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ABSTRACT

The graph coloring problem, which is to color the vertices of a simple undirected 

graph with the minimum number of colors such that no adjacent vertices are assigned 

the same color, arises in a variety of scheduling problems. This dissertation focuses 

attention on vertex sequential coloring. Two basic approaches, backtracking and 

branch-and-bound, serve as a foundation for the developed algorithms. The various 

algorithms have been programmed and applied to random graphs. This dissertation 

will present several variatons of the Korman algorithm, Korw2, Pactual, and 

Pactmaxw2, which produce exact colorings quicker than the Korman algorithm in the 

average for some classes of graphs. In addition to exact algorithms, we also look at 

some heuristic algorithms, limit, epsilon, and branch-and-bound.
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I. INTRODUCTION

The graph coloring problem (GCP), which is to color the vertices of a simple 

undirected graph with the minimum number of colors such that no adjacent vertices 

are assigned the same color, arises in a variety of problems of optimal partitioning of 

mutually exclusive events or objects. For instance, the timetable scheduling problem 

is to find the schedule of persons such that no two persons are using the same hardware 

tool in the same period of time, and all jobs are executed with the minimum process 

time. Christofides employed graph coloring to solve the resource allocation problem 

CC/t75], and Elion and Christofides used it to solve the loading problem 

C£C71]. The partitioning of mutually exclusive objects is usually embodied through 

a graph in such a way that each object is represented by a node, and every pair of 

exclusive objects is connected by an edge. Thus, optimal solutions to such problems 

can be found by applying a graph coloring algorithm to the corresponding graph.

Even though the GCP has received considerable attention because of its various 

applications, there is no known algorithm which will optimally color every graph in a 

polynomial time function in the number of vertices of the given graph. Moreover, the 

GCP has been shown to be N IP-complete [ A HI A]  QG/79] ; that is, it seems unlikely 

that any such algorithm can be found. Therefore, it is necessary to seek a heuristic 

algorithm with a polynomial time bound. For some N IP-complete problems such as 

the bin packing problem, there is a nlogn heuristic algorithm obtaining the solution 

within a small multiple of the optimal solution (actually solution < 1.7 * (optimal 

solution) + 2) [/fS78]. Unfortunately, many known heuristic algorithms have 

extremely bad worst case behavior [7o743: the ratio A(G)/x(G), where A(G) denotes 

the number of colors used by algorithm A to color a graph G and x(G) denotes the 

minimal number of colors with which G can be colored, can be shown to grow linearly 

with the number of vertices in G. Furthermore, Garey and Johnson showed that even
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Johnson showed that many popular heuristic algorithms will color a graph by 

using the number of colors which is linear to the order of the graph, but how often does 

the worst cases appear? Grimmett and McDiarmid showed that the vertex-color 

sequential algorithm, VS, (refer to chapter 3) has the property, for almost all graphs 

G„, VS(Gn)/x(G„) < 2 + £ as n -» oo \_GM15~\. Therefore, we know that the 

average behavior of some heuristic algorithms such as the vertex-color sequential 

algorithm is much better than their worst behavior. McDiarmid [M c79] showed that 

all variations of the vertex-color sequential algorithm have the aforementioned 

property. These variations act as follows: whenever a new color is introduced, a 

checking and recoloring procedure is called in order to find a color, which has already 

been used, for the current vertex. This procedure then recolors some of the previously 

colored vertices. The goal is to find a fast and accurate algorithm that includes the 

checking and recoloring technique.

The chrome-degree of vertex v is the number of colors used so far on vertices 

adjacent to v. The Korman algorithm without backtracking (refer to chapter 6) 

sequentially picks the vertex with the highest chrome-degree and colors it. Manvel 

proposed that the Korman algorithm without backtracking is superior to the 

vertex-color sequential algorithm and the vertex-color sequential algorithm with 

pre-ordering by the largest-first principle [A fa8l]. In terms of running speed, 

Korman presented experimental results showing that the Korman algorithm is also 

superior to the vertex-color sequential algorithm and the LF vertex-color sequential 

algorithm in the backtracking scheme [Ko79]. This dissertation will present several 

variations of the vertex-color sequential algorithm which perform better than the 

Korman algorithm in the mean for some graphs. These algorithms, Korw, Pactual, and

finding an efficient algorithm which colors every graph G in r * *(G) + d colors,

where r < 2 ,  remains a N IP-complete problem
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Chapter 2 introduces basic graph-theoretic terms and graph coloring related 

terms. It also presents some well-known properties on graph colorability.

Chapter 3 reviews four different exact approaches: 0-1 integer programming, 

dichotomous search, dynamic programming, and implicit enumeration, three different 

heuristic algorithms: a vertex-color sequential algorithm, a color-vertex sequential 

algorithm, and a vertex-vertex pair scanning; and finally three basic applications: a 

loading problem, timetable scheduling and resource allocation.

In chapter 4, two distinct programming schemes, backtracking and 

branch-and-bound, serve as a foundation for the developed algorithms. The profiles 

for both programming schemes are presented.

Chapter 5 describes some implementation notes on data structures, memory 

swapping, and a random number generator.

Chapter 6 proposes a number of next-uncolored-vertex selection (nucv-selection) 

functions and next-color-vertex selection (ncv-selection) functions, which are the heart 

of the developed algorithms. The experimental results of the backtracking scheme with 

various combinations of nucv-selection and ncv-selection functions are also included. 

Finally two heuristic algorithms which are based on the backtracking scheme are 

presented.

Chapter 7 introduces the procedure of constructing a preference function of the 

branch-and-bound scheme. The computational results of various algorithms are

Pactmaxw2, will be described in chapter 6. In addition to exact algorithms, we will

look at some variations of the Korman algorithm, limit, epsilon, and branch-and-bound,

which produce heuristic colorings.

included.
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Chapter 8 deals with conclusions and further research directions.
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II. PRELIMINARIES

A. GRAPH THEORETIC TERMS

A graph G = (V, E) is a finite set of vertices V, together with a set of undirected 

or directed edges E. An undirected graph is a graph with undirected edges, and a 

directed graph is a graph with directed edges. The elements of E are unordered 

(ordered) pairs of vertices. The number of vertices in a graph is called the order of the 

graph, denoted by | V | .

For the edge e = <x, y > , vertex x is called its initial endpoint, and vertex y is 

called its terminal endpoint. Of course, there is no difference between initial endpoint 

and terminal endpoint in an undirected graph. A loop is an edge whose initial endpoint 

and terminal endpoint are the same.

An undirected graph (or multigraph) is called a simple graph if it has (1) no loops;

(2) no more than one edge joining any two vertices.

Example 2.1. In Figure 1-1, V = {a, b, c}, E = {< b, a> , < c, a> }.

In Figure 1-2, V = {a, b, c}, E = {<a, a > ,  <a, b > , <a, c > , <a, c>}. <a, a>  is 

a loop, and there are two edges between a and c. In this case, E is a multiset. In 

Figure 1-3, V = {a, b, c}, E = { < a, b> , < a, c > }.

Hereafter we refer to an undirected graph as a graph. Two edges are called 

adjacent if they have at least one endpoint in common. The degree of the vertex v is 

the number of edges with v as endpoint. The degree of v is denoted by da{y). Note that 

each loop is counted twice. A graph is k-regular if each vertex has the same degree k.

A graph K„ =  (V, E) is said to be complete if every pair of distinct vertices has 

an associated edge and | V | = n. A graph is k-partite if its vertices can be partitioned 

into k subsets such that no two vertices in the same subset are adjacent. For k = 2,
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A
o
a

b c b c b c

(1) directed graph (2) undirected graph (3) simple graph

such graphs are called bipartite. A null graph is a graph with no edges. An empty graph 

is a graph which has no vertices and no edge.

A path is a sequence of vertices such that every pair of consecutive vertices is an 

edge. A path is simple if all vertices on the path are distinct with exception that the 

initial endpoint and the terminal endpoint may be the same. The length of a path is 

the number of edges along the path. A cycle is a simple path that connects a vertex 

to itself.

A connected graph is a graph that contains a path for every pair of distinct 

vertices. A graph is cyclic if it contains at least one cycle. A connected acyclic graph 

is sometimes called a tree. A  cycle graph of order n, denoted by C„, is a connected 

graph whose edges form a cycle of length n.

of order 3 of order 3 of order 3

Figure 1. Example of graphs
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A subgraph of G = (V, E) is a graph G' = (V', E') such that (1) V' is a subset 

of V; and (2) E' consists of edges < x, y> in E such that x as well as y are in V". G' 

is an induced subgraph of G if G' contains all edges in E such that both endpoints of 

the edge are in V'.

G G»

Figure 2. A graph and its subgraphs

Example 2.2. In Figure 2, both G' and G" are subgraphs of G. G ' is an induced 

subgraph of G. However, G" is not an induced subgraph of G because it does not 

contain the edge < b, c> .

B. GRAPH COLORING TERMS

An assignment of color to each vertex of a graph G such that no adjacent vertices 

have been assigned the same color is called a coloring of G. We refer to this coloring
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as a complete coloring, in contrast to a partial coloring, which is an assignment of colors 

to part of the vertices of G.

f is a k-coloring function of a graph G = (V, E) if f  is an onto function from V to 

the set {1,2,..., k} such that f(v) = j if and only if vertex v is colored with color j. G 

is said to be k-colorable if G has a k-coloring function. The minimum k for which G 

is k-colorable is called the chromatic number of G and is denoted by *(G).

An independent set of a graph G = (V, E) is a subset of V, no two vertices of 

which are adjacent. An independent set is a maximal independent set, denoted by MIS, 

if it is not a proper subset of an independent set. In graph coloring, each subset of 

vertices of the same color is called a color class. From the definition of the independent 

set, a color class is an independent set. The independence number of G, denoted a(G), 

is the number of vertices of the largest MIS in G.

In contrast, a completely connected set of a graph G = (V, E) is a subset of V, 

every two vertices of which are adjacent. A maximal completely connected set is called 

a clique. It is seen that a complete graph is a clique of itself. We know that a MIS 

of a graph G is a clique of G , its complement graph, and vice versa. The clique number 

of G, denoted w(G), is the number of vertices of the largest clique in G.

