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A BIST Approach for Configurable Nanofabric Arrays  
 

Mandar V. Joshi and Waleed K. Al-Assadi, Senior Member, IEEE 
Department of Electrical and Computer Engineering 

Missouri University of Science and Technology 
Rolla, MO 65409 

 
 
Abstract —This work proposes a Built-in Self Test (BIST) 
approach to test crossbars for a defined set of faults. The BIST 
can classify the different programmable elements in the 
crossbars as non-defective or defective with a certain fault 
type. The logic synthesis can then configure the crossbar by 
avoiding these defective elements. 
 
Index Terms— Crossbar architecture, BIST, Nanofabrics, 
Nanowires, Recovery, Redundancy, Defects  
 

I. INTRODUCTION 
 

Bottom-up techniques that enable us to fabricate circuits 
of molecular dimensions, exploiting mechanical and 
electronic properties of CNTs and SiNWs have been 
suggested for digital systems [1] [2] [3]. A junction of two 
SiNWs or CNTs is termed a “crosspoint.” A complete 
NanoPLA architecture uses the “stochastic addressing” 
developed by De Hon and takes advantage of programmable 
crosspoints [4]. All such architectures assume a certain 
assembly of NWs or CNTs, but crossbar (also referred to as 
“nanofabric”) architectures are the most common of all. The 
key idea of configurability is that each NW can be uniquely 
addressed with a very high probability by introducing 
redundancy in terms of the number of wires. Redundancy 
ensures that even in the presence of a very high number of 
defects (nominally 13% to 20%); the desired digital circuits 
can be synthesized. 

Our previous work pertaining to PLA architectures 
introduced the new concept of introducing fixed [5] or 
variable nanowire (NW) redundancy [6] to obtain higher 
yields than most of the other proposed logic blocks in a 
PLA.  

In this work, however, we invoke a higher level of 
abstraction in which we divide our crossbar into a number 
of Programmable Blocks (PBs) equal in size to each other 
and equidistant, as shown in Figure 1. In the BIST 
procedure, the researchers configure the nanofabric array in 
a defined sequence of macros (logic circuits) and observe 
the outputs of neighboring logic blocks to find and analyze 
defects. The performance of such BIST procedures is 
governed by the types of configurations they need and the 
number of configurations. Each PB can be thought of as a 
PLA block, which has a rich interconnect. Each PB is either 
defective or defect free for a given configuration. If a PB is 
found to be defective, BIST techniques will tag it and the 
synthesizer will not be allowed to use it for the 

corresponding configuration.  
The entire nanofabric array gets divided into sets of 

blocks that act either as the Blocks Under Test (BUTs) or 
Checker Blocks that test the validity of the outputs of the 
BUTs. A NanoBlock is a configurable block and a 
SwitchBlock is used as interconnect between different 
NanoBlocks. 

 

 
 

Fig.1 : Nanofabric PLA as an Array of Programmable Blocks 
 

II. OVERVIEW OF PREVIOUS BIST TECHNIQUES 
PROPOSED FOR NANOFABRICS  

 
M. Tehranipoor proposed a Built-in Self Test procedure 

for nanofabrics [7]. In this procedure, the nanofabric is split 
into NanoBlocks and SwitchBlocks that perform logical and 
routing operations, respectively. In the self-test, each 
NanoBlock is configured either as a Pattern Generator 
(PG) or a Response Generator (RG). A Test Group is 
created using a set of PGs, RGs and SwitchBlock(s) 
between the two. Test Groups of the same kind form a Test 
Architecture, or TA, as shown in Figure 2. TAs are 
generated based upon the direction of fault in each 
NanoBlock and SwitchBlock. The NanoBlock configured as 
a PG tests itself and generates the test pattern for RG. An 
external device is needed to program the NanoBlocks and 
read the RGs’ responses. 3n2/4 devices are configured. In 
the test configurations, stuck-at, stuck-open, forward biased 
and reverse biased diode and AND & OR bridging faults are 
targeted. A specific configuration of PGs and RGs is used 
for every type of fault. The main disadvantage of this 
scheme is that it requires an external tester. Moreover, faults 
in the SwitchBlocks are not considered. 
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Fig. 2: Test Architecture for BIST 

