
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Aug 2008

A BIST Approach for Configurable Nanofabric Arrays A BIST Approach for Configurable Nanofabric Arrays

Mandar V. Joshi

Waleed K. Al-Assadi
Missouri University of Science and Technology, waleed@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
M. V. Joshi and W. K. Al-Assadi, "A BIST Approach for Configurable Nanofabric Arrays," Proceedings of the
8th IEEE Conference on Nanotechnology, 2008. NANO'08, Institute of Electrical and Electronics Engineers
(IEEE), Aug 2008.
The definitive version is available at https://doi.org/10.1109/NANO.2008.210

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/NANO.2008.210
mailto:scholarsmine@mst.edu

A BIST Approach for Configurable Nanofabric Arrays

Mandar V. Joshi and Waleed K. Al-Assadi, Senior Member, IEEE
Department of Electrical and Computer Engineering

Missouri University of Science and Technology
Rolla, MO 65409

Abstract —This work proposes a Built-in Self Test (BIST)
approach to test crossbars for a defined set of faults. The BIST
can classify the different programmable elements in the
crossbars as non-defective or defective with a certain fault
type. The logic synthesis can then configure the crossbar by
avoiding these defective elements.

Index Terms— Crossbar architecture, BIST, Nanofabrics,
Nanowires, Recovery, Redundancy, Defects

I. INTRODUCTION

Bottom-up techniques that enable us to fabricate circuits
of molecular dimensions, exploiting mechanical and
electronic properties of CNTs and SiNWs have been
suggested for digital systems [1] [2] [3]. A junction of two
SiNWs or CNTs is termed a “crosspoint.” A complete
NanoPLA architecture uses the “stochastic addressing”
developed by De Hon and takes advantage of programmable
crosspoints [4]. All such architectures assume a certain
assembly of NWs or CNTs, but crossbar (also referred to as
“nanofabric”) architectures are the most common of all. The
key idea of configurability is that each NW can be uniquely
addressed with a very high probability by introducing
redundancy in terms of the number of wires. Redundancy
ensures that even in the presence of a very high number of
defects (nominally 13% to 20%); the desired digital circuits
can be synthesized.

Our previous work pertaining to PLA architectures
introduced the new concept of introducing fixed [5] or
variable nanowire (NW) redundancy [6] to obtain higher
yields than most of the other proposed logic blocks in a
PLA.

In this work, however, we invoke a higher level of
abstraction in which we divide our crossbar into a number
of Programmable Blocks (PBs) equal in size to each other
and equidistant, as shown in Figure 1. In the BIST
procedure, the researchers configure the nanofabric array in
a defined sequence of macros (logic circuits) and observe
the outputs of neighboring logic blocks to find and analyze
defects. The performance of such BIST procedures is
governed by the types of configurations they need and the
number of configurations. Each PB can be thought of as a
PLA block, which has a rich interconnect. Each PB is either
defective or defect free for a given configuration. If a PB is
found to be defective, BIST techniques will tag it and the
synthesizer will not be allowed to use it for the

corresponding configuration.
The entire nanofabric array gets divided into sets of

blocks that act either as the Blocks Under Test (BUTs) or
Checker Blocks that test the validity of the outputs of the
BUTs. A NanoBlock is a configurable block and a
SwitchBlock is used as interconnect between different
NanoBlocks.

Fig.1 : Nanofabric PLA as an Array of Programmable Blocks

II. OVERVIEW OF PREVIOUS BIST TECHNIQUES
PROPOSED FOR NANOFABRICS

M. Tehranipoor proposed a Built-in Self Test procedure

for nanofabrics [7]. In this procedure, the nanofabric is split
into NanoBlocks and SwitchBlocks that perform logical and
routing operations, respectively. In the self-test, each
NanoBlock is configured either as a Pattern Generator
(PG) or a Response Generator (RG). A Test Group is
created using a set of PGs, RGs and SwitchBlock(s)
between the two. Test Groups of the same kind form a Test
Architecture, or TA, as shown in Figure 2. TAs are
generated based upon the direction of fault in each
NanoBlock and SwitchBlock. The NanoBlock configured as
a PG tests itself and generates the test pattern for RG. An
external device is needed to program the NanoBlocks and
read the RGs’ responses. 3n2/4 devices are configured. In
the test configurations, stuck-at, stuck-open, forward biased
and reverse biased diode and AND & OR bridging faults are
targeted. A specific configuration of PGs and RGs is used
for every type of fault. The main disadvantage of this
scheme is that it requires an external tester. Moreover, faults
in the SwitchBlocks are not considered.