Example 2.3 In Figure 3, G = (V, E), V = {a, b, c, d, e),

E = { <a, b> , <a, c> , <a, d> , <a, e> , <c, e> }. We can define a 3-coloring

function f as follow:

f(a) = I, f(b) = 2, f(c) = 2,

f(d) = 2, f(e) -  3.

We say G is k-colorable for all k >  3.

The following sets are all completely connected sets of G:

{a}, (b), (c), {d}, {e},



9

a
Figure 3. Example of a graph

{a, b}, {a, c}, {a, d}, {a, e}, {c, e}(

{a, c, e}.

(a, b}, {a, d}, and {a, c, e} are clique. co(G) = 3.

P is the class of problems solvable by deterministic Turing machines which 

operate in polynomial time. W P is the class of problems solvable by non-deterministic 

Turing machines which operate in polynomial time. A problem A is reducible to a 

problem B if there is a polynomial-time bounded function f from A to B such that for 

every instance x, f(x) e B if and only if x e A. A problem L is NP-complete if (1) 

L e MP ; and (2) every problem in NP is reducible to L. A problem L is HP-hard if 

every problem in WP is reducible to L. As we see all NP-complete problems are 

f^P-hard but all NP-hard problems are not f^lP-complete. Garey and Johnson 

offered a complete picture of NP-completeness in their publication [G /79X
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Some examples of classes of problems that are in W or NP are as follow: 

Minimum Spanning Tree e P [A>56]

Given a connected graph G = (V, E), a cost function C on E, and an integer m. 

Is there a spanning tree of G with cost m or less?

Shortest Path e P [Z)/59]

Given a graph G = (V, E), a weight function on E, source and destination in V, 

and an integer w. Is there a path between source and destination of G with 

weight w or less?

Clique e NP-complete [/4/T74] [PS82]

Does an undirected graph have a clique of order k?

Satisfiability e NP-complete [C<?71] [AHld] [PS82]

Is a boolean expression satisfiable?

Colorability e NP-complete \_AHld]

Is an undirected graph k-colorable for k > 3?

Context-sensitive Recognition e hJP-hard [_Kal2 [̂

Given a context-sensitive grammar C and a string s. Is s in the language 

generated by C? Note that this problem is not known to be NP-complete because its 

membership in N P is presently in doubt.

An exact algorithm can always produce an optimal solution. A heuristic algorithm 

will sometimes find an optimal solution. In general, a heuristic algorithm is trying to 

find a good solution within an acceptable amount of time.

C. ASYMPTOTIC NOTATION

Here we introduce two mathematical notations which will be used for the analysis

of the complexity.



O-notation can be used to express the upper bound of the performance of an 

algorithm. It ignores the constant term of the leading term (as g(n) in the definition). 

However, sometimes we need a more precise description, which also takes into account 

the constant term, of the algorithm's performance. A stronger mathematical notation 

is given below.

fTrt)
Definition f(«) = o(g(«)) if and only if lim------ = 1.

g(«)

Example 2.4 Let f(n) = n2 4- n. f(«) = Ĉ rt2) by picking c — 2, and n0 = 1, 

but f(«) = o(n2). Consider g(/j) = 2n2. g(n) =  O(n2) by picking c = 2,

n0 = 1. However g(«) ¥= o(n2) since lim ~~y- — 2. But g(n) = 0(n2).

Definition f(«) = 0(g(n)) if and only if there exist two positive integers c and «0

such that 1fly?) | < c * | g(n) | , for all n > n0.

D. RANDOM GRAPH

A random graph , GnP(n), has n vertices. Its edges are independently chosen from
(n \
{ 1 possible edges by the probability function P(n), where 0 <  P(n) < 1. We include

the edge with probability P(n). It is seen that GM is a complete graph, and G„0 is a 

null graph. Suppose that P(n) = X is a constant. X is called the edgeload of G„ The
M

number of edges of G„ x is binomially distributed with parameters X and ( ), and thus
M  ’ ( n\ \ v

has mean 21 1 and variance 2(1 -  2)1 I.

For programming, each potential edge is obtained by getting a uniformly 

distributed pseudo random number between 0 and 1 from the pseudo random number 

generator; if the obtained pseudo random number is less than the desirable edgeload, 

the edge is included. The experimental results presented later are obtained by giving 

the edgeload 2 and the total number of edges 2^ J  chosen randomly from the ^  ^  

possible edges.
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E. BASIC PROPERTIES

For the clique G' of order m, since all vertices are adjacent, the chromatic number 

of G' is m. It is seen that the clique number of a graph G is an lower bound of 

y(G). However, this lower bound can be very poor. Consider the following 

construction of Mycielski [My55] [SZ)83]. Initially, M, = M2 =  K2 and for k > 2, 

constructing from Mk. Suppose | Mk\ — m, v1(..., vm are the vertices of Mk. Let

| Mk+i | = 2m + 1 and have vertices v„ ... ,vm, v '„ ..., v’m, w*+1, The edge set of Mk,, 

consists of (1) all edges of Mk, (2) all edges between / ,  and the neighbors of v„ 

i = 1,... ,m, and (3) < wk+u v' > , /=  1,... ,m. Figure 4 shows the construction of A/3 

from Xf2, and M4 from My In the sequence Mu M2, ... , y(M.) = i but 

oj(M) — 2. Therefore, the lower bound a{M) for y(M() can be very bad as i becomes 

very large.

We now present some well-known theorems on graph colorability.

Theorem 2.1 If G is a graph of order n, then

X(G) < n + 1 -  a(G).

(See [5c73]).

Theorem 2.2 If G is a simple graph with n vertices and m edges, then

n2X(G) > n2 —  2m
(See [5e73]).

Theorem 2.3 G = (V, E) is a simple graph, then

X(G) ^ 1 + max [dc(v)}, for v e V.
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Figure 4. Mycielski's graphs
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(See 0 4 1 ] ,  0 7 3 ] ) .

There are only two kinds of graphs for which Theorem 2.3 holds with equality 

above: odd cycle graphs and complete graphs. This result is known as Brook's

Theorem

Theorem 2.4 Any planar graph is 4-colorable.

(See [AH11 a], [A H llf], [7/«77], 0 7 7 ] ) .

A map coloring is to find an assignment of a color to each region so that all 

contiguous regions have different colors. For a map M in the plane we can construct 

a dual graph G whose vertices are in one-to-one correspondence with the regions of 

M and whose edges are in one-to-one correspondence with the border lines between 

regions. Thus, the map coloring is equivalent to the planar graph coloring. The 

conjecture, any planar graph is 4-colorable, had been a well-known unsolved problem 

in mathematics for over a century. Kempe CATe79] is the first person known to have 

attacked the 4-coloring conjecture. Although Kempe's work contained a flaw which 

Heawood C//t?90U pointed out, it contained a valuable contribution which became the 

basis of many later attempts to prove the conjecture. In 1972, Appel, Haken, and 

Koch took three and a half years to develop the method based on Kempe's works to 

solve the 4-coloring conjecture and another 6 months to verify the 4-color reducibihty 

of nearly 1900 cases. The verification part was done by computer.

Theorem 2.5 The coloring problem is NP-complete.

(See [/l 7/74]).

Theorem 2.6 Consider the graph coloring of a graph G. If for some constant r 

< 2 and constant d there exists a polynomial time bounded algorithm A such that 

A(G) < r * x(G) + d, where A(G) denotes the number of colors when A is applied 

to G, then there is a polynomial time bounded exact algorithm B.
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(See [GJ76]).

Theorem 2.6 states that even finding an efficient near-optimal graph coloring 

algorithm is as hard as discovering an efficient exact algorithm.
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III. LITERATURE REVIEW

The graph coloring problem has received considerable attention for many years. 

This chapter reviews exact as well as heuristic algorithms known earlier, and describes 

a number of applications of the graph coloring problem.

A. EXACT ALGORITHMS

In this section we describe four classic approachs which are exact in the sense that 

they guarantee the correct value of the chromatic number for any arbitrary graph.

1. 0-1 Integer Programming Approach.

The GCP can be formulated as a number of 0-1 integer programming problems

[C/i75] based on different kinds of variables. Unfortunately, not every formulated 0-1

integer programming problem can be solved efficiently because of the huge size of both

variable set and constraints. Let us consider the following two models. Let the graph

G = (V, E) be of order n, be the adjacency matrix of G with all diagonal

elements set to zero, and [cy]„x, be a coloring matrix of G such that

cu = 1 if vertex v, is assigned color j  ;
= 0 otherwise,

where q is an upper bound of *(G). The GCP can be rewritten as
<J n

Minimize z = X  £w,c,y
y=l i=l

(3.1)

subject to

£ c</= 1, for all / = 1 ,..., n
;=i

(3.2)
n

n * Cy +  < n (3.3)
k=\

for all / = 1 ,..., n, and j  — 1 ,..., q.
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In the object function (3.1), w) is a weight of the color j; the weight satisfies 

wyM > n * w;. Constraint (3.2) ensures that any vertex can be colored with one and only 

one color. Condition (3.3) simulates the requirement, every pair of adjacent vertices 

cannot have the same color. If vertex v, is colored with color j, then the first term is 

n. Thus the second term must be zero; if aik =  1 then ckj = 0. In other words, any 

adjacent vertex v, is not colored with color j, the second term of (3.3) can go up to 

deg(Vj), which is less than n. So the condition (3.3) is satisfied. Note that if x and y 

are both adjacent to v,. and also adjacent to each other, condition (3.3) of v, can not 

avoid coloring x and y with the same color. However, conditon (3.3) of x (or y) can 

prevent x and y from being assigned the same color.

Alternatively, let M„ M2, ..., M, be all the MIS's of G and define the inclusion

matrix [w0]nx)) such that

m0 = 1 if vertex v, e My ;
= 0 otherwise.

We also define the cost variable c; associated with My such that

Cj = 1 if My includes a color class of the optimal coloring;
= 0 otherwise.

We have the following 0-1 integer programming problem which is equivalent to the 

GCP:
P

Minimize z = X C>
/= i

subject to
P

Vm,yCy > 1 for all / = 1,..., n.
j= i

Note that the inequalities mean the over-coloring possibility. If the over-coloring 

occurs, we arbitrarily pick one from the feasible color set.