 
Z. Wang proposed a BIST approach that is similar in 

many ways to the approach discussed above [8]. In this 
BIST procedure, NanoBlocks can be configured as Test 
Pattern Generators (TPGs), Block Under Test (BUTs) or 
Output Response Analyzers (ORAs) as shown in Figure 3. 
These blocks, along with the corresponding SwitchBlocks, 
comprise a TG (Test Group) similar to one discussed in [7]. 
In a TG, the TPG generates the testing patterns for a BUT 
and ORAs examine the BUT output response. A TG and a 
set of Fault Detecting Configurations (FDCs) are used 
where different BUT faults can be tested. The metric 
defined for the quality of the test is called “recovery,” which 
is defined as the ratio of non-defective blocks identified to 
the actual number of non-defective blocks. The separate test 
procedure for each type of TG needed to achieve full fault 
coverage results in three partial defect maps. The types of 
FDCs used in the test sequence are identical to test 
configurations used in [7]. A NanoBlock is defect free when 
it bypasses all three partial defect maps. It is assumed in the 
test sequence that ORAs can be read out using the 
mechanism that configured the fabric. The test results show 
that a 10x10 nanofabric with a 10% defect density yields a 
recovery of 76.9%.   

 
(a) AND-OR ORA                 (b) OR ORA 

 
Fig. 3: Different Test Groups Implementing FDCs 

 
III. NEW APPROACH FOR NANOFABRIC BIST 

 
A.  Test Configuration 
In the new approach, we model the nanofabric as a set of 

NanoBlocks similar to those in [7]. The types of blocks that 
can be targeted are single stuck-at and bridging faults. A test 
architecture consists of three blocks: two BUTs and one 
Comparator (denoted as “C”), as shown in Figure 4. 
Therefore, all the NanoBlocks take part in each test, and the 
test for a particular set of faults is completed in two 
configuration sequences. The BIST configures the blocks 
externally using the device’s I/O interface. 

Every block in the nanofabric has the ability to store the 
result of the comparison. It is assumed that a comparator 

always generates correct results storing a “0” for a 
successful comparison and a “1” for an unsuccessful 
comparison. In other words, the BIST remembers which 
comparison went wrong and reports it to the external tester. 
This helps generate an intermediate defect map called the 
“Raw Defect Map” and, in turn, the final defect map. A test 
is run for each type of fault to be targeted to create Raw 
Defect Maps for corresponding faults. Combining all the 
Raw Defect Maps gives the final defect map, which the 
logic synthesizer can use to synthesize a given logic by 
avoiding the defective blocks in the nanofabric. 

  

 
 

Fig. 4: Test Configuration for Proposed BIST 
 

B. BIST Algorithm and Illustration 
A block is declared fault-free only if it does not manifest 

any of the faults targeted. If the BIST can generate tests for 
“f” number of faults, 2f sets of test vectors are needed to test 
all blocks. These vectors create a Raw Defect Map for every 
fault targeted. All Raw Defect Maps are then read together 
to create the final defect map. The following algorithm 
describes the BIST sequence: 

 
FOR i=1 to types of faults targeted ---BIST STEP 1 to f 
          Generate test vectors for fault (i) in the first fault  
          Detection loop; 
         Generate Raw_Defect_Map(i); 
END FOR 
Initialize final_defect_map=NULL; 
FOR i=1 to types of faults             ------BIST STEP f+1 
         Final_defect_map = final_defect_map +  
                                         Raw_Defect_Map(i); 
END FOR 
 
During the initial “f” steps, the BUTs are configured for a 

certain logic that detects the targeted fault.  
Figure 5 illustrates the two possible Fault Detection 

Loops which the whole nanofabric can be divided. To 
enable the conversion of every block in a nanofabric into a 
BUT, two such loops are needed. A Comparator compares 
the outputs of two neighboring BUTs and stores the results 
of comparison. Differences in the outputs of the two BUTs 
indicate the presence of a fault. At this time, the Comparator 
does not know which of the BUTs possesses the fault. Thus, 
the Comparator marks both BUTs as defect suspects.  When 
the next Fault Detection Loop is applied, the actual faulty 
member is identified and is marked as “1.” The Raw Defect 
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Map is updated accordingly.  

 

 
Fig. 5: An Illustration of Fault Detection Loops 

 
Raw Defect Maps are obtained by sequencing through all 

the possible fault types. A final defect map is obtained by 
combining all of their 0s. The presence of a “1” essentially 
signals the inability of the corresponding block to be 
configured for a given logic function. 

 
IV. ACCURACY ENHANCEMENT OF COMPARATOR 

 
Comparator plays the most vital role in the proposed 

BIST, since its results are assumed to be correct. Because 
the comparator itself contains defective crosspoints, it is of 
essence that it produces results with a very high accuracy. 
This section explains how the accuracy of a comparison is 
improved. For a given defect rate:‘d’ the expected number 
of defects present in the BUT equals the product of BUT 
array size and d. A BUT cannot be tagged as defect suspect 
for the presence of a single fault, as all the BUTs are 
expected to contain a non-zero number of faults. Therefore, 
we tag the BUTs as defect-suspects when the total number 
of expected faults in them exceeds the above product. The 
presence of faults at the comparator would actually alter the 
number of unsuccessful comparisons. Therefore, the 
number of unsuccessful comparisons that gives the most 
accurate estimate for BUT defects needs to be found. Its 
analysis is as follows. 