978-1-4244-2104-6/08/$25.00 ©2008 IEEE. 695

Authorized licensed use limited to: University of Missouri. Downloaded on December 15, 2008 at 16:45 from IEEE Xplore. Restrictions apply.

Fig. 2: Test Architecture for BIST

Z. Wang proposed a BIST approach that is similar in

many ways to the approach discussed above [8]. In this
BIST procedure, NanoBlocks can be configured as Test
Pattern Generators (TPGs), Block Under Test (BUTs) or
Output Response Analyzers (ORAs) as shown in Figure 3.
These blocks, along with the corresponding SwitchBlocks,
comprise a TG (Test Group) similar to one discussed in [7].
In a TG, the TPG generates the testing patterns for a BUT
and ORAs examine the BUT output response. A TG and a
set of Fault Detecting Configurations (FDCs) are used
where different BUT faults can be tested. The metric
defined for the quality of the test is called “recovery,” which
is defined as the ratio of non-defective blocks identified to
the actual number of non-defective blocks. The separate test
procedure for each type of TG needed to achieve full fault
coverage results in three partial defect maps. The types of
FDCs used in the test sequence are identical to test
configurations used in [7]. A NanoBlock is defect free when
it bypasses all three partial defect maps. It is assumed in the
test sequence that ORAs can be read out using the
mechanism that configured the fabric. The test results show
that a 10x10 nanofabric with a 10% defect density yields a
recovery of 76.9%.

(a) AND-OR ORA (b) OR ORA

Fig. 3: Different Test Groups Implementing FDCs

III. NEW APPROACH FOR NANOFABRIC BIST

A. Test Configuration
In the new approach, we model the nanofabric as a set of

NanoBlocks similar to those in [7]. The types of blocks that
can be targeted are single stuck-at and bridging faults. A test
architecture consists of three blocks: two BUTs and one
Comparator (denoted as “C”), as shown in Figure 4.
Therefore, all the NanoBlocks take part in each test, and the
test for a particular set of faults is completed in two
configuration sequences. The BIST configures the blocks
externally using the device’s I/O interface.

Every block in the nanofabric has the ability to store the
result of the comparison. It is assumed that a comparator

always generates correct results storing a “0” for a
successful comparison and a “1” for an unsuccessful
comparison. In other words, the BIST remembers which
comparison went wrong and reports it to the external tester.
This helps generate an intermediate defect map called the
“Raw Defect Map” and, in turn, the final defect map. A test
is run for each type of fault to be targeted to create Raw
Defect Maps for corresponding faults. Combining all the
Raw Defect Maps gives the final defect map, which the
logic synthesizer can use to synthesize a given logic by
avoiding the defective blocks in the nanofabric.

Fig. 4: Test Configuration for Proposed BIST

B. BIST Algorithm and Illustration
A block is declared fault-free only if it does not manifest

any of the faults targeted. If the BIST can generate tests for
“f” number of faults, 2f sets of test vectors are needed to test
all blocks. These vectors create a Raw Defect Map for every
fault targeted. All Raw Defect Maps are then read together
to create the final defect map. The following algorithm
describes the BIST sequence:

FOR i=1 to types of faults targeted ---BIST STEP 1 to f
 Generate test vectors for fault (i) in the first fault
 Detection loop;
 Generate Raw_Defect_Map(i);
END FOR
Initialize final_defect_map=NULL;
FOR i=1 to types of faults ------BIST STEP f+1
 Final_defect_map = final_defect_map +
 Raw_Defect_Map(i);
END FOR

During the initial “f” steps, the BUTs are configured for a

certain logic that detects the targeted fault.
Figure 5 illustrates the two possible Fault Detection

Loops which the whole nanofabric can be divided. To
enable the conversion of every block in a nanofabric into a
BUT, two such loops are needed. A Comparator compares
the outputs of two neighboring BUTs and stores the results
of comparison. Differences in the outputs of the two BUTs
indicate the presence of a fault. At this time, the Comparator
does not know which of the BUTs possesses the fault. Thus,
the Comparator marks both BUTs as defect suspects. When
the next Fault Detection Loop is applied, the actual faulty
member is identified and is marked as “1.” The Raw Defect

696

Authorized licensed use limited to: University of Missouri. Downloaded on December 15, 2008 at 16:45 from IEEE Xplore. Restrictions apply.