The former programming model has nq variables in the coloring matrix and n + nq 

constraints; the latter has np + p variables (including matrix plus cost variables) and n 

constraints. Both models require pre-processing work. The upper bound of the first
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model can be computed by a heuristic coloring algorithm or simply set to | V | , and the 

MIS enumeration of the second one can be solved approximately by an efficient 

algorithm proposed by Bron and Kerbosch [5A 73]. In terms of the complexity, the 

latter model is much better than the former.

Example 3.1 Consider Figure 3 again. Let M, = {a}, M2 = {b, c, d}, and 

M3 = {b, d, e} be all MIS's of G.

The inclusion matrix is as follow:

My M1 m 2 m 3

a 1
b 1 1
c 1
d 1 1
e 1

The O s in the inclusion matrix are represented by blanks. The GCP is to find the 

minimum number of columns which cover all rows. The optimal solution is 

Cj = 1, c2 = 1, and c3 = 1, where b and d are over-colored.

2. Dichotomous Search Approach.

This method was proposed by Zykov in 1952 [Zy52]. The basic idea of this 

approach is to reduce a graph to a complete graph by continuously applying the 

following basic step to any pair of non-adjacent vertices of the corresponding reduced 

graph. For these two vertices, there are only two choices; one is to color them with the 

same color; another is to color them with distinct colors. In the Zykov-tree, if we 

represent the pre-work graph as the father node, the two choices mentioned earlier are 

two branches, and the corresponding reduced graphs are sons of the father node. The 

method terminates whenever all leaves of the Zykov-tree become complete. Therefore 

the chromatic number of the graph is the minimum of chromatic numbers of leaves.
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Before describing Zykov's algorithm, we introduce two terms from Zykov.

Definition Let G = (V, E) be a graph with non-adjacent vertices x and y. G/xy 

= (V', E') is a join of G by adding the edge <x,y> . That is, V' = V; E' =

E U { < x,y> }.

Definition Let G = (V, E) be a graph with non-adjacent vertices x and y. G:xy 

= (V", E') is a contraction of G by identifying x and y. That is,

V ' =  v  — {y};

E = { < u,v > | u =7 y, v #  y, and < u,v > e E} U

{ < u,x> | < u,y> e E}.

Theorem 3.1 If x and y are non-adjacent vertices in G, then 

X(G) = min{*(G/xy), *(G:xy)}.

Proof. For a proof of this theorem, see [2?r77].

Theorem 3.1 can be applied to a graph recursively such that 

y(G) =min {IG ,|, |G 2| , ... , |G j} ,

where each G, is an irreducible (complete) graph; that is, G, is a leaf of the Zykov-tree.

We now present Zykov's algorithm in Figure 5. We can easily improve Zykov's 

algorithm by the branch-and-bound method. If there exists an irreducible subgraph 

K in the Zykov-tree, any reducible subgraph H in the Zykov-tree containing a clique 

of order y(K) need not be reduced further. Unfortunately, this kind of 

branch-and-bound approach is not effective because the clique finding problem is also 

NP-complete [(7779]. A depth-first search with a branch-and-bound heuristic 

algorithm was proposed by Corned and Graham in 1973 [CG73], which, instead of 

looking for an a-clique, found an a-cluster, a highly dense graph of order a, in 

0 (n3) time.
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P roced ure Reduce(H: graph) 
b eg in

if  H is complete th e n  retu rn  
e lse  b eg in

choose any two nonadjacent vertices x, y in H; 
construct H:xy and H/xy;
Reduce(H:xy);
Reducc(H/xy);

end
end; (* Reduce *)

P rogram  Zykov tree of G 
begin

Reduce(G);
end.

Figure 5. Zykov's Algorithm.

E xam p le  3.2 Figure 6 shows the Zykov-tree of graph G0, where G, = G0/bd, 

G2 = Gi/bc, G3 = G,:bc, and G4 = G0:bd.

3. Dynamic Programming Approach.

As we mentioned earlier, a color class is an independent set. The dynamic 

programming approach employs the following property of MIS: for every A-coloring 

of a graph G there exists an /^-coloring of G, where p < k, and the family of color 

classes of the /^-coloring contains at least one MIS. Christofides first published this 

method in 1971 [C /i7lJ. So we would like to introduce the following theorem 

CC/i71] in advance.

Theorem 3.2 Any graph G = (V, E) can be optimally colored by first coloring a 

MIS M, of G, next coloring a MIS M2 of Gv_Ml and so on until all vertices are colored.
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Figure 6. Example of Zykov-tree
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Before going through Christofides's algorithm, we would like to define the 

maximal r-chromatic subset Mr and a recurrence relation.

D efin it io n  A maximal r-chromatic subset o f  G = (V, E) is a maximal subset of V 

which can be colored with r colors but not with fewer.

Two facts can be inferred from the defmition above: (1) any MIS of G is a 

maximal 1-chromatic subset of G; and (2) G is a x(G)-chromatic subset of itself.

Let denote a family of maximal k-chromatic subsets of G, and Mi be the i-th 

element of K*. Then XA+I is the union of T;, where

T, = {Mi U S | S is a MIS of GV_M̂}, for i = 1,... ,|K * |.

in p u t G = (V , E)
o u tp u t k is the chromatic number of G 
b eg in

k : =  1;
compute a family of MIS's of G; C5/T73] 
if order of = 1 then STOP 
else loop

T := 0;
for each M  in  do

for each M IS  M ' of G V_M do 
i f  M  U M ' =  V  then

b eg in  k := k + 1; S T O P  end  
e lse  begin

T  : =  T U { M U  M '};
maximize T such that every element in T  is maximal; 

end
k := k + 1;

T;
end

end.

Figure 7. Christofides's Algorithm.
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Example 3.3 Illustrate Christofides's algorithm by Figure 3.

K, = {{a}, {b, c, d}, {b, d, e}}.

T, = {{a} U {b, c, d}, {a} U {b, d, e}}.

T2 = {{b, c, d} U {a}, {b, c, d} U {e}}.

Since {b, c, d} U {a} is a subset of {a} U {b, c, d}, we get rid of {b, c, d} U {a}.

T3 = {{b, d, e} U {a}, {b, d, e} U {c}}.

Remove {b, d, e} U {a} because it has already appeared in TV The same situation 

happens on {b, d, e} U {c} since it is in T2.

K2 = {{a} U {b, c, d}, {a} U {b, d, e}f {b, c, d} U {e}}.

T, =  {{a} U {b, c, d} U {e}}. 

k = 3, STOP.

Christofides's algorithm is a breadth-first search implementation of theorem 3.2; 

it wastes computation time and space because it traverses one step on all possible paths 

before going one more step further. One improvement of Christofides's algorithm is 

that the computation of MIS of a subgraph of G can be done by the fact that each 

MIS of a subgraph of G must be a subset of a MIS of G Thus, the

MIS-finding C5A73] can be done only once. In 1974, Wang proposed a

depth-first search implementation on the search tree which is much smaller than the 

search tree implied in Christofides's algorithm.

4. Implicit Enumeration Approach.

The implicit enumeration approach is another tree search method for solving the 

GCP; it is sometimes named the backtracking sequential method. There are two basic 

steps to this approach:

(1) Pre-ordering of vertices of G;
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(2) Forward movement, the coloring procedure, which traverses the search tree 

vertex by vertex according to the pre-ordering sequence of vertices by assigning 

the smallest color of the feasible color set of the current uncolored vertex, and 

updates, if necessary, the upper bound q of the chromatic number.

The recursive procedure coloring constructs the frame of the search tree vertex 

by vertex until it reaches the following conditions: either every color of the feasible 

color set of the current vertex has been used, or no uncolored vertex is left. In the 

former case we backtrack to the previous vertex; in the latter case a better upper bound 

of the chromatic number of G is found. If we get a better upper bound q of *(G), we 

update q and backtrack to the previous vertex. This approach terminates whenever 

we backtrack to the beginning vertex of the pre-ordering sequence of vertices of G.

One more question we have not mentioned is how to determine the feasible color 

set such that there is no redundant coloring. Let us take a look at the following 

theorem first.

Definition If a coloring of G can be derived from another coloring of G by 

permuting colors without changing the associated color classes. We say this coloring 

is redundant.

Example 3.4 Let G = (V, E), V = {v„ \ 2, v3, v4, v5}. Define a coloring f  of G as 

follow:

fK> = 0, f(v2) = 0, 

f iX H l ,  f(v4)=  1, 

flv,) = 2.

If g is another coloring function of G such that 

g (v ,)= l, g(v2) = l ,  

g(v3) = 0, g(v4) = 0,
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In p u t a graph G of order n;
O u tp u t

q : integer; (* number of colors required *)

P roced ure coloring (k: l . . n +  1); 
var

j: integer; 
b eg in

if  k = n + 1 th e n  update q 
e lse  b eg in

compute the feasible set o f  v*; 
i f  k = n th en  begin

j 0;
repeat

iH  + i;
until j in feasible(v*) ; 
color v* with j; 
coloring(k+ 1); 

end else begin
i« -1 ;
repeat

if  j in feasible(vA) th e n  b eg in  
color v* with color j; 
coloring(k+ 1); 

end;
j «- j  +

until j -  q; 
end 

end
end; (* coloring *) 

b eg in  (* main *)
let v„ v2, ..., v„ be a sequence of vertices of G according to a 

rearrangement of vertices; 
q «- upper bound of *(G); 
coloring(l); 

end. (* main *)

Figure 8. Implicit Enumeration Approach.

g(v5) = 2.

Then g is redundant because g can be derived from f  by interchanging color 0 and 1. 

However, if we assigned v2 with color 2 in the coloring g, g would be not redundant 

because the family of color classes of g, {{v3, v4}, {v,}, {v2, v5}}, is different from that 

off, {{v„v2}, {v3,v4}, {v5}}.
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Theorem 3.3 Let v „ ..., v,_, be a /^-coloring. If no redundant coloring is to be 

generated, then the assigned color of v, can not be greater than p + 1.

Proof. This theorem is proved by induction, 

i = 1, there is only one color for v,.

Assume that there is no redundant coloring for v „ ..., v,._j. For a p-coloring C of 

v „ ..., v,_„ if the extended coloring C' of v „ ..., v,_„ v( is also p-coloring, C' is not 

redundant since C is not redundant. If v, must be assigned a new color, we know that 

v, should be colored by color p + 1. Otherwise C'(v,) > p + 1 is redundant because of 

the interchangeability between C'(v,) and p +  1. Therefore, v, can not be colored with 

color greater than p + 1. Q.E.D.

