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APPLICABILITY OF LIMIT DESIGN TO COLD-FORMED BOX BOAMS

gy Paul il. Sandors,' M. ASCE, and Jerry Householder®

Introduction

Elastic design procedures are presently used to design the majority
of rigid frames used in prefabricated metal buildings. The rigid frame
cross-section is typically a wide-flange shape, often fabricated from
plate and sheet steel using automatic welding equipment. Frame members
are either prismatic or tapered; shop commections are typically welded,
while most field conmections use high-strength bolts.

Substitution of a box-shaped mewber of cold-formed steel can provide
advantages over the use of a wide-flange section. Some of these advantages
are (1) the cnhanced feasibility of using plastic design procedures, (2)
the elimination of lateral bracing, and (3) the potential saving of
material in the rigid [rame members. The purposc of this paper is to
determine the ultimate behavior of such box sections whenm subjected to

moment.

Plastic Design Theory

Plastic design is a limit method which can be applied to a ductile
structural member or frame subject primarily to bending. The method is
based on the maximm load which the structure will carry as dotermined
from an analysis of strongth In the plastic range. It also consists of

1 pssoc. Prof. and Asst. Dir. of Civ. Bngrg., Georgia Inst. of Technology,
Atlanta, Ga.

2 pssoc. Prof. of Construction, Louisisna State University, Baton Rouge, la.
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considorution of certain limitations which might prevent the structure

from withstanding the computod maximum load. The ultimate moment is

rcached at a cross-section when all fibers have yielded; this condition

is tormed plastic hinge. As the load on a statically indeterminate beam

or frame increascs toward the ultimate, some plastic hinges may Form

before othors. In this casc, the earlier-forming plastic hinges must

rotate so that later hinges may form. Whem all plastic hinges have

formed, a mechanism exists and the ultimate load is reachod. A necessary
condition which must be satisfied in order to justify the use of plastic
design procedures is that tho actual ultimate moment at each plastic

hinge location maintain a value close to its theoretical maximm until

all other plastic hinges have formed. Fig. 1 depicts the idealized relation-
ship between moment and rotation at e plastic hinge. The quantity “p is

the full plastic mcment. ﬂsmuttmoplndﬂ-pe‘ruinm the proportional
limit and to the utlimate, respectively. The rotational capacity, R, is

given by

ﬂ‘ -‘1 N (1)
r
P

As a rosult of scveral studies (3,5) most rescarchers have accepted valucs
of R betwoen 3 and 4 as being sufficient for redistribution of moments in
typical applications.
Stability Considerations

For tho case of wide-flange beams subjoct to moment, two modes of
Instability arc ol interest: lateral-torsional buckling and local buckling.
In beams npot proporly bracod agninst lateral-torsional huckling, the
moment capacity is sharply roducod us soon as buckling occurs. Therefore,
stringent luteral bracing roquircments arc part of plastic design specifi-
cations. llowever, olastic design spocilications roguire much less lateral
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op Rotation

Fig. 1 - Idealized Moment-Rotation Curve
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bracing. The economies realized by the use of plastic design may be offset
by the cost of the additional bracing.

In a properly braced wide-flange beam, local buckling of its thin
plate elements causes a reduction in moment capacity. The effects of local
buckling upon the moment-curvature characteristics of wide flange beams have
been studied previously (6,7,8).

Tse (11) has demonstrated that a box beam with a laterally unsupported
length conceivable in practical applications will not buckle in a lateral-
torsional mode under the action of pure bending moments. Also, unlike
the wide-flange shape, a box beam does not lose its resistance against
lateral-torsional buckling due to penetration of yielding over the cross-
section.

While local buckling limitations camnot be completely eliminated,
they can be mitigated by the use of closed box sections. This is due
to the fact that the [lange ol a box section is comsidered to be a stiffened
campression element while the flange of a wide-flange beam is unstiffened.
An unstiffened compression element is defined as a flat element which is
stiffened at only one edge parallel to the direction of stress. In the
case of a wide flange member, the web is the stiffener and each side of the
flange is an unstiffened compression element. A stiffened cospression
element is a flat element which is stiffened on both edges parallel to
the direction of stress. The stiffeners may be webs, intermediate stiffemers,
or simple lips. For cxample, the comprossion flange of a box boam is a
stiffened compression clement.

Effective Width Theory
In 1932 Von Karmen (12) proposed the effective width approach to the

problem of ultimate plate strength. Ile reasoned that when the ultimate
strength is reached, two strips of width b /2 at each edge carry the
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yield stress, while the central region remains unstressed. This condition
is depicted in Fig. 2. Using Von Karman's approach, onc may expross the
effective width of a simply supported plate as

b, = 1.9t v%y B P 2)

where t is the plate thichul.ﬂbmmluofoluttcity,mﬂoyu
the yield stress.

