
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 1989

The directed Steiner problem on graphs: A simulated annealing The directed Steiner problem on graphs: A simulated annealing

approach approach

Lawrence Joseph Osborne

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Osborne, Lawrence Joseph, "The directed Steiner problem on graphs: A simulated annealing approach"
(1989). Doctoral Dissertations. 754.
https://scholarsmine.mst.edu/doctoral_dissertations/754

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/754?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

THE DIRECTED STEINER PROBLEM ON GRAPHS: A SIMULATED

ANNEALING APPROACH

BY

LAWRENCE JOSEPH OSBORNE, 1946-

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI - ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

1989

ABSTRACT

The well-known Steiner Problem on Graphs is an NP-complete problem for which

there are many heuristic and exact algorithms that are deterministic. In this

dissertation a new approach to the directed version of this problem is made by applying

the ideas of statistical mechanics through the use of the method of simulated annealing.

A version of annealing is developed for the Directed Steiner Problem and compared

with one of the best general annealing schemes. Then a comparison is made between

simulated annealing and the traditional branch and bound technique. The dual ascent

algorithm of Richard T. Wong is used to obtain lower bounds for the branch and

bound scheme. It appears that for random graphs with more than approximately 60

vertices the new method is on the average superior in finding near-optimum answers

quickly. In fact, for large values of N, where N is the number of vertices, it is possible

to obtain answers within a few percent of the optimum in polynomial time.

ACKNOWLEDGEMENT

Many people have helped make this accomplishment possible. Numerous

teachers throughout my undergraduate and graduate career have advised and

encouraged me. The departments of Mathematics and Computer Science at UMR

provided me with graduate teaching assistantships without which I would have been

unable to continue.

My thanks go to Southwest Missouri State University which generously granted

me two years leave of absence and a half of a year's salary to finish this work. Bruno

Schmidt, Head of the Department of Computer Science at SMSU, has always patiently

accomodated my schedule and guided me through administrative procedures.

Without Dr. Bill Gillett, my advisor, I would never have persevered through the

times when my research did not seem to be productive. He focused my attention on

areas where progress could be made, and he saw results when I saw only obstacles.

I would also like to thank Dr. V. A. Samaranayake in the Department of

Statistics for the time he has taken for numerous discussions concerning this research.

I am indebted to all the members of my committee for their time and efforts on my

behalf.

Finally, I would like to thank my parents. Mr. and Mrs. L. B. Osborne, who have

supported and inspired me throughout my education.

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGEMENT .. iv

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES .. xi

SECTION

I. INTRODUCTION ... 1

II. PRELIMINARIES ... 6

A. DEFINITIONS ... 6

B. SPECIAL CASES AND REDUCTIONS10

III. LITERATURE R E V IE W .. 12

A. EXACT ALGORITHMS .. 14

B. HEURISTIC ALGORITHMS FOR SNP32

1. The Algorithm of Takahashi and Matsuyama (TM) 32

2. The Algorithm of Kou, Markowsky, and Berman (KMB) . 34

3. The Algorithm of Wu, Widemayer, and Wong (WWW) . . . 37

4. The Revised Algorithm of Rayward-Smith (RSR)41

5. The Algorithm of Plesnik (PL) ..46

IV. THE METHOD OF SIMULATED ANNEALING 51

A. INTRODUCTION ...51

B. THE SIMULATED ANNEALING ALGORITHM 54

C. MATHEMATICAL MODEL ...56

D. COOLING SCHEDULES 59

VI

1. Simple Annealing Schedules ..61

2. More Complicated Annealing Schedules62

E. PERFORMANCE .. 69

F. APPLICATIONS .. 78

V. TAILORED COOLING ALGORITHM ... 81

A. GENERIC IMPLEMENTATION DETAILS SI

B. SPECIFIC IMPLEMENTATION DETAILS FOR DSP 83

1. The Experimental Sample of Graphs for Optimizing
Parameters ...84

2. Initialization and Termination Parameters85

3. Tempfactor and Chainfactor .. 93

C. MODIFYING THE TAILORED COOLING ALGORITHM . 96

1. Choosing Neighbors by Random Permutations 96

2. An Alternative Neighborhood Structure9S

VI. DYNAMIC COOLING ALGORITHM ..106

A. IMPLEMENTATION OF THE DYNAMIC COOLING
ALGORITHM ... 107

B. COMPARISON OF TCA AND DCA ... 115

1. Accuracy of the TCA and DCA ..115

2. Running Times of TCA and DCA118

a. Total Running Times ...118

b. Running Times Until Near-Optimal Solutions119

VII. SIMULATED ANNEALING, BRANCH AND BOUND, AND
THE DSP ...145

VIII. CONCLUSIONS AND FUTURE RESEARCH 174

REFERENCES ...179

Page

vii

VITA

Page

. 193

viii

Figure Page

1 For this tree equality holds in Equation (3.31)... 35

2 An Example of the KMB Algorithm ... 36

3 (a) Results from TM (b) Results from KMB 38

4 Stages in the Algorithm of Plesnik ... 50

5 Structure of the Systolic Algorithm ... 73

6 Structure of the Clustered Algorithm .. 75

7 Structure of the Decision Tree Algorithm ... 76

S The evolution of the solution during annealing on a graph with 60 nodes,
30 Steiner nodes, and pe = 0.05. Time increases(thus temperature
decreases) along the X-axis. The Y-axis measures the current cost. . . 86

9 The Effect of INITIAL_PROB on Cost for G60... SS

10 The Effect of INITIAL_PROB on Running Time for G60............................ 89

11 The Effect of MINRATIO on Cost for G60.. 91

12 The Effect of MINRATIO on Running Time for G60................................ 92

13 The evolution of the solution value during annealing on G60 with the
DCA. Time increases(thus temperature decreases) along the X-axis.
The Y-axis measures the current cost.. I l l

14 The deviation from the optimum for a graph of 80 nodes, special = 40,
and pe = .25 as a function of the stopping rule Ѱ 312

15 The deviation from the optimum for a graph of 80 nodes, special = 40,
and pe = .25 as a function of the parameter δ.. 113

16 Deviation from the optimum of the final result as a function of n. pe = 0.50
and special = n/2 116

17 Distribution of First Occurrences of a Near-Optimal Solution for 50
Graphs with Parameter values of n = 40, pe = 0.05, and special = 10. 133

18 Distribution of First Occurrences of a Near-Optimal Solution for 50
Graphs with Parameter values of n = 40, pe = 0.05, and special = 20. 134

LIST OF ILLUSTRATIONS

IX

Figure Page

19 Distribution of First Occurrences of a Near-Optimal Solution for 50
Graphs with Parameter values of n = 40, p, = 0.05, and special = 30. 135

20 Distribution of First Occurrences of a Near-Optimal Solution for 50
Graphs with Parameter values of n = 60, p, = 0.05, and special = 15. 136

21 Distribution of First Occurrences of a Near-Optimal Solution for 50
Graphs with Parameter values of n = 60, p, — 0.05, and special = 30. 137

do Distribution of First Occurrences of a Near-Optimal Solution for 50
Graphs with Parameter values of n = 6o, p, = 0.05, and special = 45. 138

23 Distribution of First Occurrences of a Near-Optimal Solution for 50
Graphs with Parameter values of n = 60, p, = 0.90, and special = 15. 139

24 Distribution of First Occurrences of a Near-Optimal Solution for 50
Graphs with Parameter values of n = 60, p, — 0.90, and special = 30. 140

25 Distribution of First Occurrences of a Near-Optimal Solution for 50
Graphs with Parameter values of n = 60, p, = 0.90, and special = 45. 141

26 nRegression Functions for the DCA and the TCA Special = — 142

27 Regression Functions for the DCA and the TCA Special = 143

28 Regression Functions for the DCA and the TCA Special = 144

29 The number of optimum answers using the Algorithm of Wong as a
function of the number of vertices... 148

30 Regression Functions for Branch and Bound and the TCA Special = —
and p, = 0.05... 162

31 nRegression Functions for Branch and Bound and the TCA Special = —
and p, = 0.25... 163

32 Regression Functions for Branch and Bound and the TCA Special = -p-
and p, - 0.50..." 164

33 Regression Functions for Branch and Bound and the TCA Special = —
and p, — 0.90... 165

34 Regression Functions for Branch and Bound and the TCA Special = ~
and p, = 0.05... " 166

35 Regression Functions for Branch and Bound and the TCA Special = —
and p, = 0.25... " 167

X

36

37

38

39

Figure

40

41

 nRegression Functions for Branch and Bound and the TCA Special = —
and p, = 0.50... ̂ 168

Regression Functions for Branch and Bound and the TCA Special = ~
and p, = 0.90...“ 169

3 ftRegression Functions for Branch and Bound and the TCA Special = -~—
and p, = 0.05... 170

fi
Regression Functions for Branch and Bound and the TCA Special = ——
and pt = 0.25 ... 171

. ̂ftRegression Functions for Branch ar.d Bound and the TCA Special = -
and p, = 0.50.. 172

Regression Functions for Branch and Bound and the TCA Special = ~~~
and p, - 0.90 .. 173

Page

xa

Tabic Page

I COMPARISON OF THREE HEURISTIC ALGORITHMS BY
RAYWARD-SMITH AND CLARE ON PROBLEMS WITH
KNOWN ANSWERS... 45

II COMPARISON OF DIFFERENT VALUES OF MINRATIO ON
G60 FOR THE TAILORED COOLING ALGORITHM 90

III RUNNING TIME AS A FUNCTION OF CHAINFACTOR AND
TEMPFACTOR FOR G60 ... 95

IV AVERAGE COST AS A FUNCTION OF CHAINFACTOR AND
TEMPFACTOR FOR G60 ... 95

V COMPARISON BETWEEN METHODS FOR CHOOSING
NEIGHBORS ON FOR THE TAILORED COOLING
ALGORITHM ... 101

VI COMPARISON BETWEEN METHODS FOR CHOOSING
NEIGHBORS ON G80 FOR THE TAILORED COOLING
ALGORITHM .. 101

VII COMPARISON OF’THE TAILORED COOLING ALGORITHM
AND LOCAL OPTIMIZATION FOR GRAPHS OF 40
VERTICES AND 1-CHANGE NEIGHBORHOODS 102

VIII COMPARISON OF THE TAILORED COOLING ALGORITHM
AND LOCAL OPTIMIZATION FOR GRAPHS OF 40
VERTICES AND 2-CHANGE NEIGHBORHOODS 103

IX COMPARISON OF THE TAILORED COOLING ALGORITHM
AND LOCAL OPTIMIZATION FOR GRAPHS OF SO
VERTICES AND 1-CHANGE NEIGHBORHOODS 104

X COMPARISON OF THE TAILORED COOLING ALGORITHM
AND LOCAL OPTIMIZATION FOR GRAPHS OF SO
VERTICES AND 2-CHANGE NEIGHBORHOODS 105

XI RUNNING TIME AS A FUNCTION OF <5 and £ FOR G« . . . 114

XII (FINAL COST) / OPTIMUM AS A FUNCTION OF b and £
FOR Gi0 ... 114

XIII (BEST COST) / OPTIMUM AS A FUNCTION OF b and £ FOR
G60 .. 115

LIST OF TABLES

Table

XIV AVERAGE DEVIATION OF LENGTH FROM THE OPTIMUM

Page

FOR EACH COMBINATION OF PARAMETER VALUES
FOR 20 AND 40 VERTICES .. 129

XV AVERAGE DEVIATION OF LENGTH FROM THE OPTIMUM
FOR EACH COMBINATION OF PARAMETER VALUES
FOR 60 AND SO VERTICES ... 130

XVI AVERAGE TOTAL RUNNING TIME FOR EACH
COMBINATION OF PARAMETER VALUES FOR GRAPHS
WITH 20 OR 40 NODES ...

XVII AVERAGE TOTAL RUNNING TIME FOR EACH
COMBINATION OF PARAMETER VALUES FOR GRAPHS
WITH 60 OR SO NODES ... 132

XVIII RESULTS OF THE APPLICATION OF THE ALGORITHM
OF WONG TO GRAPHS WITH 20 OR 40 NODES 146

XIX RESULTS OF THE APPLICATION OF THE ALGORITHM
OF WONG TO GRAPHS WITH 60 OR 80 NODES 147

XX A COMPARISON OF AVERAGE SOLUTIONS AFTER 3
CHAINLENGTHS OF THE TCA BEGINNING AT A
RANDOM CONFIGURATION AND AT THE
CONFIGURATION YIELDED BY THE HEURISTIC OF
WONG ... 157

XXI A COMPARISON OF THE TAILORED COOLING
ALGORITHM AND THE BRANCH AND BOUND METHOD
APPLIED TO THE DIRECTED STEINER TREE PROBLEM
ON GRAPHS OF .05 DENSITY .. 158

XXII A COMPARISON OF THE TAILORED COOLING
ALGORITHM AND THE BRANCH AND BOUND METHOD
APPLIED TO THE DIRECTED STEINER TREE PROBLEM
ON GRAPHS OF .25 DENSITY .. 159

XXIII A COMPARISON OF THE TAILORED COOLING
ALGORITHM AND THE BRANCH AND BOUND METHOD
APPLIED TO THE DIRECTED STEINER TREE PROBLEM
ON GRAPHS OF .50 DENSITY .. 160

XXIV A COMPARISON OF THE TAILORED COOLING
ALGORITHM AND THE BRANCH AND BOUND METHOD
APPLIED TO THE DIRECTED STEINER TREE PROBLEM
ON GRAPHS OF .90 DENSITY 161

I. INTRODUCTION

The Steiner problem in its most general form asks for the shortest network of arcs

that will interconnect a set of given points in space. It cannot be solved by simply

placing arcs between the various points. To solve the problem requires adding new

points, called Steiner points, that act as intermediate points between the required nodes

in a shortest network. The problem became popular in 1941 when Richard Courant

and Herbert E. Robbins [23] included it in their book What is Mathematics. Since

that time many mathematicians and computer scientists [13,18,22,24,44,75, 107]

have studied this problem, but an efficient exact algorithm for random graphs with

more than approximately 30 vertices has not been found. Moreover, since it has been

proven that the problem is within the class of NP-hard problems [40], it is unlikely that

a polynomial time algorithm exists for this problem. Hence, in recent years researchers

have concentrated on developing heuristic algorithms that provide a good, but not

optimal, solution in polynomial time. [96].

The Steiner problem on graphs, both directed and undirected, was introduced by

Haiomi [4S] in 1971. It varies from the original Steiner problem in that the Steiner

points must be chosen from a finite set of fixed given points. This problem has also

been shown to be in the class of NP-hard problems [40]. A number of deterministic

heuristic algorithms have been developed that deliver results in polynomial time which

are guaranteed to be within twice the value of the optimum.

[34, 64, 82. S4, 85, 98, 113]. These algorithms prune minimal spanning trees that

contain an optimal Steiner tree.

There are many practical applications for the Steiner problem on graphs. Among

these are the construction of telephone, pipeline, and transportation networks

The most effective exact methods for attacking the Steiner problem on graphs

have been based on integer programming formulations of the problem [6,8,9, 112],

These methods attempt to derive lower bounds by means of Lagrangian relaxation

[8,9,31] and dual ascent [74,112]. methods, both of which arc produces of

mathematical duality theory. The algorithm of Wong [112] is designed specifically for

the directed Steiner Problem on graphs, but it can be applied to the undirected case

by simply replacing each arc by two edges going in opposite directions. The branch

and bound procedure in conjunction with the algorithms for finding lower bounds is

the usual method employed to find an exact solution. Chapter 111 discusses both the

exact and the heuristic algorithms.

The analysis of combinatorial search problems is usually directed toward the

estimation of the worst case, but the information obtained by such an analysis is

frequently of little use because the worst case seldom arises. A typical example is the

simplex algorithm for linear programming which has a worst-case exponential

complexity, but an average behavior of polynomial complexity. Average-case behavior

is difficult to determine because of the difficulty in assigning probabilities to the

enormous number of possible configurations in optimization problems. Since it is hard

to analyze average case behavior, it is also hard to isolate the characteristics of

algorithms with good average-case behavior. Hence, few general methods exist for

attacking complex combinatorial optimization problems. The most common method

is that of branch and bound. It is designed to avoid the worst case of complete

enumeration of all possible solutions. While it takes exponential time to go through

all configurations in many combinatorial optimization problems [SI], it is often

possible to make decisions early in the search tree that eliminate a large number of

[20 ,35 ,74 ,91], the design of integrated circuits [5 ,49 ,50 ,51 ,58 ,59 ,87], building

design [95, 97], routing [67], and Phylogeny [33].

3

unfruitful possibilities. The effectiveness of branch and bound depends on the quality

of the bounds that can be obtained on the solution at specific configurations. If there

are numerous points close together in a graph, there are numerous solutions to the

Steiner problem that differ by only small amounts. Hence, the branch and bound

technique, even with a good lower bound producing algorithm such as the one by

Wong, may spend a long time eliminating possiblilites that are in a shallow local

minimum anyway.

A different approach is to use methods based on a probabilistic analysis of the

average costs of admissible configurations in a optimization problem. These methods,

inspired by the use of statistical mechanics in thermodynamics, offer the possiblitv of

near-optimal solutions in polynomial time for most instances of many NP-hard

problems [100], The physicist deals with complex systems involving many interacting

particles that are in equilibrium with the surrounding environment. This requires a

statistical rather than a deterministic description of the set of possible internal states

of the system. Since it is impossible to perform enough experiments on the microscopic

state to directly measure the probability distribution, methods of statistical mechanics

are used to make systematic guesses as to the average values of such quantities as

energy, number of particles, and volume. In the context of combinatorial optimization,

the quantity that is to be estimated is the internal system energy, because it represents

the cost function for any admissible state. The lowest energy state is analogous to the

configuration that has the lowest cost.

The problem is to determine the probability distribution of the set of

configurations from a given value of the average energy or cost. From information

theory [92] comes the criterion that the probability distribution must maximize the

degree of uncertainty, measured by the statistical entropy, concerning the occurrence

of any configuration. This is the least biased estimate of the probability distribution

4

[11]. The distribution that results from this criterion is the Boltzmann distribution.

This distribution contains 'he information regarding the division of possible states

among different energy levels that the system can enter while undergoing a heat bath

at a fixed temperature. As the temperature is decreased, the Boltzmann distribution

assigns larger and larger probabilities to those states near the minimum energy level.

This process of reducing a metal to its ground state is known as annealing.

Kirkpatrick [62] pointed out the similarity between combinatorial optimization

and annealing in physics. For a given problem each trial solution corresponds to an

internal state, and the evolution of the system is an algorithm which generates a

sequence of states following a stationary process consistent with a value of the mean

of the cost function. The specific value of the mean of the cost function is controlled

by the temperature or the control parameter.

In physics random fluctuations exclude the possiblity of a global minimum of

potential energy from ever occurring over a reasonable amount of time, but they result

in a state that represents the average of a local minimum state and its neighbors.

Furthermore, the system is not allowed to remain in local minima that are not very-

deep compared with the size of the average fluctuations. The global minimum may not

be attainable, but by gradually lowering the temperature, a result very close to the

optimum is likely to be reached. Low temperatures must be approached slowly to

reduce the probability of getting caught in a shallow local minimum.

For the directed Steiner Problem on graphs and other combinatorial optimization

problems a control parameter plays the role of temperature. It is decreased as the

optimization process proceeds. Equilibrium of thermodynamic character is replaced

by equilibrium in the sense of a Markov process. This method is called simulated

annealing. It has proven to be a powerful tool for finding near-optimal solutions for

5

a large number of NP-complete combinatorial optimization problems [105], In

addition, the asymptotic convergence of simulated annealing has been mathematically

proven [46, 72, 77], This has motivated a growing number of theoretical studies on the

method [11,36,41,43,47,80,89,101]. Interest in simulated annealing in a parallel

processing environment is also an area of current research [1,2, 17, 54, 56]. Chapter

IV gives an overview of the known results concerning the annealing method.

While the paradigm of statistical cooling is intuitively simple and the theory has

a solid mathematical foundation, the actual implementation for a specific application

involves choices concerning four different parameters: the initial temperature, the

length of the Markov chains, the method of decrementing the control parameter

between chains, and the condition for terminating the cooling schedule. Simulated

annealing has been applied successfully to a great many problems, but no general

agreement exists , not only on what form the parameters should take, but also on how

to determine the values of the parameters once the form has been established. A

methodology for selecting these parameters for the directed Steiner Problem on graphs

is presented in Chapter V. In Chapter VI, a comparison is made between the cooling

schedule tailored to the directed Steiner Problem on graphs from Chapter V and the

robust algorithm of Aarts and van Laarhoven [4] which determines the decrement of

the control parameter and the criterion for termination dynamically during execution.

Chapter VII is devoted to a comparison between the results produced from using

the quite different techniques of branch and bound and simulated annealing with

respect to the directed Steiner Problem on graphs. Statistics on the accuracy and

running times for these methods on 144 random graphs are compiled and analyzed.

These random graphs have a variety of vertices, edge densities, and proportions of

nodes that must be connected. The conclusions drawn from this comparison and the

results of the earlier chapters of this study are presented in Chapter VIII.

6

II. PRELIMINARIES

In this part of the dissertation relevant definitions are given in the first section,

followed by some common reductions that can be done to simplify the directed Steiner

tree problem on graphs.

A. DEFINITIONS

All graph-theoretic concepts not defined in this section are in agreement with l iarary

[52], with the understanding that they are in a natural way extended to networks.

An undirected network G = (V,E,c) consists of a finite nonempty set V, of n

vertices, labeled 1.2....n; a set, E. of m unordered pairs of distinct points of V. and a

real-valued cost function c: —> K. Each pair e = (u, v) of points in E is an edge of G, and

this edge is said to join u and v. Often e = uv is used to denote the edge (u,v) ir which

case u and v are said to be adjacent.

A directed network G = (N,E,c) consists of a finite nonempty set N of n points,

labeled 1.2,...,n; a distinguished node called the root or source ; a set, E, of m ordered

pairs of distinct points of N; and a real-valued cost function c: -> R. Without loss of

generality let 1 be the root node. An}' ordered pair of distinct points e = (u,v) in E is

called an arc and is denoted uv. The arc uv begins at u and ends at v. Then u is said

to be adjacent to v and v is said to be adjacent from u. The outdegreefv) of node v is

the number of arcs that begin at v, and the indegree(v) is the number of edges that end

at v. The root has indegree 0 and outdegree > 1.

An alternating sequence of distinct points and arcs v0, au Vi, a2,..., an, tv in which

each arc at = t'^v, is called a directed path. The cost of such a path is the sum of the

costs of the arcs included in it. The cost of even- arc e — (i j) in G is denoted by c,„ If

7

If there is a path from u to v, thcr. v is said to be reachable from u and the

distance, d(u,v). from u to v is the length of any such path of minimum cost. Every

node is reachable from the root node.

The minimum cost path between two vertices i and j in G is denoted by

minpa/hc(i,j), and its cost is represented as dc{i, j) . To denote the minimum cost path

between a subset W of V and a vertex i e V, we use minpaihc,{tt\ /]■

A seminath is an alternating sequence v0, au v,, a2, ..., a„, vn of points and arcs, but

each a, may be either or

While a network is either connected or not connected, there ; re three different

forms of connectedness for a directed network. A directed network is strongly

connected if every two points are mutually reachable. It is unilaterally connected if for

any two points at least one is reachable from the other; and it is wcaklv connected if

every two points are joined by a semipath. A directed network is disconnected if it is

not even weakly connected.

A unilaterally connected forest rooted at a given node is called a tree.

The undirected Steiner Network Problem (SNP) can be stated as follows.

Given: n vertices, a set, E, of m edges, and an

edge cost function c: E-* R, and a subset W £ V

with w vertices.

Find: A subtree of G, Gw, that includes all

the vertices of W and such that the sum of the

a directed path has identical first and last vertices while the remaining vertices are

distinct, then it is called a cycle. A forest h a directed network without cycles.

8

weights of the edges in the subtree is a minimum [110].

It is not required that the cost function, c, satisfy the triangle inequality. The Directed

Steiner Network Problem (DSP) requires finding a minimum cost tree rooted out of

node 1 which spans a special set of points W c Node 1 is considered to be a member

of W. In the work of this dissertation the edge weights ctJ satisfy the condition

c,j > 0 V(; J) e E.

A network H = (Z, F, cF) is called a subnetwork of G = (N,E,c) if Z £ X, F E

E, and c^e) = c(c) for all e e F. M is said to be a spanning subnetwork if Z = X. If Z

is a subset of X, then the network induced by Z is the subnetwork of G derived by

joining those pairs of nodes in Z which arc adjacent in G. Any subset of X can induce

a subnetwork of G. The concepts of subnetwork, spanning subnetwork, and a

subnetwork induced by another can be defined for directed networks in an analogous

manner.

A strong component of a directed graph is a maximal strong subnetwork. The

sex of all strongly connected components of G represents a partition of the set X of

vertices.

As noted in Wong [112] we say that a node v, dangles from node v2 if there is a

directed path from p to v;, but not one from v2 to v;. A strongly connected component,

r , is also a root component if F contains a member of W — {1}, but no member of W

dangles from a member of T.

Let G' = (A', E', cr) be a subnetwork of a directed network G. Define C(k) to be

the set of points in G' for which there is a directed path in G' from i to k. Then the

cut-set of node k is the set of arcs (i,j) that satisfy the following conditions.

l . y e E .

9

2. (ij)4 E'.

3. y e C(k).

4. # C(k).

Suppose {P, P} is a partition of the vertices V in G. Then

{(ij) e E | / e P, and j 4 P } is called a cut-set of edges between P and P.

A network in which even' vertex is adjacent to even1 other vertex is called a

complete network. A network which can be embedded in a plane such that no two

edges intersect geometrically except at a vertex to which they are both incident is said

to be a planar network. The notions of complete and planar can be similarly defined

for a directed network.

A network or directed network G is said to satisfy the triangle inequality if G is

a complete graph, c(e) > 0, V e e E, and c(i.j) < c(i,k) + c{kj) V i.j.k e N. The DSP

does not assume that the triangle inequality is satisfied.

A contraction in an undirected network G = (\,E ,c) along edge e = (i,j) is a

process such that:

(a) , edges incident to j are made incident to i.

(b) . vertex j is removed from G, and, if j e W, then i

becomes an element of W in the contracted network.

(c) . loops incident to i are removed from G, and if

i has a pair of parallel edges incident to it,

then only the one with the smaller cost is

retained.

10

A contraction of a network G along a set F £ E is a sequential contraction along

the edges of F.

B. SPECIAL CASES AND REDUCTIONS

Consider some special cases of the Directed Steiner problem in networks.

1. If |\V| = 1, then the minimal Steiner tree is a single vertex.

2. If |W| = n, then the SNP reduces to the minimal

spanning tree problem for which there exists

the well-known algorithm of

Chu and Liu [21], and Edmonds [29].

3. |W) = 2. In this case the SNP is the shortest

path problem. Again there is a well-known

polynomial time algorithm for this problem [26].

Assume G = (X. E, c), is connected, c(e) > 0 for all e e E, and 2 < w < n, where

w = | W |. Let 7V denote the directed Steiner minimal tree for W in G. Then use the

local properties of G to reduce a particular instance of the DSP. The reductions are

as follows [28]:

A. Least Cost Test: If dG(i,j) < c(i,j) for some arc (ij) e E, then

this arc can be deleted. The algorithm of Floyd [32]

can be used to implement this test.

B. Nearest Vertex Test: If k e W and (/, k) e E b

cik = rrun{c,* \j e X J A k). and if

0 + cik ^ nun {cJk\j e X , j # /, k), (2.1)

11

then arc (/, k) is in an optimal solution

and nodes k and i can be fused.

C. Degree Zero Test: If / e X — W with outdegrce zero, then

point i can be deleted.

D. Outdegrce One Test: Let / e N — W b outdegree(i) = 1 and

denote by (/, /) the only arc out of i. Then node i can be removed

when those arcs of minimum cost, (q, /'), entering i are

replaced by arcs (q, f) of cost c,, + c,h

E. Indcgrcc One Test: If k is one of the special vertices

and arc (/, k) is the only edge entering k,

then this edge is in the solution and points i and k can be fused.

For most networks a large savings in time may be attained by using reductions.

After applying these tests on the random graphs studied in this dissertation, the ratio,

, of nodes to edges varied from 0.18 to 0.30 for graphs where n was between 10 and

60 and the arc density ranged from 0.05 to 0.90.

The algorithms in this dissertation were programmed in Turbo Pascal 4.0 on an

IBM PS/2 Model 80 with a mathematics coprocessor.