Suppose v„ v2, ..., v,_, have already been colored with p colors. Then every 

feasible color j  of v, must satisfy the following conditions:

(1 ) j < p +  l ;

(2) j  has not been assigned to any colored adjacent vertex of v, ;

(3)  j < q  — 1, where q is an upper bound of *(G).

Brown [_Brl2] is the first person who used the implicit enumeration algorithm to 

solve the GCP. It is obvious that if we construct a clique C of G, then each vertex of 

C can be colored by only one possible color. Therefore, we can terminate Brown's 

algorithm when backtracking to the clique because the upper part of the search tree is 

linear. Brown's algorithm can be improved from the forwjnove procedure, the 

backjnove procedure, or both. The forw_move and the back_move are shown in 

Figure 9. The forwjnove procedure can be improved by using either the dynamic 

reordering of the uncolored vertices or a look-ahead procedure [5 r72]. On

the other hand, Christofides CCA75] advanced the backjnove procedure and 

unintentionally ended up with a heuristic algorithm. In 1979, Brelaz \_Brl9~\ made two 

errors in his Randall-Brown's modified algorithm and also arrived at a heuristic
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algorithm. The correct version of the Brelaz's algorithm was given by Peemoller 

\_Pe 83].

A very complete reference to the implicit enumeration approach of the GCP was 

given by Kubale and Jackowski [AU85].

Example 3.4 An illustration of Brown s algorithm is given in Figure 3. For the 

preordering, the largest-first preordering will arrange the vertices in non-increasing 

degree.

With largest-first preordering:

a, c, e, b, d is the coloring sequence of vertices.

The first pass:

C(a) = 1, C(c) = 2, C(e) = 3, C(b) = 2, C(d) = 2. 

upper bound q = 3.

Backtrack to vertex c. Since F [c ]  = <f>, the algorithm immediately backtracks 

again to vertex a, and STOP.

With arbitrary ordering: a, b, c, d, e. 

the first pass:

C(a) = 1, C(b) = 2, C(c) = 2, C(d) = 2, C(e) = 3. 

upper bound q = 3.

Backtrack to d. F^d] = 4> after we remove the feasible color 3 (Since q = 3 now); 

we move back to c. Again F [c ]  = 0 after we update the feasible color set, and 

FCb] = <f> originally. We reach the top vertex a, and then STOP.

B. HEURISTIC ALGORITHMS

Before taking the coloring action, most graph coloring algorithms in existence 

determine both the vertex (or vertices) to be colored and the color to be utilized. That 

is, the execution order of choosing the next uncolored vertex and the next color can



In p u t a graph G of order n;
O u tp u t

q : integer; (* number of colors required *) 
the coloring function;

G lob a l V ariab le
k : 1 .. n + 1 (* index of the current processing vertex *)

L oca l V ariable
q u it: boolean

P roced u re forw_move 
b eg in

compute the feasible set of v*; 
i f  feasible(v*) =  4> th en  

return; 
else b eg in

color v* with the smallest feasible color; 
if  k =  n th en  begin  

k «- n + 1; 
return;

end e lse  forw move; 
end

end; (* forw move *)

P roced ure b ack  move 
b eg in

if  k = n + 1 th en  begin
find the smallest index, r, such that vr was colored with color q; 
k <- r — 1; 

end e lse  k <- k — 1 ; 
return;

end; (* back_move *) 

b eg in  (* main *)
let Vi, v2, ..., v„ be a sequence of vertices of G according to 

non-increasing degree; 
q *- upper bound of *(G); 
k<- 1; 
quit <- false; 
repeat

forwmove; 
i f  k = n + 1 then

update both q and the coloring function; 
backmove;
if  k = 1 th e n  quit <- true ; 

u n til quit; 
end. (* main *)

Figure 9. Brown's Algorithm.
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change an algorithm from one to another. Consequently, this section will cover three 

methods of selection of alternatives: (1) vertex-color sequential algorithm, (2) 

color-vertex sequential algorithm, and (3) vertex-vertex pair scanning.

1. Vertex-color Sequential Algorithm.

Let v„ v2, ..., v„ be an ordering of vertices of a graph G. The vertex-color 

sequential algorithm colors the first vertex v, with color 1, and then it makes use of the 

basic procedure recursively as follow:

If v„ ..., V i have been colored, then v,. is assigned the smallest possible 

color not occurring on adjacent vertices of v,. v, is colored with the new 

color if all existing colors do not fit for v,.

The algorithm terminates whenever there is no uncolored vertex. The efficiency of the 

algorithm is mainly based on the ordering of vertices. It is evident that there is at least 

one optimal ordering of vertices. However, we have not found any algorithm which 

selects the optimal ordering from n\ possible orderings in polynomial time bound.

There are a number of algorithms in this category. We are going to review some 

well-known algorithms here. One of the first versions of the vertex-color sequential 

algorithms was proposed by Welsh and Powell [1F.P673, who arranged the vertices 

according to non-increasing degree. Such an algorithm is called the largest-first 

sequential algorithm (LFS). The total number of colors used by the LFS will not 

exceed max{min{i, deg(v,)+ 1}}.

In contrast to the LFS, another algorithm named smallest-last sequential 

algorithm (SLS) was proposed by Matula, Marble, and Isaacson [M M 72]. The 

smallest-last ordering is found according to:

1. v„ is the vertex of the smallest degree of G;
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2. v, is the vertex having the smallest degree of the induced subgraph

G V-(v,+ i , — ,v„>-

L em m a The number of colors used in the smallest-last sequential algorithm are 

bounded by 1 + max{ min{ degw.(v,)}}, where H, is a subgraph of G induced by 

{Vi,V2 t ... , v,}.

Proof. From the procedure of sequential algorithm, there is at least one feasible 

color between 1 and 1 + degH.(v,) for every vertex v,. That is, C(v,) ^  1 + degH|.(v,), 

where C is a coloring function of G. By the definition of SLS, degH.(v,) = 

min {degH.(v,)}. So C(v,.) < 1 + min {degHj.(v,)}, Therefore, y(G) < max {C(v,)J 

-  ^ ,a<? ^  + ®  {de8H((vy)}} =  1 + max {nun {degH.(v,)}}. Q.E.D.

Theorem 3.4 y(G) < 1 + mgx {nun {deg^v)}}.

Proof. It can be easily derived from the Lemma above because the family of 

Hu ..., H„ = G is only a subset of the power set of G. Q.E.D.

The upper bound of theorem 3.4 is called Szekeres- Wilf bound [SJF68]. It is 

evident that degH.(v) <; degG(v). Thus, we have a better upper bound of the chromatic 

number while using SLS.

Brelaz [/?r79] presented a dynamic way of ordering vertices, called Dsatur 

algorithm (DLF). The DLF ordering is determined as follow:

1. Vj is the largest degree of G.

2. v,. is adjacent to the maximum number of distinct colors.

DLF successively colors the vertices in a DLF ordering with the smallest possible 

color, we obviously color a clique of v, first. Thus we obtain a lower bound, the order 

of a clique, of the chromatic number. The clique found by the DLF may not be 

maximal. We may obtain a maximal clique by taking advantage of the interchange
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method proposed by Matula et al [AfA/72]. Note that the DLF is an exact algorithm 

for bipartite graphs.

The interchange method is a way of attempting to repack the existing colors by 

recoloring a subgraph of the partially colored graph whenever a new color is 

introduced. Suppose v „ ..., vf_, have already been colored in k colors. An

(a,b)-colored subgraph of V = {v,,..., v,_,} is the induced subgraph of vertices, V' 

= {veV | C(v)= a or C(v)= b}. An (a,b)-component is a component of

(a,6)-colored subgraph. Suppose that v, has a feasible color m ,m <,k, then C(v,) = m 

and go to the next uncolored vertex. On the other hand, if the only feasible color for 

v, is k + 1, we consider every pair (a,b), 1 < a < b < k .  If there exist an (a,6)-colored 

subgraph such that in every (a,6)-component the vertices which are adjacent to v, are 

of at most one color, then we recolor every adjacent vertex of v, having the existing 

color a with color b and yield a feasible color a for v(. Otherwise, v, is colored with the 

new color k+ 1.

The combination of SLS and interchange method will color any planar graph in 

five or fewer colors [AfA/72].

2. Color-vertex Sequential Algorithm.

The color-vertex sequential algorithm is as follow:

1. k = 1;

2. Initially we place the first uncolored vertex into the color set C*;

3. All uncolored vertices are examined in order; any vertex which is not 

adjacent to any vertex of C* is added to C*;

4. If there is no uncolored vertex, then STOP ; otherwise, k = k + 1, and 

goto step 2.
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Peck and Williams [PW66~\ arranged the vertices by non-increasing order of 

degree, and performed the color-vertex sequential coloring. A few years later, Williams 

[  Wi69] modified the Peck-Williams algorithm by pre-ordering the vertices; he made 

use of d" instead of d, where d is the degree. dm comes from the following recursive 

relation:

d? =  degc(v,);

d* = X ayd*-|) where [a,y] is the adjacency matrix.
j

William also mentioned that if IV | — n, then m = is generally sufficient.

The following algorithm is called Approximately Maximum Independent Set 

(AMIS) [_Jo74~\ which is a heuristic algorithm for determining the MIS. Figure 10 

shows the sketch of AMIS. In Figure 10, P is the prohibited set of vertices of each 

MIS finding; H is the subgraph of G induced by all uncolored vertices. Every member 

v of MIS is the vertex with the minimum degree in the current subgraph 

HV(H)-p* Of course, P has to be updated after we select and color vertex v.

begin
H := G; 
k := 0;
while H is not null do begin

k : -  k + I ;
p := 0;
while P ±  V(H) do begin

find vertex v of minimum degree in H V(H).p ;
C(v) := k \
P : = P U (v) U adj(v) ; 

end ;
H : = subgraph of H induced by uncolored vertices; 

end ; 
end ;

Figure 10. Approximately Maximum Independent Set
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All the other heuristic algorithms in this section are capable of producing a worst

case G having colors proportional to *(G) * n, where n =  |G |.  However, AMIS

will color any graph G with n vertices in 0 (—- —)y(G) or fewer colors \_Jol4).
log/?