Map is updated accordingly.

Fig. 5: An Illustration of Fault Detection Loops

Raw Defect Maps are obtained by sequencing through all

the possible fault types. A final defect map is obtained by
combining all of their 0s. The presence of a “1” essentially
signals the inability of the corresponding block to be
configured for a given logic function.

IV. ACCURACY ENHANCEMENT OF COMPARATOR

Comparator plays the most vital role in the proposed

BIST, since its results are assumed to be correct. Because
the comparator itself contains defective crosspoints, it is of
essence that it produces results with a very high accuracy.
This section explains how the accuracy of a comparison is
improved. For a given defect rate:‘d’ the expected number
of defects present in the BUT equals the product of BUT
array size and d. A BUT cannot be tagged as defect suspect
for the presence of a single fault, as all the BUTs are
expected to contain a non-zero number of faults. Therefore,
we tag the BUTs as defect-suspects when the total number
of expected faults in them exceeds the above product. The
presence of faults at the comparator would actually alter the
number of unsuccessful comparisons. Therefore, the
number of unsuccessful comparisons that gives the most
accurate estimate for BUT defects needs to be found. Its
analysis is as follows.

A comparison is successful when:
Non-defective element in a BUT is compared with non-

defective element in the other BUT under comparison
OR
Defective element in a BUT is compared with defective

element in the other BUT under comparison
Therefore,

P1 = P(successful comparison)
 = (1-d). (1-d) + d.d
 = 1- 2d + d2 + d2
 = 1 – 2d + 2d2

And,
P2=P(unsuccessful comparison)
 = 1- P1
 =1 - (1 – 2d + 2d2)
 = 2d (1-d)

Where, d is the defect density in the nanofabric. It

follows that the presence of d defects in an array gives rise
to P2 number of unsuccessful comparisons. Therefore, if the
number of unsuccessful comparisons is exceeded by the
product of size of BUT array and P2, the BUTs are tagged
as defective and otherwise they are tagged as non-defective
by the comparator. This improves the comparator’s
probability of obtaining a successful comparison.

V. RESULTS AND ANALYSIS

The coding and simulations were carried out using

MATLAB for the proposed BIST on a machine with the
following configuration:

AMD Turion 64 Processor 1.6 GHz, 1280 MB RAM
The fault universe consisted of two to five faults at a

given time. The results were obtained in terms of recovery
and computation time. The Defect Density or Defect Rate
was varied from 10% to 30% for all faults in the fault
universes to obtain the output parameters, namely recovery
and computation time. All the results display the results
based on the average of 1000 simulations.

Recovery =

Blocks Logic defective-non ofNumber Actual
Blocks Logic defective-non identified ofNumber (1)

Defect Density =

Blocks Logic ofnumber Total
Blocks Logic defective ofNumber (2)

(a) (b)

Fig.6: Defect density vs. Recovery for (a) 5x5 array and (b) 10x 10 arrays

697

Authorized licensed use limited to: University of Missouri. Downloaded on December 15, 2008 at 16:45 from IEEE Xplore. Restrictions apply.

Fig.7: Array size vs. Recovery and Array size vs. Computation time

A. Effect of Defect Density
As the defect density increases, the ambiguity between

the blocks marked as suspects and the actual defective
blocks increases. Moreover, the BIST assumes that only one
of the two blocks being compared is defective. This
assumption ceases to hold true for higher defect densities,
resulting in lower recovery rates at higher defect densities.
This trend is independent of the array sizes and, thus, results
in identical recovery values for all array sizes, as seen in
Figure 6. It can be seen that recovery figures are much
better than previous work in section II.