Based upon some 150 tests an stiffened compression elemonts whosc width-
thickness ratios ranged from 14.3 to 440, Winter (13) proposed the follow-

ing relationship
0.415 VE/o

b, = 1.9 v%y u--Tl'-)t . (%))

As a result of the aforementioned research, the ultimate strength of
the compression flange of a box beam can be very closely determined.
liowever, the determination of the ultimate stroength of the webs is very
complex. In the casc of a box beam with an effective compression flange
td.dth.b..mchislmt.hmthmhnﬂmpuidth,b.thmmms
will be lowered. Alsp at loads near the ultimate, the stress distribution
in the compression portion of the web is non-linear due to the large deflection
of the buckles which occur there. The behavior of the cospression portiom
of the web is not unlike the wniformly loaded plate in which material is
considorod to be romoved. The cfforts of many rescarchers over the ycars
to cxperimentally check web buckling thoories based upon small deflection
theory were relatively unsuccessful (4). Basler (1), in studying plate
girders with thin webs, suggests an effective section in which a portion
of the compression zone of the web is assumed to be non-participating.



Fig. 2 - Effective Width of a Buckled Plate
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The effective section is shown in Fig. 3. Any remsoval or nonconsideration
of material in the web serves to lower the neutral axis farther.

Ultimate Moment Theory
The ultimate moment of a box shape of steel in which the depth-

thickness ratio of the webs is less than that given by the formula (14)

d/t-uz/.ra,— R PR P LV 4)

Mayumhi (1 ksi = 6,9 MPa), and the width-thickness ratio of
the compression flange is less than

Wt'l”l ’Fy- LR L (5)

can be easily calculated by the principles of plasticity. BEqs. 4 and §
describe the upper dimension-thickness ratios of shapes defined as “plastic
design shapes." Under the provisions of Section 2.7 of the 1969 edition of
the AISC code, these ratios represent the upper limits beyond which presently
sccepted plastic or ultimate design procedures may not be used.

In order to predict the ultimate moment capacity of box beams whose
width-thickness and depth-thickness ratios exceed the provisions of AISC-
2.7, a procedure using effective widths, somewhat similar to that described
in Section 2.3 of the AISI code, is proposed. Fig. 4 shows tho effective
stresses in the compression lange of a beam with no intermediate stiffeners.
This effective removal of matorial [rom the flange lowers the noutral axis
to some distance from the top, c. 1f the compression portion of the web
does not buckle (i.o. is fully effective), the finnl stross state is as
shown in Fig. 5.

1f the web does buckle, its comprossion side may he considered as
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- Neutral Axis

Fig. 3 - Effective Section of Plate Girder in Bending
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G

Fig. 4 - Effective Stresses in Compression Flange
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Fig. 5 - Final Stress Statc with Web Fully Lffective
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a unifornly loaded plato with an effective width of b, in the fully
plastic state. This state of stress is shown in Fig. 6.

The location of the neutral axis for the fully yielded state is found
by equating tho area above thoaxis to the area bolow:

b.*k”b’:(d-c) (AR R L R R A R (6)

for the case where the web does not buckle (i.e. the distance to the neutral
axls,c.gbo:mtuceodlml"ay. muyisinhi],lnd

b°+2b;-b+2(d-c) ST e e )

for the case where the web does buckle.

The theoretical ultimate moment, M,» may then be found by the use of
tho principles of plasticity on the effective sectiom.

This analysis assumes that no unloading of the effective campression
flange occurs. Reck has shown (10) that box beams, whose flange width-
thickness ratios exceed 221/ fu‘;. are incapabloe of maintaining a sustained
moment while undergoing large rotations.

The theoretical ultimate moment capacity for box beams with longitudinal
web stilfeners may bo found in a similar manner. The effect of the stiffenors
is to impode the progression of the buckle down the wob and therefore to
increuse the effective nrca. The assumed offective section is shown in
Fig. 7. ‘The effective width of the top portion of tho web s therefore
based upon the distance betwoen stiffoners, d/2.

Instrumentation and Lquipment
Fourtcon cxperiments were performed to study the behavior of box beams
mode from thin plate elements having longitudinal stiffenors. The structure
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used in these tests was a simply supported beam which was loaded by two
symmotrically placed vertical loads so that the central portion of the
beam was subjected to constant moment. A schematic view of the test
structure is shown in Fig. 8.

The test beams were cold-formed in a press-brake. Transverse stiff-
eners were welded to the beams at points of load application in order to
prevent web crippling.