Leighton \_Lel9] presented the Recursive-Largest-First algorithm (RLF), which 

makes use of the LFS strategy in the AMIS algorithm. Let U be the set of uncolored 

vertices which are not adjacent to any colored vertex, and W be the set of uncolored 

vertices which are adjacent to at least one color vertex. For each MIS, RLF chooses 

the vertex having maximal degree in H as the first element of MIS, and then selects 

another member v of MIS by the rule: (1) |adjH(v )n W | is maximal; and (2) 

| adjH(v) fl U | is minimal if (1) is tied.

begin
H := G; 
k := 0;
w h ile  H is not null do begin  

k .=  k +  1;
find v e V(H) such that degH(v) is maximal;
C(v) : = k; 
construct U and W; 
w h ile  U  <t> do begin

find v e U such that | adjH(v) n W | is maximal;
(tie is, if possible, broken by | adjH(v) n U | is minimal) 
C(v):= k; 
update U and W; 

end;
H := subgraph of H induced by W; 

end  
end;

Figure 11. Leighton's Algorithm
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The RLF algorithm can color sparse graphs with the chromatic number near to 

i H i  in 0 ( | V | ,  time. Such graph, happen very often in practice, appiication such 

as timetable scheduling.

3. Vertex-vertex pair scanning.

The vertex-vertex pair scanning will inspect all pairs of vertices. It is evident that 

this class of algorithms has a time-consuming step while selecting a candidate on the 

basis of analysis of all pairs of vertices.

Wood's algorithm ZWo6S \̂ arranges the order of pairs of nonadjacent vertices 

by the number of connection vertices, which are adjacent to both nonadjacent vertices. 

Figure 12 shows the frame of Wood's algorithm. Wood made use of the fact that an 

vertex of degree less than the number of colors can always be colored with one of the 

existing colors.

The heart of Wood's algorithm is quite sophisticated because there are many 

comparisons before the next move of the selecting pair of nonadjacent vertices. A 

method which simplified the next move of the selected pair of nonadjacent vertices by 

the operation, contraction, in Zykov's algorithm and dynamically chooses the pair with 

the largest number of connection vertices was proposed by Dutton and Brigham 

[Z)58l].
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construct the queue L of pairs of nonadjacent vertices by 
non-increasing order of the number of vertices which are 
adjacent to both vertices of the indicated pair; 

p := 0; /* number of colors for the current partial coloring */ 
repeat

take pair (x,y) from the head of L; 
delete (x,y) from L; 
case I: both x and y are colored 

go into next pair;
case 2: exactly one vertex of x, y is colored. Assume x is uncolored, 

and y  e C„ where C, is the i-th color class, 
i f  (deg(x) ^  p) and ( adj(x) fl C, = </>) th en  

C ,: = C, U {*} ;
case 3: neither x nor y is colored 

i f  (deg(x) ^  p) or (deg(y) > p) th en
if  there exists the smallest index i< ,p  such that both x and y 

can be colored with i th e n  
C, := C, U {x,y} /* otherwise go into next pair */ 

e lse  b eg in
p := p +  \ ;
c, := {x>y} ;

end;
until (L is empty) or (no uncolored vertices left); 
if  uncolored vertices left th en

do the sequential coloring for all uncolored vertices;
end ;

Figure 12. Wood's Algorithm.

begin
w hile there is a pair of nonadjacent vertices do 

b eg in
select the pair of nonadjacent vertices (x, y  ) with the largest 

number of connection vertices; 
identify x and y; 

end;
| existing vertices | is an upper bound of the chromatic number; 

end;

Figure 13. Dutton-Brigham's Algorithm.
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C. APPLICATIONS

This section indicates a number of applications that are most often encountered. 

1. Loading Problem.

We are given a set of objects. Assuming that part of the objects can't be packed 

together because of some reason such as chemical contamination. The loading problem 

[£ C 7 l]  CC/i75j is to find the minimum number of boxes to accommodate the 

objects. Let each object be a vertex of a graph, and two objects are joined by an edge 

if they can't be placed in the same box. Supposing that the capacity requirement of 

two objects is additive. That is, two objects of size Ox and 0 2 can by packed with a box 

of capacity 0, + 02. There are several cases which take account of both the size of the 

objects and the capacity of boxes.

Case 1. Object of same size and boxes of infinite capacity.

This is the standard coloring problem where each box corresponds to a color.

Case 2. Objects of same size 0  and boxes of same finite capacity B.
g

This is saying that no more than —  objects can be put together in the same box. That
D

is, we add one more constraint that no more —  vertices can be assigned to the same 

color to the fundamental constraint that no adjacent vertices can be colored with the 

same color.

Case 3. Objects of different size and boxes of the same finite capacity.

Case 3 of the loading problem is similiar to the knapsack problem in which every two 

objects can be put together. Algorithms of this kind are highly similar to those of case
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Case 4. Objects of different size and boxes of different capacity.

This is the most general case. All 4 cases are NP-complete and computationally 

equivalent.

2. Timetable Scheduling.

Given a set of jobs which are to be accomplished by a set of people with some 

hardware tools. Assume that the company has one of each kind of hardware tool, and 

every job has the same process time. The timetable scheduling problem is to

find a schedule such that all jobs can be executed with the minimum process time. 

Each job is denoted by a vertex of a graph; every two jobs are adjacent if they have to 

be performed by either the same person or the same hardware tool. Every period of 

the timetable is equivalent to a color of the graph coloring.

3. Resource Allocation.

We submit n jobs to a computer which owns m resources. Let us suppose that 

each job can be executed in a fixed time slot with a subset of the m available resources. 

Each job is represented by a vertex of a graph; the edge of two vertices is introduced 

if the associated jobs require a common resource which can't be allocated at the same 

time. The greatest resource utilization CC/i75] can be achieved by the optimal 

coloring of the vertices of the graph.
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IV. VARIATIONS ON THE IMPLICIT ENUMERATION APPROACH

A. BACKGROUND

I. Terminology of Trees.

A tree is a connected acyclic graph. Vertices of a tree are called nodes, one of 

which is named the root of that tree. The edges of a tree are called branches. A 

spanning tree of a graph G is a tree of G having all vertices of G. After the root is 

removed, the remainder of the tree is partitioned into a family of disjoint sets, where 

each of these family is called a subtree of the root. Within each disjoint set, the node 

y which is connected to the root x is called a son of x. Meanwhile, x is called the father 

of y. A node with no son is called a leaf. Sons of the same father are said to be 

siblings. The number of sons of a node v is called the degree of v. The degree of a tree 

is the maximum degree of the nodes in the tree. The level of a node is recursively 

defined as follows: the root is initially at level 0; if a node is at level a, then its sons are 

at level (a + 1). The depth of a node v in a tree is the absolute difference between the 

level of v and the level of the root. The height of a node v in a tree is recursively 

defined as follow: the height of a leaf is initially 0; the height of v = 1 + max { height 

of v,| for every son v, of v }.

Example 4-1 In Figure 14, node a is a root of TS, node b as well as node c are 

sons of node a. Nodes d, g, h, i, and j are leaves of TS. Nodes g and h are the siblings 

of node i because they have the same father node e.

Depth(a) = 0;

depth(b) = 1; depth(c) = 1;

depth(d) = 2; depth(e) = 2; depth(f) = 2;

depth(g) = 3; depth(h) = 3; depth(i) = 3; depth(j) = 3.
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Figure 14. Example of tree TS

Height(a) = 3;

height(b) = 2; height(c) = 2;

height(e) = 1; height(0  =  1;

height(d) = 0; height(g) = 0; height(h) = 0; height(i) =

height(j) = 0.

Degree(a) = 2; degree(b) = 2; degree(c) = 1; degree(d) =

degree(e) = 3; degree(f) = 1; degree(g) = 0; degree(h) =

degree(i) -  0; degree(j) = 0.

Degree of TS is 3.
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2. Tree Search Techniques.

For constructing a search tree, we have to visit all the nodes of the search tree 

systematically. Depth-first search and breadth-first search 

are two common ways to accomplish this work.

a. Depth-first Search (DFS).

For a connected graph G, we start at a vertex v0 , mark it as having been visited, 

and then visit an unmarked vertex v^ which is adjacent to v0. Next we visit an 

unmarked vertex v2, which is adjacent to v,. We continue to penetrate the graph G 

until a vertex vm , which has no unmarked adjacent vertex, is met. At this time, we 

backtrack from vm to its previous adjacent vertex vm_„ and then apply the same 

process to vm_,. After backtracking to v0 again, we terminate the algorithm.

Procedure DFS(w) 
begin

mark(w);
for each vertex v in adj(w) do 

if v has not been marked then 
DFS(v);

end;

In constructing a search tree, we start at the root of the search tree, and then 

penetrate the tree via branches until a leaf is met. At that time we backtrack to the 

father of that leaf and do the same penetration work. Finally, we terminate the tree 

traversing when the root of the search tree is reached again.

E xam p le  4-2 In Figure 14, we apply the DFS on TS by starting at the root a. 

Assume that we visit sons of a father from left to right. Then we can visit the nodes 

in the order a, b, d e, g, h, i, c, f, and j.
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b. Breadth-first Search (BFS).

For a connected graph G, we start at a vertex v0 , mark it as having been visited, 

and then visit all unmarked vertices which are adjacent to v0 in an order such as 

v01, v02, ..., v0mQ. Next we visit all unmarked adjacent vertices of v01 such as 

v0n, von, -  , v01mi, all unmarked adjacent vertices of v02 such as v021, v022, ..., v02„2, ..., and 

all unmarked adjacent vertices of v0m such as v0(nl, v0m2, ..., v0mMm. We continue this 

process until there is no unmarked vertex. In other words, BFS recursively explores a 

pending vertex (marked node not yet explored) v and all sons of v by initially starting 

from a vertex v0 of a graph.

P roced ure B F S (w )
V ar

Q: queue of pending vertices; 
begin

m ark (w ); 
empty Q; 
add w to Q; 
repeat

get the first pending vertex x from Q; 
for each vertex v in adj(x) do

if  v has not been marked th e n  begin  
mark(v); 
add v to Q; 

end;
u n til Q is empty;

In constructing a search tree, we start at the root v0 of the search tree and then 

visit all the sons of v0 such as v0„ v ^ ,..., v0m. Next we visit all the sons of v0„ all the 

sons of v^ ,..., and all the sons of v0m. The procedure, BFS, is called level by level until 

there is no pending node.
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E xam p le  4 -3  In Figure 14, BFS is applied on TS by starting from the root a. 