12

III. LITERATURE REVIEW

The Steiner problem in networks is a combinatorial optimization problem that is

closely related to the much studied Steiner problem in the Euclidean plane

[23, 24,44, 107], This latter problem involves finding the shortest path joining a set

of points in the Euclidean plane. To achieve this goal it is usually necessary to

introduce other points at which the edges intersect. Although there are several exact

algorithms for the Euclidean Steiner Problem (ESP) [75, 22, 13, 107] , the problem

has been shown to be NP-Complcte [3S], and, because of the computation time, none

of these algorithms is able to solve problem instances of even 100 vertices [107], A

heuristic algorithm that produces good solutions in 0{n\agn) time has been given by

Smith, Lee, and Liebman [96]. Previously, a heuristic was developed by Chang [IS].

If the locations of additional points are limited to a finite set, S, then the shortest

network spanning a given set, W, will be a subnetwork of the complete network on

IV [J S. If we omit the requirement that IE |J S lies in the Euclidean plane and allow

arbitrary7 edge costs rather than using the Euclidean distance between the vertices, then

we obtain the Steiner network problem (SNP).

Karp [61] has proven by using a transformation from the Exact Cover by 3-Sets

Problem that the Steiner Network Problem (SNP) is XP-complete. It has also been

shown that the problem remains NP-complete even if all edge weights are equal, even

if G is a bipartite graph having no edges joining vertices in V — W [40], and Garev and

Johnson [39] demonstrated that the problem was XP-complete even if G is a planar

graph, Some special classes of graphs have been identified, however, for which the

SXP can be solved in polynomial time [102, 103, 10S. 109].

13

A rather obvious, but interesting, generalization of SNP is the Directed Steiner

Network Problem (DSP), defined in the following way [48]:

Given: A directed network G = (V,E,c) with

n vertices, a subset W £= V with w vertices,

a set, E, of m edges rooted out of some

node, say Ai0, of \V, and an edge cost function c: IE —> R.

Find: A subtree of G, Gw, rooted out of ku that spans

all the vertices of W such that the sum

of the weights of the edges in the

subtree is a minimum.

Wong [112] developed a method for finding a lower bound for the case when c(i,j)

> 0 V(/, j) e E by means of an integer programming technique called the "dual ascent

method." Although this method has never been employed in a heuristic algorithm,

Winter [110] has suggested the following heuristic technique for attacking the DSP.

Assume vertex 1 is the root.

Step 1: Find the directed network H using the dual ascent

algorithm. Let Q represent the vertices in H that are

connected by a directed path with vertex 1. W will be

contained in Q.

Step 2: Find the minimum spanning tree, TQ, of the

subnetwork of G induced by Q.

Step 3: Delete from TQ, one vertex at a time, those leaves that are Steiner vertices.

Let Tw be the result. Then TV is the approximate Steiner minimal tree.

14

Any undirected Steiner network can be transformed into a directed Steiner network by

replacing each undirected arc with 2 directed arcs each having the same cost as the

original arc. Since SXP is NP-completc and even.' SNP can be transformed into a DSP,

it follows that DSP is also XP-complete.

A. EXACT ALGORITHMS

There are a number of algorithms for the undirected SXP, some of which can be

adjusted to fit the directed case. Ilakimi [48] was the first to formulate the Sieincr

problems for undirected and directed networks. He showed that the solution of the

SXP implied the solution of several covering problems in graphs, and he suggested that

one solution of the problem was to enumerate all of the minimum spanning trees of

subnetworks of G induced by the subsets of V containing W.

Lawler [66] gave the following modification of Hakimi's enumeration algorithm.

Step 1: Compute the shortest path lengths between all

pairs of nodes and substitute these lengths

for the arc weights, adding arc lengths

where necessary to form a complete graph.

Step 2: For each possible subset of V with p — 2 or fewer

Steiner points, find the minima] Steiner tree,

where p is the number of special points.

Step 3: Choose the least costly tree from Step 2 and replace

each arc of the spanning tree with the arcs of the

15

shortest path between the associated endpoints.

The time complexity of the algorithm of Lawler is no worse than 0(p22n~f + /?3), where

the /73 results from the use of Floyd's algorithm for minimum cost path [32].

Balakrishnan and Patel have given another enumeration algorithm in which the

original network is modified as follows [7]:

(i) a new node, call it node 0, is added

(ii) a zero weight edge is added connecting node 0 to node 1

(iii) zero weight edges are added between node 0 and each of

the Steiner points.

Let G denote the new network, and suppose that r represents the set of all spanning

trees of G containing the edge (0,1). For any T e r , let 7] be the subtree of T

containing node 1 when edge (0,1) is removed. If 7, spans all of the demand nodes,

then 7 is a feasible solution to SNP. .Moreover, for any feasible Steiner tree, T , it is

easy to show that there is at least one member of t with a subtree equal to T . Let T

be the spanning tree made by adding to T the edge (0,1) and edges (0,i), for all Steiner

points i not in T . Then T is the shortest spanning tree of G with T for a subtree. T

and T have the same total length.

Thus, the SNP is equivalent to finding the shortest spanning tree of G that has

edge (0,1). and which has a subtree spanning the demand nodes, including node 1,

when (0,1) is removed.

Balakrishnan and Patel [7] suggest the following enumeration procedure for

solving the SNP.

(1). Generate spanning trees of G containing edge (0,1) in order
of increasing weight.

16

(2) . Let 7’ be the first tree in this sequence with edge (0,1) which contains
a subtree spanning the special vertices when (0,1) is deleted.

(3) . Call this subtree Tlan. Then 7ka„ is the required minimal Steiner tree.

The algorithm of Gabow [37] can be used for generating spanning trees of G in order

of increasing cost.

Hakimi [48] also suggested another algorithm that is related to a well-known

method of Mel/.ak for the Euclidean Steiner problem [75], This approach is based on

the fact that 7] must have at least two W-vcrticcs i and j satisfying one of the

conditions:

(a) , deg(i) = dcg(j) = I, and the path from i to j contains Steiner

vertices only; one and only one of these Steiner vertices has

degree greater than 2 in 7k.

(b) . either deg(i) = 1 or deg(j) = 1, and the path from

i to j contain only Steiner vertices of degree 2

or no vertices at all.

If (a) or (b) is satisfied, then i and j are said to be "p-adjacent" in 7k [4S].

Hakimi's algorithm determines the minimum cost tree spanning W in G with i and j

p-adjacent, or concludes that no such tree could be 7k- Since there is no way to know

beforehand which of the W-vertices are p-adjacent in 7k, it is necessary to consider

even’ combination of i and j, to attempt to construct the minimum cost tree containing

the W nodes with i and j p-adjacent, possibly concluding that no such tree can be 7k,

and to select as 7k the answer that yields the minimum cost. Thus, this algorithm is

not very' efficient. Hakimi gave no computational results for these solution procedures.

17

Dreyfus and Wagner [27], gave an exact algorithm based on dynamic

programming methods which had a worst case complexity of 0(n3f + n22f + «3). The

basis of the algorithm is the "optimal decomposition property, " which can be stated

as follows.

Let T be any Steiner tree connecting W, the set of

special points, and let p e W, If | W| > 3, then 3 a vertex q e X

and a subset Z E W such that:

(a) . Z is a proper subset of W - {/>}, and Z 0.
(b) . T = 7] U T2 U 7], where 7], 7], and 7] arc pairwise disjoint.
(c) . T\ is a Steiner path joining q and p.
(d) . T2 is a Steiner tree connecting {q) (J Z.
(e) . 7] is a Steiner tree connecting {<?} (J (IV — Z — {/>}).

To implement the property directly, an arbitrary node p e W would be chosen,

followed by a search for the optimal q, which itself requires both the discovery of the

optimal subset Z<=W, and that Steiner trees 7] and 7] be found. The entire process

would be recursive. Dreyfus and Wagner, however, chose to construct the solution in

the following | IV\ — 1 steps [27].

1. Remove a node, say p, from W. Let D = W — {/?}.
2. For each set of 2 vertices in D and any

node n e X, solve the Steiner problem,
n can belong to D, or it can even be p.

3. Use the result of step 2 in order to solve Steiner
problems joining each set of 3 nodes of D and any■ node n e X.•

iV i — 2. Solve the Steiner problems for each set of
| W\ — 2 nodes of D and any node of N.

IW'I — 1. Solve the Steiner problem connecting D with point p.

18

If E £ D, and n e N, then each step in the algorithm above requires two searches:

Search 1 finds a node, q e N; Search 2 gets the optimal subset F £ E in the sense that

the sum of the costs of the Steiner paths joining {q} U F and {q} U (£ — F), plus the

cost of the path from n to q is the minimum cost for a tree connecting three such sets.

This technique of constructing larger optimal solutions from optimal solutions of all

possible smaller problems is a general process used in dynamic programming. Levin

[69] also gave a dynamic programming algorithm for solving the SNP that was slightly

less efficient than the one of Dreyfus and Wagner. According to Christofides [19], the

algorithms of Hakimi and of Dreyfus and Wagner, while better than complete

enumeration, are able to handle, in a reasonable amount of computing time, problems

with only slightly more than ten special vertices.

Shore, Foulds, and Gibbons [94] presented a branch and bound enumeration

scheme which separates in a systematic way all of the feasible solutions (i.e. those trees

spanning the special nodes) into smaller partial solutions. Each of these smaller

subsets of edges is analyzed using upper and lower bounds to determine whether it is

able to contain the optimal feasible solution.

A specific set of edges in included and another specific set of edges is excluded in

even’ partial solution. The set of included edges for a partial solution will comprise a

set of connected components. A solution is feasible if it contains only one connected

component that spans W. The branching process creates two nodes. One of these

nodes represents the addition of an edge for consideration, and the other solution

corresponds to the exclusion of the edge from consideration. The former node is

always selected first.

19

Branching at an unfathomed node, q, involves selecting an edge producing two

new partial solutions Tor each edge a penults for not including it in the set of selected

edges is assigned 1 he edge with the largest penult) is chosen for branching This edge

is found in the following was

Let the points in \V be labelled w,, w2 , u,, ^nd let the points in \ — W be

I, , »„

1 '1 he penalty sector, T = {/ /= 1, 2, _,/>}, is computed b) these steps

(a) c , = min {c,,)(k = the salue of j that is associated ssith c ,

(b) r , = nun {cj
1 <j<n v J-

(c) l = c~ ~ c ,

2 Let i, = mas {/]

Then {i„ is the edge chosen for branching The node q becomes the parent of tss o

ness nodes Each of these nodes corresponds to a partial solution that is identical to

that for q, except that for one node {\h, v**} is included in the partial solution, and for

the other node {i* is excluded from the partial solution

The cost matrix Cv is temporarilv adjusted m order to obtain a bound for each

partial solution If the new partial solution resulted from the addition of edge (v,, i,}

to the set of edges removed from consideration, then temporanh let cy = c,, — oo If the

new partial solution was obtained by augmenting the set of included edges , then the

components containing \, and q arc joined C is then reduced bv one row' so that it

becomes a square matrix again such that each row and each column correspond to a

unique component Let the new cost matrix be denoted b) C' The \alues, c',, m the

new matrix must be defined by

20

c'ij = cip i f i ¥ = x , y a j * x , y

c'n ~ c'x. = min {cxi. cw) //1 < x < p, i = 1 ,2n, i=hy

c'iy = c>7 = mw(cy/, cxij if i = 1 , 2 , « , / A x

A lower bound is calculated for a node with cost matrix C by means of the

following theorem.

Theorem 1: Let 2 ' be a minimal solution of the SXP on G(X, E), and suppose

Upper bounds for each node in the branch and bound tree arc found by applying the

algorithm of Kruskal [65] or that of Prim [S3] to the edges in the graph at that node

until all the points in W are connected.

Shore, Foulds, and Gibbons [94] compared their algorithm to the first algorithm

of Hakimi [4S] and to the algorithm of Dreyfus and Wagner [27], The evidence

presented was for 45 random graphs of from 10 to 30 nodes, using ALGOL on a

Burroughs B6700. The results indicated that when p is small compared to n, Dreyfus

and Wagner's algorithm was superior, when p is close to n/2, the algorithm of Shore,

Foulds, and Gibbons performed the best, and when p was close to n, Hakimi's

algorithm outperformed the other two. The computational evidence also showed that

the algorithm of Shore, Foulds, and Gibbons, unlike the other two algorithms, was

characterized by results that fluctuated greatly depending on the distribution of the

edge weights. For all three of these algorithms, it often took more than 100 seconds

V Min {c,.}) — Min {c,,}. Then
— i h'j<p ' / 1 S ' i r

2 > Min {a, b} (3.1)

of CPU time to find a solution.

such that W p) P * 0 and W fj P # 0. Let the cut-sets for these partitions be labeled

Ci, C2, ..., C„ and suppose the edges of G are labeled eu e2. ..., em. A = (aj is a matrix

where

Ancja [6] suggested an approach which treated the SNP as an integer

programming formulation of a set covering problem. Let {P, P}, be a partition of X

aU =
1 if Cj e Cj

0 otherwise
(3.2)

for i = 1.2, ... , q and j = 1.2, ... , m. Then the set covering problem is:

(3.3)

such that

i = l , 2 , . . . , q (3.4)
j= i
x; e (0, 1), j — \ . 2 , . . . , m (3.5)

Suppose that X — (x \,x \, . . . ,x 'm) is an optimal solution to the set covering

problem. Let Tx- be a subnetwork of G whose edge set corresponds to those edges,

c, 3 x = 1. Then Tx- is the solution to the Steiner network problem. This is easily

shown by the following argument. Tx• has no cycles since ci; > 0 V and j. Also, Tx- has

exactly one component connecting all the vertices of W, because otherwise a violation

of a constraint corresponding to some cut-set C, would occur. Lastly, since Tx- is found

using equation (3.4) , Tx- yields the tree that spans W with the minimum cost.

Since the number of constraints for the set covering problem grows exponentially

with the number of nodes, the algorithm treats the constraints implicitly by means of

a "row generation scheme" that is a modification of a known algorithm for the general

set-covcring problem given by Bcllmore and Ratliff [10]. In this algorithm it is

necessary' to solve the linear programming relaxation of the formulation of the set

covering problem given above. Since q is large for the Steiner network problem, the

dual simplex method for the linear relaxation is not efficient. Ancja showed how to

determine the entering and leaving' variables for a current basis without explicitly

employing the constraints.

Ancja [6] implemented his algorithm in FORTRAN IV for an IBM 370

computer. He attempted problems with as many as 50 nodes, 60 edges and

| If | = ~ . Solutions to the linear relaxation form of the set covering problem yielded

very good bounds on those problems for which the algorithm was able to terminate.

However, out of 80 problems that Aneja attempted, 23 did not terminate within 60

seconds, and, of those 23, 20 did not finish the first iteration. Thus, it seems likely that

a method of solving the set covering formulation other than linear relaxation could

make this method more practical.

Wong [112] suggested a method for obtaining a tight lower bound on the SNP.

He formulated the problem as follows.

(3.6)
(U)e E

subject to:

23

Z k e W (3.7)

(3.S)

k > 0, (ij) e E .k e W, (3.9)

J'/y e {0.1}. (3.10)

where Vi; indicates whether or not arc (i,j) is contained in the solution, and a-,/ is the

amount of flow between nodes 1 and k on arc (i.j). Equation (3.7) causes one unit of

commodity k to be sent from node 1 to node k, and constraint (3.8) permits flow only

on an arc that is in the solution. In this representation, corresponding to every' edge

(i.j) e E, there are two variables, namely yv, and jy. Thus, this form of the SNP is

suitable for defining the Directed Steiner Problem(DSP). The optimal solution to this

formulation yields the cost of a directed Steiner minimal tree.

The dual of the linear relaxation of (3.6) - (3.10) is:

(3.11)
k s W

subject to:

— Ujjk < 0 , k e W, i,j e N, (3.12)

24

keH'

< Cy, (i,j) 6 E, (3.13)

>0. (3.14)

Solving the dual problem would provide a lower bound for the problem defined by (3.6)

-(3.10). Moreover, Wong proved that the solution to the dual is equal to the solution

of the linear relaxation of the set covering algorithm of Ancja [6], Unlike Ancja, Wong

does not attempt to solve (3.11) - (3.14) to optimality. Instead, he offers a dual ascent

heuristic for obtaining a near-optimal solution.

1. Initialize:

r/ = 0, k e W, i e X,
Ui/ = 0, (/J) £ E,
S(ij') = Qj— y u j = c,j.ki W
Form the auxiliary graph H = (.V, A) with A empty.
Since A = 0 all of the vertices are strongly connected components
and even’ element of W — {1 } is a root component.
Let C{k) denote the set of vertices in H that are connected to k
by a directed path.

2. Choose a root component R. Stop when there are no
root components left.

3. Select a node k that is in the intersection o~W and R .
Define S{r,f) = min{S(/,/) | {i.j) e cut set of k}.
Then

(a) . V h e C(k). vj — vj -f S{F,f).
(b) . V (ij) e cut set of k, u,j = u j + S(F ,f) and

- S(r,f).

A. Update the auxiliary graph by H = H U {('./)}.
Then return to Step 2.

25

In the algorithm all members of W are root components and so all vkl, k e W are

possible choices for incrementing at Step 2. Each variable vh\ h e C(k) is increased in

Step 3. S(ij') represents the slack for the constraint in the dual problem corresponding

to arc (/,_/). The second part of Step 3 makes the u,/ variables larger and reduces the

slack variables S(i,j) for those arcs (i,j) in the cut set of k. Since (/',/) e cut set of k,

= S (r .f) — S (i ',f) = 0. Thus, Step 4 adds an arc (/",/) to H whose slack variable

is zero.

The initial solution in Step 1 for equation (3.11) where all variables arc zero is

feasible. Wong showed that the modification of the variables in Step 3 maintained the

feasiblity of the solution. Since during each iteration of the heuristic, one arc is added

to H, the algorithm will terminate after finitely many iterations.

Using an IBM 3033 computer, Wong applied his algorithm to four groups of six

vert’ sparse graphs, two groups with 40 nodes and two groups with 60 nodes. Except

for two of the graphs the algorithm found the exact answer. With the other two graphs

the result deviated from the optima! by less than 1%. The average running times for

all four groups was less than 0.6 sec. Hence, a branch and bound algorithm similar to

the one used in this dissertation should be able to find optimal solutions very

efficiently.

The integer programming technique of Lagrangian relaxation [42, 31, 93,]. has

been applied to the undirected Steiner Network Problem by Beasley [8, 9]. He has used

this method in a branch and bound algorithm that makes use of three different

formulations of the SNP. Each node, N„ in the binary depth first search tree is

characterized by having a set IN, of Steiner vertices included in the feasible solution

and a set of OUT,- of excluded Steiner vertices. At each stage in the tree search

procedure there is, moreover, a set F, £ E of edges that has been identified as being in

26

the solution and a set F0 £ E of edges identified as not belonging to the Steiner minimal

tree. Suppose G, is the subnetwork of G constructed by removing the Steiner points

in OUT,, and by applying reductions to the resulting undirected network. In G the

vertices in IN, arc considered tv. be elements of W. Let 1U, denote the W-vcrticcs in

G,. To find an optimal solution, if one exists, at a node in the tree search is equivalent

to locating the Steiner minimal tree T, for IT, in G,.

The upper bound U, for a tree search node N can be determined by adding the

costs of edges identified during the branch and bound procedure as belonging to the

Steiner minimal tree for W U IN, in G — OUT, to the cost of a tree spanning 11', in G,

found by any of the heuristic methods described in the next section of this chapter.

Beasley [8, 9] gave three different ways of finding the lower bound, L„ at N„ all

of which employed Lagrangian relaxations of the SNP for IV, in G, defined as 0-1 linear

programming problems. These problems are defined here for the initial tree node

G, - G and IV, = W.

Let IT, = \V — {1 }. Let vy, be a binary variable corresponding to edge (i,j) and

suppose x,Jk represents the amount of flow between points 1 and k on edge (i,j) in the

direction from i to j. Then formulate the SNP as follows:

(3.15)

such that

}'ij — x ijk - b xjik V(/. ’) e E, Yk e IVj (3.16)

27

y a 1 VA e if ,
(U)eE

y ^ u .> i v t e i r ,
(h, k)eE

XUk - y xbik >0 V A e JF,, V/ 6 N\(1, A}
(U)eE (h, i)eE

p - \ < y,j <n - 1 (3.18)
(iJ)eE

Vij e {0, 1} V(/,y)e£ (3.19)

'ijk > 0 V/J s (ij) e E, VA e IF,. (3.20)

Expressions (3.16) and (3.17) force any solution to yield a connected subnetwork

spanning W. Expression (3.18) is redundant, but it strengthens the first two lower

bounds, LR1 and LR2, described below.

LR1 is determined by the Lagrangean relaxation of (3.16). Let s,Jk be Lagrangean

multipliers for (3.16). Then s:ik > 0 V(/. /) e E, A e LR1 is then defined as:

min

(U)e£

(3.21)

such that (3.17) - (3.20) are satisfied.

28

The optimal solution to (3.21) is a lower bound of the cost of the Steiner minimal

tree. This expression can be decomposed into a number of separate subproblems. The

first subproblcm is

such that (3.1 8) and (3.19) hold. Then p,, = 1 if and only if c,. — ^ s<.-<Vv>s either among

the {p ~ 1) smallest coefficients or is negative among the (n — 1) smallest coefficients.

The remaining subproblems are of the form

subject to (3.17) and (3.20). These subproblems can be solved by J IT, | shortest

elementary path calculations locating the least expensive path from node 1 to node

k e Wi in the graph with cost matrix (£,,*)• The algorithm of Dijkstra [26] can be used

for this purpose. LR1 applies the subgradient optimization algorithm [31,53] to

improve the lower bound found in (3.21).

The second lower bound, LR2, is obtained by employing the Lagrangean

relaxation of (3.17). Denote the Lagrange multipliers by iik. The lower bound problem

is as follows.

(3.22)

('J)ei-

(3.23)
ke ir, (i,j)eE

(ij)sE i.je N ke ke W,
(3.24)

29

such that conditions (3.16) and (3.18 - 3.20) are true, where

~ rik ~ !jk if ‘ ^ k ,j - k
Cyk — *[~ lik + ljk if ‘ ^ k J 1 , k

0 otherwise

where /,* > 0 Vie X, k e ll\, and (3.16) and (3.18 - 3.20) must be satisfied.

From (3.16) when ytJ = 1 , the optimum contribution from y,, is

h =cv + y , c vk< cjik} (3.25)
ke ir,

This permits (3.24) to be rewritten as:

min y V :y + X ! (h k + ’ kk) (3-26)
(i,j)eE i.je I f ,

such that (3.18) - (3.20) are satisfied. The optima] solution to this representation is

obtained by setting y,; = 1 exactly when b,; is either among the C o - 1) smallest

coefficients, or it is negative and among the (n — 1) smallest coefficients. Again to

improve the lower bound given in (3.26) subgradient optimization [31, 53] is applied.

The third Lagrangean relaxation form of the problem is based on a shortest

spanning tree problem with additional constraints. The network G is modified by

adding a vertex 0 and by connecting that vertex with every node / e N — W by edges

with zero cost. Let G denote the modified network. Then find the shortest spanning

tree of the resulting graph with the restriction that in the shortest spanning tree any

vertex in X — W connected by an edge (0,i) must have degree one. After deleting edge

30

(0,1) from the result, the component containing W is shown by Beasley to be the

desired Steiner minimal tree [9],

Suppose Ej represents edges of G incident to node j e X. Then the LR3 problem

can be formulated in the following way.

min Y , C<>'V
(‘J)eC

(3-27)

such that

{(ij) lyij = 1} is a spanning tree of G

Tok + }'pq ^ I V k . e S — W , V(p, q) e Ek

}'ij e {0, 1} V (i J) e E

(3.2S)

(3.29)

(3.30)

The lower bound is determined by Lagrangean relaxation of (3.29). Let be the

Lagrangean multipliers, where j e S — (W (J {0}), (p, q) e By properly arranging the

coefficients, c,., and the multipliers, the problem LR3 can be written in a form that is

equivalent to the unconstrained minimum spanning tree problem, which is easily solved

by any of the well-known polynomial time algorithms [65, S3],

As before, the subgradient optimization algorithm [31,53] is used to improve the

answer to LR3.

The quality of the lower bounds obtained from LR3 varies widely depending on

which vertex of G is designated node 1. Beasley [9] suggested that node 1 b : a vertex

of W whose average distance to other W-points is a minimum.

31

Beasley's algorithms are, at least for sparse networks, the most efficient among

the algorithms for SNP. LR1 and LR2 are comparable in their effectiveness with LR1

producing a smaller duality gap (i.e. (optimal value - maximum lower bound at the

root)/ (optimal value)) and LR2 finding the optimal solution in less time. In most

cases, however, the differences are insignificant [8].

LR3 was implemented on a CRAY X-.MP/4S computer with special vector

processing capabilities not available on the CDC 7600 which was used to test LR 1 and

LR2 [8, 9]. However, even taking into account this extra computing power, LR3

outperforms the other two relaxations both in terms of duality gap and running times.

Using the CRAY X-MP/48 Beasley was able to solve some networks as large as 1000

nodes and 25000 edges within 20 minutes. The efficiency of LR3 improves as p

increases.

Exact algorithms using spanning tree enumeration methods [48, 66], integer

programming [6, 94, 8, 9, 112], and dynamic programming [27, 69], have been devised,

but they are not computationally efficient as they require a number of computational

steps that is either exponential in the total number of nodes or exponential in the size

of the set of special nodes that must be spanned. The best of these algorithms appears

to be those of Beasley for undirected graphs and Wong for directed graphs. Beasley

uses Lagrangian relaxation of a 0-1 integer programming problem to provide a lower

bound which can be utilized in a tree search procedure to obtain an exact answer. The

algorithm of Wong, has produced results comparable for graphs of up to 60 vertices.

This algorithm has not previously been used in a branch and bound scheme like the

one used by Beasley. In this dissertation, however, a branch and bound

implementation of Wong's algorithm is compared with simulated annealing in the

study of the Directed Steiner Problem on graphs.

32

None of the exact algorithms is very efficient. Most of them cannot handle more

than 30 nodes. The algorithms of Beasley and Wong can be incorporated into branch

and bound schemes capable of doing much larger problems. The large amount of

storage and computation time required to maintain the lists used by these procedures,

however, has limited the applications with more than 60 nodes to very sparse networks.

It is difficult to describe or compare the performances of the exact algorithms

mentioned in this section, because the creators of these techniques offer very limited

computational evidence. Moreover, the methods, coded in a variety of programming

languages and executed on different computers, have been employed to solve a diverse

collection of problem instances. The only certain fact about these algorithms is that

they do require exponential time in worst cases.

B. HEURISTIC ALGORITHMS FOR SXP

The inherent intractability of the SNP has made the creation of reliable

polynomial time heuristics that provide nearly optimal solutions to the SNP of great

practical importance.

1 . The Algorithm of Takahashi and Matsuvama (TM).

The first important heuristic was published by Takahashi and Matsuyama [98]

in 1979. At each step in the algorithm a tree with a subset If* of If is constructed,

and a new vertex of W is inserted together with a shortest path connecting If* and the

vertex. Let | I f | = w. Then the algorithm can be stated as follows.

Step 1: Start with subtree 7t = (IlfEi) of G

consisting of a single, arbitrary vertex, i, of W.

Let k= 1, £* = {}, and ff*= {i} .

33

Step 2: Determine a W-vertex, / e W — lVt closest to 7T

Construct tree 7*., = (VkJ.uEk+j) by adding to Tk the minimum cost

path joining i to Tk. k = k + 1.

Step 3: If k < w then go to Step 2. When k = w, then T,*

is the solution. Stop.

We note that this algorithm requires at most 0(wnr) time, because the path from

i to Tk can be computed in time complexity 0(n7) by Dijkstra's algorithm [26]. The idea

behind this algorithm comes from the following observation of Gilbert and Poliak

[44] in their important early paper. Let If = (llr,1?) be the complete graph on the

special vertices, and let the cost of an edge (u,v) in H be dG(u,r). Thus, the minimum

spanning tree in H is approximately equal to the Steiner tree for G. Its worst case cost

relative to an optimal tree is less than or equal to —-. Takahashi and Matsuyama

show that the result, Tw, of their algorithm has a cost < 2(1 —-^r) times that of an

optimal Steiner tree. That is, for all n and w (2 < w < n — 1)

c(TJ
M Steiner)

(3.31)

If w = n, then c(Tw) = c(Ts„m,) = the cost of a minimal spanning tree of G.