The test machine used in this program was a 450,000 1b. (2002.5 kN)
screw-fed, universal testing machine manufactured by Riehle,

De flections in the loading direction were measured during each test
by three dial gages positionod as shown in Fig. 8. In the elastic range
readings were taken at convenient increments of load, while in the inelastic
range increments of deformation were used. Loading was stopped each time
readings were taken.

In the inelastic range the rcadings were not takon until sufficient
time had elapsed to permit the system to come to rest, and therefore the
effects of the rate of loading do not influence the results. The test
points in the curves shown later herein represent stable deflection con-
figurations for static loading.

Eleven test soctions twelve feet (3.66m) long were fabricated from
14 gage (1.90mm) material, while three soctions twelve feet (3.66m) long
wore mado from 11 gage (3.04nm) material. The yicld streoss of tho motal
uscd in theso tests was found to be 33.4 ksi (230 MPn) by standard coupon
tosts. Each box scction was Fabricated from two C-sectlons as shown in
Fig. 9. Fig. 9a shows a bcam with the stiffcners located in tho webs.
Fig. 9b shows a beam with the stiffencrs located in the flanges. The
designation of each heam is descriptive in that the [irst two mmbers
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Fig. 9 - Test Sections
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represent the nominal width of the beam in inches, and the second two
numbers represent the nominal depth. The letter at the end of the
description indicates the location of the longitudinal stiffener--F for
flange and W for web. The beams made from 11 gage (3.04mm) material
are followed by ""(11)"; all others were made from 14 gage (1.90mm)
material, All the test soctions studied in this program, along with the
pertinent dimensions, are listed in Table 1. To aid in formulating a
means to predict the beam's ultimate moment carrying capacity, strain
gages were used in two tests--the 1218W and the 1610W. The strain gages
used were attached as shown in Fig. 10.

Twenty such gages were used in order to have them at or very near

the section where the ocut-of-plane buckling was a maximm. Tho buckling
pattern of a stiffened compression element is a series of dish-dome type
deformations as shown in Fig. 11. At sections "a'" and "c" the deformations
of the compression flange arc at a maximm being the dish or inward and
dome or outward deformation rospectively. At section '"b" there are no
out-of-plane deformations of the plate elements comprising the beam.
Due to minor variations which might exist in the location of the neutral
axis and stress distribution along the beam, gages were used at several
sections in order to determine the strains at a section of maximm buckle
deformations.

The results of the strain gage readings at sections of maximm buckle
deflection yicld two important results - the stresses at the various
locations and tho location of the neutral axis. The results of the strain
readings are shown for various loadings in Figs. 12 and 13,
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Table 1.

Width

in. (mm)
4.1(104.1)

D406F(11) 3.9( 99.1)

0408F

4.1(104.1)

0408F(11) 3.9( 99.1)
0609F(11) 5.8(147.3)

0612F
0616F
1008F
1012F
0610W
0815W
1214W
1218w
1610w

6.1(154.9)
6.0(152.4)
10.2(25%9.1)
10.3(261.6)
6.0(152.4)
8.0(203.2)
11.9(302.2)
12.0(304.8)
16.0(406.4)

Test Section Dimensions

Stiffener

Depth
in. (mm)
5.9(149.9)

5.8(137.2)
7.9(200.7)
7.8(198.1)
8.9(226.1)
12.0(304.8)
16.0(406.4)
8.0(203.2)
12.0(304.8)
9.9(251.5)
15.1(303.5)
14.0(355.6)
18.0(457.2)
10.2(259.1)

Length
in.(mm

0.8(20.3)
0.8(20.3)
0.8(20.3)
0.8(20.3)
0.8(20.3)
0.8(20.3)
0.8(20.3)
0.9(22.9)
0.8(20.3)
0.8(20.3)
0.8(20.3)
0.8(20.3)
0.8(20.3)
0.8(20.3)

Thickness
in.(mm)
0.0747(1.90)

0.1196(3.04)
0.0747(1.90)
0.1196(3.04)
0.1196(5.04)
0.0747(1.90)
0.0747(1.90)
0.0747(1.90)
0.0747(1.90)
0.0747(1.98)
0.0747(1.90)
0.0747(1.90)
0.0747(1.90)
0.0747(1.90)
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Fig. 10 - Strain Gage Locations
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Fig. 11 - Buckled Configuration of Compression Flange
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Table 2. Summary of Theoretical and Experimental Results