Assume we visit the sons of a father from left to right. Then we traverse the nodes of 

TS in the order a, b, c, d, e, f, g, h, i, and j.

So far, we describe DFS and BFS in a connected graph. How can we apply DFS 

and BFS to a graph? Taking a closer look at the algorithms of DFS and BFS, we 

discover that these algorithms terminate whenever a maximal connected subgraph of 

a graph is found. Thus, the DFS (or BFS) of a graph is carried out by repeatedly 

calling DFS (or BFS) from a new unmarked starting vertex.

B. BACKTRACKING

For many problems which we have encountered so far, there is a certain 

deterministic approach, which takes a certain amount of computational work, for 

obtaining a solution. For some combinatorial problems, however, there is no such 

approach. In this case, we may start on one attempt at a solution. If discovering that 

the solution cannot be achieved under the direction of the first attempt after an amount 

of work, we have to make an adjustment on the first attempt and start over with a 

second attempt. To solve this kind of problem, we must search through a finite set of 

possible solutions. Since we do not know the positive principle of searching direction 

which leads to a solution, this nondeterministic approach is usually very slow for a 

large-scale problem. For example, the 4-queens problem, placing 4 queens on a 4x4 

chessboard such that no queens can attack another queen (i.e. no queens on the same 

row, column, or diagonal), there are 16 possible positions for 4 queens. The brute-force

approach will evaluate possible configurations one by one until a solution is

found. However, if we do a clever organization of the finite set of the possible 

solutions, most of the configurations will not be visited in searching. One way to 

achieve this job is to employ the backtracking technique.
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Backtracking[_HS78^[_Hu&2]  is a technique of organizing a search tree on a finite 

set of possible solutions such that at one time a subset of possible solutions can be 

eliminated from further consideration. To solve problems with backtracking, we have 

to solve the following problems: (1) How to systematically search the finite set of 

possible solutions? (2) How to set the bounding functions to eliminate a subset of 

possible solutions from further consideration? For the searching part of backtracking, 

one first represents the finite set of possible solution as a tree and then traverses the 

generated tree by DFS. Usually the finite set of possible solutions is expressed as a 

n-tuple vector (x„ x2, ..., x„), where each x, is chosen from a possible component set. 

For example, in the 4-queens problem, we represent each possible configuration as a 

4-tuple vector (x„ x2, x3, x j, where component x, indicates the position of the chess 

queen on the i-th row. The possible component set of x, is {1,2, 3,4}. Before 

introducing the enumeration of (x„ x2, ... ,x„), we define the lexicographical ordering. 

A vector (x„ x2, ... , x„) is lexicographically smaller than (ylf y2, ... , y„) if and only if there 

exists i, 1 < i < n, such that x, < y, and x; = y) for all 1 < j < i. The search of 

backtracking is done by lexicographically enumerating the vectors starting from the 

lexicographically smallest vector.

The bounding functions can be the explicit constraints (except the constraints 

deciding the finite set of possible solutions), the implicit constraints, or both. Some 

problems may not have the implicit constraints; for example, the 4-queens problem, 

1 < x, < 4 form the set of possible solutions, and those conditions that two queens are 

neither on the same column nor on the same diagonal are the explicit constraints. 

There are no implicit constraints in the 4-queens problem. However, in optimization 

problems such as minimum optimization, which is to find the global minimum among 

all possible solutions, the current lower bound of the possible solutions is an implicit 

constraint. The search tree built by a backtracking algorithm is called a backtrack-tree.
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Leaves of the backtrack-tree are either solutions of the problem or dead nodes which 

are found by the bounding functions.

Input: a n-tuple vector (x„ x2, ..., x„) representation of a problem 
O u tp u t: all possible solutions of the problem 
G lobal V ariab le

k: the current component of the n-tuple vector;
CIBF: the current implicit bounding functions;

P roced ure backtrack(k) 
begin

compute the feasible set F* of xA using bounding functions; 
for each x in F* do

i f  CIBF(x) = true th en  begin
x* <- x;
if  k = n th en  b eg in

save the path from the root to this leaf; 
update, if necessary, CIBF; 

end e ls e  backtrack(k+ 1); 
end;

end;

begin  (* main *) 
initialize CIBF; 
backtrack(l); 

end.

Figure 15. General Backtracking Algorithm
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E xam p le  4 -4  The tree representation of the feasible set (called the tree of 4-queens 

in this example), is shown in Figure 16, and the backtrack-tree of the 4-queens problem 

are shown in Figure 17. The nodes are labeled by the ordering of tree traversing in the 

tree of 4-queens. The branches are labeled by possible values of the x/s assigning from 

the root to it; for example, the node 23 represents that x, = 2, x2 = 1, x3 = 4, and 

x« = 3. There are 24 (4!) possible configurations, which are described as leaves in the 

tree of 4-queens. In the backtrack-tree of 4-queens, the picture shows the steps that 

the backtracking technique goes through as it tries to find a solution. The star beside 

a node indicates that further consideration of the subtree rooted at that node can be 

disregarded. The backtrack-tree, which has 16 nodes, has already cut 15 nodes from 

the tree of 4-queens as the first solution is found.

C. BRANCH-AND-BOUND

The branch-and-bound method CT/*S78]CLW/66][M /70] is another powerful 

alternative to do the exhaustive enumeration on a search tree. In contrast to the 

backtracking which is a DFS-like method, the branch-and-bound is a BFS-like strategy 

which generates all sons of the current node before visiting another node. The search 

tree of the branch-and-bound is called the BNB-tree Each node of the BNB-tree 

represents a class of possible solutions to the problem. All nodes but the solution 

nodes of the BNB-tree are called pending nodes, and the union of all pending nodes is 

the set of all possible solutions. The algorithm begins by assigning the formal 

representation of the original problem to the root of the BNB-tree. The job of 

branching is to replace a pending node v by all sons of v. That is, branching will divide 

a subproblem into a class of subsubproblems. The algorithm stops when it is not 

possible to do any further branching. The branch-and-bound requires a buffer for 

temporarily buffering the pending nodes. Basically there are two strategies to 

implement the buffer: One is FIFO (first in first out); another is LIFO (last in first out).
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Input: r o o t  n o d e  o f  th e  B N B -tree  
O u tp u t: so lu tio n s

P rogram  branch-and-bound 
V ar

buffer: sequence of pending nodes of BNB-tree; 
begin

empty buffer;
add root node of BNB-tree to buffer; 
w h ile  buffer is not empty do b eg in  

get node x from buffer; 
for each son x' of x do b eg in

if  x' is a possible solution th en  begin  
save x' ;
update the bounding functions; 

end;
add x' to buffer; 

end; 
end; 

end.

Figure 18. General Branch-and-bound Algorithm

Example 4-5 Figure 19 shows FIFO BNB-tree and LIFO BNB-tree, where the 

labels of nodes represent the ordering of the tree traversing.

In the general branch-and-bound algorithm, the selection rule for the next 

pending node is in a blind sense. This kind of selection rules does not choose a node, 

which has a good chance to reach the solution quickly, according to the degree of 

preference. One way to speed up the branch-and-bound technique is to find a nice 

preference function, and then the selection of the next node from the buffer is totally 

based on the preference function. We will discuss an intelligent branch-and-bound 

algorithm on the GCP in the later section.
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Figure 19. Examples of BNB-tree
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Input:
root node of the BNB-tree; 
preference function P;

O utp ut: solution nodes

Program  intelligent_branch_and_bound 
V ar

buffer: sequence of pending nodes of BNB-tree; 
begin

empty buffer;
add root node of BNB-tree to buffer; 
w h ile  buffer is not empty do b eg in

get node x with greatest degree of preference P(x) from buffer; 
for each son x' of x do begin

if  x' is a possible solution th en  begin  
save x' ;
update the bounding functions; 

end;
add x' to buffer; 

end; 
end; 

end.

Figure 20. Intelligent Branch-and-bound Algorithm

D. PROGRAMMING FRAME OF BACKTRACKING ON THE GCP

The graph-coloring system we designed is based on Brown's algorithm which was 

mentioned in chapter 3. Before describing the graph coloring system, we introduce 

several terms. In a graph, the vertices which have been labeled by a suitable color are 

called colored vertices In contrast to the colored vertices, we name the vertices which 

are going to be colored uncolored vertices. Therefore, the vertices of a graph are 

divided into two parts: colored vertices and uncolored vertices. A  pool of the colored 

vertices of a graph is called the core of a graph. A  pool of the uncolored vertices is 

called the periphery of a graph. For a vertex v of a graph, the number of neighbors 

of v in the core is called the chrome-degree of v; and the number of neighbors in
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periphery is called the white-degree of v. Two key operations in the graph-coloring 

system are newcolor and mergecolor. In the graph-coloring system, we always put core 

ahead of periphery. The ordering of core is as follows: color 1, color2, 

..., color|corc|. The jobs of both newcolor and mergecolor are listed in Figure 21.

Procedure newcolor(i, j) 
begin

exchange vertices i and j;
for each vertex v in (adj(i) U adj(j)) do

update both white-degree(v) and chrome-degree(v);
end;

Procedure mergecolor(i, j) 
begin

merge uncolored vertex i into colored vertex j;
move the last vertex w of the periphery to the position of vertex i;
for each vertex v in (adj(i) U adj(j) U adj(w)) do

update both white-degree(v) and chrome-degree(v); 
shrink the periphery by discarding the last vertex;

Figure 21. Procedures newcolor and mergecolor

The process of the graph coloring system can conveniently be presented as a 

cyclic process. Within an unit step, both next-uncolored-vertex (nucv) and 

next-color-vertex (ncv) are chosen according to a nucv-selection function and a 

ncv-selection function, and then either newcolor (nucv, ncv) or mergecolor (nucv, ncv) is 

performed. The coloring process stops as soon as the periphery becomes empty. We 

will discuss several nucv-selection functions as well as ncv-selection functions in a later 

chapter. Note that nucv is executed first, and then a feasible color ncv for nucv is 

chosen in the graph-coloring system.
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In the backtrack algorithm on the GCP shown below, the root of backtrack-tree 

is the original graph G. The nodes of backtrack-tree represent the subgraphs of G after 

performing either the newcolor operation or the mergecolor operation. Every branch 

denotes a pair of (nucv, ncv) corresponding to the father node. The bounding function 

q is initially set to the upper bound of *(G). We update q whenever a better coloring 

path in backtrack-tree is found. Procedure nodejo_process indicates the proper node 

of the coloring path in backtrack-tree. Along the coloring path in backtrack-tree, 

nodejo_process advances one branch at a time and also backtracks branch by branch 

except the first backtracking movement of a path of complete coloring. Variable 

subgrCO .. n ] represents the nodes on a possible path of complete coloring (from the 

root to a leaf).