Furthermore, they prove that for all n and w, 2 < w <, n, 3 a network G =

(V,E,c) and a subset W contained in V, where | K| = n, and \ W\ —w, such that

Equation 3.31 holds with equality. The proof of this latter assertion is as follows

[98]:

Proof:

Let

V= { 1,2,... , iv+ 1 },E = {(/,/)| /= 1,2,..., w+ 1,7 = 1,2,..., w+ 1 }, IV ~ {1,2, ..., w).

Suppose

34

j 1 ifi = 1 , 2 ,... , w , j = w + l.
c(ij) = < 2 ifi = 1 , 2 , ... , w - I , j = i + I.

I 10 otherwise .

See Figure 1 [9S],

The tree, Tw= (IV , { (i,i + 1)| i= l,2,..,u.\w - 1 })

results from the algorithm and its cost is 2(w-l). The

desired ratio is found by dividing 2(w-l) by the

optimal length, w, of the Steiner tree.

Rayward-Smith and Clare have suggested an improvement to the TM algorithm

through the addition of the following two steps [S5].

Step 4: Let V denote the vertices of V - W in Tw.

Step 5: Find the minimum spanning tree of the

subgraph of G induced by

IV 1J V and prune this tree of all

nonspecial leaves.

2. The Algorithm of Kou, Markowskv, and Berman fKMB).

KMB was developed in 1981 [64], It has these steps.

Step 1: Construct the complete, undirected graph

G, = (Vi'Eidt). from G and W such that

F) = IV and V(/J) e Eu dt(ij) = dc(i.j).

Notice that for each edge of Gu

there is a corresponding shortest path in G.

Step 2: Find a minimum spanning tree, 7,, of G,.

35

W+l

Figure 1. For this tree equality holds in Equation (3.31).

Step 3: Construct the subgraph, Gs, of G by

substituting a corresponding minimum cost

path in G for each edge in 7).

Step 4: Find T„ the spanning tree of Gt.

Step 5: Prune from Ts any edges necessary to make

all leaves special vertices. Call the

result Th■ Th is the desired Steiner minimal tree.

Figure 2 shows an example of this process [64]. In the figure, W =

{ vi, r2, i~, i-i}. Gi is shown in Figure 2 b, 7 appears in Figure 2 c, G: is pictured in

Figure 2 d, Ts is given in Figure 2 e. and Figure 2 f shows the final Steiner tree, T:i. that

results from KMB. The answer is exact in tins case. This example shows that 7,, G„

and Ts may no: be unique.

Figure 2. An Example of the KMB Algorithm

u>O'

37

As far as computational complexity is concerned, Step 1 can be done in

0 (\ lV \ \V \2) time by Floyd's algorithm [32], Step 2 can be completed in

0 (| IF |2) ume, with Prim's algorithm [83], Step 3 requires 0(1 F|) time, Step A can

be done in 0(1 F |2) time, and Step 5 needs 0(| F|) time. Thus, Step 1 dominates the

computational time, and the heuristic has a worst case complexity of 0 (| fF| | F |2).

Kou, Markowsky, and Berman [64] prove that

c(̂ Siciner)
< 2(1 (3.32)

where rj equals the total number of leaves in Ts, Moreover, they show that this

upper bound is the best possible. Hence, the heuristics of TM and KMB have the

identical worst case behavior. However, the algorithm of TM may at times produce a

better result. For instance, in Figure 3a, TTiA has cost 15 (if i or j is chosen as the

initial W-vcrtex), while TKMt in Figure 3b, has cost 16 [HO], In Figure 3, the edges

selected by the algorithms, and the special vertices, are in double lines. The quality of

answer given by TTm depends on the choice of the initial W-vertex.

3. The Algorithm of Wu, Widemaver, and Wong (WWW).

Wu, Widemayer, and Wong [113] have made improvements on the KMB

algorithm that make KMB run in 0(|E| log|V|) time unless the graph is very dense and

most of the vertices are not in W [113]. The central contribution of Wu, Widemayer,

and Wong is the idea of a generalized minimum spanning tree, 7]„, that causes Steps

1 and 2 of KMB to run faster.

Tt,n and 7] both contain W. They are different in that Tt,„ is constructed directly

from the edges of E whereas 7] uses Ex. Ttm has the following properties:

(a). When Tt„ is constructed, Gi is not explicitly

38

constructed.

(b) . Tttn has the same path information as G,.

(c) . 7,„ is a tree. Hence, Tim is equivalent to T,.

(d) . No leaves in Tt„ are Steiner vertices. Thus,

Tt,„ is equivalent to TH in algorithm KMB

although there are examples of problem instances

where they do not have the same total cost.

The reason for a discrepancy is that Step A of

KMB may make decisions on deleting edges

of G, which produce a different final Steiner

tree. This tree may be better or worse than Tltr.

The total cost of Tltn is at most 2(1 — 1 /??) times the cost of a Steiner minimal tree,

where 17 is the number of leaves in the optimal Steiner tree. This bound is the same

as that for TN.

Figure 3. (a) Results from TM (b) Results from KMB

39

A generalized minimum spanning tree Eltndttn) of a given network G =

(V,E,c) and a set 1V£ V is a tree subgraph of G such that

(a) , there exists a minimal spanning tree

W 2,E2,d2) of G,(fG, £i. di)

such that for all edges (i.j) e Tu

the unique path in

Tfen from i to j is of length d2{ij)

(b) . all leaves of Titn arc in W.

Consequently, one way to describe 7j„ is that it is the realization, of 7] on G.

We now give Algorithm M of Wu, Widemayer, and Wong for finding a generalized

minimum spanning tree. For each v e V, let source(v) be a vertex in W which is closest

to v, and let lcngth(v) represent the distance from source(v) to v. Treat the nodes in

W initially as a forest of | M'| separate trees which will eventually be merged into a

single tree. The process is similar to the one employed in Kruskal's algorithm. Let Q

be a priority queue used to store boundary vertices of paths extended from the trees

and possible edges to be used for linking the trees. In the triple (t,d,s), t is a member

of V. s is a member of W, and d is the cost of a path from s to t. If t is in W, then (s.t)

has the potential of becoming an edge in a generalized minimum spanning tree.

Otherwise, s is a possible vertex for source(t). Q is ordered by nondecrcasing values

of d in the tuples.

Algorithm M of Wu. Widemaver, and Wong [113].

Step 1: V i e IV,

source(i) <— / and length(i) <— 0.

Vie V - IV,

source(i) <— undefined and length(f) *- oo.

Step 2: V / e W,

40

put the triple (r,d,q) into Q, where (q,r) belongs to E

and d= dc(q,r). If both q and r belong to W, then only one of

(r,dc(r,q), q) and (q,dc(q,r),r) is placed in Q.

Step 3: Partition the nodes in W into |W| trees

such that each tree has exactly 1 vertex.

Step A: While all vertices of W are not in a

single tree, do: Choose a triple (t,d,s)

with minimum d in Q and remove it from Q.

Case 1: if source(t) is undefined, then do:

source(i) *- s

lengih(t) <— d.

dr a (/,/•) e E and sourcc(r) is undefined, put

(r.d(t.r) + d.s) into Q.

Case 2: if source(t) and s are in the same

set, then take no action.

Case 3: if source(t) and s are not in the

same tree, then do:

subcase (a), t e IV. Then merge the 2 trees containing s and t,

and record an MST edge (which is a path

in G) between s and t.

subcase (b). t e V — IV. Then put

(source(t).d + length(t).s) into Q.

The authors show that Algorithm M can be easily modified so that it produces

an explicit description of the path associated with each edge of the generalized

minimum spanning tree. Thus, the modified algorithm calculates Tttr. dTectlv.

41

Intuitively, the time bound of 0{\E\ log | V\) is possible because when | W\ is

relatively large compared to lo g |L |, KMB must perform | IV\ shortest-path

operations, while Algorithm M calculates the shortest paths at the same time it

produces Tf,„. Another situation where Algorithm M provides better performance is
I L2Iwhen G is not very dense. Then |£ | is much less than----------- .

4. The Revised Algorithm of Ravward-Smith (RSR).

V. J. Ravward-Smith [84] developed a heuristic of a different form in 19S3 and

revised it slightly in 1986 [85]. In this algorithm, at each iteration, T denotes a set of

trees which will be subgraphs of the final tree. To begin with, T is made up of the

individual vertices of W. A vertex / e V is chosen using a heuristic function, f, where

f(i) is expressed in terms of the cost from i to the various subgraphs of T. After the

vertex i e V is chosen which minimizes fii), this vertex is used to unite two of the trees

in T by joining each of them to i by means of the cheapest route possible. At each

iteration of the algorithm, |T| decreases by one until |TJ = 1. When T has just one

element, then that tree is the near minimal Steiner tree.

Suppose the heuristic function used is

/](/) = min { dc(i,Vj) 4- dc{i,Vk) | Vj, Vk are vertex sets of 2 elements ofT }. (3.33)

Then any n e V on the minimum cost path which unites two distinct trees of T will

yield the same minimum result from the heuristic function. Therefore, the two trees

nearest each other will be joined at each iteration. Actually, the heuristic, f, employed

by Ravward-Smith [84] is a little different. Let |T| = k and let n e V. Then

log I V

(3.34)

4 2

For a given n e V, f can be equivalently defined as follows: To start with, order

the elements in T by increasing cost from n. Denote this ordering by tnfi, ... ,

where dc(u,i„,o) < dc{n,t„A) < ■■■ < dG(n,i„tt. ,). Now create a sequence

f i n) j 2{n), - ,fk-1(«) by defining /(«) = dG{n,:n.0) + da(n,!^) and

[O' - f„.r)]
. / » = ----------------- p----------------- for 1 < r < A’ — 1. (3.35)

Thus,/(/7) = min {£(/») | 1 < r < k — 1 }.

Then y i«)= /(/7)- "here f t{n) > f2(n)> - > fr(n), and f(n) </,,(/?)<••• </*(«)•

Notice that /(«) </_,(/;) if and only if dG{n,in,,) </_,(«). Therefore, f can be computed

by the following pseudocode.

i: = 1 ;
evaluate./^/?) ;
while if i < k then dG{n, </_,(«) else false

do begin
evaluate /(«);
/: = /+ 1

end [M].

If i = k or dG(n, >/(«), then the computation stops and _/(«) =/(o).

Intuitively, f(n) measures the least average cost of n from a set of elements of T. We

now present the algorithm of Ravward-Smith.

Step 0: (Initialization)

T:= })| p e i n

For each pair i j e V find da(i.j) and minpaihG(i.j)

(Floyd's algorithm can be used for this).

For each / e V ,ie T find dG{i,i) and minpathG{i,f)-

Step 1: (Iteration)

43

For each ie V, evaluate/[/).

Let m e V such that j\m) <J{f) Vie V. If there is

more than one choice of m, then the decision is made according

to the following criteria.

Suppose the choice is between m and m',

(i). m is not a node in the graph V b u t m' is a node of Y7m\,-

If this does not determine which node has preference,

then we try

(ii) . if r < r'. If neither (i) nor (ii) separates

m and tri so that r = then

(iii) . if r < |T|, then if/L,(m)

or then i f / . 2(/?i) < / ,2(m')

Finally if all three of these tests fail to determine

which node has preference, then an arbitrary choice is made.

Step 2: Corresponding to the chosen node m is an ordering

of T, imJt, im,u ... , where k= \ T\.

Let /' be the graph tm.D [J /mJ U minpalhc{pi,tm,0) (J minpathG{m,imA).

t' will be a tree because it has no cycles.

Step 3: Remove tmfi and rm>1 from T and insert

Step 4: If | 7~| # 1, then for each i e V, find da{i, i') and minpaihG(:’, /),

and go to step 1 .

If | 7~| = 1 , then the only element of T is fo, the approximation to

Then m is chosen over tn' when

the Steiner minimal tree.

44

The initialization step has a time complexity of 0(n3), where |V| = n, because of

the use of Floyd's algorithm to find the shortest route between each pair of nodes of

V. Evaluating ffn) is easier if a record is kept for each i e V of the list ;,0< /,,i...., (t

of elements of T ordered by nondecreasing distance from i. Initially, k = |W|, and, for

each / e V, the ordering requires 0(|W| log]W|) time. Because |\V| < |V(, the first lists

can be computed in 0(n2 log n) time. After the construction of these lists each

iteration of the algorithm destroys two of the trees in T and inserts a new one in each

ordered list. This is a O(k) procedure for each list, where k — | T |. Since there exists

n lists and | T\ < | 1F| < | V\, each iteration uses 0(n2) time for updating the lists.

After the ordering 0, A,i, ... , A,*-i is completed, evaluating f(i) uses O(k) time for each

i. Thus, Step 1 requires O(n-) time. Step 2 and Step 3 also require 0(n2) time. In Step

4, the evaluation of dG(i,i') and minpaihG(i,i') necessitate looking at no more than n

values for each i. Hence, Step 4 is at worst an 0(nJ) process. So each iteration is no

worse than 0(n2), There are no more than | IV\ — 1 iterations where | IV\ < n. We

conclude that the iterative part of the algorithm, like the initialization step, is 0(n3).

Raj^ward-Smith used Monte Carlo methods to test this algorithm [S4]. He used

the rectilinear metric on an m x n grid with 2 < | S | < mn of the nodes randomly

selected to belong to W. The results were compared with the exact cost as calculated

by Dreyfus and Wagner's dynamic programming algorithm [27]. Since the exact results

were needed, Rayward-Smith reports that only small cases could be compared. The

results, however, for these small examples were encouraging. Out of 100 test cases, the

heuristic was wrong only twice and then by an error of about 5 percent in each case.

45

In 1986, Rayward-Smith and Clare revised the algorithm in the same way that

they proposed revising the algorithm of Takahashi and Matsuyama [98]. That is, they

suggested using the original algorithm of Ravward-Smith to approximately compute
A

V, the set of vertices of V — IV that arc in the Steiner minimal tree. Then they find the

the minimum spanning tree of the subgraph induced by M'(J V, and prune this tree of

all leaves that are Steiner vertices.

Ravward-Smith and Clare did an extensive comparison of the computational

performances of KMB,TMR and RSR. They began by choosing the eighteen problems

tested by Beasley with his exact algorithm [S]. Each of these graphs had between 50

and 100 nodes. For seventeen of the eighteen graphs an exact solution was known,

but in all of these graphs the number of edges was less than or equal to 2|V|. A

nineteenth problem with a greater density of edges was, therefore, constructed. It had

100 vertices, 500 edges, and costs uniformly distributed in the interval [1.10]. An

optimal solution to this problem was not known. Overall, the best algorithm was

either TMR or RSR. The results appear in Table I below.

Table I. COMPARISON OF THREE HEURISTIC ALGORITHMS BY
RAYWARD-SMITH AND CLARE ON PROBLEMS WITH
KNOWN ANSWERS.

KMB TMR RSR

Average Percentage Error 3.9 1.8 1.3
Worst Percentage Error 14.0 7.9 5.1
Correct Answer(for 17 Problems) 4 9 9

Secondly, 1500 random graphs with between 10 and 80 vertices were generated

using costs either uniformly distributed in (0, 1] or with a normal distribution of mean

= .5 and c — .125. The three algorithms, KMB, TMR, and RSR, were all tested on

46

these graphs. The RSR algorithm performed the best using either distribution of costs

and for all sizes of graphs. Only on 13 occasions out of 1500 did RSR fail to obtain

the best solution of the three algorithms. On those occasions the difference of the

answer obtained by RSR and the algorithm that did find the best solution was always

less than 5% of the best answer. Recently, it has been shown that the worst-case

performance of the algorithm of Rrn-vvard-Smith is within two times the optimum and

that two is the best possible bound in the sense that there are problems for which the

algorithm will always do worse than any number less than two times the optimum

[104].

5. The Algorithm of Plesnik (PL).

The last heuristic considered in this paper is one by Plesnik [S3], which uses a

generalized idea of the notion of contraction defined in Section 2. Several new

definitions must be introduced before the algorithm can be given.

Let / e W and r > 0. Then let {* e G \ dc(x,i) < r}

be called a neighborhood of i with radius r. The point x may or may not be a vertex

in V, it can be any point on the edges of G. The set of all points of all neighborhoods,

N(i), i e IV, with the same radius, can be partitioned into classes by the following

process. Let x e N(i) and y e N(j) belong to the same class whenever there is a

sequence A), A2, ... , A'*, of neighborhoods with A'(/) = A-, and A) f] A’: # 0,

A2 Pi Aj r 0 ,..., A*_i P A* ~= 0, and A* — A (j).

Denote a class by Cf, where p = min {/|/ e Ct P M7}. Classes for the network in

Figure A, where r = 1 , are denoted by dotted curves. The figure appears cn page 149

of [110].

47

The contraction of a graph, G, in a set of vertices IV £ V, with radius r, is a graph,

Gc, formed as follows.

1. Ever}' class Cp is contracted to a single vertex p,

which is considered

to be a W-vertex on G.

All Steiner vertices that lie

outside of any class arc left unchanged by the

contraction.

2. If e = (i,j) is an edge of G such that i and j

belong to different classes, then an edge in the

contraction is generated according to these rules:

(a) . If neither i nor j belongs to any class,

then e is unchanged in G.

(b) . If i e Cp and j does not belong to a class, then j is a

Steiner point and G contains the edge e = (p,j)

whose cost is given by

(c). If / e Cp,j e C „ p^ q, then G has edge e = (p.q)

whose cost is given by

48

3. All but the minimum cost edge connecting any pair of

vertices in G are deleted (Figure 4c).

Having defined the concept of the contraction of a graph G, we now are in a

position to state Plcsnik's algorithm [110].

Step 1: Find the minimum cost edge in G that is incident

to a W-vertcx, and let r be the cost of that edge.

Construct neighborhoods A’,(r), / e IV,

and the associated classes C,, p = 1,2,... , v.

Step 2: For each class, C,. let IF, represent the W-vertices of the class.

For any vertex, i, in IF,, if | IF, | # 1 , 3 another vertex of IF,

on a path whose distance from i is less than or equal to 2r.

Hence, using Takahashi and Matsuyama's algorithm we can

obtain a tree, Tp, spanning IF, with c(7,) < 2r(| IF, | — 1).

Step 3: If v = 1 , then 7 is the near minimal Steiner tree and we can return.

Otherwise, let Gc be the contraction of G. Let IVc be the

W-vertices of Gc-

Step 4: Find a tree Tc spanning IVC in Gc-

This is to be done by recursion.

Step 5: For each p e IVC substitute 7, for p — 1 ,2 ,..., -.

Reconnect Tc and 7], 7],..., 7, by adding no more

49

t h a n £ (d e g r e e C c (jP)) e d g e s o f l e n g t h r . This c a n b e d o n e b e c a u s e
p t H'C

the cost of a path from a boundary point

of Cp to a vertex of IV H C

is equal to r by the definition of

contraction. The resulting tree, TPL is the solution. Stop.

Figure 4 may be helpful in understanding this algorithm. Part (b) of the figure

illustrates the result of applying all but the last part of the definition of a contraction.

Part (c) shows Gc, which is obtained from part (b) by deleting all but a single minimum

cost edge between any pair of vertices.

This algorithm permits the use of any heuristic in Step 2 for finding shorter trees

Tp. TM was selected for the work reported in Section 5, because it is easy to implement

and very accurate for trees with a small number of vertices.

None of the recursive steps in the algorithm of Plesnik requires more than 0{n2)

time, where | F| — n. Also, not more than n recursions are needed. Thus, the worst

case complexity is 0 (/73).

Plesnik [82] proved that in the worst case, the error ratio satisfies

■ c^ rL\ < 2(1 —), and that the bound is tieht.
c{iSumr) *

<o> (c)

Figure 4. Stages in the Algorithm of Plesnik

o

51

IV. THE METHOD OF SIMULATED ANNEALING

Simulated annealing, as proposed by Kirkpatrick et al. [62], is a popular

Monte-Carlo algorithm for finding globally optimum configuration- in large

NP-compIcte problems with cost functions containing many local minima at

near-stationary points.

A. INTRODUCTION

For many important practical and theoretical problems, the objective is to find

optima of functions of discrete variables. The search for these results, called

combinatorial optimization [SI], has brought forth many excellent approximation and

exact algorithms. The well-known Traveling Salesman Problem TSP), for example,

can now be solved for an instance of up to 318 cities in less than 10 minutes of CPU

time on an IBM 370/16S computer [25]. It still remains true, however, that many

practical large-scale optimization problems can only be solved approximately on

existing computers, a fact which corresponds to the theoretical classification of a large

number of these problems, including the TSP and DSP, as NP-complete [40]. Thus,

the development of good heuristic algorithms for which there is no certainty that the

solution is optimal, but for which there is a high probability of near optimality and for

which polynomial time bounds can be given on the computation time, has become

necessary.

An instance of a combinatorial optimization problem can be defined in terms of

a pair (A, Q, where A is a finite or countably infinite set of configurations and

C: A -> K is a cost function which maps each configuration into a real number. It is

assumed, for ease of discussion, that C is defined such that the goal of the optimization

is to find the configurations which minimize the value of C.

52

There are two types of approximation algorithms: algorithms tailored to a

specific problem, and general methodologies that can be applied to a wide spectrum

of combinatorial optimization problems. Simulated annealing is certain!}' .<n example

of the latter. It is based on Monte Carlo techniques, but it incorporates some aspects

ofitcram e improvement algorithms.

Iterative improvement or local search schemes require the definition of

configurations, a cost function, and a method for generating a transition from one

configuration to another. The generation prescription formulates neighborhood A, for

each configuration i, consisting of all configurations reachable from i in a single

transition [SI]. Iterative improvement works as follows. Generate a sequence . >f

iterates beginning from an initial configuration, each iterate of which is made up of a

possible transition from the current configuration to one chosen from the

configurations in the neighborhood of the current configuration. If the configuration

of the neighbor has a lower cost, then replace the current configuration by its neighbor.

Otherwise, another neighbor is selected and the same cost configuration is repeated.

The algorithm ends when a configuration has a cost not greater than the cost of any

of its neighbors. Disadvantages of iterative improvement include:

(a) , the procedures end at a local minimum, and there is no

information concerning the deviation of this local minimum

from the global minimum.

(b) . the particular local minimum found depends on the initial

configuration and there are no rules for choosing the initial

configuration.

(c) . an upper bound for the computation time is frequently an

open problem.

53

One way to avoid these pitfalls is to execute the algorithm for a large number of

uniformly distributed initial configurations. This increases the running time, but it

finds the global minimum with probability 1 as n -> oo. An example of this method is

Lin's 2-opt strategy for the Traveling Salesman Problem [70]. Another approach is to

accept, with restrictions, transitions associated with an increase in the cost function.

This is what simulated annealing does [62, 16].

In its original form simulated annealing is based on the analogy between

combinatorial optimization and the problem in statistical mechanics of determining the

lowest-cncrgy ground state of a physical system with many interacting atoms [62, 16],

Simulated annealing is also known as "statistical cooling" [100] and "probabilistic hill

climbing" [86], In physics annealing is a physical process in which a solid is heated to

a temperature at which all particles of the solid randomly arrange themselves in the

liquid state, followed by a slow cooling, spending a relatively long time near the

freezing point. At each temperature T, the solid is allowed to enter thermal

equilibrium, a state in which the energy, E, at a configuration i is given by the

Boltzmann distribution

where Z(T), called the partition function, is a normalization factor equal to

^exp(£,/kbT), kt is the Boltzmann constant, and ^ is known as the Boltzmann

factor. The Boltzmann distribution is concentrated on states with low energy as the

temperature decreases. Only states with minimum energy have a positive probability

of occurrence. If, however, the temperature is lowered too fast, the system does not

have time to reach thermal equilibrium for each value of the temperature. The

resulting configurations may then have defects in the form of high-energy, metastable,

structures rather than having a low energy crystalline lattice form [100]. Intuitively,

54

quickly cooling a solid, or "rapid quenching" [111], is analogous to iterative

improvement in combinatorial optimization.

B. THE SIMULATED ANNEALING ALGORITHM

In 1953, Metropolis ct al [76] suggested a procedure for the simulation of the

equilibrium states of a solid at a given temperature. The procedure is as follows

[HI]-

Metropolis' Procedure

begin
Select an arbitrary’ initial configuration /0;
repeat

70' = a random neichborinc conficuration of /<,:
A = E(Io')-E(Id):
Prob = min(1, e~7pr);
if random(0, 1) < Prob then h = h'\

until false;
end;

The Metropolis algorithm was adapted to combinatorial optimization problems by

substituting configurations for states in the physical system, by substituting the cost

function C for the energy function £ of a given state, and by replacing h T with a

control parameter c, sometimes called the "temperature." If A > 0, then the probability

of acceptance of the perturbed state is exp^ — J, which is known as the Metropolis

criterion [100].

Kirkpatrick et al. [62] generalized this technique by introducing a sequence of

decreasing values of c, at each of which the Metropolis procedure is executed until the

system attains equilibrium. The generic simulated annealing algorithm, given below,

is the result [111].

55

Simulated Annealing Algorithm

begin
/ = Initial Solution 70.
c — Initial Temperature c0.
while { stopping condition is not satisfied } do

begin
while (equilibrium is not reached) do

begin
/' = a solution of a random neighbor of I .
A = C(/')-C(7).
Prob = min(1, c~t).
if random(0, 1) < Prob then 1=1'.

end.
update c.

end.
print best solution,

end.

Simulated annealing can be considered as a robust form of an iterative

improvement algorithm. Like the latter, it defines a generation mechanism for moving

from one configuration to another. It randomizes this mechanism and permits

occasional moves that worsen the current solution in an effort to avoid getting caught

in a local optimum. These uphill moves are dependent on the temperature c and

become progressively less likely as c-*0. As with iterative improvement, once a

configuration, a cost function, and a generation mechanism are suitably determined,

then a solution to the problem can be found. When the value of c is 0, the simulated

annealing algorithm corresponds to a version of iterative improvement. Lundy and

Mees [72] show that simulated annealing performs better than this version of iterative

improvement for many problems. They give an example where the average number

of transitions needed for the iterative improvement algorithm to reach a global

minimum is 0(/t2), while the number required by the simulated annealing method is

0(«) .

56

The correspondence between statistical mechanics and combinatorial

optimization has led to definitions of measures in combinatorial optimization that are

analogous to certain averages in statistical mechanics such as entropy, and specific

heat. These are frequently used to control the cooling rate dynamically. Before

discussing cooling schedules, however, it is necessary' to give a mathematical model of

simulated annealing, and to discuss convergence of the algorithm.

C. MATHEMATICAL MODEL

The generic simulated annealing algorithm is explained in terms of a Markov

chain, a sequence of trials where the result of each trial depends only on the result of

the preceding one [55]. In simulated annealing a trial corresponds to a transition and

the result of a transition depends only on the current configuration.

Let P,j(k — 1, k) = Prob (outcome of k'h trial = j | outcome of {k — l)1*1 trial is i),

and suppose a,(k) = Prob (outcome of kP- trial = i). Then recursively,

where T = set of possible outcomes [100]. Let X(k) = result of the /:th trial. Then

and a,{k) = Prob {X(k) = /). If the conditional probabilities are independent of k, then

the Markov chain is said to be homogeneous, otherwise it is nonhomogencc^s. The

matrix P{k — 1 ,k) is called the transition matrix [4]. It is a function of c. If c is

constant, the Markov chain is homogeneous and its transition matrix is given by

(4.2)

Plj(k - 1 ,k)= Prob (X(k) = j | X(k - 1) = i) (4-3)

57

■4ij{c)Gij{c) ir i * j
IA I

1 - Y j Gikc')A ikc) ‘O '8* ‘
/= !,/*<

(4.4)

<j „(c) is the probability of generating configuration j from configuration i, and AJc) is

the probability of accepting configuration j if it has been generated by configuration i.

From the definition it follows that V/, V/\,(c) = 1. G(c) is usually given by the uniform

distribution on the neighborhoods, A„ and A(c) is defined as the Metropolis criterion.

Two formulations of the model have been developed in the attempt to understand

the simulated annealing algorithm [100].

(i) . a homogeneous algorithm: each Markov chain is generated for

a fixed value of c, and c is decreased between consecutive

Markov chains.

(ii) . nonhomogeneous algorithm: the value of c is decreased on each

iteration.

The statistical cooling algorithm converges asymptotically, that is,

lim Prob{X{k) e A,0) = 1, where A,0 is the set of globally optimum configurations. Let

q represent the vector whose i-th component is the probability that, as the number of

iterations approaches infinity, the configuration is i given that initially it was any j.

The vector q is called the stationary distribution of a homogeneous Markov chain.