Section b/t* d/t* in.-kips i kN'm in.-kips * kN-m
0406F 22.1 73.6 112,3 12.7 121 13.7
0406F(11) 13.0 45.2 173.5 19.6 20840 23.5
0408F 22.1 100.4 162.4 18.4 170 19.2
0408F(11) 13.0 61.9 259.0 29.3 308%a% 54.3
0609F (11) 20.9 71.1 368.0 41.6 411 46.4
0612F 35.5 155.3 294.7 33.3 320 36.1
0616F 34.8 208.8 399.7 45.2 381 43.0
1008F 62.9 101.7 235.7 26.6 192 21.7
1012F 63.6 155.3 560.4 40.7 293 33.1
0610% 75.0 127.2 154.6%# 17.5 149 16.8
0815W 101.7 196.8 239,20 27.0 262 29.6
1214W 153.9 182.1 230.4%0 26.0 288 32.5
1218W 155.3 235.6 308.9%% 34.9 363 41.0
1610W 208.8 131.2 163, 5%* 18.5 20144 22.7
* b, d are flat widths M, = theoretical ultimate moment

%% calculated by elastic-plastic theory "t = yltimate moment from test

k&% acceptable yield plateau reached

SWVHE X04 40 NDISad LINTI]
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Discussion of Results

Moment-curvature tests on wide-flange members which qualify as
"plastic design shapes" show a variance from the theoretical plastic
moment of as much as 10% (9). For the purpose of the evaluation of
the tests in this program, any beam whose capacity falls below 90% of
the theoretical ultimate moment before reaching the specified rotation
will be considered not to have formed a plastic hinge. A rotation of
three times the rotation at the intersection of the elastic and plastic
curves will be used as the minimm required rotation (3). Table 2 lists
width-thickness ratios, 90% of l\l. the theoretical ultimate moment, and
Mt.ﬂnulti-tsmtm. CGurves showing the observed variation of
applied moment with maximm deflection appear in Figs. 14 to 27.

For flange-stiffened beams, M, was calculated assuming a fully
plastic condition. It was observed that one of the web-stiffened sections
maintained an acceptable yield plateau, even though it did not qualify
as a plastic design shape. This section, 1610W, fortuitously was one of
the two selected for strain gaging. The strain gage readings indicated
(a) some unloading of the compression flange at the comers and (b) a
linear stress distribution at maximm moment in the temsion portion of
the web (see Figs. 12 and 13). Therefore the theoretical ultimate moment
for each of the five web-stiffened sections was calculated assuming a
fully plastic effective section above the web stiffener, and a linear
clastic stress distribution below the web stiffener which satisfied
static equilibrium.
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Conclusions

Tests of fourteen cold-formed box beams were conducted to determine
width-thickness ratios beyond which acceptable plastic behavior did not
occur. Nine sections were flange-stiffened, and five were web-stiffened.

Of the nine flange-stiffened sections tested, only two qualified as

shapes acceptable for use in plastic design, using the criteria described
previously. This was a surprising result, because five of the nine flange-
stiffened sections were compact shapes (14), and three of these five also
met plastic design criteria; the two which exhibited acceptable plastic
behavior were in this last group. Based on this limited mmber of tests,
it can be concluded that presently accepted plastic design criteria may
not be sufficient to ensure plastic behavior in a box section with flanges
and webs of equal thickness. The presently accepted plastic design criteria
are based on tests of plate girder sections whose flanges were very stiff
compared to the webs (2), which provided nearly the equivalent of a fixed
edge to the web plato.

The remaining five sections of the fourtocen tested were web stiffened.
None of these were compact shapes, and therefore none met the more stringent
plastic design criteria (14). However, as can be seen in Figs. 23 through
27, four of the web-stiffened sections nearly satisfied the criteria
described previously (M, > 0.9 M, for 1 < R < 3), and ono, 1610, did. The
behavior of these fivo soctions indicates that the web stiffener plays an
important role. The web stiffoner inhibits the downward progression of tho
buckled web arca and, thercfore, the ncutral axis. It also provides additional
cospression area after the onset of buckling.
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The authors agree with Reck (10) that the limiting width-thickness
ratio of the flange is 221//G, for box sections to be used in plastic
design. It is also concluded that, based on these tests, a limiting
m—mmummmmdmmumhnv@. These
ratios apply to the flat widths of these elements between stiffenors.

If stiffenors are to be used, their placesment in the flanges results
in a greater section modulus and, thorefore, a greater allowable elastic
moment. However, based upon these tests, a sore efficient placemsnt
of stiffeners is in the webs for sections which are to undergo ultimate
behavior.
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APPENDIX IT - Notation

= width

= effective width of unstiffened plate

= effective width of portion of stiffened plate
= distance to neutral axis

= depth

= modulus of elasticity

= full plastic moment

= ultimate moment from test

= ultimate moment

= rotation capacity at a plastic hinge
= thickness

= deflection

= rotation at ultimate moment

= rotation at proportional limit

= yield stress
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