Inpu t a graph G of order n 
O utp ut

q: integer; (* *(G) *)
Global Variable

subgr[0 .. n]: nodes on the current path of coloration;
k: the index of the current processing node of the path of coloration;
nucv e subgr[0 .. n]: the uncolored vertex which is to be colored next;
ncv e subgrCO .. n ]: best color for vertex nucv;
quit: boolean;

P rogram  backtrack_on_GCP 
begin

k <---- 2; /* initialization */
q «- upper bound of x(G); 
qu it«- false; 
repeat 

forward; 
backward; 

u n til quit; 
end.

Figure 22. Backtracking scheme on the GCP
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P roced ure n o d e _ to _ p r o c e s s (m )  
begin

if  m  =  k  +  1 th en  begin
c o p y  su b g r C k ] to  subgr[k+ 1 ]  ; (*  m o v e  to  s u b g r [ k +  1 ]  *) 
k « - k +  1;

end  e lse  i f  m  <  k  th en  b eg in
move back to subgr[m] ; 
k <- m;

end e lse  begin
writeln('ch ec k  m-value'); 
halt; 

end; 
end;

Figure 23. Procedure node_to_process in backtracking and branch-and-bound

P rocedure forward 
begin

if  k = — 2 th en  begin  (* place a graph into the root *) 
subgr[03 <- graph G; 
k<-0;

end e lse  b eg in
node_to_process(k+ 1); 
if ncv is a new color th en  

newcolor(nucv, ncv) 
e lse  mergecolor(nucv, ncv); 
if periphery is empty th en  b eg in  

update q; 
return; 

end; 
end;
choose nucv according to nucv-selection function; 
choose ncv according to ncv-selection function; 
if  ncv < q th en  forward;

Figure 24. Procedure forward in backtracking
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Procedure backward 
begin

if k = 0 then quit <- true 
else if k -  n then begin

find the smallest index r such that subgr[r].ncv =  q ; 
node_to_process(r -  1); 

end else node_to_process(k -  1); 
update ncv;
if there is no feasible color for nucv then 

backward;

Figure 25. Procedure backward in backtracking

Basically the backtracking algorithm on the GCP is an exact algorithm. It is 

usually difficult to color a graph of order over 50 using the backtracking algorithm. 

We will present various nucv-selection functions as well as ncv-selection functions in 

chapter 6.

E. PROGRAMMING FRAME OF BRANCH-AND-BOUND ON THE GCP

Basically our branch-and-bound implementation is a modification of the 

intelligent branch-and bound method. Instead of visiting all possible nodes which are 

in the same level of the search tree, we use DFS to find all pending nodes (those which 

can be partially colored with m + 1 colors) of all m-partially colored nodes. Starting 

from the 0-partially colored node of a given graph, we search all 1-partially colored 

pending nodes by DFS. Then we find all 2-partially colored pending nodes from each 

of 1-partially colored pending nodes in a sequence in accordance with the degree of 

preference. We continue this process. The coloring process stops as soon as the leaf 

of a complete coloring appears.



55

In the branch-and-bound algorithm on the GCP shown below, we use the sorted 

list outbuf, which treats the degree of preference as the priority, to buffer all pending 

nodes which are partially colored with m colors and the priority queue inbuf to buffer 

all pending nodes which are partially colored with m-f- 1 colors. Subgr [0  .. n ]  is the 

working space for running DFS on the root subgr [0 ]. Variable k is the index of the 

current node of the working space subgr[0 .. n ], We initially place the given graph 

G into the outbuf, and then recursively do the process cycle: For every node v with the 

highest priority in outbuf, finding all pending nodes, which call the newcolor procedure 

in the previous movement, of the subtree with the root v in DFS, and placing them into 

the priority queue inbuf according to the degree of preference. After finishing each 

process cycle, we copy all nodes of inbuf to outbuf in the non-increasing order of 

priority of nodes. Procedure savestatus inserts the pending node into inbuf with respect 

to the computed degree of preference. Procedure getnextstate is to get a new node with 

the highest priority from outbuf.

There are four problems to be solved in the branch-and-bound algorithm on the 

GCP: (1) How to find a good (heuristic) preference function? (2) How to handle a huge 

set of pending nodes whose size grows in an exponential way corresponding to the 

order of a given graph? (3) What kind of data structure is suitable for inbuf and outbuf 

in order to speed up the in-out actions of nodes of inbuf and outbuf ? (4) How to find 

good (heuristic) nucv-selection as well as ncv-selection function? Since the GCP is 

N IP-complete, we suspect there is no perfect (exact) preference function. However, 

we will propose a preference function construction in chapter 7. In practice, we limit 

the number of pending nodes stored in the buffers. That is, the branch-and-bound 

algorithm on the GCP becomes a heuristic GCP algorithm. We choose the data 

structure, heapsort, to implement inbuf and outbuf because heapsort is an 0(« log n) 

comparison sort. The detail description of heapsort will be in chapter 5. The



56

nucv-selection functions as well as the ncv-selection functions are the same functions 

mentioned in the backtracking algorithm on the GCP.

Input a graph G of order n 
O u tp u t

q: integer; (* *(G) *)
Global Variable

inbuf, outbuf: sequence of pending nodes which have the same core size; 
subgr[0 .. n]: working space;
k: the index of the current processing node of the current working subtree; 
nucv e subgr[[0 .. n]: the uncolored vertex which is to be colored next; 
ncv e subgr[0 .. n ]: best color for vertex nucv; 
quit: boolean;

Program branch_and_bound_on_GCP 
begin

k <----1;
empty inbuf; 
empty outbuf; 
place graph G into outbuf; 
quit <- false; 
repeat 

forward;
if not quit then backward; 

until quit; 
end.

Figure 26. Branch-and-bound scheme on the GCP

Procedure getnextstate 
begin

if outbuf is empty then begin
outbuf <- inbuf; (* maintain the same ordering *) 
empty inbuf; 

end;
subgr[0] «- the first element of outbuf; 
delete the first element of outbuf; 
k <- 0; 

end;

Figure 27. Procedure getnextstate in branch-and-bound
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P roced ure savestatus 
b eg in

compute the degree of preference of subgr[k] ; 
place subgr[k3 as well as its degree of preference into the suitable 

position of inbuf w.r.t. the degree of preference;
end;

Figure 28. Procedure savestatus in branch-and-bound

P roced ure forward 
begin

if k = — 1 th en  getnextstate 
end e ls e  begin

node_to_process(k + 1); 
i f  ncv is a new color th e n  b eg in  

newcolor(nucv, ncv) 
savestatus; 
return

end e lse  mergecolor(nucv, ncv); 
i f  periphery is empty th e n  b eg in  

quit <- true; 
return; 

end; 
end;
choose nucv according to nucv-selection function; 
choose ncv according to ncv-selection function; 
forward;

Figure 29. Procedure forward in branch-and-bound
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P roced u re backward 
begin

if  k = 0  th en  k <---- 1
e lse  b eg in

node_to_process(k -  1); 
update ncv;

i f  there is no feasible color for nucv th en  
backward;

end;

Figure 30. Procedure backward in branch-and-bound
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V . I M P L E M E N T A T I O N  N O T E S

In order to compare the time efficiency of various algorithms on the same 

experimental ground, all algorithms were coded in Turbo Pascal 4.0 from Borland 

International and run on an 16 MHz IBM PS2-80.

A. GRAPHS REPRESENTATIONS

There are two common ways to represent a graph. One is the adjacency matrix; 

another is the adjacency list. An adjacency matrix for the graph G = (V, E) of order 

n is an n x n matrix [a ^ ]^  such that

av = 1 if < v,, \j > e E ;

= 0 otherwise.

Because G is a simple undirected graph, a(> = a;j, and a„ = 0. In the adjacency list 

representation of a graph, each vertex has an associated list of its adjacent vertices.

Example 5-1 Figure 31 shows the adjacency matrix and the adjacency list of a 

graph G.

The adjacency matrix representation is convenient for the graph algorithms which 

frequently check whether certain edges exist because the time for deciding the existence 

of an edge is fixed and independent of |V | and |E |.  The initialization of the 

adjacency matrix requires 0 ( |V |2) time even if a graph has edges with the property,

| E | | V | 2. In our experiment, we select the adjacency matrix representation because

of (1) the fixed time for deciding the existence of an edge (this operation occurs very 

often), and (2) the space efficiency (the rows of an adjacency matrix are represented 

by bit vectors which are implemented by the set type in Turbo Pascal).



adjacency matrix of G;

1 2 3 4 5

1 0 1 1 1 0

2 1 0 1 0 1

3 1 1 0 0 1

4 1 0 0 0 0

5 0 1 1 0 0

adjacency list of G;

1

2
3

4

5

header

>  2

>  1

-> rrn 
■» rm
■> d tp

>  3

•> 3

-> it ->

4 X

5 X

cr
t X

■> rm
Figure 31. Representations of a graph
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In  a d d itio n  to  th e  a d ja cen cy  m atrix , a d d itio n a l in fo r m a tio n  is req u ired  to  

rep resen t th e  curren t s ta tu s  o f  th e  c o lo r in g  o f  n o d es  in  th e  sea rch  tree. T h e  b a s ic  d a ta  

ty p e  for a n o d e  in  th e  search  tree  is  sh o w n  a s  fo llow s:

vertex  =  0  . . | V |  — 1 ; 
v r tx se t =  se t  o f  vertex;
v rtx m a t =  array  
vrtxarr =  array

[ v e r t e x ]  o f  vrtxset; 
[ v e r t e x ]  o f  bytes;

g ra p h ty p e  =  record
adj : vrtxm at;
ch rom e-d eg ree
w h ite -d eg ree
fea sib le