After an infinite number of iterations, the stationary distribution is the probability

distribution of the configurations. An irreducible and aperiodic Markov chain always

has a stationary distribution. Sometimes the word equilibrium is used for the

58

stationary distribution of a homogeneous Markov chain. The homogeneous algorithm

converges asymptotically if the following four conditions are satisfied [4, 72, 79, 86].

1. each Markov chain is of infinite length

2. A(c) and G(c) arc irreducible and aperiodic.
r I A«o I 1 if ‘ e A,„

3. lim q, = < ,
r~u |̂ 0 elsewhere

where q, is the i-th component of the stationary' distribution.

In other words, the vector q converges to the uniform

distribution on the set of globally minimal configurations

4. lim c* = 0,
k—oo

where ck is the value of the control parameter during the k-th Markov chain. A

Markov chain is irreducible if and only if for every pair of configurations (i,j) there is

a positive probability of reaching j from i in a finite number of steps. A chain is

aperiodic if and only if for all configurations / e A, the greatest common divisor of all

integers n > 1, such that (P’)„ > 0 is equal to 1 [55, 100].

For the nonhomogeneous model, let each element of the acceptance matrix be

defined by

Aijick) = min {1, exp.; - (C(/) - C(/))/c)}, (4.5)

and assume that the sequence of control parameters (c*). k = 0, 1, 2,... has the two

properties:

lim ck = 0;k~> oo
Ck > c k+l k = 0,1,2,...

(4.6)

59

Mitra et al. [77] used ergodicity theorems on nonhomogeneous Markov chains to

show that under certain conditions on the acceptance matrix A(ct), the rate of
rconvergence of {c*} must be < log k for some constant T. Gidas and Ilajck also gave

arguments in favor of this bound [43,46], Building on this work, Gclfand and Mitter

[41] gave sufficient conditions for asymptotic convergence of the algorithm to any

given set of configurations. In 1988, Ilajek [47] was able to give necessary and

sufficient conditions for convergence to the global minimum by finding an expression

for d, where d is a parameter dependent on the structure of the given pioblcm, such

that P > d. Hajek employed continuous-time nonhomogeneous Marko\ chains in his

analysis. The expression for d gave a stronger bound on c* than had previous research.

D. COOLING SCHEDULES

In the previous section it was stated that asymptotic convergence can only be

approximated. Convergence to the global minimum with probability 1 in the

homogeneous case requires that for each value of the control parameter, ck, an infinite

number of transitions must be generated. In the nonhomogeneous case, for each value

ck one transition is generated and c, -> 0 no faster than 0(, — - j. Hence, anvV log k J
implementation produces an approximate algorithm that is not guaranteed to find the

global minimum. Moreover, the convergence results mentioned in the previous section

do not give much practical insight when attempting to approximate asymptotic

convergence [2, 72]. Usually, simulated annealing is implemented by a sequence of

homogeneous Markov chains of finite length at decreasing values of the control

parameter. In that case, the following parameters must be specified.

1. the initial control parameter, c0

2. the final control parameter, cf or some other termination condition

60

3. the length lk of the Markov chains

A. a rule for decrementing c* to find c*„A choice for these four parameters

called a cooling schedule [100],

Discussion of cooling schedules usually involves the following considerations.

Initial value of the control parameter

For ck -► oo, the stationary distribution of a Markov chain

is given by the uniform distribution on the set of configurations A.

Initially, quasi-equilibrium can be established by letting c0

be large enough that all transitions are accepted.

Then all configurations appear with equal probability,

which is associated with the uniform distribution.

Final value of the control parameter

In defining c} the objective is to terminate the algorithm

if the improvement in cost to be expected by continuing

execution of the algorithm is relatively small compared

to the computational effort.

Length of Markov chains and decrement of the control parameter

The length lk of the k'h Markov chain and the rule for decrementing c*

are related by the notion of equilibrium. Intuitively, it is clear that

large decreases in ck will make it necessary' to attempt

more transitions at c^x in order to restore equilibrium. Thus, there is

a trade-off between large decreases in the control parameter

and small lengths of Markov chains. In most cases,

61

small decrements are chosen to avoid lengthy chains,

but it is also possible to employ long chains and

large decrements in c*.

1. Simple Annealing Schedules. Kirkpatrick [62] developed a simple cooling

schedule based on empirical rules rather than on theoretical analysis. The principles

upon which this schedule and others similar to it are based are discussed in this section.

• Initial value of the control parameter

The initial value of the control parameter c0 was determined by

the process: choose a large value for c0 and perform some iterations.

If the acceptance ratio, y, the number of accepted transitions

divided by the number of attempted transitions,

is less than a given value, y0, then double the value of c0.

Continue until y > y0 [100].

■ Final value o f the control parameter

A stop criterion was determined either by fixing the number of

homogeneous Markov chains that were to be executed

by the algorithm [11], or by ending execution whenever consecutive

Markov chains had identical last configurations [90].

Length of Markov chains

The length /*, of the k'h Markov chain, was a polynomial function

of the problem size. Thus, /* did not depend on k [11, 15, 90].

D e c r e m e n t o f th e c o n t r o l p a r a m e t e r

62

The decrement in the control parameter was chosen small

enough that small Markov chain lengths are sufficient

to return to quasi-equilibrium after the decrement.

A rule such as

ck = ack k — 0, 1,2,... , (4.7)

where a is a constant less than, but close to, 1

is frequently applied, a ranges from .5 to .99 [11, 15,68,90],

2. More Complicated Annealing Schedules. More complicated cooling schedules

have been developed which are based on attempts to quantify the concept of

equilibrium. Some of the ideas behind those attempts are discussed next. Quantities

enclosed between < and > represent the expected values of those quantities at

equilibrium.

■ Initial value o f ihe control parameter

For c0, White [105] attempts to find an initial control

parameter by using the function

co(QdC = — — | {/ s A | C < C(/) < C + dC } I.I Al (4.8)

It can be assumed the co(C) is Gaussian with mean

C and standard deviation cr„ [3, 46]. Then

(4.9)

White [4.8] shows the expected value at equilibrium of C(c), < C(c)> ,

is given by

63

<C(c)>
exp(- /)

yfn (1 + erf[v))
(4.10)

where

C -C ,op l
(4.11)

For large values of c, equations (4.10) and (4.11) give

2

<C(c)> (4.12)

White [4.8] proposes that c0 be chosen such that

< C{c)> is within one standard deviation of C.

From equation (4.12) the fact that C — < C(c)> <

leads to the conclusion that c0 > c„. Assuming that c is large,

< C 2(oo)> — (< C(c)>)2, (4.13)

which yields

c0 > J < C \ oo)> - (< C(oo) >)2 . (4.14)

Values for < C7 (oo)> and < C(oo)> are found by

tabulating the expected value of the cost function when the algorithm

executes the Markov chain in which al! transitions are accepted .

F in a l v a lu e o f ih e c o n tr o l p a r a m e t e r

64

A bound for c, is obtained by Lundy and Mees [72] by requiring that,

for the final value of the control parameter, once the

stationary distribution is reached, the probability for the current

configuration to be greater than c above the global minimum

should be less than 9 for some small real number 9.

That is, they demand that

Let q(ck) be the vector representing the stationary distribution.

Then the i'h component of q is given by q, — lim Prob{X(k) = / | X(0) = j]
>-*oo

for arbitrary j. In the usual formulation of simulated annealing, [100],

Using equation (4.16) Lundy and Mees derive the following bound.

P r o b { X (k) = /a C(i) > CopI 4- £ | c — cj) < 9. (4.15)

<li(ck) = —
exp(- (C(0 - Copl)/c*)

(4.16)

P r o b { X { k) = / a C(/) > Copl + £} ^
(4.17)

< (IA I - 1) exp(— §-).

Combining (4.16 and 4.17) yields

£ (4.18)
ln(| A | — 1) — In 5

Some other authors [4, 79] determine a final value

of the control parameter based on the decrease of

65

the average values of the cost function during execution

of the algorithm over a number of Markov chains. Let

C(c*) represent the average cost over the A',h Markov chain. Then

execution halts whenever C(c*) — C^, is small. If c*<̂ l, then

C(ck) - C opl^ J ^ -) , (4.19)

so that

(dC{c)
V dc

cr—---— < £.
C(co)

for a small real number c [4] or

<SC(c)
oc

X — —

(C (C Q) — C (C y))

< C

(4.20)

(4.21)

Recently Otten and Van Ginneken [80] observed the behavior

of the variance of the cost function over homogeneous Markov

chains in a number of applications, and they found a

critical value existed for the control parameter.

Initially, the average cost follows a hyperbolic

decline as temperature (the control parameter) decreases.

This is the behavior to be expected when the density

of the costs over the set of configurations is Gaussian [45].

Over a small range of the control parameter, the pattern changes

6'

so that the average cost approaches a linear decrease. For

high values of the temperature, ck, the standard deviation

remains constant at its initial value o„. When the average cost

is linearly related to the temperature, the standard deviation is

proportional to the temperature [80]. The critical value, 7],

of the temperature is found by

T, = er minC OO !

o(ck) (4.22)

To actually calculate 7], using this formula, it is necessary

to first obtain an estimate for by observing the variance

during the first few Markov chains executed by the algorithm.

Then the values for a for each value of ck are calculated.

An estimate for Tc for each Markov chain is the

abscissa of the intersection of the line of

and the line connecting the origin and (ck, ct(ca)). The

slope of the line connecting through the origin should be

nearly constant after reaching values of c* < Tc. The point

Tc is already close to the global minimum for a process in

equilibrium. Otten and van Ginneken recommend halting the

algorithm soon after ck becomes less than 7] [SO],

Length of Markov chains

Exact measurement of quasi-equilibrium is not possible because

an overwhelming amount of statistical data would have to be

collected in order to determine the probability distribution

of the configurations. In order to obtain a final configuration

67

approximately equal to the global optimum, it should always be

possible to leave any configuration found during the execution

of the algorithm [86], For any configuration i, the expected number of

transitions needed to leave i, < L,(c)> = (1 — / >„(c))“1.

1 Iowcver.

Thus, evaluation of P„, V ie A, necessitates knowing the values

of the cost function for all configurations. Since it is of interest

only to know the max< L,(c)> , or. equivalently, max/Tfc),

an estimate can be made by approximating C(J) — C(i), Vi and j,

by C(/') — C(i'), where /' and / are the configurations with the lowest

and highest costs, respectively, found so far during

the execution of the algorithm. Hence,

Romeo and Sangiovanni-Vincentelli [86] propose that the

Markov chain length be proportional to max< L,(c)> .

Decrements, as previously mentioned, are chosen small

in order to avoid the need for long chains for

re-establishing equilibrium at each new value

of the control parameter. Several authors suggest

that for consecutive values of the control parameter,

max < L;(c)> ^ (exp(- (C(J') - C(/'))/c))“ 1./ s A (4.24)

Decrement of the control parameter

68

V/ e A: (4.25)

for some small S e R, where q(ck)

is the i-th component of the equilibrium vector for

the k-th Markov chain [4, 72, 79].

If Expression (4.25) holds, then the probability’ distribution of

the configurations should rapidly approach a new stationary

distribution after the control parameter is changed

assuming that equilibrium existed at the previous value

of the control parameter. From this starting point the

different authors derive a number of alternative

decrement rules:

1. (4.26)

(4.27)

where U is an upper bound on (C(/) — Copl) and y

is a small real number [72],

2 ’ (4.2S)

where Hk =
C„„ + c,lnf)^-Q

alc.yin'A - 6) L J

Another decrement rule developed by Huang et al. [57]

is based on the average cost of succeeding Markov chains.

69

Let C(ck) again denote the average cost value for the /cth

Markov chain, and let the expected cost at

equilibrium be denoted by < C(c)> . The following equation

is satisfied [100].

8 < C(c) > a2(c)
d In c c (4.29)

Approximating < C(c*)> by C(e„), in equation (4.29) results in

C (q .+ 1) - C (cA.) ^ g2(cA.)

ln c k +] - \ n c k ~ ck+1
(4.30)

Hence.

'"/>■+! = ck exp
ck(C{ck+1) - C(c;.))

°2(c*)

To reach equilibrium Huang et al. [57] require

that C(c*,,) — C(ck) = —).o(ck) for 7 < 1.

This vields the decrement rule

ck+1 = ck exP

(4.31)

(4.32)

E. PERFORMANCE

There are two common measures of performance of a heuristic algorithm: the

quality of the final solution as measured by the difference in cost between the final

solution and the global minimum, and the running time of the algorithm. For

simulated annealing the results of these measurements depend on both the problem

70

instance and the cooling schedule. With traditional deterministic algorithms a

worst-case analysis or average-case analysis of quality and running time for a given

probability distribution of problem instances is attempted [81]. Since simulated

annealing is itself a probabilistic algorithm, an analysis of it involves not only the

probability distribution of problem instances, but also the probability distribution over

the set of possible solutions for a given problem instance.

Theoretical analysis of annealing so far has dealt with only worst-case results

[4, 41, 43, 72, 77,]. Both Aarts and van Laarhovcn and Lundy and Mees [4, 72] showed

that, using their respective decrement rules (4.26) and (4.27) and termination criteria

(4.21) and (4.18), the number of steps in the value of the control parameter is

0(In | A |). Combining this with a fixed length Markov chain of length |A, |, the size

of a neighborhood, provides a worst case expression for the total number of transitions

generated by the algorithm:

Total transitions = 0 (| A; | ln(i A |)). (4.33)

For most combinatorial optimization problems, the neighborhoods can be chosen to

have a size that is a polynomial function of the system parameters and (A | is

exponential in the size of the problem input [81]. Hence, equation (4.33) states that the

execution of the algorithm takes polynomial time for most problems.

Also, upper bounds can be given for the closeness of the probability distribution

of the set of configurations after generation of a finite number of transitions to the

uniform probability distribution on the set of optimal configurations [43, 77], These

upper bounds are generally poor. For example, using the bound given by Mitra [77],

it is often true that the number of iterations required for good accuracy is greater than

the number of configurations. An upper bound on the quality of the final solution is

known only for the maximum matching problem which is in the class P [89].

71

An empirical analysis of simulated annealing, that is, solving many instances of

a variety of combinatorial optimization problems with different cooling schedules, can

be made on the basis of the numerous problems to which annealing has been

applied(see Section F). The findings thus far suggest the following conclusions.

(a) . The performance of the algorithm, especially the

quality of the solution obtained, depends heavily on

the chosen cooling schedule.

(b) . With a suitable cooling schedule near-optima!

solutions can be found in polynomial running time

for numerous diverse combinatorial optimization

problems.

(c) . Computation times for simulated annealing can be

much longer than those for some heuristics tailored

to particular applications. For example, CPU times

of more than 84 hours on a VAX 11/780 computer

working on a large placement problem have been

reported. The quality of the solution, however, was

66% better than the one found by the previous algorithm [90].

Another way to evaluate the annealing algorithm is by a probabilistic value

analysis in which instances of particular problems are randomly generated and the

behavior of the algorithm is analyzed as the problem size goes to infinity. Interest in

this kind of analysis arises for two reasons: firstly, by using some of the quantities

based on the analogy between combinatorial optimization and statistical mechanics, it
C0,

is frequently possible to derive mathematical expressions for — , where n is the size

of the input; secondly, using the expressions just mentioned, the cost of the solution

In summary' from the various methods of performance evaluation, a few

preliminary statements about simulated annealing seem justified.

1. The quality of the solutions from simulated annealing

is at least as good and often better than that obtained

by previous algorithms for most problems.

2. Simulated annealing can be applied to many problems

for which no other algorithm exists.

3. Parallel execution of simulated annealing might greatly

reduce computation times. The use of H processors

theoretically reduces total computation time by a factor

of H with the same quality of solution as the sequential

algorithm.

To increase the speed of the statistical cooling algorithm, a number of researchers

have implemented parallel versions of the algorithm [1, 2, 14, 17], This is not an easy

task since transitions are carried out in a sequential manner in simulated annealing.

Nevertheless, some general parallel algorithms have been constructed [1, 17], as well

as some parallel algorithms for specific problems [14,87,90]. Most of the tailored

algorithms are for VLSI layout problems using the TimberWolf package [87, 90],

There are three approaches that have so far been tried in constructing general parallel

simulated annealing algorithms.

obtained by simulated annealing can be compared with the globally minimal cost

[1 1 , 1 2] ,

73

The first approach, called the systolic algorithm, features the assignment of a

Markov chain to each available processor and uses equal length Markov chains [1].

The chains are executed in parallel and information is transferred from one chain to the

succeeding one. Each Markov chain is divided into sub-chains equal to the number

of processors. Execution of Markov chain 11 is started whenever execution of the first

sub-chain of Markov chain H —1 is finished. Exchange of information between

processors preserves quasi-equilibrium. For example, if processor i is working on

Markov chain K, the initial configuration and value of the control parameter arrive

from processor i — 1, working on Markov chain II — 1. Then a sub-chain is generated,

and after this sub-chain is finished, there are two sets of data that can be used to

continue the execution of chain K: the present configuration and value of c. and the

configuration and value of processor i — 1, after the completion of its second sub-chain

(Figure 5) [1].

suL-chtir. penertiionptss- of
in iorm t-liorequi-iim e line

Figure 5. Structure of the Systolic Algorithm

74

A probabilistic choice is made between these two data sets. It is assumed that

quasi-equilibrium is preserved even though execution of the next Markov chain begins

before execution of the previous one is completed. In this implementation the

processors each have about the same amount of work to do and there is little

communication among processors.

The second approach, called the clustered algorithm, enlists all processors in a

cooperative effort to generate the same Markov chain(Figurc 6) [1]. For high values

of c this is inefficient because nearly all transitions are accepted and accepted

transitions must be dealt with consecutively, because each accepted transition

necessitates an update of the current configuration and two updates cannot be done

at once. While an update is occurring all processors must halt until the system is

adapted to the new configuration. As c decreases, however, the use of the processors

becomes more efficient. To make the algorithm more effective for large values of c,

all processors generate separately a sub-chain of the same Markov chain. In this way

the activities of each processor do not interfere with each other and a linear speedup

mayr occur. Let the update ratio for the parallel simulated annealing algorithm be

defined by y(c) = , where ttcc is the number of accepted transitions and is the
*att

number of attempted transitions. Given H processors, the algorithm begins by having

each processor evaluate a sub-chain. At some point in the cooling process, determined

by estimating the ratio of the computation times to obtain a given update ratio for the

clustered parallel algorithm and the sequential algorithm respectively, the processors

are clustered and the sub-chains enlarged. Each enlarged sub-chain is now evaluated

by a cluster of processors. This continues until all processors are in one cluster

evaluating a whole Markov chain. Usually, the clusters are formed by combining two

of the previously defined clusters and it is assumed that | H | = 2r for some positive

integer r. After completion of this computation, a probabilistic decision is made to

75

K - l K K -h l

Figure 6. Structure of the Clustered Algorithm

determine • which of the H available configurations should be used to start the

succeeding sub-chain [1].

The third approach, called the dynamic decision tree algorithm, maps the

simulated annealing procedure onto a dynamically structured binary tree of

processors(Figure 7) [17]. It maintains the same move sequence as the sequential

simulated annealing algorithm, which permits this version of parallel simulated

annealing to avoid move conflicts and poor acceptance/rejection decisions. Because

the decision to accept or reject a transition is binary, the simulated annealing algorithm

can be viewed as choosing a particular path through a decision tree. In Figure 7 , each

of the nodes is associated with a processor that performs a move'evaluate/decide task.

The two children correspond to the two possible decision results. Assume there are

communication paths between processors so that paths between decision nodes in the

tree correspond to communication paths between processors. It is assumed that the

76

Figure 7. Structure of the Decision Tree Algorithm

time required for processor to processor communication is small compared to the time

needed for move/evaluate/decide tasks. It is also assumed that each processor has

enough memory to hold the system state and that the processors operate in a MIMD

mode. Speedup of simulated annealing is engineered by doing as many

move/evaluate/decide tasks as possible in parallel. Each of these tasks is given to a

different processor. Two features of annealing are exploited for implementation of

parallelism.

1. a processor along a reject path can start executing a

move/evaluate/decide task as soon as its parent node has

indicated start of the process. No state information

needs to be communicated.

77

2. a processor along an accept path can start executing

a move/evaluate/decide task whenever it has been informed

of the move of its parent.

The third approach to a parallel annealing algorithm starts by having the

sequence of nodes initiate tasks down the decision tree. The procedure for determining

the final path begins when node 1 communicates its decision to its selected child. After

this child has finished its decision phase, it communicates this to its selected child.

After a finite number of steps a leaf in the tree is reached. Since for a given value of

c, hundreds of iterations may be needed, making the number of nodes larger than the

conceivable number of processors, the processors must be dynamically reassigned.

Chamberlain et al. [17] present three versions for doing this.

Numerical results indicate that the first approach becomes less desirable as the

number of processors increases. The reason is that the length of the sub-chains

decreases to the point where equilibrium can no longer be maintained [1]. The second

approach theoretically reduces the total computation time by a factor H with no loss

in the quality of the solution from that of the sequential algorithm whenever H

processors are used. However, there is a growing likelihood of delays due to

communication problems as the number of processors is increases. Experiments with

the third approach to parallelizing simulated annealing indicate speedups of between
(H + logjH)

logjH and over the running times of the sequential algorithm [17],

Special dedicated hardware implementations of simulated annealing have also

been presented [4, 54]. These implementations utilize massive parallelism similar to

that of neural networks [56]. The Boltzmann machine [54] is one of the most often

78

mentioned new architectures that have been used for this purpose. For two distinct

0-1 integer programming formulations of the Traveling Salesman Problem, Aarts and

Korst [4] showed that near optimal solutions could be found by mapping the

corresponding binary variables onto discrete computing elements and making the cost

functions into the consensus function of the Boltzmann machine. Hinton and

Scjnowski [54] have developed an algorithm for the Boltzmann machine which

attempts to solve computer vision and pattern recognition problems by means of

simulated annealing.

F. APPLICATIONS

Simulated annealing has been used effectively in solving many optimization

problems in the area of design automation for VLSI circuits. These include placement,

floorplan design, routing, PLA folding, gate matrix layout, logic array optimization,

logic minimization, testing, transistor sizing, and digital filter design [111]. Most of

these applications use the TimberWolf package, an integrated set of placement and

routing optimization programs which employ the simulated annealing technique

[90,111]. The most common graph theory problem to which annealing has been

applied is the Traveling Salesman Problem [3, 11, SS, 101]. The results of these studies

indicate that simulated annealing is competitive with the best iterative improvement

algorithms for this problem. The graph partitioning problem, an NP-complete

problem, is another topic from graph theory on which progress has been made through

annealing [36, 60]. Near optimal solutions for problems with up to 200 vertices have

been reported using the statistical mechanics approach. Research with annealing has

also been done in the areas of biology [71], magnetics [73], code design [30] and game

theory [106].

79

An example of a cooling schedule applied to a problem is the procedure used by

Johnson et al. [60] to solve the graph partitioning problem. In this problem a graph

G(V, E) is given and the goal is to partition the set of vertices V into two subsets F,

and V} of the same cardinality such that the difference in the number of edges with one

endpoint in F, and the other in I-] is as small as possible. Let E represent the set of

edges with endpoints in different subsets. Then the cost of a partition (I7,, F2) is given

by

c{}\, f2) = | e | + ; .(|r , l - I r2|)2, (4.34)

where / is a weighting factor. This is the cost of a solution to the problem. The

solution is not feasible unless V, and I 2 have the same number of elements, but

partitions with | V, | # | F2| may appear as intermediate solutions. The purpose of the

weighting factor is to penalize partitions for which | I7 | is not equal to |F 2|. The

technique of using penalty functions is often useful because it allows additional ways

to escape local optima. Two partitions arc defined to be neighbors if one can be

obtained from the other by moving exactly one vertex from one of its sets to the other.

Initial solutions are constructed by flipping an unbiased coin for each vertex in order

to determine whether that vertex should be placed in F, or F2.

In order to obtain the initial control parameter c0 the following equation is used,

AC(_)
cc - : : -i7

ln(Xo)
(4.35)

where y0 is a given value of the ratio of accepted transitions to generated transitions.

The notation AC+) represents the average increase in cost for a number of random

transitions.

80

The control parameter is decremented according to equation (4.7) with a = .95.

The length of the Markov chains is a multiple of the size of the neighborhoods. This

length in turn is found by requiring a minimum number of accepted transitions at each

temperature. The terminating rule is that no improvements in the cost are discovered

during a fixed number of consecutive Markov chains.

With this cooling schedule Johnson ct al. [60] found that simulated annealing

gave solutions for most graphs that were more accurate that those derived with the best

of the more traditional heuristic algorithms.

81

V. TAILORED COOLING ALGORITHM

Many researchers have noticed that simulated annealing takes a large amount of

running time in order to perform well, and this may make it infeasible for some

applications. In addition, even if the necessary computational time is available,

annealing may or may not provide a substantial improvement over the results of other

algorithms for the same problem. Thus, in order to compare annealing with other

methods for a particular problem, it is necessary to tailor the parameters of the cooling

algorithm to obtain as efficient an implementation as possible.

In this dissertation two methods are compared for adapting the annealing

algorithm to the Directed Steiner Problem. In this chapter, the four generic parameters

discussed in the previous chapter are adjusted for the first method. A series of

experiments is performed on a test bed of graphs for this purpose. The algorithm that

is obtained is referred to as the tailored cooling algorithm (TCA) throughout this

dissertation. In the next chapter, experiments are performed on the second method,

the adaptive algorithm of Aarts and van Laarhoven [4], in order to adjust the

parameters, 3 and z, of their general scheme. This method is hereafter referred to as

the dynamic cooling algorithm (DCA).

A. GENERIC IMPLEMENTATION DETAILS

The following generic simulated annealing procedure, similar to the one employed

by Johnson et al. [60], was used in the tailored cooling algorithm.

L»
->

82

1. Call lNITIAL-COST() to generate a random initial configuration F
and return cosi(F). Let this cost be an initial upper
bound denoted by cost .

2. Choose an initial control parameter, T > 0 so that the
ratio l = upchangcsjuphills, where upchanges is the number
of accepted increases in cost, and uphills is the number of
generated increases in cost, begins approximated equal
to IN’ITIAL PROB.

. Set endeir = 0.

4. While (endeir < coldlimil) do:

A. Set trials = upchanges = uphills = 0.

B. While (trials < CHAINFACTOR * (A7 — SPECIAL)) do:

(i) . trials — trials + 1.
(ii) . Call GENERA TE() to generate a neighbor F of F

and return cost(F).
(iii) . Let A = cost(F) — cost(F).
(iv) . If A < 0 then do:

(a) . Set cosr(F) = cost(F).
(b) . If cost(F) < cost , then set cost — cost(F).

(v) . If A > 0 then do:
(a) , uphills = uphills + 1.
(b) . Choose a random number r such that 0 < r < 1.
(c) . If r < exp^ — then:

set upchanges = upchanges + 1,
set cost(F) = cost(F),

9|c j|:
and if cost(F) < cost , then set cost = cosi(F).

C. Set T — TEMPFACTOR * T in order to decrease the temperature.
If the lowest cost so far found, cost , was changed during B.,
then endeir = 0.
If L < MINRATIO, then coldlimil = coldlimil + 1.

jjf
5. Output the optimal configuration F .

The parameters in the above algorithm have the following meanings.

83

INITIAL_PROB The initial probability that an increase in cost
is accepted. It is used to determine an initial
control parameter(tcmperature).

N - SPECIAL The neighborhood size. Special is the number of
vertices that must be connected. N is the number
of vertices.

CHAINFACTOR The number of iterations at a given temperature is
CHAINFACTOR * (N - SPECIAL). Thus, the number or
iterations in a Markov chain is proportional to the
number of neighbors regardless of the graph size.

TEMPFACTOR This is the factor by which the cooling factor is
reduced on succeeding Markov chains.

MINRATIO This value is used to determine whether the ground
state of the annealing run has been reached. If
this has happened, then the algorithm is terminated.
A counter called endetr is incremented by
one each time a Markov chain is completed where £
is less than or equal to MINRATIO, and it is set
to zero each time a cost is found that improves on
the previous optimal cost, cost . If endetr ever
reaches coldlimit, then the annealing is finished.

B. SPECIFIC IMPLEMENTATION DETAILS FOR DSP

Let S be the set of special nodes that must be joined in the Steiner Minimal

Tree. For the annealing scheme, a solution is any partition N — S = V\ (J V2 of the

nonspecial nodes into the set Vx of those nodes used in the Steiner Minimal Tree

and the set V2 of nodes that do not appear in the Steiner Minimal Tree. Two

partitions are neighbors if one can be obtained from the other by moving a single

vertex from one of its sets to the other. The cost of a partition (Vu IT) is defined

to be the cost of the minimum spanning tree of the graph G'(S 'J Vu A' j, where A'

is the set of arcs in the given graph G(N, A) between nodes of S U Vu after the

leaves containing nodes of V, have been pruned.

