chemical shifts as well as those arising from 1 , 3 - diamino 
propane . In one example embodiment , the negligible pres 
ence of PAI in the flake samples is also confirmed by 
comparison to the spectrum of the bare PAI fiber . 
[ 0075 ) Molecular separation devices are evaluated based 
on chemical permeability and the preferential permeation of 
select molecular species , i . e . , permselectivity . FIG . 7A com 
pares the C2H , permeability and C H / C H , mixture perm 
selectivity in pure ZIF - 8 membranes in yet another example 
embodiment . 
[ 0076 ] To compute Maxwell model - based predictions , 
known ( C2H , C H2 ) permeability values for ZIF - 8 of ( 390 , 
2 . 9 ) Barrer and MFI ( 8099 , 3619 ) Barrer are used . For 
ZIF - 8 , known permeability values based upon similar mea 
surements can be used directly . To obtain an MFI volume 
fraction q , the Si / Zn atomic ( molar ) ratio is obtained by 
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EDX on the ZIF - 8 / MFI membrane flakes . Based upon the 
known chemical formulae of ZIF - 8 ( Zn ( 2 - MeIM ) , ) and MFI 
( SiO2 ) , and their known densities ( 0 . 769 and 1 . 78 kg . m - " , 
respectively ) , there is a unique arithmetic relationship 
between the Si / Zn atomic ratio and the volume fraction of 
MFI nanoparticles in the ZIF - 8 / MFI MMM . 
[ 0077 ] In the example embodiment of FIG . 7B , experi 
mentally observed C3H6 permeability of a pure ZIF - 8 mem 
brane is shown as 360 _ 104 Barrer , whereas CzH , perme 
ability of another example embodiment , e . g . , a ZIF - 8 / MFI 
MMM , is shown as 548267 Barrer at p = 0 . 129 . Moreover , 
the exemplary ZIF - 8 / MFI MMM embodiment maintains a 
sharp C3H / C3Hg selectivity . Furthermore , the measured 
permeabilities and selectivities are consistent with the Max 
well predictions . 
[ 0078 ] In the example embodiment of FIG . 7B , estab 
lished C2H / C2H , single - component and binary - mixture 
permeabilities and selectivities at approximately the same 
conditions are shown , e . g . , 25 - 100° C . and 1 - 2 bar , for 
different classes of known single - phase MMM , e . g . , poly 
meric , CMS , zeolite , ZIF , and polymer - based MMMs . Spe 
cifically , open / closed symbols indicate single / mixed - gas 
measurements ; circles illustrate polymers ; triangles illus 
trate CMS ; rhomboids illustrate ZIF - 8 ; rectangles illustrate 
ZIF - 67 ; pentagons illustrate zeolite ; hexagons illustrate ZIF 
8 / polymer MMMs ; stars illustrate ZIF - 8 / MFI MMM ; and 
dashed ( single - component ) and solid ( binary ) lines illustrate 
Robeson - type ' upper bound lines for conventional materi 
als such as polymers and CMS . 
[ 0079 ] The ‘ upper bound ' lines for polymers and CMS 
materials are drawn based upon representative , best - case 
performance reported for conventional materials . The upper 
bounds for both binary - mixture separation devices and 
single - gas separation devices are also considered . The 
binary upper bound lines are lower than the single - gas lines 
since competitive adsorption or diffusion in a binary mixture 
typically lowers the membrane performance . Only materials 
with reasonable C2H / C3H , selectivities 10 are shown , and 
there are no polymers with the required binary - mixture 
selectivity . 
10080 ] The separation characteristics of the present ZIF 
8 / MFI MMMs , especially the permeability , are far above all 
previously reported membranes , and are the result of the 
all - nanoporous nature of these hybrid membranes . 
[ 0081 ] The approach disclosed herein provides MOF and 
ZIF membranes grown under relatively mild conditions , and 
enables the matching of different high - performance , nano 
porous materials with complementary characteristics and 
fabricated membranes that enter a previously inaccessible 
region of the performance cycle . 
[ 0082 ] The foregoing specification is comprised for illus 
trative purposes only , and is not intended to describe all 
possible aspects of the present invention . Moreover , while 
the invention has been shown and described in detail with 
respect to several exemplary embodiments , those of ordi 
nary skill in the relevant arts will appreciate that minor 
changes to the description , and various other modifications , 
omissions and additions may also be made without departing 
from either the spirit or scope thereof . 

What is claimed is : 
1 . A molecular separation device comprising : 
a porous , polycrystalline membrane material , and 
a porous , nanocrystalline material , 
wherein the nanocrystalline material is dispersed within 

the polycrystalline membrane material , and 
wherein the nanocrystalline material provides a plurality 
of nanoporous structures . 

2 . The molecular separation device of claim 1 , wherein 
the polycrystalline membrane material and the nanocrystal 
line material form a mixed - matrix . 

3 . The molecular separation device of claim 1 , wherein 
the device is permselective . 

4 . The molecular separation device of claim 1 , wherein 
the device is free of polymers formed from organic mono 
mers . 

5 . The molecular separation device of claim 1 , wherein 
the polycrystalline membrane material is free of polymers 
formed from organic monomers . 

6 . The molecular separation device of claim 1 , wherein 
the nanocrystalline material is free of polymers formed from 
organic monomers . 

7 . The molecular separation device of claim 1 , wherein 
the molecular separation device further comprises a com 
pletely nanoporous structure . 

8 . The molecular separation device of claim 1 , wherein 
said device is configured to separate molecular species from 
liquids , gases and mixtures of liquids and gases . 

9 . The molecular separation device of claim 1 , wherein 
said device is configured to separate azeotropes . 

10 . The molecular separation device of claim 1 , wherein 
the polycrystalline membrane material comprises a metal 
organic framework ( MOF ) or covalent organic framework 
( COF ) . 

11 . The molecular separation device of claim 1 wherein , 
the nanocrystalline material comprises a zeolite , MOF , or 
COF . 

12 . The molecular separation device of claim 1 , wherein 
the nanocrystalline material dispersed within the polycrys 
talline membrane material is further dispersed in a poly 
meric membrane to form a mixed - matrix membrane . 

13 . A method for producing a molecular separation device 
comprising : 

growing a porous polycrystalline membrane material 
from precursors , 

providing a porous , nanocrystalline material , and 
dispersing the porous , nanocrystalline material into the 

growing porous polycrystalline membrane material . 
14 . The method of claim 13 , wherein the polycrystalline 

membrane further comprises an MOF or a COF . 
15 . The method of claim 14 , wherein the MOF further 

comprises ZIF - 8 . 
16 . The method of claim 13 , wherein the nanocrystalline 

material comprises a zeolite , MOF , or COF . 
17 . The method of claim 16 , wherein a surface of the 

zeolite , MOF , or COF nanocrystalline material is function 
alized with amines or other groups to improve chemical 
compatibility of the nanocrystalline material with the poly 
crystalline material . 

* * * * * 
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