B. Effect of Array size
The simulations were conducted on square arrays to

maintain symmetry. Since the computational complexity has
a linear relationship to the size, the computation time grows
continuously as size increases, as seen in Figure 7. The
mathematical relationship of array size and computation
will be established in the next section.

C. Computation Time

The following computations are involved in the
completion of self-test:

1. Configuration time for each Fault Detection Loop =Tcfg
2. Comparison time consumed by each comparator =Tcom
3. Calculation time consumed by external Tester when

computing the final defect map =Tcalc
It follows that the configuration time, Tcfg, is taken by

each fault type and is repeated twice because there are two
Fault Detection Loops per fault. Similarly, the comparison
takes place twice. Given the above considerations, the time
complexity “T” is given by

T = O (Array size*(Tcfg x f) + (Tcom x f) + Tcalc)
 = O (Array size*(T1+T2+Tcalc)) (3)
Where:
f = Number of faults in the fault universe
T1 = Tcfg x f , T2 = Tcom x f

In the current scenario, the fault universe contains four

faults. As the array size increases, the computation time also
increases, as seen in Figure 7.

VI. CONCLUSION

Only two configurations are needed to cover all the
NanoBlocks to test a particular block, whereas the other
techniques require a set of configurations depending on size
and the type of fault targeted. In our technique, the number
of blocks tested at any time is a constant and equals half the
total blocks. This technique is much more area efficient
because two of the three NanoBlocks configured in our
technique are tested at a time and there is no need to
dedicate two blocks exclusively to pattern generation and
response analysis. It is flexible in terms of fault analysis.
The fault set can be previously defined, and the
configurations can be developed based on each fault. The
entire nanofabric is tested in just two configuration
sequences, which reduces the overall time required to test
the complete fabric for a given fault. Another advantage of
the new BIST approach is its constant recovery rate with
respect to array size. Scaling of arrays without loss of
recovery becomes possible.

REFERENCES

[1] M. Mishra and S. Goldstein, “Defect Tolerance at the End of the

Roadmap,” International Test Conference (ITC) 2003, pp. 1201-1210.
[2] Y. Cui, Z. Zhong, D. Wan, W. Wang and C. Lieber, “High

Performance Silicon nanowire Field Effect Transistors,” Nano
Letters 2003, vol. 3, no. 2, pp. 149-215.

[3] S. Cha, J. Jang, Y. Choi, G. Amaratunga, D. Kang, D. Hasko, J. Jung
and N. Kim, “Fabrication of a Nanoelectromechanical Switch Using a
Suspended Carbon Nanotube,” Applied Physics Letters 2005, vol. 86,
no. 8, id. 083105.

[4] A. DeHon and M. J. Wilson, “nanowire-Based Sublithographic
Programmable Logic Arrays,” International Symposium on Field
Programmable Gate Arrays (FPGA’04), pp. 123-132.

[5] M. V. Joshi and W. K. Al-Assadi, "Nanofabric PLA Architecture to
Minimize Configuration Time Complexity," 2007 IEEE Region 5
Technical Conference, pp. 32-36, April 2007

[6] M. V. Joshi and W. K. Al-Assadi, "Nanofabric PLA architecture with
Flexible Nanowire-Redundancy,” NSTI Nanotech conference, pp.
116-169, May 2007.

[7] M. Tehranipoor, “Defect Tolerance for Molecular Electronics-Based
NanoFabrics Using Built-In Self-Test Procedure,” Proceedings of the
20th IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems (DFT), 2005.

[8] Z. Wang and K. Chakraborty, “Built-in Self-Test of Molecular
Electronics-Based nanofabrics,” Proceedings of European Test
Symposium (ETS), 2005.

[9] J. G. Brown and R. D. Blanton, “CAEN-BIST: Testing the
NanoFabric,” Proceedings of International Test Symposium (ITC),
pp. 462-471, 2004.

698

Authorized licensed use limited to: University of Missouri. Downloaded on December 15, 2008 at 16:45 from IEEE Xplore. Restrictions apply.

	A BIST Approach for Configurable Nanofabric Arrays
	Recommended Citation

	A BIST Approach for Configurable Nanofabric Arrays