84

Initial solutions are obtained by generating a random partition. This is done

by flipping an unbiased coin for each vertex in N/5 to determine whether it should

be in V, or l'}. The specification of the tailored cooling algorithm is now complete

except for the assignment of values to the parameters. In order to make these

assignments as efficient as possible, experiments were performed on a number of

random graphs.

1. The Experimental Sample of Graphs for Optimizing Parameters. Randomly

generated graphs were used in the experiments. They arc defined in terms of three

parameters, n, p„ and special. The parameters represent the number of vertices, the

probability that any two arbitrary7 vertices determine an edge, and the number of

special vertices, respectively. Each test problem was generated in the following way:

first a random directed spanning tree for the entire set of nodes, N, was generated

in order to guarantee a connected network and hence a feasible solution to the DSP.

Then additional arcs were randomly generated according to the value of pe. The

costs were randomly selected from the (0,1) interval.

In attempting to optimize parameters for an annealing implementation, it is

essential to keep in mind that the conclusions are not necessarily applicable to every

annealing implementation, nor are they even applicable to this one if the graphs are

of a different size or of a particular structure different from the random graphs

studied here. The experiments for both TCA and DCA were performed on graphs

with the following set of parameters: n = 20,40,60,80

pe = 0.05, 0.25, 0.50, and 0.90 ; special = Ar ,-rr and Ten graphs using each

combination of values were generated, 480 graphs in all. In some experiments,

multiple runs of annealing for some of these graphs were performed, each starting

from a different initial configuration.

85

Since there were too many combinations of variables for the tailored cooling

algorithm to consider all combinations of values, attention was focused on one or

two factors at a time in order to isolate their effects. Although the experiments were

not extensive, they at least address some of the questions that must be asked in

order to optimize an annealing implementation, and they are at least as thorough

as those done in other current research into simulated annealing [60].

2. Initialization and Termination Parameters. The first parameter that is

considered is the initial temperature. A value is chosen so that the ratio C of

accepted uphill moves to generated uphill moves is approximately equal to

IXITIALPROB. Thus, a choice for IXITIAL_PROB must be made. The reason

for using the ratio of accepted uphill moves over generated uphill moves rather than

the ratio of accepted moves over generated moves is that often there are many

partitions of the set X/5 which have the same cost, thus inflating the number of

accepted moves. This occurs because many of the minimum spanning trees for

partitions have the same nodes of Vx after leaves containing Steiner nodes are

subsequently pruned. The same problem occurs with the termination procedure.

Thus, the ratio 5 is also used there.

Figure 8 shows the evolution of an annealing run on one of the standard

random graphs with 60 vertices, pe = 0.05, and special = 30. This graph is hereafter

referred to as Ga- The parameters used were IXTTIAL_PROB = 0.90,

CHAINFACTOR = 16, TEMPFACTOR = .9500, MINRATIO = 0.01. and

coldlimit = 10. During the run. the mean value of the cost was recorded for each

temperature. These values are plotted against the number of chamlengths. In this

case a chainlength is 432 iterations. Hence the temperature decreases from left to

right. From the figure it is evident that little progress is made at the end of the

10
.7

50
-

86

CD
CD

O
00

CD
LxJ< co x
oLi_
o
o :
LJ

CN GO
n :>

3

CD

O
o o o o o o Oo lO o lO o n om C\J o uO C\l o
o o o d d d d

o
s

o
oII

LSOO

■igu
rc X.

 I h
e ev

olut
ion

ol th
e so

lutio
n du

ring
 ann

ealin
g o

n a
grap

h w
ith 6

0 no
des,

 30
Stein

er n
odes

, an
d p,

incr
casc

s(th
us t

emp
erat

ure
decr

ease
s) a

long
 the

 X-a
xi

s.
Th

e
Y

-a
xi

s
mea

sure
s th

e cu
rren

t co
st.

87

It is necessary to determine a value of INITIAL_PROB that leads to a

temperature small enough to eliminate the unnecessary time at the beginning of the

annealing schedule but large enough to guarantee a solution as accurate as that

given by the extended schedule. To find such a value for the DSP a batter}' of

experiments was performed. One graph with each combination of values for n,pt,

and special, 48 graphs in all, was selected. Ten runs were performed for each graph

for each of nine different values of INIT1AL_PR0B from 0.1 to 0.9. The other

parameters were fixed as follows: MINRATIO = 0.02, CHAINFACTOR = 16, and

TEMPFACTOR = .9500. Figures 9 and 10 contain the results for G60 . In the

figures, the circles represent the average cost or average running time for a set of

10 runs with the indicated value of I\lTIAL_PROB. The bars show the distance

of one standard deviation above and below the mean. Similar relations among

INITIAL_PROB, final cost, and running time were obtained for the other 47 graphs

in the test ensemble. The values of INITIAL_PROB from .3 to .9 give

approximately the same degree of accuracy for all of the graphs. Running time, on

the other hand, grows quickly as INITlAL_PROB increases. To keep running time

as low as possible without diminishing the quality of the solution, INT’TAL_PROB

was assigned the value .3 for the rest of the work with TCA.

The long tail at the end of Figure S results from the low value of 0.01 for

MINRATIO, and from the large value of 10 for coldlimil. The length of the tail

was reduced by giving coldlimil the value of 5, and conducting some experiments to

find the appropriate value for MINRATIO. It is important to keep MINRATIO

high enough that time is not wasted at the end of the cooling schedule, while at the

annealing schedule. Also, the time at the start of the schedule is of questionable

merit.

</) () CJ

10.50

1 0 .1 0

9 .7 0

9.50

0 .9 0

8 .5 0 -

O

-I

[
0
1

i

1o
J.

0.0 0.1 0.2 0.5

1 T0 o
1 1

- I -

T
0
1

0.4 0.5 0.6

INITIAL PROB

T
0
1

0.7

° 6

0 °u 0.9 1.0

Figure 9. The Hfl'ect of IN IT IA LJ’ROB on Cost for G m .

OOoo

R
U

N
N

IN
G

 T
IM

7 V A

uil)10LJ
6E

5E'\

-IE

UL/I O

o

To
1.

o o T
0
1

o
oo

2E4
0 .0 0 0 0.200 0.400 O.GOO

INITIAL PROB

0.800

F i g u r e 10. The IilVcct o f I N I ' I IALPROB on Running l i m e l o r (; 60.

1.000

ooVO

9 0

same time, preserving convergence to a near optimal solution. Since the purpose

of this study is to output the best solution rather than the last, it is not crucial that

the schedule converge to the optimum cost. On the other hand, if the process is

stopped too early, the near-optimum cost may not ever be attained.

Table II. COMPARISON OF DIFFERENT VALUES OF MINRATIO ON C60

FOR THE TAILORED COOLING ALGORITHM

MINRATIO Average Average

Running Time Answcr/Opt.Cos!

0.01 445S6 sec. 1.002

0.02 39723 sec. 1.004.

0.03 3S552 sec. 1.018

0.04 37664 sec. 1.024

0.05 36905 sec. 1.026

0.06 35697 sec. 1.037

0.07 33718 sec. 1.036

0.08 32126 sec. 1.049

0.09 31272 sec. 1.053

(/>o
<_)..J•-1

9.8

9.7

9.6

9.9

9.4

9.9

9.7

9. I

9.0
0.00 0.01 0.02 0.09 0.00 0.05 0.06 0.07 0.08 0.09 0.10

MINRATIO

Figure U. The IHVcct of MINRATIO on Cost for Cm-

4.5E4 c)

4.0E4 o i l . —
o

-
o

~

o
—

.531/i 1 c■> 1
o I
1 o

5.0E4 I

2 .51:4 -------,-------- 1--------1--------1--------1------- -------_l------- 1-
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

MIN RATIO

Figure 12. The Ffleet of MINRATIO on Running Time for G m -

VOto

9 3

Experiments similar to the ones for IN IT IA L PR O B were applied to find a value

for MINRATIO that satisfied the needs of this implementation. Ten runs were

performed on each of the 48 graphs mentioned in the discussion of 1X ITIA LPRO B

for each of nine different values of MINRATIO from .01 to .09. The fixed

parameters were assigned the values IN ITIA L_l'R O B = 0.9,

CHAINFACTOR = 16, TEMPFACTOR = .9500, and coldlimil = 5. Table II

presents the information generated by the test runs for G60 . Similar relations were

obtained for the other graphs in the test bed. Figures 11 and 12 show the graphs

relating MINRATIO to the final solution derived by annealing and total running

time, respectively. In most cases, the final solution began to deteriorate quickly

after M INRATIO reached .03. Also, running time was approximately the same for

values of MINRATIO from .02 to .06. As with INITIAL PROB, the aim was to

keep the running time as short as possible without sacrificing accuracy. With this

in mind, MINRATIO was assigned the value .02. 3

3. Tempfactor and Chainfactor. The remaining parameters in the general

form of the annealing algorithm are tempfactor and chainfactor. These two

parameters together determine how much time is taken in cooling from the starting

temperature to the final one. The other parameters were fixed at INTTIAL_PROB

= 0.30, MINRATIO = 0.02, and coldlimit = 5. Tempfactor and chainfactor

assumed all combinations of values from { 0.4401, 0.6634, 0.S145, 0.9025, 0.9500,

0.9747. 0.9S73 } and { 0.5, 1. 2, 4, S. 16, 32, 64, 12S, 256. 512, 1024 }, respectively.

Bach value of tempfactor is the square root of the value to its left. Increasing either

parameter to the next larger one should approximately double the running time.

The averages presented in Table III and Table IV emerged from running the TCA

10 times for each combination of values on G60. Simi'ar results were also obtained

for two graphs with 40 and 80 nodes, respectively.

94

Table III illustrates the effects of the parameters on running time. The

prediction that doubling chainfactor doubles the running time seems to be correct

from the table, but as tempfactor is replaced by its square root, cooling time only

increases by a factor of approximately 1.75. The cause of this may be that when the

algorithm spends more time at a given temperature than is necessary for the

probability distribution to reach equilibrium there is little further progress made at

that temperature. Another reason for this may be that when tempfactor is small,

satisfying the criterion of(< MINRATIO is more difficult. Thus, if the temperature

prematurely becomes small before freezing sets in, the tail of the annealing curve

may be extended.

Table IN' gives the average cost found for each combination of parameter

values. As expected increasing running time brings about more accurate solutions,

although this does not seem to be cost effective beyond a certain point. For

example, the exact answer for G60 is 9.0774, which was found on all ten runs with

tempfactor equal 0.9873 and chainfactor = 16, However, this answer took more

than 10 4- times as much time as the answer with chainfactor equal 8 and

tempfactor equal 0.9025, while the latter set of parameters gave an average solution

which was approximately 1.7% more than the optimal. Moreover, on five of the

ten runs the result with tempfactor of 0.9025 and chainfactor of 8 was optimal.

Thus, it was decided to use these parameters for further tests.

Another observation from the table is that doubling chainfactor or taking the

square root of tempfactor have about the same effect on accuracy. Thus, combining

the information from Tables III and IV suggests that increasing tempfactor rather

than doubling chainfactor is the better way to improve the solution when more time

becomes available for the cooling schedule.

95

Table III. RUNNING TIME AS A FUNCTION OF CHAINFACTOR AND
TEMPFACTOR FOR G00

(Number of Trials) (N - Special)
CHAIN
FACTOR .4401 .6634

TEMPFACTOR
.8145 .9025 .9500 .9747 .9873

.5 .. _ __ 65
1 - - - - - - — 87 194
2 - - - - — - - 104 178 317
4 - - - - - - 120 208 351 629
8 - - - - 147 243 413 715 1270
16 - - 167 280 4S7 813 1434 2523
32 188 30S 524 902 1579 2720 - -

64 377 623 1060 1S62 - - - -

128 659 1118 195S 3447 - - - - - -

256 1337 2140 3711 - - — — ~

512 2626 4250 — - - - - - - —

1024 5120 -- — — ““

Table IV. AVERAGE COST AS A FUNCTION OF CHAINFACTOR AND
TEMPFACTOR FOR C60

CHAIN
FACTOR .4401 .6634

TEMPFACTOR
. S145 .9025 .9500 .9747 .9873

.5 _ .. _ 9.6740
1 -- -- — — -- 9.4968 9.2597
O -- -- -- 9.4537 9.2398 9.2146
4 — -- -- 9.4082 9.2412 9.2253 9.1625
8 -- -- 9.3980 9.2357 9.2079 9.1749 9.1254
16 — 9.4139 9.2455 9.2262 9.1733 9.1467 9.0774
32 9.4221 9.2622 9.2202 9.1799 9.1472 9.1145 --
64 9.2840 9.2377 9.1841 9.1617 9.1228 — —

128 9.2413 9.1S30 9.1760 9.1453 -- — —

256 9.2025 9.1622 9.1526 -- -- -- --
512 9.1665 9.1501 — — -- — —

1024 9.1346 — — — — ““

96

This hypothesis was tested by doing 50 runs on with chainfactor = 1 and

tempfactor — .9873(i.e. about (.9025)8). The average running time was 13% better

than that in Table 111, while the average solution was 9.2460, only approximately

0.11% above the solution in Table IV for the values chainfactor = 8 and

tempfactor = .9025. Since the purpose of this study was to determine whether the

optimal or near optimal solution for the DSP can be found faster on the average

with simulated annealing than with the algorithm of Wong, it was much more

important to get a very accurate best answer quickly than to guarantee that the

value at termination was optimal. The gain in running time was substantial, while

the statistical significance of the slight difference in accuracy was dubious at best.

Thus, it was decided to use chainfactor = 1, and tempfactor = 0.9873 as standard

parameters for the TCA.

C. MODIFYING THE TAILORED COOLING ALGORITHM

The objective in performing the experiments discussed in the preceding section

was to find values for the parameters that gave good running times without

sacrificing much accuracy. In this section, the goal is to look at some alternative

ways of structuring the algorithm in order to achieve the same goals.

1. Choosing Neighbors bv Random Permutations. In the general form of the

tailored cooling algorithm configuration F is derived from configuration F by

choosing at random one vertex from the set of Steiner vertices and changing its

membership status in the set of nodes that must be connected. That is, if it was

previously not a member, then it becomes one and vice versa. This method is

certainly simple, but it is not very efficient if only a few of the Steiner nodes affect

the costs of the Steiner trees. This, in fact, is often the situation because many

97

Steiner vertices are always pruned from the minimum spanning tree that is formed

from the set of nodes that it is necessary to connect. Thus it seemed reasonable to

choose a random permutation of the Steiner nodes before each block of n trials and

use that permutation to generate the next n moves. Johnson, Aragon, McGcoch,

and Schevon [60] used this technique to improve their algorithm. In order to study

the effect of changing the method for making succeeding moves, the following

procedure was utilized.

Simulated annealing was applied 50 times to C6o using the standard parameters

of INITIAL_PROB = 0.3, CHAINFACTOR = 1, TEMPFACTOR — 0.9873, and

MINRATIO = 0.02, with moves chosen by randomly selecting a vertex to remove

from, or add to, the set of special vertices. The results were compared with those

found by running the algorithm 10 times, with the same parameters, but selecting

neighbors through the use of random permutations. The averages in Table V show

that the running times were approximately the same for both methods, but the mean

cost found was lower when moves were found with the use of random permutations.

Since the best average cost found with the five groups of ten runs that comprised

the 50 runs was 9.2292, the differences in mean cost seemed to be significant. To

further substantiate this hypothesis, the tailored cooling algorithm was applied to

one of the standard graphs, hereafter denoted G80, with 80 nodes, p, = 0.50, and

special — 40. Five runs each were made on this graph with and without the

technique of choosing neighbors with random permutations. Table VI has the

values that were found on these runs. These values also show an improvement in

accuracy with about the same running time when random permutations are

employed. When the same set of parameter values and initial configurations were

incorporated into TCA with the exception that chainfactor was .5 rather than 1, the

average cost went up to 1.079S which was about what it was when the original

98

neighbor selection method was used. However, the running times, as expected, were

approximately half of what they were before. Hence, selection of moves according

to random permutations was adopted both for the TCA and the DCA, while the

value for chainfactor was maintained at 1.

2. An Alternative Neighborhood Structure. To pick a random neighbor under

the method described above, a random permutation, 1, of the set of Steiner points

is initially chosen. Then at each call for a new neighbor the next element in I is

chosen, until £ is exhausted. Let cp = | { Steiner points } |. After each cp moves, a

new permutation is generated and the process is repeated. This helps make the

annealing schedule terminate with a local minimum, because if a smaller solution

exists, it must appear within the succeeding 2n trials. A similar technique can be

used to design more extensive neighborhoods. Let N(k) be the chosen neighborhood

of a configuration such that each configuration in the neighborhood differs by k or

fewer Steiner vertices from the original configuration. Up to now A'(I) has been

used. Thus, when CHAINFACTOR = 1, |Ar(l)|=<p was the number of

permutations, which was equal the number of iterations at each temperature. The

number of possibilities for A?(2) for an arbitrary configuration is
cp(cp — 1) (cp7 -+- cp)

cp -f------------- = ----- — — ■ Thus, as k increases, the number of possibilities grows
2 2

rapidly. To allow all of these possibilities for a neighborhood means that the

number of moves the algorithm must make at each temperature has a lower bound

which is a function of cpk. Hence, consideration of N(k) for k > 2 was dismissed as

infeasible.

To compare the results of using a 1-change neighborhood with the results

obtained with a 2-change neighborhood, a series of experiments was performed on

the 120 graphs with 40 nodes, and on some of the graphs with 80 nodes. In the first

99

experiment, annealing was applied to all the 40-node graphs using a 1-change

neighborhood. The best solutions and the total running time were recorded. Then

Then local optimization was applied to the same graphs. This was done by

generating random configurations using 1-change neighborhoods at each iteration

and accepting only downhill movesfi.e. improving solutions). For each graph the

runs of local optimization had a total running time equal to the running time for

simulated annealing. Table VII shows a comparison of the best solutions for

annealing and local optimization for this experiment. K represents the number of

special nodes in Tables VII to X. A "Near Solution" is one that is within 3% of the

optimum. In Table VII, simulated annealing outperforms local optimization by a

clear margin.

In the second experiment, the same procedure was applied to the same set of

graphs except that 2-change neighborhoods were used for both simulated annealing

and local optimization. Table VIII indicates that the annealing results are only

slightly better than those in Table VII, and the much larger neighborhoods have

increased running time so much that local optimization performs better than

annealing in some cases.

The third experiment involved graphs with 80 nodes and each combination of

p, and special(12 graphs in all). Each of these graphs was run with 1-change

neighborhoods, and the outcomes were compared with those of local optimization

found for an equivalent amount of running time. Table IX shows that simulated

annealing outperformed local optimization again, this time even more convincingly

than in Table VII.

100

Finally, in the last experiment, annealing and local optimization were tried

with 2-change neighborhoods on the 12 graphs with 80 vertices used in the third

experiment. A 2-da}' running time bound was placed on both annealing and local

optimization for each graph. Within this bound, neither annealing nor local

optimization did as well as they did with 1-change neighborhoods. Table X has the

results of this scries of runs. The poor performance of both algorithms was

probably due to the fact that the neighborhoods were so long in some cases that

annealing was only able to work through a few Markov chains in the allotted time,

and local optimization spent long periods making little, if any, progress.

From the four experiments, the following conclusions can be made. Within the

range of sizes of the test ensemble of graphs, the 2-change neighborhoods improve

the accuracy of the cooling algorithm only slightly and at the expense of a great

increase in running time that is not at all cost effective. The experiments also imply

that the running time becomes so long with 2-change neighborhoods that local

optimization is just as effective. Finally, it appears that 2-change neighborhoods

become less and less useful as n increases. Thus, for the remainder of this study

1-change neighborhoods are always used for both TCA and DCA.

101

Table V. COMPARISON BETWEEN METHODS FOR CHOOHNG

NEIGHBORS ON G60 FOR THE TAILORED COOLING ALGORITHM

Random Random

Vertex Permutation

Mean 9.2415 S.2169

Solution

Mean 906S sec. 9123 sec.

Running

Time

Table VI. COMPARISON BETWEEN METHODS FOR CHOOSING

NEIGHBORS ON Gso FOR THE TAILORED COOLING ALGORITHM

Random Random

Vertex Permutation

M ean 1.0641 1.053S

Solution

Mean

Running

Time

2559S sec. 26053 sec.

10

Table VII. COMPARISON OF THE TAILORED COOLING ALGORITHM
AND LOCAL OPTIMIZATION FOR GRAPHS OF 40 VERTICES AND

1-CHANGE NEIGHBORHOODS

Tailored Cooling Algorithm Local Optimization

Pe K # Opt. # Near #Opt. £ Near
Solutions Solutions Solutions Solutions

.05 10 12 0 9 D
20 10 2 10
30 11 1 9 2

.25 10 11 1 9 2
20 12 0 8 2

30 10 2 9 3
.50 10 12 0 10 2

20 11 1 8 3
30 12 0 11 1

.90 10 10 2 10 2
20 10 O 9 j
30 12 0 11 1

103

Table VIII. COMPARISON OF THE TAILORED COOLING ALGORITHM
AND LOCAL OPTIMIZATION FOR GRAPHS OF 40 VERTICES AND

2-CIIANGE NEIGHBORHOODS

Tailored Cooling Algorithm Local Optimization

p* K # Opt. # Near #Opt. U Near
Solutions Solutions Solutions Solutions

.05 10 12 0 12 0
20 12 0 11 1
30 11 1 12 0

.25 10 11 1 11 1
20 12 0 12 0
30 11 1 12 0

.50 10 12 0 12 0
20 12 0 12 0
30 12 0 12 0

.90 10 12 0 12 0
20 11 1 11 1
30 12 0 12 0

104

Table IX. COMPARISON OF THE TAILORED COOLING ALGORITHM
AND LOCAL OPTIMIZATION FOR GRAPHS OF 80 VERTICES AND

1-CHANGE NEIGHBORHOODS

Tailored Cooling Algorithm Local Optimization

A K bestanswcr bestanswcr meananswcr
opt opt Opt

.05 20 1.000 1.012 1.058
40 1.003 1.074 1.097
60 1.007 1.010 1.048

.25 20 1.000 1.000 1.009
40 1.015 1.015 1.032
60 1.000 1.000 1.013

.50 20 1.012 1.02S 1.037
40 1.000 1.016 1.024
60 1.000 1.000 1.015

.90 20 1.018 1.049 1.066
40 1.016 1.044 1.063
60 1.000 1.007 1.018

105

Table X. COMPARISON OF THE TAILORED COOLING ALGORITHM
AND LOCAL OPTIMIZATION FOR GRAPHS OF SO VERTICES AND

2-CHANGE NEIGHBORHOODS

Tailored Cooling Algorithm Local Optimization

P' K bestanswcr
opt

bestanswcr
opt

meananswer
opt

.05 20 1.056 1.042 1.061
40 1.045 1.0SO 1.109
60 1.016 1.000 1.061

.2.5 20 1.024 1.039 1.055
40 1.038 1.000 1.049
60 1.043 1.043 1.066

.50 20 1.025 1.052 1.063
40 1.012 1.026 1.074
60 1.000 1.031 1.068

.90 20 1.025 1.000 3.05S
40 1.046 1.017 1.031
60 1.013 1.013 1.042

106

VI. DYNAMIC COOLING ALGORITHM

In 1985, Aarts and van Laarhoven [4], developed a new general cooling

schedule emphasizing feasibility and robustness. The parameters are determined in

such a way as to foster fast convergence towards near-optimal answers. Moreover,

the quality of the optimization is independent of the problem size. With this

adaptive schedule, Aarts and van Laarhoven [4] proved that the execution time of

the simulated annealing algorithm is proportional to

rnax |A,| In |A |, (6.1)

where i is any configuration, /A = (1, 2, ... , | A)} is the set of state labels of the

system configurations contained in A. The notation A, represents the configuration:;

in a neighborhood of i. The term In |A | is an upper bound for the number of steps

in the decrementing of temperature. For the Directed Steiner Problem,

i A (= 2'*-**,ciar> and |A,| = {n — special). Consequently, the algorithm designed by

Aarts and van Laarhoven has a time complexity proportional to 0((w — special)2).

Since the criterion for decrementing the control parameter and the rule for

termination in the schedule depend on averages found during execution, the

algorithm is referred to as the dynamic cooling algorithm fPCA) in this dissertation.

The underlying reasoning behind the DCA is that more time should be spent at

those temperatures where the current average cost is declining rapidly. This

thinking is analogous to that used in physics where gases are cooled more slowly

at those points where the specific heat increases quickly.

This chapter shows how the parameters for the DCA were chosen in order to

maximize the effectiveness of the algorithm fer the Directed Steiner Problem. In

107

a d d i t io n , d a t a is p re s e n te d sh o w in g th e to t a l C P U t im e as a fu n c t io n o f n, p „ a n d

s p e c ia l , t h e p a r a m e te r s u sed to c o n s t r u c t r a n d o m g ra p h s .

A. IMPLEMENTATION OF THE DYNAMIC COOLING ALGORITHM

The dynamic cooling algorithm can be stated as follows.

1.2.

3.
(a) .

Initialize(CHAINLENGTH, c0, C(c0));
Set c: = c0 ;
Repeat

(i) .
(ii) .

(iii).

(b).

(°) .

For i:= 1 to CHAIN LENGTH do
begin

""Call TRANSITION(statc i -> state j, AC,,) ;
If AC,, < 0 then accept

- A ex­cise if exp(— -—) > random[0, 1]
then accept;
If accept then call UPDATE;

end; _
- , m dC'(<0 ^Compute(a(c), ———) ;dc
Set c = 1 4 - ln(l + c5)c

3c(c)

until
dC,{c) c

-----------—---- < £
dc C(c»)

In this algorithm the termination condition for the repeat loop is equation (4.20),

and the formula for decrementing the control parameter in 3(c). is equation (4.26).

The notation C,(c) is the smoothed value of C(c) as c gets small. The smoothed

value is obtained by calculating a running average over a number of Markov chains.

This allows a good estimate of the average difference in cost function

AC(c) = C(c) — C(/,0), where C(/,0) is the minimum value of the cost function [4],

If c < < 1, then

AC(c) = c
dCs(c)

dc (6.2)

108

Since C(c) fluctuates rapidly, it is necessary to use the smoothed values in order to
dC(c) __

accurately determine the derivative —-— . If the difTerence AC(c) is relativelydc
small compared to C(c0), then the optimization is almost completed. This is the

reasoning behind the terminating condition in the DCA. The value of

CHAIXLEXGTH is max | A. | , which in this case is (n - special). The parameterit iA

CMAIXFACTOR used in the implementation of TCA is always equal to one for the

DCA.

Figure 13 shows the evolution of an annealing run of DCA on Gb0. This figure

can be compared with Figure 8. The difference shows the importance of the

implementation of simulated annealing. The parameters used were

J.\ITIAL_PROB = .9, <5 = 0.1, and £ = 0.0000001. The value of C.(c) is obtained

throughout this dissertation by averaging C(c) over 3 Markov chains. In Figure 13

the schedule converges extremely rapidly, showing the power of the dynamic cooling

algorithm for proper values of <5 and c. Each chainlcngth is 27 iterations. Thus, the

entire process took only 432 iterations as compared with 40.608 iterations in Figure

S. On the other hand, when the same procedure was run with <5 equal to 0.00001.

after more than 15,000 iterations the algorithm stopped with a solution that was

more than 30% larger than the optimum. Hence, it is necessary to adapt this

algorithm to the problem just as it was with the tailored cooling schedule.

The reason that a smaller value of 3 led to a decrease in final accuracy is that

when 1XITIAL_PR0B is .9, the initial temperature is high. The graph may contain

many configurations with the same solution. Every time a sequence of equivalent

configurations is encountered the average change in cost is zero for that sequence.

This causes the expression T used in the stopping rule to be unrealistically small.

The phenomenon can occur even when the temperature is quite high. Thus, the

slow decrease in temperature due to the smallness of 5 leads to premature

109

termination of execution before the schedule begins to converge to a near optimal

solution. Often this does not harm the quality of the best answer because the

running time is substantial anyway for small values of epsilon. This condition does,

however, adversely affect the final solution. Thus, it is necessary to look at both the

best answer and the final answer for each combination of parameter values before

deciding which are the optimum values of S and i to use for a particular problem.

If the starting temperature is close to the point at which convergence begins,

then small values of delta cause smoother convergence and better final answers.

Hence, the rate at which the cooling parameter ir decremented is a function of the

initial temperature as well as the length of the Markov chains.