A comparison is successful when: 
Non-defective element in a BUT is compared with non-

defective element in the other BUT under comparison 
OR 
Defective element in a BUT is compared with defective 

element in the other BUT under comparison 
Therefore, 

P1 = P(successful comparison) 
     = (1-d). (1-d) + d.d 
     = 1- 2d + d2 + d2 
     = 1 – 2d + 2d2 

And, 
P2=P(unsuccessful comparison) 
    = 1- P1 
    =1 - (1 – 2d + 2d2) 
    = 2d (1-d)  

 
Where, d is the defect density in the nanofabric. It 

follows that the presence of d defects in an array gives rise 
to P2 number of unsuccessful comparisons. Therefore, if the 
number of unsuccessful comparisons is exceeded by the 
product of size of BUT array and P2, the BUTs are tagged 
as defective and otherwise they are tagged as non-defective 
by the comparator. This improves the comparator’s 
probability of obtaining a successful comparison. 

 
V. RESULTS AND ANALYSIS 

 
The coding and simulations were carried out using 

MATLAB for the proposed BIST on a machine with the 
following configuration: 

AMD Turion 64 Processor 1.6 GHz, 1280 MB RAM 
The fault universe consisted of two to five faults at a 

given time. The results were obtained in terms of recovery 
and computation time. The Defect Density or Defect Rate 
was varied from 10% to 30% for all faults in the fault 
universes to obtain the output parameters, namely recovery 
and computation time. All the results display the results 
based on the average of 1000 simulations. 

 
Recovery =

Blocks Logic defective-non ofNumber  Actual
Blocks Logic defective-non identified ofNumber   (1) 

 
Defect Density =   

Blocks Logic ofnumber  Total
Blocks Logic defective ofNumber          (2) 

 

 
(a)                                                                (b) 

Fig.6:  Defect density vs. Recovery for (a) 5x5 array and (b) 10x 10 arrays 
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Fig.7: Array size vs. Recovery and Array size vs. Computation time 

 
A. Effect of Defect Density 
As the defect density increases, the ambiguity between 

the blocks marked as suspects and the actual defective 
blocks increases. Moreover, the BIST assumes that only one 
of the two blocks being compared is defective. This 
assumption ceases to hold true for higher defect densities, 
resulting in lower recovery rates at higher defect densities. 
This trend is independent of the array sizes and, thus, results 
in identical recovery values for all array sizes, as seen in 
Figure 6. It can be seen that recovery figures are much 
better than previous work in section II. 

 
B. Effect of Array size 
The simulations were conducted on square arrays to 

maintain symmetry. Since the computational complexity has 
a linear relationship to the size, the computation time grows 
continuously as size increases, as seen in Figure 7. The 
mathematical relationship of array size and computation 
will be established in the next section.  

 
C. Computation Time  

The following computations are involved in the 
completion of self-test: 

1. Configuration time for each Fault Detection Loop =Tcfg 
2. Comparison time consumed by each comparator =Tcom 
3. Calculation time consumed by external Tester when 

computing the final defect map =Tcalc 
It follows that the configuration time, Tcfg, is taken by 

each fault type and is repeated twice because there are two 
Fault Detection Loops per fault. Similarly, the comparison 
takes place twice. Given the above considerations, the time 
complexity “T” is given by 

T = O (Array size*(Tcfg x f) + (Tcom x f) + Tcalc ) 
      = O (Array size*(T1+T2+Tcalc))                                (3) 
Where: 
f = Number of faults in the fault universe 
T1 = Tcfg  x f ,   T2 = Tcom x f 
 
In the current scenario, the fault universe contains four 

faults. As the array size increases, the computation time also 
increases, as seen in Figure 7. 
 

VI. CONCLUSION 

Only two configurations are needed to cover all the 
NanoBlocks to test a particular block, whereas the other 
techniques require a set of configurations depending on size 
and the type of fault targeted. In our technique, the number 
of blocks tested at any time is a constant and equals half the 
total blocks. This technique is much more area efficient 
because two of the three NanoBlocks configured in our 
technique are tested at a time and there is no need to 
dedicate two blocks exclusively to pattern generation and 
response analysis. It is flexible in terms of fault analysis. 
The fault set can be previously defined, and the 
configurations can be developed based on each fault. The 
entire nanofabric is tested in just two configuration 
sequences, which reduces the overall time required to test 
the complete fabric for a given fault. Another advantage of 
the new BIST approach is its constant recovery rate with 
respect to array size. Scaling of arrays without loss of 
recovery becomes possible. 
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