Random initial solutions and initial temperatures are found in the same way

as they were for the tailored cooling algorithm. In addition, the same set of 480

graphs is used for experiments. For the DCA there are not as many parameters as

there were for the TCA. There are only two that must be adjusted: 5 and e. In

Figures (14 - 15), INITIAL_PROB = 0.3. Figure 14 shows the deviation from the
dC(c)

optimum as a function of the expression 'F = -=£— for a graph with 80
dc C(c0)

nodes, special = 40, and p, — .25. In the figure, 5 = 0.001. The figure shows that

the stop criterion ¥ permits the DCA to reach near optimal solutions. Figure 15

demonstrates the deviation from the optimum as a function of 5 for the same graph

as Figure 14 In Figure 15, e has the value 0.0000001. The graph shows that for a

fixed value of c, the parameter 5 can be determined so that near optimal solutions

are obtained.

In order to find the combination of 6 and c that makes the DCA most

effective, experiments were done as follows. The parameters 5 and c assumed all

combinations of values from { 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01,

110

0.05, 0.1 } and { 0.0000001, 0.000001, 0.00001, 0.0001, 0.001 }, respectively. The

dynamic cooling algorithm was run on GM, Gm, and a graph with 40 nodes, p, = .25,

and special = 10 five times for each combination of possible values assumed by <5

and £. For these experiments a different initial configuration was found for each run.

INITIAL PROB was equal to 0.3. The averages shown in Tables (XI - XIII) arc

for (7bo- Similar relations were found for the other two graphs.

Table XI shows the effects of the parameters on total running time for the

annealing schedule. As <5 and c get smaller, the running time increases. Table XII

compares the average solution found during the final Markov chain with the

optimum solution for the problem. The values at the conclusion of the schedule are

all near optimal if z > 0.001. Table XIII indicates that the average values of the best

answers improve steadily to the optimum as the parameters become smaller. The

results shown in Tables ((XI * XIII) are not unexpected since Aarts and van

Laarhoven [4] proved that their algorithm ran with a worst case time complexity

that was polynomial in the size of the input, but they did not claim that it converged

to an optimal solution. They only stated that if the parameters were chosen to fit

the problem, then a near optimal solution would be produced in polynomial time.

The final solutions for all three test graphs were always within 0.6% of the

optimum when z < 0.000001 and <5 was between .0005 and .005. The best answers

were always optimum whenever 0.000001 and S < 0.005. Running time

decreased sharply when <5 decreased below 0.00005. Hence, in the interest of both

running time and accuracy, the parameters were assigned the values 0.000001 for t

and 0.001 for 5.

CO
ST

1 2 . 0

1 1 . 0

1 0 . 5 ■

1 0 . 0

9.5 -

9.0
0 5 6 9 12 15 18

NUMBER OE CHAIN LENGTHS
igure 13. The evolution of the solution value during annealing on <7,.,, with the DCA. Time incrcascs(thus temperature

decreases) along the X-axis. The Y-axis measures the current cost.

30

Q I I I I I I I I) — I - I I I I 1 ■ 11 I I I I I l l l | 1 I I I I I I I) 1 — I I I I I I) 1 - 4 - 1 - 1 I I I I) 4 — 1

1.01:-7 1. 0 0 - G 1 .0E-5 I.OE-'I 1 .0E -3 1.0E-2 0.1

Figure 14. The deviation from the optimum for a graph of 80 nodes, special = 40, and pe = .25 as c
rule T

-1-1 M»l
1.0

function of the stopping

"s.
O
<
lil
o

1 .0E -6 I .OE- 5 1 .0E-4 1 .0E-3 1 .0E-2 0.1 1.0
rO

Future 15. The deviation from the optimum for a graph of 80 nodes, special = 40, and />, = .25 as a function of the parameter
8.

114

Table XL RUNNING TIME AS A FUNCTION OF 6 and e FOR Gtc
(Number ofTrials)/(N - Special)

<5
.0000001 .000001

£
.00001 .0001 .001

.00001 39 39 39 8 4

.00005 25 39 22 8 4

.0001 16 18 12 8 4

.0005 18 18 10 8 4

.001 13 12 10 8 4

.005 13 10 8 8 4

.01 12 10 10 7 4

.05 13 10 10 7 4

.1 13 6 6 6 4

Tabic XII. (FINAL COST) / OPTIMUM AS A FUNCTION OF <> and £ FOR <760

6
.0000001 .000001

£
.00001 .0001 .001

.00001 1.001 1.001 1.000 1.010 1.070

.00005 1.019 1.015 1.038 1.010 1.070

.0001 1.019 1.018 1.019 1.010 1.070

.0005 1.000 1.000 1.001 1.010 1.070

.001 1.000 1.002 1.000 1.010 1.070

.005 1.000 1.000 1.010 1.010 1.070

.01 1.000 1.000 1.013 1.013 1.070

.05 1.000 1.006 1.013 1.013 1.070

.1 1.003 1.013 1.013 1.013 1.070

115

Table XIII. (BEST COST) / OPTIMUM AS A FUNCTION OF S and c FOR G60

5
.0000001 .000001

£
.00001 .0001 .001

.00001 1.000 1.000 1.000 1.006 1.060

.00.105 1.000 1.000 1.000 1.006 1.060

.0001 1.000 1.000 1.000 1.006 1.060

.0005 1.000 J.000 1.000 1.006 1.060

.001 1.000 1.000 1.000 1.006 1.060

.005 1.000 1.000 1.006 1.010 1.060

.01 1.000 1.006 1.010 1.010 1.060

.05 1.000 1.006 1.003 1.010 1.060

.1 1.000 1.010 1.010 1.010 1.060

B. COMPARISON OF TCA AND DCA

In this section the two versions of simulated annealing for the Directed Steiner

Problem are compared in terms of accuracy and running time.

3. Accuracy of the TCA and DCA. The 4S0 graphs in the test bed were each

run with both the tailored cooling schedule and the dynamic cooling schedule. The

relationship between the parameters n, pe, and special and the deviation from the

optimum of the best answer and the final answer for each of the two schedules was

investigated. For example, in Figure 16 there is a comparison of the deviation from

the optimum of various optimization processes as a function of the number of

vertices. The results represent averages for the 10 graphs at each value of n when

pe equals .50 and special = . Curve (a) indicates the averages for the solutions

produced by doing local optimization once for each of the 10 graphs, curve (b)

shows the averages for the final answers of TCA, curve (c) shows the averages for

the final answers of DCA, curves (d) and (e) demonstrate the averages for the best

answers for TCA and DCA respectively. Figure 16 shows that iterative

0 -

\0Os

O

8 -

G

<
u.i
CJ

A -

2

0 -
0

Figure 16. Deviation from the optimum of' the final result as a function of n. p, — 0.50 and special =
(a) local oplimi/.ation (h) and (c) final answers for the TCA and DCA, respectively (d) and (c) best answers for the TCA and
the DCA, respectively.

117

improvement leads to answers that deviate from the optimum by approximately

6.5%, and that both of the simulated annealing schedules are much better. The

lines between points arc drawn to guide the eye.

The final solutions for the average deviation of the final costs for both TCA

and DCA show that the deviation is independent of the number of vertices if the

density is .50 and special = . This characteristic of the algorithms appears only if

the parameters of the cooling schedules arc chosen properly. Different parameters

may destroy the independence of the final result from the size of the problem. To

test the independence of the algorithms from the size of the problem, each of the

4S0 graphs was run once. The deviations of the final and best solutions from the

optimum were recorded. The average deviations for each combination of

parameters n, p„ and special were calculated. In 462 of the 4S0 graphs the best

solution for the TCA was within 3% of the optimum. In those graphs that were

exceptions, the worst deviation from the optimum was 4.8%. For the DCA only

25 of the 4S0 graphs did not have a best solution within 3% of optimum, and the

worst result among the 25 exceptions was within 6.1% of optimum. For the final

solutions, the tailored cooling algorithm yielded costs that were within 3% of

optimum for all but 57 of the 4S0 graphs. The worst deviation among the IS was

6.4%. With the DCA the final solutions failed to be within 3% in 66 cases with the

largest deviation equal to 6.7%. The average results for each combination of

parameters for both DCA and TCA are shown in Tables (XIV-XV). From these

tables it can be seen that the quality of the solutions yielded by both cooling

schedules is independent of the size of the problem. The data indicates that the

TCA usually provides more accurate answers than does the DCA, but the average

difference is only approximately 1%. For the 48 combinations of parameter values

in 32 instances the TCA gave the better average best answer, and in 37 instances the

118

TCA yielded the better final answer. In all cases but one, both algorithms provided

average best answers that were within 3% of optimum. In the only exception, the

ten graphs with 60 nodes, pr = 0.05, and special = 30, the DCA returned an

average best answer of 3.02% above optimal.

2. Running Times of TCA and DCA. In this section a comparison is made

of the total running times of the tailored cooling algorithm and the dynamic cooling

algorithm. In addition, some results of experiments conducted on the distribution

of running times until a near optimal solution(i.e. within 3% of the optimal) appears

are presented. This is the first time that an investigation of this topic has been done.

a. Total Running Times. As mentioned at the start of this chapter, the order

of the computation effort for the Directed Steiner Problem with the dynamic cooling

algorithm has a worst-case upperbound on the order of 0((n — special)7). Each

iteration of an annealing schedule requires four steps: firstly, the system has to be

perturbed by generating at random a new configuration, secondly, the difference in

cost function must be calculated, thirdly, a decision must be made whether to adopt

a new configuration, and fourthly, the system is updated if the new configuration is

accepted. The perturbation process is rather simple, the next Steiner vertex in a

permutation changes status. If it was included in the Steiner tree, then it is

removed; if it was not present previously, then it is included. The decision

concerning accepting the new configuration is based on no more than a single

exponential function evaluation and the generation of a random number. Updating

the system involves a couple of assignment statements to keep track of the current

solution. The most time consuming part of the iteration by far is the calculation

of the cost function. Unfortunately, for a directed graph there is no way to

incrementally determine the minimum spanning tree from the minimum spanning

119

tree of a graph that is identical to the present one except for the addition or deletion

of one vertex and the edges incident to it. Thus, each iteration requires the use of

the minimum spanning tree algorithm. This algorithm has a worst-case running

time of 0(/(In i)2 + m), where t is the number of vertices and m is the number of

edges in the graph [99]. Since / < n, the DCA has a worst-case running time of

0((/7 — specialfin In n2 -f /??)).

A comparison of the running times of TCA and DCA was done by comparing

the total running times for the 480 graphs in the test bed. The average total running

time for each combination of parameters was calculated. Tables (XV)-XVII)

contain the information gathered. For all values of n, p„ and special the TCA

required considerably more time than did the DCA. It appears that for both

algorithms that the larger the number of special nodes the faster is the average total

running time. Tables (XVI-XVII) contain the collected data for running times.

Thus, the more sophisticated methods of decrementing the control parameter and

of determining when to stop execution of the algorithm which characterize the

dynamic approach yield faster schedules than the more simple-minded, but easier to

implement, approach of the tailored algorithm. Furthermore, as the problems

become larger, the difference in total running times increases.

b. Running Times Until Near-Optimal Solutions. In this portion of the

dissertation the distribution of the first occurrences of near-optimal answers is

discussed. Near optimal answers are those which are within 3% of the optimum.

Figure 17 shows the distribution of the first occurrence of at least a near-optimal

solution for 50 graphs with 40 vertices, pe — 0.05, and special = 10 for b^th the

TCA and DCA. This figure shows that for most of the runs a near-optimal solution

appeared within the first two chainlengths. For all of the 50 graphs a near optimal

120

solution was found. The distributions for both algorithms are similar. In addition,

for each of the following combinations of parameter values 50 graphs were run and

histograms were plotted:

1. n = 40, p, — 0.05, special = 20,

2. n = 40, p, = 0.05, special = 30,

3. n = 60, p, ~ 0.05, special = 15,

4. n = 60, p, = 0.05, special = 30,

5. n = 60, p, = 0.05, special = 45,

6. n = 60, p, = 0.90, special = 15,

7. n = 60, p, = 0.90, special = 30,

8. n = 60, p, - 0.90, special = 45.

The histograms for these cases are very similar to those of Figure 17. They arc

shown in Figures (18-25). The graphs with 60 nodes took more iterations to find

the near-optimal costs than did those with 40 nodes, but the distribution of

chainlengths was approximately the same. The number of iterations required by the

TCA did not grow as fast as the number needed by the DCA to find a near optimal

solution. In addition, for those graphs with 60 nodes, the distributions with p, =

0.90 and p, = 0.05 had histograms that were nearly identical when special was fixed.

Thus, the density of the graph does not appear to affect the number of iterations

that occur before a near-optimal solution appears. If graphs with the same values

for n and pt are compared, the results indicate that simulated annealing finds

near-optimal solutions faster for those graphs with the larger proportion of special

nodes. These histograms indicate that the dynamic cooling algorithm takes more

iterations on the average to find a near-optimal solution than does the tailored

cooling schedule. The time spent per iteration is less for the TCA. Thus, although

121

DCA has a shorter total running time, the TCA seems to generally obtain a near

optimum solution in less time.

In order to further compare the two forms of simulated annealing with respect

to the occurrence of high quality answers in the cooling schedules, 120 random

graphs for each algorithm were generated and each run from five different starting

configurations. The number of iterations until either a near-optimum solution

appeared or the best answer occurred was recorded. The test bed of graphs for this

experiment consisted of 5 graphs with each combination of parameters N(numbcr

of nodes), p,(density), and Special(number of nodes that are required to be

answer was reached was collected for 600 runs for each algorithm. The data were

then subjected to a regression analysis in order to see if the two algorithms affect

the number of iterations differently.

The list of possible independent variables that were considered initialllv

consisted of the following: DA, a classification variable representing the different

algorithms(0 for the DCA and 1 for the TCA), DG, a classification variable

representing each of the five graphs considered for each combination of parameters,

N, p„ Special, and all possible product terms of the preceding five variables. Thus,

a total of 31 independent variables were considered initially. Since the five examples

of graphs considered for each combination of N, p,, and Special were not universally

recognizable types, but merely constructed to introduce variety into the set of

problems on which the two algorithms were to be tested, it was decided not to treat

DG as an independent variable. Thus, any variation in the number of iterations due

to DG was treated as part of the error or "noise" component of the models

considered. Together with DG, all product terms involving DG were also dropped.

connected), where N e {20, 40, 60, 80}. pe e {0.05, 0.90}, and

number of iterations until a high quality

122

Let p — 1 represent the number of independent variables in any model. It is

assumed that all regression models have an intercept term. Thus the regression

function for p — 1 independent variables has p parameters. Since it is possible that

some of the variables DA, p„ Special, or their product terms have no significant

effect on the number of iterations, various statistical model building and variable

selection techniques were used to eliminate unimportant independent variables.

Since the total number of independent variables, that is, the four variables DA, X,

p„ Special, and all of the possible product terms of the latter three variables, was

very large, some model selection techniques such as fitting all possible regression

models were not initially feasible. Hence, other methods such as stepwise

regression. MAXR, and M1NR procedures were used at the beginning in order to

do the following: a. identify those independent variables that appeared to have

considerable effect on the number of iterations; b. determine a reasonable upper

bound on the number of independent variables that should be included in any

candidate model. The three procedures mentioned above arc automated and work

by adding or deleting independent variables according to one or more statistical

criteria. Once the highly influential of the independent variables and an upper

bound for the number of variables in a model were identified, regression analysis

was conducted on all possible models that included the highly influential variables

and had no more variables than the upper bound obtained at the initial stage. The

resulting models were compared using three criteria, namely multiple correlation

coefficient. R.2. the adjusted multiple correlation coefficient R^p- and the Mallows

C,[7S]. All models that failed to satisfy the C, criterion were eliminated from

consideration, and the remaining models were evaluated using the other two criteria.

This produced a handfull of candidates for the final model. The validity of these

candidates was verified by using the automated procedures such as Stepwise.

Finally, simpler candidate models were tested for loss of explanatory power against

Let 7, represent the value of the ith actual observation in the regression model,

and let /, represent the estimated mean of the ith observation. Let 7 be the average

of all the observations of iterations made. Then if there arc k observations, the sum

of squares total is defined as follows.

more complex candidates by using an F-test. Before the process of selection is

discussed further some necessary preliminary notation is introduced.

SSTO =

k

i- 1
(6.3)

The error sum of squares or residual sum of squares of a model with p — 1

independent variables is defined as:

SSEp

k

i=l
(6.4)

The difference between the sum of squares total error and the residual sum of

squares is the regression sum of squares, denoted by SSRr. That is,

SSRp = (6.5)

The mean square error, denoted by MSEP, is an unbiased estimator of the variance

of the regression model. It is given by:

124

MSEp =
SSEp
k - p '

(6 .6)

The mean square due to regression, MSRP, is defined as:

MSRp
SSRp
P ~ 1

(6.7)

The three criteria for initially reducing the set of independent variables can now be

defined. The coefficcnt of multiple correlation is

, SSR. s s e „
Rp = SSTO = 1 _ SSTO ' (6'8^

The equation defining the adjusted multiple correlation coefficient is

2 MSEpn * __ j ______
«<*> SSTO '

A' — 1
(6-9)

Finally, for a model having a subset of p independent variables out of a possible

total of />' — 1 independent variables, the Mallows Ct statistic is expressed by:

SSEp
MSEp. ~ (k ~ 2p), (6. 10)

where MSEP■ is the mean square error of the model with p' — 1 independent

variables.

There are three main automated procedures for selecting independent variables

for the regression function: STEPWISE, MAXR, AXD MIN'R. They can all be

specified as options in the SAS PROC STEPWISE statement. Before discussing the

125

STEPWISE is a combination of two other selection procedures, namely

FORWARD selection and BACKWARD elimination. Forward selection begins by

finding the variable that produces the optimum single variable model in terms of the

multiple correlation coefficient. Succeeding iterations add one variable at a time,

the variable which results in the largest increase in R,2. The process continues until

no variable considered for addition to the model gives a statistically significant

reduction in the SSEr The level of statistical significance is determined in advance

by the analyst. Backward elimination begins by computing the regression function

with all independent variables. The statistics for the partial regression coefficients

are used to find the coefficient with the smallest F value. The variable

corresponding to that coefficient is deleted from the model. The process continues

until all coefficients left in the model are statistically significant. The Stepwise

procedure used in the work for this study begins like forward selection, but after the

addition of a variable, the coefficients of the resulting regression equation are

checked to see if they have a statistically significant F value. If not, a backward

elimination process is initiated. This procedure terminates only when no more

additions or deletions are possible for the specified signifcance level. MAXR begins

by choosing the best models with one and two variables according to the forward

selection method. Then the procedure tries all possible interchanges of variables in

the model with those outside of it. The interchange that causes the largest increase

in Rc2 is accepted. Then a third variable is added by forward selection. The

interchanging of variables within the model with those without is repeated. This

pattern continues until a model with all of the possible variables is obtained.

MAXR checks more models than does STEPWISE. Hence, it requires much more

selection process for the model describing the number of iterations used by the two

annealing algorithms, a brief description of these three SAS procedures is presented.

126

computer time and gives more reliable information. MINR is like MAXR except

that interchanges are implemented for those variables causing minimum rather than

maximum improvement. It considers more models than does MAXR. The process

of selecting a regression model for the annealing algorithms can now be presented.

In the full model, there were initially 15 independent variables: DA, X, pc,

Special, and their product terms. In order to ’■educe the number of variables to a

more manageable size, it was decided to apply MAXR, MINR, and Stepwise to the

full model in an attempt to find insignificant variables that could be immediately

eliminated. This resulted in a model with these 12 variables: DA, N, Special, p„

N*S, N*/?„ Spccial*DA, p,*Special, p*DA, N*Special*DA, 'S*p,*DA, and

*p,*Spccial*DA. The SAS General Linear Model proccdurc(GLM) was applied

to this model. This procedure uses an F test lo examine for each independent

variable the hypothesis that the coefficient of that variable is zero. In the model

with 12 variables described above, the probability that the coefficient of N was zero

was 0.0001, and the probability that the coefficient of Special was zero was equal

to 0.0005. The variable DA was of interest because it represented each of the

algorithms. Hence, in the next step when the procedure RSQUARE was used to

evaluate all of the possible models whose sets of variables were subsets of the 12

remaining variables, it was decided that the only models that RSQUARE needed to

consider were those including DA, X, and Special.

The goal was to find a model with less than 15 independent variables that

would account for nearly as much of the variation in results as the 15-variable

model did. One of the measures of interest reported by RSQUARE was the

Mallows, C,, statistic for each of the various subset regression models. The value

should be small and less than p, where p is the number of parameters in the model.

All of the models with less than six independent variables had Cp values that were

127

considerably greater than p. The best value of the measure for a six-variable model

(i.e. p = 7) was 6.527164. The variables DA, X, S, N'*DA, S*DA, and X*S were

in this model. The second best value for a six-variable model was C, = 7.21S8S3.

The best three values of Cp for seven-variable models were 6.460516, 6.866647, and

7.090416. The difference in the R 2 between the best six- and seven-variable models

was 0.0012. For eight-variable models, the best three values of Cf were 7.230—'*5,

7.S27507, and 7.845395, and the difference in Rp2 between the best seven- and

eight-variable models was 0.0007. The difference between the values of R 2 for the

best eight- and nine-variable models was 0.0001. Since the difference was so small,

models with more than eight variables were not considered. For the eight-variable

model with the lowest value of Cp. the multiple correlation coefficient of was

0.31845915, thus accounting for approximately 99% of the value of the multiple

correlation coefficient for the 15 variable model.

In order to confirm the choice of the best six-, seven- and eight- variable

models, the automated SAS procedures STEPWISE, MAXR, and MINR were run.

The Stepwise regression procedure found only six variables that met the 0.15

significance level criterion for entry into the model. The six, in order of importance,

were X, S, N*DA, S*DA, DA, and X*S. These were the variables that made up the

best six-variable model according to the Cf criterion. MAXR and MINR produced

the same six-variable model with the exception that DA was replaced by X*S*DA.

These procedures also produced models that differed from those given by using the

C. criterion only in that DA was replaced by an interaction term containing DA.

It was decided on the basis of the information gathered from the automated

proedures that the best three best six-, seven-, and eight-variable models selected

according to the Cp criterion should be subjected to the PROC REG SAS procedure

to examine the adjusted coefficient of multiple correlation. The adjusted coefficient

128

is important since it takes into cosideration the number of parameters in the model,

whereas R 2 never decreases as p increases. The definition of the adjusted multiple

correlation coefficient shows that R increases exactly when MSE, decreases.

When PROC RFC was applied to the nine models selected on the basis of CF and

the automated procedures, RaiF)2 was 0.3131 for the six-variable model described

above. This was the best value for this measure for any of the models with six

variables. The best that any seven-variable model did with this measure was 0.3137,

and the best for any of the models with eight variables was 0.3139. The best model

with seven variables was the same as the best model with six variables with the

exception that the variable P*S was added. The best eight-variable model contained

the six variables that appeared in the best six-variable model along with N*P and

P. The small differences in R ^ 2 and the fact that the six most important

independent variables were identical among the best models strongly suggested the

choice of the model with DA,\,S.N*DA,S*DA, and X*S as the final regression

model. An F-test, based on the reduction in the error sum of squares in going from

the best six variable to the best eight variable model, was conducted to determine

if the two additional variables N*P and P were needed in the model. The test

showed that the two terms involving P and N*P are statistically insignificant.

Hence, the best six-variable model was chosen to explain much of the variance in

the number of iterations required by the DCA and the TCA to find high quality

answers. The regression function was found to be

Iterations = 32.35666667*DA -b 5.I422437SDY - 5.4SSS24S8*S/>ec/a/

- 2.05090000*.V*£M + l.3A513333*Special*DA (6.11)

+ 0.02092537*N*Special - 56.41462687

The significance of the algorithm in determining the number of iterations is

seen from the fact that the variable DA appears in three of the terms in the

regression function. The graphs in Figures (26-28) show the relationship between

the two regression curves for the DCA and TCA for the different proportions of

special vertices. From these graphs it is apparent that the tailored cooling schedule

was superior to the dynamic cooling schedule for large N in the range of values of

X tested in the experiment, f urthermore, it appears that the superiority of the

tailored algorithm increases as the number of nodes increases.

Table XIV. AVERAGE DEVIATION OF LENGTH FROM THE OPTIMUM
FOR EACH COMBINATION OF PARAMETER VALUES FOR 20 AND 40

VERTICES

Average Deviation Above Optimum (%)

TCA DCA

n P- special Best
Answer

Final
Answer

Best
Answer

Final
Answer

20 .05 5 1.85 2.65 2.01 4.22
10 1.28 2.94 1.39 2.47
15 1.03 1.54 2.20 3.30

.25 5 1.55 0.56 2.07 3.56
10 1.75 3.34 1.46 3.77
15 0.62 2.01 1.49 2.98

.50 2.47 3.15 2.76 3.05
10 2.43 3.87 1.60 4.55
15 1.04 2. IS 0.75 3.91

.90 X 1.33 3.85 2.85 4.03
10 2.30 3.74 2.03 3.72
15 0.98 2.44 1.34 2.77

40 .05 10 0.95 3.22 1.79 3.64
20 2.53 2.76 2.87 4.19
30 2.59 3.69 2.SS 3.63

.25 10 1.84 3.73 1.53 4.70
20 0.77 3.03 1.29 4.05
30 1.05 2.77 1.49 3.63

.50 10 2.31 3.05 2.61 4.49
20 2.25 3.24 2.74 3.97
30 1.03 2.37 1.09 4.72

.90 10 2.42 2.87 1.34 3.43
20 1.40 2.45 1.14 4.58
30 0.92 3.59 1.90 3.07

130

Table XV. AVERAGE DEVIATION OF LENGTH FROM THE OPTIMUM
FOR EACH COMBINATION OF PARAMETER VALUES FOR 60 AND 80

VERTICES

Average Deviation Above Optimum (%)

TCA DCA

n P' special Best
Answer

Final
Answer

Best
Answer

Final
Answer

60 .05 15 1.82 3.62 1.76 4.14
30 2.47 3.85 3.02 4.29
45 1.84 3.17 2.25 3.92

.25 15 2.14 3.29 1.98 3.82
30 2.03 2.89 2.47 4.01
45 1.37 1.70 2.SI 3.3S

.50 15 2.49 3.71 2.97 4.28
30 2.48 3.75 1.84 4.37
45 1.02 3.15 2.OS 2.66

.90 15 2.03 2.76 3.07
30 2.61 3.84 2.46 3.71
45 0.97 1.38 1.05 1.83

80 .05 20 2.19 3.75 1.97 3.22
40 1.96 2.83 1.53 4.16
60 1.66 2.07 1.69 3.95

.25 20 2.37 2.70 2.45 3.11
40 2.31 3.74 2.85 4.7S
60 2.09 3.68 2.12 3.45

.50 20 2.24 3.03 2.17 2.94
40 1.71 3.S6 2.98 4.61
60 2.11 2.60 1.53 4.07

.90 20 1.32 3.26 1.S4 3.67
40 2.38 3.76 2.19 3.11
60 1.95 2.83 2.05 4.56

131

Tabic XVI. AVERAGE TOTAL RUNNING TIME FOR EACH
COMBINATION OF PARAMETER VALUES FOR GRAPHS WITH 20 OR 40

NODES

132

Table XVII. AVERAGE TOTAL RUNNING TIME FOR EACH
COMBINATION OF PARAMETER VALUES FOR GRAPHS WITH 60 OR 80

NODES

TCA DCA

n F‘ special Run Run
Time Time
(see.) (see.)

60 .05 15 3476 1 128
30 3096 1238
45 3174 1053

.25 15 3979 1248
30 2890 1 146
45 30S1 1063

.50 15 3540 1424
30 3058 1296
45 2540 1377

.90 15 2561 1703
30 I sss 1425
45 1355 451

SO .05 20 23267 17219
40 16542 14S45
60 9S73 11596

.25 20 28324 150S3
40 14399 125S0
60 9225 10406

.50 20 2477S 12673
40 15671 11655
60 9733 9072

.90 20 35328 13749
40 24302 1041S
60 9355 S947

>"
o
Li I

)r 1
11)
n; 11

CO -

27

2A

2 I -

1 8

I 0

I 2 -
9 -

G
;

o -
0

LTZ1 TCA
K Z3 DCA

r r

N K 3

8 9 10 1

Cl IAIN LENGTHS

Figure 17. Distribution of First Occurrences of a Near-Optimal Solution (or 50 Graphs with Parameter values of n = 40,
p , = 0.05, ami special = 10.

L-i

4 0 o

b
/
hi
_)
(I
hi
n:
11.

Cl IAINLENGTHS

Figure IS. Distribution of First Occurrences of a Near-Optimal Solution for 50 Graphs with Parameter values of n = 40,
/>, — 0.05, and special = 20.

c->

CMAINLENGTI IS

[•Igurc 19. Distribution of First Occurrences of a Near-Optimal Solution for 50 Graphs with Parameter values of n = 40
p , — 0.05, and special = 30.

GO

25

2 0

C l] TCA
C l DCA

> _
o
ii i
:)
c 1
11 .1
n:11..

j

I 0

0
0 1 2 5

X1C
6 7 8 9 10

Cl IAINLENGTI15
1L

11 12 13 Cl 15

Figure 20. Distribution of First Occurrences of a Near-Optimal Solution for 50 Graphs with Parameter values of n = 60,
fit — 0.05, and special = 15.

GOOn

> - C J
J! Li J:d
o t l J
!)'
11_

A O

36

3 2

28

24

2 0

16

12

8 -

A

0 -

□ TCA
E S I DCA

0 1 2 3
__II H 0 0 B_____ n fn_____________

3 6 7 8 9 10 11 12 13 14 15 16 17
Cl IAINLENGTI IS

Figure 21. Distribution of First Occurrences of a Near-Optimal Solution for 50 Graphs with Parameter values of n = 60,
/;, = 0.05, and special = 30.

A 0

3 0

.30

.30
Cj
hi 22)
;;)
i' i
111 20
11 11 CD

10

J •

0
0

i._Lrcxi. -cri. t~ l

I ; j TCA
CCC DCA

2 .3 3
Cl I AIN LEM GINS

LK31_
r:O 6

Figure 22. Distribution of First Occurrences o fa Near-Optimal Solution for 50 Graphs with Parameter values of n
/>, — 0.05, and special = 45.

= 00,

GoQO

O O

23
LZJ TCA
[SCI DCA

>-
cj
>’
iii
j)
c >'
h i j :,
u_

2 0

16

I 2

0
0 1 2 3

i:i[L q_
6 6 7 8 9 10 1 1 1 2

Cl IAINLDNGTI IS

-JQ____ G_G____ L

13 13 15 16 17 18 19

•igurc 7,1. Distribution of First Occurrences of a Near-Optimal Solution for 50 Graphs with Parameter values of n = 60,
/\. = 0.90, and special = 15.

I a->'O

Cl IAINLENGTI IS

I'igurc 24. Distribution of First Occurrences of a Near-Optimal Solution for 50 Ciruphs with Parameter values of n = 60,
P ' — 0.90, and special = 30.

O

CHAINLENGH IS

Figure 25. Distribution of First Occurrences of a Near-Optimal Solution for 50 Graphs with Parameter values of n = 60,
/;, = 0.90, anti special = 45.

142

:Q

t:

i r ? : ' e : r : s l:5reticr-3
Figure 26. Regression Functions for the DCA and the TCA Special = —

143

iI!
[

I

“T“--—rr

rr;

'fr̂ sers r.eranc's
Figure 27. Regression Functions for the DCA and the TCA Special =

144

145

VII. SIMULATED ANNEALING, BRANCH AND BOUND, AND THE
DSP

In this chapter the tailored simulated annealing algorithm, the more reliable

of the two annealing algorithms discussed in this dissertation, is compared with the

branch and bound technique on a binary search tree with respect to running time

and accuracy in the solution of the Directed Steiner Problem on graphs. The dual

ascent algorithm of Richard T. Wong [112] is used to obtain lower bounds for the

branch and bound process. An initial feasible upper bound is found by applying the

minimum spanning tree algorithm for directed graphs [21, 29, 99] to a subset of the

nodes found by Wong's procedure. In effect, the method employed by Wong is a

means for making an intelligent guess about which Steiner points should be included

in the minimal length Steiner tree. If the lower bound produced by the dual ascent

algorithm agrees with the feasible upper bound, then the problem is solved

optimal!} and a branch and bound procedure is not necessary’. Otherwise, the

branch and bound technique is applied to find the optimal solution. The heuristic

algorithm given by Wong is as follows [112].

1. Use the dual ascent procedure to find a lower bound for the optimal
Steiner tree length.
Let G'{Q, £') be the graph obtained when the ascent algorithm terminates.
All of the special nodes including node 1 must belong to Q, because the
algorithm terminates only when the set of special nodes is
connected.

2. Find a minimal directed spanning tree T on the graph G'.
3. If a node s is a leaf of T and s is a Steiner vertex, then delete

s and the arc incident to it. Repeat this process until no further
deletions are possible. Denote the resulting tree by T. This arcs
in this tree constitute a feasible solution to the DSP since even-
special vertex in T is connected to node 1. The cost of T is
an upper bound for the optimum cost.

146

For each combination of parameters the number of graphs in the set of test

problems for which the initial feasible solution was optimal or near-optimal and the

average running time for the algorithm of Wong are shown in Tables (XVIII-XIX).

There were 10 graphs for each combination of parameters. The data in

Tables(XVHl-XlX) indicate that the average total running time increased rapidly

as the number of vertices grew. The running times in most cases declined for fixed

values of n and pe.

Table XVIII. RESULTS OF THE APPLICATION OF THE ALGORITHM OF
WONG TO GRAP1 IS WITH 20 OR 40 NODES

n P. special
Optimum
Answer

Near
Optimum
Answer

Average
Run Time

(sec.)

20 .05 5 6 4 0.7
10 6 4 0.6
15 9 1 0.3

.25 5 4 5 1.5
10 7 o 1.7
15 S D 0.5

.50 5 4 4 1.4
10 5 J 1.2
15 7 2 0.4

.90 5 5 1 O.S
10 5 O 0.7
15 7 2 0.5

40 .05 15 5 1 52.2
30 5 2 42.0
45 7 2 27.S

.25 15 5 2 34.3
30 4 4 30.1
45 6 2 19.8

.50 15 4 4 39.5
30 5 3 35.6
45 7 2 20.1

.90 15 5 3 20.7
30 5 3 8.5
45 6 2 15.2

147

Table XIX. RESULTS OF THE APPLICATION' OF THE ALGORITHM OF
WONG TO GRAPHS WITH 60 OR 80 NODES

n Pe special
Optimum
Answer

Near
Optimum
Answer

Average
Run Time

(sec.)

60 .05 10 3 4 73.7
20 ->D 3 65.5
30 5 2 41.3

.25 10 4 i 86.9
20 5 2 88.4
30 6 2 53.S

.50 10 3 3 80.3
20 5 2 77.9
30 4 j 60.4

.90 10 4 -> 1 18.0
20 5 2 7S.2
30 6 3 64.1

SO .05 20 2 5 265.9
40 D 3 178.5
60 5 2 115.2

.25 20 D *■>s> 293.3
40 4 2 261.6
60 4 j 152.7

.50 20 4 ">j 353.2
40 5 n 312.0
60 5 3 189.S

.90 20 4 i 319.6
40 5 289.5
60 5 •*» 186.1

Figure 29 shows the percentage of optimal answers from an application of

Wong's method as a function of the number of vertices n. As n gets larger, the

procedure becomes increasingly less accurate. If the rate of decline in accuracy

indicated in Figure 29 continues as n increases beyond SO. then it is of interest to

compare the commonly used deterministic method of branch and bound with a

probabalistic one such as simulated annealing. A comparison of these methods in

solving the Directed Steiner Problem on graphs is the topic of the remainder of this

dissertation.

CO

C ')

1 00

BO

h-c_o(_i_o
ll I
<1

ui
o
Q:b.iCL

60

4 0
0

-4—
20 40 GO

NUMBER OF VERTICES

Q z"'ou 100

Figure 2‘). The percentage of optimum answers using the Algorithm ol" Wong as a (unction of'the number of vertices.

QO

149

The idea of comparing branch and bound to simulated annealing brings up the

question of whether to begin the cooling schedule with the better-than-average

answer found by Wong's algorithm, which is the starting point for branch and

bound, or to begin with a random configuration as was done in the comparison of

the two versions of simulated annealing. In order to answer this question, the

tailored cooling algorithm was applied to the graphs with 60 or SO nodes five times

starting from random initial configurations and five times starling from the final

configuration yielded by the heuristic technique of Wong. The cooling schedules

were allowed to run only three chainlengths. The average mean cost of the third

cbainlcngth was calculated in each case. Table XX shows the average of the

solutions for the five iterations for each set of parameters for both starting

procedures. The averages were better in all but two cases when the simulated

annealing algorithm began with the final configuration derived by the algorithm of

Wong. Hence, it was decided that in the comparison with branch and bound that

simulated annealing would begin with the better-than-average solution obtained

from Wong's heuristic. However, in the two cases in which the random starting

configuration led to a more accurate answer than did the last configuration from

Wong's algorithm, the dual ascent algorithm produced a solution that included

several Steiner points that .were not in the optimum solution, but which did yield a

local minimum. That is, the solutions which were close to the one given by the

heuristic, in the sense that they involved only one or two changes in the choice of

Steiner points to use, were larger than the one derived from Wong's algorithm. The

optimum, however, required in each case that at least four changes be made to the

result of the heuristic method. Thus, although for the majority of graphs a

better-than-average beginning configuration leads to a faster near optimal solution,

there are examples where the opposite is true. The conclusion from this experiment

is that in order for a superior starting configuration to be valuable, the kind of

150

solutions obtained from the heuristic method of Wong must take advantage of

insights into the problem instance that are not possible for a general procedure like

simulated annealing that attacks every instance in the same way. If the structure

of the graph is such that Wong's technique docs not adequately analyze it, then a

random initial configuration is as good or better for annealing.

In order to determine whether the TCA was as efficient as branch and bound

in locating near-optimal solutions, the following experiment was conducted. For

all combinations of standard parameters with the exception of those with 20 nodes,

4 graphs were found for which the heuristic procedure did not reach a near-optimal

answer. Thus, the TCA was applied to 144 graphs, and the initial configuration for

each run was the configuration at which Wong's heuristic had terminated. The time

required by annealing until a solution within 3% of the optimum or the best answer

achieved was recorded for each run. Then the result was compared to the time

required by branch and bound to obtain a solution at least as good as the one found

by annealing. Graphs with 20 nodes were not included because a near optimal or

better solution was almost always found by an application of Wong's algorithm.

Tables (XXI-XXIV) show the information gathered by this experiment. For 114

of the graphs the running time for the simulated annealing algorithm was shorter

than the running time for the branch and bound method.

A regression analysis was applied to the data in Tables (XXI-XXIV) in an

effort to find some reliable statistical way to measure the performance of the tailored

simulated annealing algorithm relative to the branch and bound method for the

Directed Steiner Problem in graphs. The variables X, pt, and Special used to

generate the random graphs, and a classification variable, DA, representing the two

methods(0 for the branch and bound technique and I for the annealing algorithm)

were selected as likely important independent variables for a regression model. The

151

SAS General Linear Models Procedure(GLM) was first applied to the full model

with X, p„ Special, and DA and all of their product terms, a total of 15 variables.

The multiple correlation coefficient for this model was 0.357217. This model was

compared to the reduced model with al! of the terms containing DA removed. For

this reduced model, Rp2 was equal to 0.270101. An F test using the formula

SSEfult — SSLreduced
n d f fun ^/reduced /n (^

MSEfuu ’ }

where d f stands for the number of degrees of freedom in the respective sum of

squares, was applied in order to compare the full model with all 15 variables to the

second model. Substituting the values from the models into Equation 7.1 gave

749235357.8 - 850779376.4
_______ 272 - 280_______

2754541.8 (7.2)

This yielded Calculated F — 4.61. From the tables for the F distribution,

F(S, 2S0, .999) = 3.27 [78]. Thus, it was concluded with less than a 0.1 % chance

of error that at least one of the terms containing DA was necessary to the model.

Next, the variable DA was retained, but the product terms containing DA were

deleted. For this second reduced model, R 2 was equal to 0.326668. An F test was

done to compare this new reduced model to the full model with 15 variables. From

Equation 7.1,

749235357.8 - 7S4669420.4
_______ 272 - 279_______

2754541.8 (7.3)

This reduced to Calculated F=1.S4. Tables for the F distribution give

F(7, 279, .90) = 1.72 [78]. Hence, with less than a 10% chance of error it was

152

determined that at least one of the product terms containing DA was significant

enough to be in the model.

A SAS RSQUARE procedure was applied to the full model with 15 variables.

The variable DA was required in all the models reported. There were two models

with four variables, six models with five variables, and twelve models with six

variables that had values of Cr < p. Some of the models with seven and eight

variables also had low values of Cp, but the difference in the multiple correlation

coefficient between the best six-variable model and the best seven-variable model

was only approximately 0.0013. The increase in complexity did not seem to be

worth such a small gain in Rp. Thus, the number of models studied further was

limited to twenty.

The automated procedures STEPWISE, MAXR, AND MINR were examined.

Only the four variables DA, X, N*P, and N*S were able to meet the 0.15

significance requirement for the STEPWISE procedure. MAXR AND MINR both

produced the same four-variable model as the Stepwise procedure. This model

differed from the two models suggested by RSQUARE. Likewise, MAXR AND

MINR produced identical best five- and six-variable models, but these models were

not suggested by the application of the "smallest Ct " criterion to the models given

by RSQUARE.

In order to understand the models better, the predicted values of Time were
y

plotted against X for all combinations of and p, for the twenty models suggested

by RSQUARE, and the three models given by the automated procedures. All of the

models showed graphs that for some combinations of the parameters predicted

negative values for Time at N = 40 for the simulated annealing algorithm. Also,

the values of Time predicted by the full model with 15 variables were plotted against

153

N. For this model, several of the graphs showed negative values at N = 40 and

little difference in Time between X = 60 and N = SO for the TCA. These results

led to the conclusion that other variables needed to be included in any model

designed to show the differences in Time produced by tiie branch and bound

technique and the tailored cooling schedule.

The following set of independent variables was added to the original set of 15

variables to form a set of candidate variables to be included in a model:

N2, A73, cxpv,v . In A\ v .V , A '2P, S2, — , A PDA, S In A', JW S, ~~ ■ Three criteria for

selection of a model were used. They were:

1 . Ralj,2,

2. Realistic predictions of values of Time for all

all combinations of parameters,

3. Evidence of low multicollinearity between independent

variables.

The second criterion meant that predicted values of Time were not permitted to be

negative, nor were they allowed to decrease or show otherwise clearly incorrect

patterns of change as N increased. In some candidate models, predicted values of

Time decreased as X' increased from 40 tc 60 or from 60 to 80. Some of this

behavior was due to correlations among the independent variables themselves.

Hence, the third criterion followed naturally from the second. In order to measure

multicollinearity for each model studied, the variance inflation factors for each

independent variable, which indicate the presence or absence of multicollinearity,

and the condition numbers were obtained by a SAS REG procedure.

154

The following steps were repeated until a satisfactory model was obtained.

First, a SAS RSQUARE procedure was apnlied to a set of 15 of the twenty-seven

candidate variables. Each of the models reported by RSQUARE was required to

include DA. Models with 5, 6, 7, or 8 variables that had values of Cf < p + 1, and

whose variables figured prominently in the automated procedures STEPWISE,

MAXR, and MINR were initially accepted for further consideration. Second, for

the models selected in the first step, the predicted values of Time were plotted

against N for all combinations of parameters. For all of the candidate models, some

of the graphs that were produced violated the second constraint by exhibiting

obviously incorrect predictions of running time for the TCA. The reason that it was

difficult for models to give satisfactory results for all cases was that the rate of

increase in running time as X increased varied not only between algorithms, but also

among values of the ratio — . As this ratio grew larger, the rate of increase in time

diminished for both algorithms. Yen' few models were flexible enough to

accomodate these different rates of change, which were further complicated by the

densities and individual topological characteristics of the graphs. Third, for those

models that showed reasonable looking graphs with only a few exceptions,

multicollinearity statistics were collected. Variables were then deleted from the

model or exchanged for other variables in order to remove any substantial

multicollinearity. Plots of the resulting models were made in order to study the

effects of the changes. Those models which looked promising frequently had large

Q values indicating that the models were underspecified. However, since the narrow-

range of data necessarily made it likely that the predictions of running time were not

very reliable for at least some of the parameter combinations, it was decided that a

marginally underspecified model with reasonably shaped graphs was preferable to

one with better Cp values but which resulted in a few very eccentric looking plots.

Given data over a larger range of X, the highly specified models might have a much

155

different composition anyway. Moreover, the purpose of the regression analysis

was only to study the relative importance of the effects of the different algorithms

on the near-optimum running time. It was not to make highly accurate predictions

about actual values of near-optimum running times for each algorithm at given

values of the parameters. Thus, values of Cp slightly above p were tolerated. It

should be noted that Cp is only an estimate of a quantity that would be less than

or equal to p + 1 for models that are not underspecified. Sampling variations can

produce a Cp value slightly higher than p + 1 even when the model is not

underspecified.

Forty models reached Step 2 of the testing process. For these models, Ra{P)2

ranged from 0.3601 to 0.3S75. These values were considered to be sufficiently close

together that any of them was acceptable. Only one model produced by the process

satisfied all three criteria. It consisted of the variables DA, A*, N*S, S, N*DA, N*P,

and N*P*DA. It has an adjusted multiple correlation coefficient of 0.3631. There

is little multicollinearity in the model. The largest variance inflation factor is

approximately 48.4 for A':. and the largest condition number is approximately 46.3.

For this model, the plots of predicted values of near-optimum running time against

N showed no negative values nor any unusual patterns of change as N increased.

The regression function obtained was the following.

Time = 131S.56993*D,‘ - J.17338997*At2 - 1.53S0371STY*?

- 43.86114141 *.Y*D.4 - 15.527811S5*A7*P + 59.36700110*S. (7.4)

-i- 13.01 S62537*A'*P*Z)/1 - 1266.59934

Graphs of the regression curves for branch and bound and the TCA are shown in

Figures (30-41).

156

The small values of the adjusted multiple correlation coefficient are perhaps

due to the randomness of the graph structures, because the algorithm of Wong

produces vastly different running times for graphs generated with the same set of

parameters, but with different seeds to the random number generator. In addition,

the method of simulated annealing itself injects randomness into the sequence of

configurations examined. Another factor is the order in which Steiner node.- are

examined in the depth first search of the binary tree in branch and bound. If the

order is fortuitous, the tree is quickly pruned and an optimum solution found, but,

in the average case, a large number of nodes must be checked.

In this chapter we have shown that the quality of the solutions obtained by the

heuristic used by Wong to find feasible solutions appears to decline as the size of

the problem increases. Evidence has been presented suggesting that simulated

annealing generally finds a near-optimal answer faster by starting at the final

configuration of the algorithm of Wong than by beginning at a random

configuration. A comparison between the near-optimal running times for the TCA

and branch and bound methods when applied to the DSP on 144 graphs has been

presented. A regression analysis of the data indicates that the method is an

important independent variable in any model attempting to understand the data.

For the range of values used as parameters in this dissertation, the graphs shown in

Figures (30-41) clearly illustrate the difference in the two techniques of simulated

annealing and branch and bound wThen applied to the DSP.

157

Table XX. A COMPARISON OF AVERAGE SOLUTIONS AFTER 3
CIIAINLENGTHS OF THE TCA BEGINNING AT A RANDOM

CONFIGURATION AND AT THE CONFIGURATION YIELDED BY THE
HEURISTIC OF WONG

Random Configuration Final Heuristic Configuration
n P> special Average

Solution
Average
Solution

60 .05 15 6.924 6.846
30 8.711 8.562
45 9.439 9.29“

.25 15 1.814 1.78"
30 2.531 2.506
45 3.174 3.241

.50 15 0.994 0.976
30 1.298 1.285
45 1.563 1.485

.90 15 0.396 0.405
30 0.763 0.710
45 0.892 0.845

80 .05 20 7.420 7.601
40 9.888 10.06S
60 10.836 10.024

.25 20 1.747 2.369
40 2.245 2.239
60 3.926 3.754

.50 20 1.070 1.056
40 1.165 1.143
60 1.583 1.542

.90 20 0.385 0.322
40 0.585 0.564
60 0.944 0.931

158

Table XXI. A COMPARISON OF THE TAILORED COOLING ALGORITHM
AND THE BRANCH AND BOUND METHOD APPLIED TO THE

DIRECTED STEINER TREE PROBLEM ON GRAPHS OF .05 DENSITY

TCA Branch and Bound
Pe n special Run

Time
(sec.)

Solution
Optimum

Run
Time
(sec.)

Solution
Optimum

.05 40 10 25 1.005 186 1.000
34 8 1.013 1397 1.010
540 1.000 363 1.000
73 1.000 2439 1.000

20 3 1.01S 8 1.006
2S8 1.023 694 1.015
22 1.000 572 1.000

334 1.012 138 1.010
30 2 1.014 12 1.012

103 l.(io0 274 1.000
3S8 1.000 735 1.000
203 l.OOS 124 1.000

60 15 298 1.000 31 1.000
942 1.000 2234 1.000
11 1.012 3855 1.008

3S4 1.000 948 1.000
30 S5 1.009 777 1.000

2 1.000 6 1.000
370 1.014 972 1.000
573 1.018 561 1.000

45 36 1.000 92 1.000
197 1.016 384 1.009
428 1.000 2452 1.000
396 1.011 259 1.014

80 20 3320 1.024 14704 1.024
6710 1.01S 8439 1.010
2475 1.000 3761 1.000
1982 1.024 3812 1.016

40 1964 1.009 2901 1.000
519 1.000 744 1.000
934 1.021 6229 1.000
452 1.006 2676 1.000

60 836 1.024 582 1.005
367 1.015 624 1.000
1)93 1.004 4056 1.000
758 1.029 3875 1.020

159

Table XXII. A COMPARISON OF THE TAILORED COOLING ALGORITHM
AND THE BRANCH AND BOUND METHOD APPLIED TO THE

DIRECTED STEINER TREE PROBLEM ON GRAPHS OF .25 DENSITY

TCA Branch and Bound

P' n special Run
Time
(sec.)

Solution
Optimum

Run
Time
(sec.)

Solution
Optimum

.25 40 10 374 1.027 405 1.013
50 S 1.006 277 1.000
945 1.000 4629 1.000
253 1.000 829 1.000

20 31 1.000 85 1.000
39S 1.012 790 1.000
1156 1.000 2162 1.000
46S 1.010 379 1.003

30 74 1.000 152 1.000
6 1.000 194 1.000

1 IS 1.01S 454 LOOS
165 1.014 359 1.011

60 15 29S 1.000 847 1.000
S54 1.000 1159 1.000
393 1.025 728 1.017
617 1.018 935 1.004

30 531 1.019 506 1.007
1937 1.01S 1495 1.016
1371 1.025 8214 1.019
6S0 1.000 743 1.000

45 24S 1.000 1S9 1.000
176 1.021 320 1.011
53 1.000 656 l .000

476 1.000 462 1.000
80 20 4661 1.021 109SS 1.015

2742 1.000 2511 1.000
1840 1.019 2376 1.008
3596 1.014 5282 1.013

40 18 1.000 9031 1.000
245 1.020 1S93 1.011

2850 1.02S 4798 1.017
4136 1.018 S205 1.000

60 126 1.000 744 1.000
537 1.026 2141 1.013
611 1.000 1483 1.000
1337 1.032 2915 1.025

160

Table XX11I. A COMPARISON OF THE TAILORED COOLING
ALGORITHM AND THE BRANCH AND BOUND METHOD APPLIED TO

THE DIRECTED STEINER TREE PROBLEM ON GRAPHS OF .50 DENSITY

TCA Branch and Bound

P' n special Run
Time
(sec.)

Solution
Optimum

Run
Time
(sec.)

Solution
Optimum

.50 40 10 426 1.000 338 1.000
235 1.000 459 1 ,(tO0

4 1.016 372 1.013
201 1.024 596 1.019

20 13 1.008 179 1.000
9 1.000 204 1.000

28 1.000 267 1.000
104 1.000 83 1.000

30 4 1.000 12 1.000
15 1.000 6 l .o o o
4 1.000 649 1.000
27 1.000 10 1.000

60 15 754 1.000 2366 1.000

G
OrOG
O 1.000 651 1.000

455 1.023 212 LOIS
68 1.000 152 1.000

30 503 1.000 828 1.000
342 1.024 575 1.021
497 1.031 619 1.014
1185 1.000 2451 1.000

45 332 1.018 9107 1.015
170 1.012 2529 1.010
44 1.014 1172 1.006

221 1.000 157 1.000
SO 20 768 1.000 1690 1.000

2484 1.000 3673 1.000
1173 1.038 1026 1.024
188 1.029 949 1.029

40 21 1.000 165 1.000
492 1.013 1048 1.013
311 1.000 862 1.000
84 1.011 425 1.005

60 147 1.000 834 1.000
476 1.000 362 1.000
13 1.000 19 1.000

132 1.000 592 1.000

16]

Table XXIV. A COMPARISON OF THE TAILORED COOLING
ALGORITHM AND THE BRANCH AND BOUND METHOD APPLIED TO

THE DIRECTED STEINER TREE PROBLEM ON GRAPHS OF .90 DENSITY

TCA Branch and Bound

P‘ n special Run
Time
(sec.)

Solution
Optimum

Run
Time
(sec.)

Solution
Optimum

.90 40 10 373 1.000 294 1.000
614 1.036 1188 1.000
116 1.000 523 1.004
368 1.000 190 1.000

20 8 1.000 204 1.000
9 1.000 19 1.000

325 1.033 518 1.024
95 1.021 894 1.000

30 3 1.017 145 1.012
3S 1.000 68 1.000
61 1.015 172 1.011
36 1.002 156 1.000

60 15 174 1.026 246 1.000
402 1.006 371 1.000
689 1.015 565 1.009
230 1.000 1821 1.000

30 109 1.017 217 1.000
4 1.000 305 1.000

431 1.011 1449 1.001
106 1.009 2410 1.004

45 92 1.000 862 1.000
178 1.014 256 1.000
493 1.000 395 1.000
44 1.000 221 1.000

SO 20 64 IS 1.043 7574 1.000
4975 1.052 10683 1.009
847 1.010 3028 1.000

5-’03 1.014 4892 1.002
40 1394 1.006 2787 1.000

112 1.000 86 1.000
9 1.015 579 1.000

334 1.000 1618 1.000
60 148 1.000 314 1.000

1264 1.027 5591 1.014
844 1.000 1093 1.000

2329 1.015 3588 1.000

162

; i« e

t c ;
Figure 30. Regression Functions for Branch and Bound and the TCA Special =

and p , = 0.05.
n_
4

163

40 50 Cfi

r*
Figure 31. Regression Functions for Branch and Bound and the TCA Special =

and p, = 0.25.

n_4

164

n* _______ co ^.ru m :o dpi inn _ _ _ tpat»n l i ' n ^ i i m <l u J ' J h u 1 ^

Figure 32. Regression Functions for Branch and Bound and the TCA Special =
and pe — 0.50. ■M

S

165

amp nr.i •mp. tp*L>< *nl <\^n r\ i'J H-'wPiLl i ' -P

Figure 33. Regression Functions for Branch and Bound and the TCA Special =
and p e = 0.90. -U

US

166

TIME

♦ r.*tU S

n* m
Figure 34. Regression Functions for Branch and Bound and the TCA Special = —

and p , = 0.05.

O

167

TIME

DA PPAMru /up P'̂ i»in Dr*m UJO*iL> tc;
nFigure 35. Regression Func tions for Branch and Bound and the TCA Special = —

and p e = 0.25.

168

TIME4000 -ji
500u i

2000

00 1

rn ______ ddm '-'-u Min cn'iiun j r r .w'- ui «-.i' vi i m il rJ — — ! \.-r.
Figure 36. Regression Functions for Branch and Bound and the TCA Special =

and p e = 0.50.

rt_
2

169

DA BRANCH A: DPI !>
La\J DVUliU TP*I Up

Figure 37. Regression Functions for Branch and Bound and the TCA Special =
and p e = 0.90.

n_
2

170

TIDE3000 J

2000

iOOO

40 50 60 70 80
N

BRANCH AND BOUND ita

Figure 38. Regression Functions for Branch and Bound and the TCA Special = ——
and p , = 0.05.

] 71

Tifv'E

50 60 70 SO
N

D A ------------- - BRANCH sO'J'JD — — — I[A
3 wFigure 39. Regression Functions for Branch and Bound and the TCA Special = •

and p, = 0.25

] 72

TitJE

50 50 70 30
N

BRANCH A'ID EDU'.'D
Figure 40. Regression Functions for Branch and Bound and the TCA Special =

and p , = 0.50.

3«

173

TIME

BRANCH «ND BOUND TCA

Figure 41. Regression Functions for Branch and Bound and the TCA Special =
and pt = 0.90

sn

174

VIII. CONCLUSIONS AND FUTURE RESEARCH

One immediate conclusion from the results of the experiments undertaken in

this study is that simulated annealing is an effective technique for finding a

near-optimum solution to the Directed Steiner Problem on graphs. The information

displayed in Tables (XIV-XV) show that not only arc the average best answers

discovered by either the tailored or the dynamic versions of the cooling algorithms

close to the optimum, but also that the level of accuracy is independent of the size

and density of the graph. Moreover, neither of the simulated annealing cooling

schedules produced an answer more than 6.8% above the optimum for any graph.

The experiments conducted in Chapter V show that the tailored algorithm

outperforms local optimization in the accuracy of the answers obtained, even when

the longer running time for annealing is taken into account. In Chapter VII, the

branch and bound technique provided exact answers eventually for all the problems,

but the tailored version of annealing algorithm usually gave near-optimal answers

more quickly.

One reason for the high quality of the results yielded by annealing for the DSP

on graphs may be that the barrier between two configurations with near-optimum

lengths is highly degenerate. That is, there is often a big change in the solution

whenever one Steiner point is added to or removed from the set of points that must

be joined. Hence, there are many paths which a sequence of solutions can take

which lead from one basin to another in the configuration landscape. While each

of these paths is unlikely to occur often, it is probable that the process will

frequently encounter a near-optimum local minimum. Finding a measure for the

degeneracy of a DSP and relating that measure to the effectiveness of simulated

annealing is a challenging open problem. It may be possible to find a general

measure of degeneracy that could be applied to other combinatorial optimization

175

problems as well. The result of such research might be the discover}' of ways in

which annealing could prune the configuration space of shallow valleys that

consume large quantities of running time. A starting point for this research might

be the work in physics that has been done in configuration space landscapes with

respect to spin glasses [63].

A drawback to the use of simulated annealing is the amount of running time

that the method requires. In the case of the DSP, the heuristic algorithm of Richard

T. Wong [112] provides an initial solution that, for most of the random graphs

within the range of the parameters used in this study, is more accurate than that

yielded by simulated annealing over the same amount of time. This is not surprising

because simulated annealing is a general method applicable to numerous diverse

problems, while the dual ascent algorithm of Wong is designed to take advantage

of the special characteristics of the DSP. However, the accuracy of the heuristic

used by Wong to obtain feasible solutions seems to decrease as the size of the

problem increases. The traditional way to obtain a high quality answer for large

combinatorial optimization problems including the DSP on graphs was to apply an

algorithm like that of Wong in a branch and bound scheme. The experiments

performed in Chapter VII on graphs with 40 to 80 vertices indicate that simulated

annealing, using a minimum spanning tree algorithm to evaluate the length of a

configuration, and starting from the configuration yielded by the heuristic algorithm

of R. T. Wong, may find a high quality answer more quickly on the average than

does the branch and bound scheme with the dual ascent algorithm for developing

lower bounds. Tables (XXI-XXIV) and the regression curves in Figures (30-41)

suggest that annealing is superior to branch and bound in finding a quick

near-optimum solution for random graphs. Since the effectiveness of branch and

bound always depends on the availability of tight lower bounds and the accuracy

176

of the algorithm of Wong declines as N becomes larger, further research may show

that the trends exhibited in this work hold over a larger range of random graphs.

Simulated annealing can only promise a global minimum as the number of

iterations approaches infinity. The asymptotic convergence property of annealing

is based on the properties of stationary probability distributions of Markov chains.

An area for further research is the exploration of methods for determining bounds

on the number of iterations required for attaining a certain confidence level in the

global optimality of a solution. These new methods may lead to new ways of

choosing the 4 parameters that distinguish different cooling schedules or to the use

of distributions other than the Boltzmann. The directed Steiner Problem on graphs

is a good problem on which to test new variations of simulated annealing because

of its diverse applications, its responsiveness to annealing, and the existing

algorithms and computational results with which to compare.

It is not clear whether a tailored algorithm with a simple way of determining

annealing parameters or a more robust dynamic algorithm with a more complicated

means of choosing parameters is better. Tables (XVI-XVII) indicate that the total

running time for the DCA is on the average less than the total running time for the

TCA. Thus, the experiments conducted in this study show that dynamic methods

of determining the amount to decrement the control parameter between chains and

of calculating the terminating condition are effective. The two annealing schemes

do not differ a great deal in the quality of final solutions, although Tables (XIV-XV)

suggest that the TCA is a little more reliable. The choice between the two versions

becomes more problematic after an examination of the experiments done in Chapter

V on the first occurrences of near-optimal solutions. Figures (17-25) suggest that

the first occurrences of near-optimal solutions follow an exponential distribution.

In these graphs the means of the distributions for the TCA are always smaller than

177

the corresponding means of the distributions for the DCA. A regression analysis

applied to these results showed a significant difference in the behavior of the two

annealing algorithms. There seems to be a tradeoff in using one or the other

method. The DCA seems to be faster, but the TCA gives slightly more accurate

answers. The method of Chapter V used to tailor the simulated annealing procedure

to the Directed Steiner Problem on graphs, moreover, is very time consuming.

Hence, it appears that there is currently no answer to the question of which method

is superior. It would be premature to suggest that a simple cooling schedule tailored

to a given problem cannot be improved by a more elaborate means of choosing the

parameters. Much more research needs to be accomplished in comparing cooling

techniques before it is possible to formulate a schedule that is optimal for all types

of problems.

With respect to the Directed Steiner Problem on graphs itself, the annealing

method should be applied to much larger problems consisting of thousands of

vertices. To date, problems of this magnitude have only been attempted once, and,

in that case, it was for undirected graphs [9]. A Cray X-MP/48 programmed with

a branch and bound algorithm employing Lagrangian relaxation to achieve lower

bounds was applied to problems as large as 2500 nodes and 62,500 edges. In some

of the instances, no solution was found even after 21,600 seconds of CPU time on

the Cray. Most published results are for graphs with less than 100 vertices. One

of the problems with algorithms such as that of Wong or Lagrangian relaxation is

that massive amounts of memory are needed to keep track of lists required by the

algorithms. This becomes an even bigger problem when these algorithms are

incorporated into branch and bound schemes where backtracking often is necessary.

Thus, most of the applications of traditional methods have concentrated on

extremely sparse networks with densities less than 0.05. Annealing, however, does

178

not demand much memory since there is no need for backtracking and the cost

algorithm is usually a simple one. In the work done in this study, the minimum

spanning tree algorithm for directed trees served as the means of calculating the cost

for each configuration.

Another rather obvious approach to large-scale DSP problems is a parallel

implementation. Massive parallelism could be used with annealing with each

processor given the task of evaluating a local change in a global configuration. As

mentioned in Chapter IV, work toward a parallel annealing algorithm has already

begun. New parallel algorithms using either conventional methods or annealing

might be suitable for the DSP. In addition, there may be important classes of

graphs for which a parallel implementation is a natural one for approaching the

DSP. For these classes very fast algorithms might be developed.

A problem for further empirical or theoretical study concerning the Directed

Steiner Problem on graphs is the relationship between the quality of the final

solution found by annealing and the size of the parameters. Such a study might

discover a mathematical expression for the probability that the error in the final

solution is less than any given value. Such work has been done for a special class

of Travelling Salesman Problems [3].

One final remark concerning the results of the experiments should be made.

The graphs generated in the experiments were entirely random. They did not belong

to any special class of graphs. Thus, the conclusions that have been drawn from

these experiments concerning the superior effectiveness of one method or another

may not be relevant to a Directed Steiner Problem on graphs that originates from

a practical application.

179

REFERENCES

1. Aarts, E. H. L., Bont, F. M. J. de, Habers, E. H. A., and Van Laarhoven, P. J.

M., (1986). Parallel implementations of the Statistical Cooling Algorithm,

Integration, 4, pp. 209-238.

2. Aarts, E. H. L., Korst, J. H. M., (1986). Simulation of Learning in Parallel

Networks Based on the Boltzmann Machine, Proceedings of the Second

European Simulation Congress, Antwerp, Belgium, pp. 391-398.

3. Aarts, E. H. L., Korst, J. H. M., and Van Laarhoven, P. J. M., (1988). A

Quantitative Analysis of the Simulated Annealing Algorithm: A Case Study

for the Traveling Salesman Problem, Journal of Statistical Physics, 50, pp.

189-206.

4. Aarts, E. H. L. and Van Laarhoven, P. J. M., (1985). A General Approach to

Combinatorial Optimization Problems, Philips Journal of Research, 40. pp.

193-226.

5. Aho, A. V., Garey, M. R., and Hwang, F. K., (1977). Rectilinear Steiner Trees:

Efficient Special Case Algorithms, Networks, 7, pp. 37-58

6. Aneja, Y. P., (1980). An Integer Linear Programming Approach to the Steiner

Problem in Graphs, Networks, 10, pp. 167-178.

7. Balakrishnan, A. and Patel, N. R., (1987). Problem Reduction Methods and a

Tree Generation Algorithm for the Steiner Network Problem, Networks, 17,

pp. 65-85.

180

8. Beasley, J. E., (1984). An Algorithm for the Steiner Problem in Graphs,

Networks, 14, pp. 147-159.

9. Beasley, J. E., (1989). An SST-Based Algorithm for the Steiner Problem in

Graphs, Networks, 19, pp. 1-16.

10. Bellmore, M. and Ratliff, H. D., (1971). Set-Covering and Involutory Bases,

Management Science, 18, pp. 194-206.

11. Bonomi, E. and Lutton, J.-L., (1984). The N-city Travelling Salesman Problem:

Statistical Mechanics and Metropolis Algorithm, SIAM Review, 26, pp.

209-217.

12. Bonomi, E. and Lutton, J.-L., (1986). The Asymptotic Behavior of Quadratic

Sum Assignment Problems: A Statistical Mechanics Approach, European

Journal of Operational Research, 26, pp. 295-300.

13. Boyce, W. M., (1977). An Improved Program for the Full Steiner Tree Problem,

ACM Transactions of Mathematical Software, 3, pp. 359-385.

14. Brouwer, R. J. and Banerjee. P., (1988). A Parallel Simulated Annealing

Algorithm for Channel Routing on a Hvpercube Multiprocessor, Proceedings

IEEE International Conference on Computer-Aided Design, pp. 4-7.

15. Burkard, R. E. and Rendl, F., (1984). A Thermodynamically Motivated

Simulation Procedure for Combinatorial Optimization Problems, European

Joumal of Operations Research i 17, pp. 169-174.

181

16. Cemy , V., (1985). Thermodynamical Approach to the Traveling Salesman

Problem: An Efficient Simulation Algorithm, Journal of Optimization Theory

Applications, 45, pp. 41-51.

17. Chamberlain, Roger D., Edelman, Mark N., Franklin, Mark A., and Witte, Ellen

E., (19S8). Simulated Annealing on a Multiprocessor, Proceedings IEEE

International Conference on Computer-Aided Design, pp. 540-544.

18. Chang, S. K., (1972). The Generation of Minimal Trees with a Steiner Topology,

Journal of the ACM, 19, pp. 669-711.

19. Christofides, N., (1975). Graph Theory: An Algorithmic Approach, Academic

Press, New York.

20. Christofides, N. and Whitlock, C. A., (1981). "Network Synthesis with

Connectivity Constraints-A Survey", in Operational Research '81, J. P. Brans

(ed.), North-Holland, Inc., New York.

21. Chu, Y. J. and Liu, T. H., (1965). On the Shortest Arborescences of a Directed

Graph, Scientia Sinica, 14, pp. 1396-1400.

22. Cockayne, E. J. and Schiller, D. G., (1972). "Computation of Steiner Minimal

Trees", in Combinatorics, D. J. A. Welsh and D. R. Woddal(eds.), Inst. Math.

Appl. Southend-on-Sea, Essex, pp. 53-71.

23. Courant, R. and Robbins, H., (1941). What is Mathematics?, Oxford University

Press, New York.

24. Coxeter, H. S. M., (1961). Introduction to Geometry, John Wiley and Sons, Inc.,

v

New York.

182

25. Crowder, H. and Padberg, M. W., (1980). Solving Large-Scale Symmetric

Travelling Salesman Problems to Optimality, Management Science, 26, pp.

495-509.

26. Dijkstra, E. W., (1959). A Note on Two Problems in Connection With Graphs,

Numerische Mathematik, 1, pp. 269-271.

27. Dreyfus, S. E. and Wagner, R. A., (1971). The Steiner Problem in Graphs,

Networks, 1, pp. 195-207.

28. Duin, C. W. and Volgenant, A., (1987). Some Generalizations of the Steiner

Problem in Graphs, Networks. 17, pp. 353-364.

29. Edmonds, J., (1967). Optimum Branchings, Journal of Research of the National

Bureau of Standards-B. Mathematics and Mathematical Phvsics, 71B, pp.

233-240.

30. El Gamal, A., Hemachandra, L. A., Shperling, I., and Wei, V. K., (1987). Using

Simulated Annealing to Design Good Codes, IEEE Transactions on

Information Theory, IT-33, pp.116-123.

31. Fisher, M. L., (1981). The Lagrangian Relaxation Method for Solving Integer

Programming Problems, Management Science 27, pp. 1-18.

32. Floyd, R. W., (1962). Algorithm 97: Shortest Path, Communications of the ACM,

5, pp. 345.

33. Foulds, L. R. and Graham, R. L., (1982). The Steiner Problem in Phylogeny is

NP-Complete Advances in Applied Mathematics, 3,pp. 43-49.

183

34. Foulds, L. R. and Rayward-Smith, V. J., (1983). Steiner Problem in Graphs:

Algorithms and Applications, Engineering Optimization, 7, p.7-16.

35. Frank, H. and Frisch, I. T., (1976). "Network Analysis", in Large Scale Networks:

Theory and Design, IEEE Press, New York.

36. Fu, Yaotian and Anderson, P. W., (1986). Application of statistical mechanics to

NP-complete problems in combinatorial optimisation, Journal of Physics A:

Math. Gen., 19, pp. 1605-1620.

37. Gabow, H. N., (1977). Two Algorithms for generating weighted spanning trees

in order, SIAM Journal of Computing 6, pp. 139-150.

38. Garev, M. R., Graham, R. L., and Johnson, D. S., (1977). The Complexity of

Computing Steiner Minimal Trees SIAM Journal of Applied Mathematics, 32,

pp. 835-859.

39. Garey, M. R. and Johnson, D. S., (1977). The Rectilinear Steiner Problem is

NP-Complete, SIAM Journal of Applied Mathematics, 32, pp. 826-834.

40. Garey, M. R. and Johnson, D. S., (1979). Computers and Intractability - A Guide

to the Theory of NP-Completeness, Freeman, San Francisco.

41. Gelfand, S. B. and Mitter, S. K., (1985). Analysis of Simulated Annealing for

Optimization, Proceedings IEEE International Conference on Decision and

Control. 24, pp. 779-786.

42. GeofTrion, A. M., (1974). Lagrangian Relaxation for Integer Programming,

Mathematical Programming Study 2̂ North-Holland Publishing Company,

New York.

184

43. Gidas, B., (1985). Optimization via the Langevin Equation, Proceedings IEEE

International Conference on Decision and Control, 24, pp. 774-778.

44. Gilbert, E. N. and Poliak, H. O., (1968). Steiner Minimal Trees, SIAM Journal

of Applied Mathematics, 16, pp. 1-29.

45. Grover, L. K., (1986). A New Simulated Annealing Algorithm for Standard Cell

Placement, Proceedings IEEE International Conference on Computer-Aided

Design, Santa Clara, pp. 378-380.

46. Hajek, B., (1985). A Tutorial Survey of Theory and Applications of Simulated

Annealing, Proceedings IEEE International Conference on Decision and

Control, 24, pp. 755-760.

47. Hajek, B., (1988). Cooling Schedules for Optimal Annealing, Mathematics of

Operations Research, 13, 2, pp. 311-329.

48. Hakimi, S. L., (1971). Steiner Problem in Graphs and its Implications, Networks,

1, pp. 113-133.

49. Hanan, M., (1966). On Steiner's Problem with Rectilinear Distance, SIAM

Journal of Applied Mathematics, 14, pp. 255-265.

50. Hanan, M., 1975. Layout, Interconnection, and Placement, Networks, 5, p.85-88.

51. Hanan, M. and Kurtzburg, J. M., (1972). "Placement Techniques", in Design

Automation of Digital Systems, M. Breuer (ed.), Prentice-Hall, Englewood

Cliffs, N. J.

52. Harary, F., (1969). Graph Theory, Addison-Wesley, Reading, Massachusetts.

185

53. Held, iM . , Wolfe, P., and Crowder, H., (1974). Validation of Subgradient

Optimization Mathematical Programming North-Holland Publishing

Company, New York.

54. Hinton, G. E. and Sejnowski, T. J., (1986). "Learning and Relearning in

Boltzmann Machines", in Parallel Distributed Processing, Explorations in the

Microstructure of Cognition, McClelland, J. L., and Rumclhart, D. E. (cds.),

Volume 1, Chapter VII. MIT Press, Cambridge, Massachusetts.

55. Hoel, P. G., Port, S. C., and Stone, C. J., (1972). Introduction to Stochastic

Processes, Houghton Mifflin Company, Boston, Massachusetts,

56. Hopfield. J. J., (1985). Neural Computation of Decisions in Optimization

Problems, Biological Cybernetics, 52, pp. 141-152.

57. Huang, M. D., Romeo, F. and Sangiovanni-Vincentelli, A. L., (1986). An

Efficient General Cooling Schedule for Simulated Annealing, Proceedings

IEEE International Conference on Computer-Aided Design, Santa Clara, pp.

381-384.

58. Hwang, F. K., (1978). The Rectilinear Steiner Problem, Journal of Design

Automation and Fault-Tolerant Computing, 2, pp. 303-310.

59. Hwang, F. K., (1979). An 0(n log n) Algorithm for Suboptimal Rectilinear

Steiner Trees, IEEE Transactions on Circuits and Systems, CAS-26, pp. 75-77.

60. Johnson, D.S., C.R. Aragon, L.A. McGeoch and C. Schevon, (1987).

Optimization by Simulated Annealing: an Experimental Evaluation, Parts I

and II, AT & T Bell Laboratories preprint.

186

61. Karp, R. M., (1972). "Reducibility Among Combinatorial Problems”, in

Complexity of Computer Computations, Miller and Thatcher (eds.), Plenum

Press, New York.

62. Kirkpatrick, S., Gelatt, C.D., and Vecchi, M. P., (1983). Optimization by

Simulated Annealing, Science, 220, pp. 671-680.

63. Kirkpatrick, S., and Toulouse, G., (1985). Configuration Space Analysis of

Travelling Salesman Problems, J. Physique, 46, pp. 1277-1292.

64. Kou, L., Markowsky, G., and Berman, L., (1981). A Fast Algorithm for Steiner

Trees, Acta Informatica, 15, pp. 141-145.

65. Kruskal, J. B., (1956). On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem, Proceedings of the American Mathematical

Society, 7, pp. 48-50.

66. Lawler, E. L., (1976). Combinatorial Optimization: Networks and Matroids,

Holt, Rinehart, and Winston, New York.

67. Lee, J. H., Bose, N. K., and Hwang, F. K., (1976). Use of Steiner's Problem in

Suboptimal Routing in Rectilinear Metric, IEEE Transactions on Circuits and

Systems, CAS-23, pp. 470-476.

68. Leong, H. W. and Liu, C. L., (1985). Permutation Channel Routing, Proceedings

IEEE International Conference on Computer Design, Port Chester, pp.

579-584.

69. Levin, A. J., (1971). Algorithm for the Shortest Connection of a Group of Graph

Vertices, Doklady Akademii Nauk Sssr, 12, pp. 1477-1481.

187

70. Lin, S., (1965). Computer Solutions of the Traveling Salesman Problem, Bell

System Technical Journal, 44, pp. 2245-2269.

71. Lundy, M., (1985). Applications of the annealing algorithm to combinatorial

problems in statistics , Biometrika, 72, pp. 191-198.

72. Lundy, M. and Mees, A., (1986). Convergence of an Annealing Algorithm,

Mathematical Programming, 34, pp. 111-124.

73. Lyberatos, A., Wohlfarth, P., and Chantrcll, R. W., (1985). Simulated Annealing:

An Application in Fine Particle Magnetism, IEEE Transactions of Magnetics,

MAG-21, pp. 1277-1282.

74. Magnanti, T. L., and Wong, R. T., (1984). Network Design and Transportation

Planning: Models and Algorithms, Transportation Science, 18, pp. 1-55.

75. Melzak, Z. A., (1961). On the Problem of Steiner, Canadian Mathematical

Bulletin, 4, pp. 143-148.

76. Metropolis, N. A., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E.,

(1953). Equation of State Calculations by Fast Computing Machines, Journal

of Chemical Phvsics, 21, pp. 1087-1092.

77. Mitra, D., Romeo, F. and Sangiovanni-Vincentelli, A. L., (1985). Convergence

and Finite-Time Behavior of Simulated Annealing, Proceedings IEEE

International Conference on Decision and Control. 24, pp. 761-767.

78. Neter, J., Wasserman, W., and Kutner, M. H., (1983). Applied Linear Regression

Models, Richard D. Irwin, Inc., Homewood, Illinois.

188

79. Otten, R. H. J. M. and Van Ginneken, L. P. P. P., (1984). Floorplan Design using

Simulated Annealing, Proceedings IEEE International Conference on

Computer-Aided Design, pp. 96-98.

80. Otten, R. H. J. M. and Van Ginneken, L. P. P. P., (1988). Stop Criteria in

Simulated Annealing, Proceedings IEEE International Conference on

Computer-Aided Design, pp. 549-552.

81. Papadimitriou, C. H.f (1982). Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall, New York.

82. Plesnik, J., (1981). A Bound for the Steiner Tree Problem in Graphs,

Mathematica Slovaca, 31, pp. 155-163.

S3. Prim, R. C., (1957). Shortest Connection Networks and Some Generalizations,

Bell Svstem Technical Journal, 36, pp. 1389-1401.

84. Ravward-Smith, V. J., (19S3). The Computation of Nearly Minimal Steiner Trees

in Graphs, International Journal of Mathematics Education in Science

Technology 14, pp. 15-23.

85. Rayward-Smith, V. J. and Clare, A., (1986). On Finding Steiner Vertices,

Networks, 16, pp. 283-294.

86. Romeo, F. and Sangiovanni-Vincentelli, A. L., (1985). Probabilistic Hill Climbing

Algorithms: Properties and Applications, Proceedings 1985 Chapel Hill

Conference of VLSI, pp. 393-417.

] 89

87. Rose, J.S., Blythe, D. R., Snelgrove, W. M., and Vranesic, Z. G., (1986). Fast,

High Quality VLSI Placement on an MIMD Multiprocessor, Proceedings

IEEE International Conference on Computer-Aided Design, Santa Clara, pp.

42-45.

88. Rossier, Y., Troyon, M., and Liebling Th. M. (1986). Probabilistic Exchange

Algorithms and Euclidean Traveling Salesman Problems, OR Spektrum, 8, pp.

151-164.

89. Sasaki, G. H. and Hajek, B., (1988). The Time Complexity of Maximum

Matching by Simulated Annealing, Journal of the ACM, 35, pp. 387-403.

90. Sechen, C. and Sangiovanni-Vincentelli, A. L., (19S4). The Timbenvolf Placement

and Routing Package, IEEE Journal of Solid State Circuits, SC-20, pp.

522-527.

91. Segev, A., (1987). The Node-Weighted Steiner Tree Problem, Networks, 17, pp.

1-17.

92. Shannon, C. E., (1948). A Mathematical Theory of Communication, Bell System

Technical Journal, 27, pp. 379-623.

93. Shapiro, Jeremy F., (1979). A Survey of Lagrangean Techniques for Discrete

Optimization, Annals of Discrete Mathematics. 5, pp. 113-138.

94. Shore, M. L., Foulds, L. R., and Gibbons, P. B., (1982). Algorithm for the Steiner

Problem in Graphs, Networks, 12, pp. 323-333.

190

95. Smith, J. M.t Lee, D. T., and Liebman, J. S., (1980). An 0(n log n) Heuristic

Algorithm for the Rectilinear Steiner iMinimal Tree Problem, Engineering

Optimization, 4, pp. 179-192.

96. Smith, J. M., MacGregor, J., Lee, D. T., and Liebman, J. S., (1981). An 0(n log

n) Heuristic for Steiner Minimal Tree Problems on the Euclidean Metric,

Networks, 1 J, pp. 23-39.

97. Smith, J. M. and Liebman, J. S., (1979). Steiner Trees, Steiner Circuits, and the

Interference Problem in Building Design, Engineering Optimization, 4, pp.

15-36.

9S. Takahashi, H. and Matsuyama, A., (1980). An Approximate Solution for the

Steiner Problem in Graphs, Mathematica Japonica, 24, pp. 573-577.

99. Tarjan, R. E., (1977). Finding Optimum Branchings, Networks, 7, pp. 25-35.

100. Van Laarhoven, P. J. M. and Aarts, E. H. L., (1988). Simulated Annealing:

Theory and Applications, Kluwer Academic Publishers, Boston,

Massachusetts.

101. Vannimenus, J. and Mezard, M., (1984). On the Statistical Mechanics of

Optimization Problems of the Travelling Salesman Type, Le Journal De

Phvsique-Lettres, 45. pp. 1 145-1153.

102. Wald, J. A. and Colboum, C. J., (1982). Steiner Trees in Outerplanar Graphs,

Congressus Xumerantium. 36, pp. 15-22.

103. Wald, J. A. and Colbourn, C. J., (1983). Steiner Trees, Partial 2-Trees, and

Minimum IFI Networks, Networks, 13, pp. 159-167.

191

104. Waxman, Bernard M. and Imase, Makoto, (1988). Worst-Case Performance of

Rayward-Smith's Steiner Tree Heuristic, Information Processing Letters, 29,

pp. 283-287.

105. White, S. R., (1984). Concepts of Scale in Simulated Annealing, Proceedings of

IEEE International Conference on Computer Design, Port Chester, pp.

646-651.

106. Wille, L. T., (1987). The Football Pool Problem for 6 Matches: A New Upper

Bound Obtained by Simulated Annealing, Journal of Combinatorial Theory

Aj 45, pp. 171-177.

107. Winter, P., (1985). An Algorithm for the Steiner Problem in the Euclidean Plane,

Networks, 15, pp. 323-345.

108. Winter, P., (1985). Generalized Steiner Problem in Outerplanar Networks, BIT,

25, pp. 485-496.

109. Winter, P., (1986). Generalized Steiner Problem in Series-Parallel Networks,

Journal of Algorithms, 7, pp. 549-566.

110. Winter, P., (1987). Steiner Problem in Networks: A Survey, Networks, 17, pp.

129-167.

111. Wong, D. F., Leong, H. W., and Liu, C. L., (1988). Simulated Annealing for

VLSI Design, Kluwer Academic Publishers, Boston, Massachusetts.

112. Wong, R. T., (1984). A Dual Ascent Approach for Sterner Tree Problems on a

Directed Graph, Mathematical Programming, 28, pp. 271-287.

192

113. Wu, Y. F., Widemayer, P., and Wong, C. K., (1986). A Faster Approximation

Algorithm Tor the Steiner Problem in Graphs, Acta Informatica, 23, pp.

223-229.

193

VITA

Lawrence J. Osborne was born August 9, 1946 in Terre Haute, Indiana.

Lawrence received his elementary education in Cuyahoga Falls, Ohio. In 1963, he

moved to House Springs, Missouri, where he graduated from Northwest High School

in 1964. He received a B.S. in Education with a mathematics major in 196S from

Southeast Missouri State University. After serving three years in the Peace Corps in

Jamaica, he taught high school mathematics at several Missouri schools. He received

an M.A. in Mathematics at the University of Missouri-Columbia in 1982. After

graduation he began teaching in the Mathematics Department at Southwest Missouri

State University in Springfield, Missouri. He joined the Computer Science Department

there when it was formed in 1983. In 1984, Lawrence returned to graduate school at

the University of Missouri-Rolla, earning an M.S. in Computer Science in 1985.

While studying for his doctorate at UMR, Lawrence continued to work at

Southwest Missouri State University for one year. For the next two years he worked

as a Teaching Assistant at UMR. He is currently employed as an Assistant Professor

of Computer Science at the SMSU.

	The directed Steiner problem on graphs: A simulated annealing approach
	Recommended Citation

	tmp.1632249650.pdf.zXOQr