: vrtxarr;
: vrtxarr;
: array L — 1 •• 1V  | ]  o f  in teger;

fea s to p : integer;
rsm pt : integer;
n u cv : integer;
n cv : integer;
fclr : integer;
clr : integer;
vrtx : integer;

end;

In itia lly  w e a ssu m e  th a t th ere  is a  o n e - to -o n e  m a p p in g  b e tw e e n  th e  se t V  a n d  th e  

in teg er  se q u e n c e  0  . . |  V |  — 1. E lev en  fie ld s are a ss ig n ed  to  th e  g ra p h ty p e . 

adj is a n  a d ja cen cy  m atrix  in  set form ,

ch ro m e-d eg ree  is  th e  n u m b er  o f  ad jacen t co lo red  vertices .

w h ite -d eg ree  is th e  n u m b er  o f  ad jacen t u n co lo red  vertices , 

feasib le  is  a  sorted  list c o n ta in in g  all fea s ib le  c o lo r s  w h ic h  h a v e  n o t  b e e n

a ss ig n e d  to  n cv  yet.

fea s to p  is th e  in d ex  o f  th e  h ea d  o f  th e  so r te d  list fea sib le ,

rsm p t is  th e  lo w e s t  in d ex  o f  a  n o d e  w h ic h  p erfo rm s th e  p ro ced u re

newcolor to  th e  current h ig h est c o lo r , 

n u cv  is a n  u n c o lo r ed  vertex  o f  the h ig h e s t  d eg ree  o f  p re feren ce,

n c v  is  a  fea s ib le  c o lo r , w h ic h  h as th e  h ig h e s t  d eg ree  o f  p re feren ce ,

fo r  n u cv .

fclr is  th e  first v er tex  o f  co re ,

clr is  th e  la st v er tex  o f  core.
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vrtx is the last vertex of periphery.

It requires 0 ( | V [2) time to formalize a graph to the root of the search tree.

B. MEMORY SWAPPING

As we declared in the backtracking and branch-and-bound programming frame, 

subgr[i], 0 ^  i <, n, is in graphtype shown in the previous section. The memory space 

for a graphtype grows in 0 ( |V ]2). Consequently, the declaration of subgr[0 .. n ]  

requires 0( | V | 3) space reserved from the main memory. However, the working space 

is limited. So the memory swapping is required for running the graphs of huge size. 

In the obvious sense, the memory swapping will slow dowm the problem solving time.

In the memory swapping, we keep (1 + physlimit) nodes in the main memory. 

The content of k always locates between 0 and physlimit in a circular list form; that is, 

k = k mod (physlimit + I). The inmemory[0 .. physlimit] are used to bookkeep 

whether subgr[0 physlimit] are in the main memory.

inmemory[i] = 1 if subgr[i] is in the main memory;

= 0 otherwise.

For the forward movement, if inmemory[ next-node] = false, where next-node = 

((k+ 1) mod (phylimit-h 1)), then we process subgr [next-node] in the main memory. 

Otherwise we push subgr[next-node] to stackfl, which hold the overflow nodes in 

LIFO, and process subgr[next-node]. For the backward movement, if 

inmemory[prior-node] = true, where prior-node = ((k — 1) mod (physlimit + 1)), , 

we process subgr[ prior-node] in the main memory. Otherwise we pop 

subgr[prior~node] from stackfl , set inmemory[prior-node] = true, and process 

subgr[prior-node]. Figures 32-34 show how the memory swapping is placed into the 

backtracking algorithm on the GCP.
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Global Constant 
p h y s lim it  

Global Variable
in m em ory: array CO .. p h y s l im it ]  o f  b o o lea n ;  
subgr: array [ 0  .. p h y s l im it ]  o f  grap h typ e;  
stackfl: file o f  grap h typ e;  
k: 0  .. p h yslim it;

In it ia liz a tio n  (*  m a in  *) 
rew rite(stack fl);  
i n m e m o r y [ 0 ] « -  true; 
for i : =  1 to  p h y slim it  do 

in m e m o r y [ i ]  <- fasle;

F igu re 32. M e m o r y  sw a p p in g  in  th e  b a ck tra ck in g  sch em e
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P roced ure node_to_process(m) 
var

fp: integer; (* file pointer of stackfl *) 
begin

if  m  = k + 1 th en  begin
if  k =  physlimit th en  m <- 0  ; 
if  inmemory [m ]  then  

write(stackfl, aCm]) 
e lse  inmemory Cm] <- true ; 
a [m ] «- aCk];
k «- m;

end e ls e  if  m  == k — 1 th en  begin
inmemoryCk] «- false; 
if  k =  0 then  k <- physlimit e lse  k 
if  not inmemoryCk] th en  begin  

fp «- filepos(stackfl); 
fp <- fp -  1; 
seek(stackfl, fp); 
read(stackfl, aCk]) ; 
seek(stackfl, fp); 
inmemoryCk] <- true; 

end;
end e lse  b eg in

writeln('check m-value'); 
halt;

end;

m ;

Figure 33. Procedure node to process of memory swapping

C. HEAPSORT

In the frame of the branch-and-bound algorithm on the GCP mentioned in 

chapter 4, we employ heapsort to implement the priority queue inbuf and the sorted list 

outbuf. First we build a heap in inbuf and then transform the nodes in the heap to the 

sorted list outbuf



65

Procedure b a ck w a rd  
var

fp: in teger; 
begin

fp  « -  f ilep o s(sta ck fl);  
if (k  =  0 )  a n d  (fp  =  0 )  then q u it  <- true  
else if p erip h ery  is e m p ty  then begin 

repeat
in m e m o r y C k ] <- false; 
if k =  0  then k <- p h y slim it  
else k « -  k  -  1 ;
if not in m e m o r y C k ] then begin

f p « - f p -  1; 
seek (s ta ck fl, fp); 
rea d (sta ck fl, a f k ] )  ;
seek(stackfl, fp); 
inmemoryCk] <- true; 

end;
until aCk].ncv =  q ; 
node_to_process(k — 1); 
update ncv;
if there is no feasible color for ncv then 

backward;
end

end;

F igu re 34. P roced u re  b ack w ard  o f  m em o r y  sw a p p in g

B efore d escrib in g  th e  h ea p so r t in  th e  b r a n c h -a n d -b o u n d  a lg o r ith m , w e  w o u ld  like  

to  in tro d u ce  th e  gen era l c o n c e p t  o f  h ea p so r t. A  tree is ca lled  a binary tree i f  e a c h  n o d e  

h a s at most two so n s . T h e  b in ary  tree o f  d ep th  d w h ic h  h a s e x a c tly  2d+l — 1 n o d e s  is  

ca lled  a full b in ary  tree. In  order to  d escrib e  a fu ll b in ary  tree  b y  a s e q u e n tia l  

rep resen ta tio n , w e  start fro m  th e  r o o t  o n  lev e l 0 , th e n  g o  to  th o s e  o n  lev e l 1, an d  so  

o n . N o d e s  o n  e a c h  lev e l are n u m b ered  fro m  left to  r igh t. F or ex a m p le , F ig u re  35 is a 

fu ll b in ary  tree. T h e  complete tree o f  ord er n ca n  b e  d e n o te d  b y  th e  s e q u e n tia l  

r ep resen ta tio n  o f  a fu ll b in a ry  tree  fro m  1 to  n. It is  se e n  th a t th e  lea v es  o f  a c o m p le te  

tree  o ccu r  o n  a t m o st  tw o  ad ja cen t lev e ls . A  heap is  a  c o m p le te  b in ary  tree  w ith  th e  

p ro p er ty , th e  v a lu e  o f  e a c h  n o d e  is  greater  th a n  or e q u a l to  th a t  o f  its  s o n s . A  h e a p



66

having n nodes is denoted by an array H [l .. n ] in which H [ l ]  is the root and the 

sons of HDD are at H[2iD and HC2i+lD- There are two basic operations in 

heapsort. One is heapup which forms a bigger heap by inserting one additional node 

into an already existing heap. Another is heapdown which forms a smaller heap by 

taking the root away from an already existing heap. In Figure 36, procedure heapup(n) 

compares the input data which is in HCnD (assuming H [ l ]  ... H [n  — 1] have already 

formed a heap) with its father, grandfather, greatgrandfather, etc. until it is less than 

or equal to one of these values. In Figure 37, procedure heapdown(n) compares the 

input data wrhich is in the root H[lD of H having a heap from HC2] to HCnD with 

its sons, grandsons, greatgrandsons, etc, until it is greater than or equal to one of these 

values. While comparing the target item in the position of HDD with its sons, 

H [2 i] and HC2i + lD, we move the greater value of H|~2i] and HC2i + l ]  up if either 

H t2 i] or H£2i+ l ]  is greater than the target item.

The heap is first built by repeatly calling the procedure heapup whenever a new 

element is added. Second it exchanges the largest element with the last element of heap 

(Le. exchange(H[l], H [n])), and then applies procedure heapdown(n — 1). We 

continue this cycle of process until the size of the heap becomes I. The worst case time 

complexity of heapsort is O(n log n).
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F igu re 35. E x a m p le  o f  fu ll tree

P roced ure h ea p u p (n )  
begin

ta rg e t H [ n ] ;
i n;
ii -«— i d iv  2 ;
w h ile  ( ii  >  0 )  a n d  ( ta r g e t  >  H C i i] )  do 

b eg in
H [ i ]  « -  H [ i i3 ;  (*  m o v e  th e  fa th er  n o d e  d o w n  *)
i <- ii;
ii *- i d iv  2; 

end;
H C i]  *- target;

Figure 36. Procedure heapup
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P rocedure heapdown(n) 
begin

target«- H [ l ] ;
i * - 1; 
i i«- i * 2;
if  H C ii +  1D >  HJj Q  th en  ii «- ii +  1 ; 
w h ile  ( ii < n) and (target < H [ii]) do 

begin
H[i3 <- H [ii]; (* move the son node up *)
i <- ii;
ii <- i * 2;
i f  H [ii+  1 ]  >  H [ii] th en  ii *- ii +  1 ; 

end;
H [i]  «- target; 

end;

Figure 37. Procedure heapdown

(* sorting H [ l ] ,  H C 2],..., HCN] to an non-decreasing order *) 
Procedure heapsort(N) 

begin
for i : = 1 to  N do (* build the heap *) 

heapup(i);
for i : = N dow nto 2 do 

begin
exchange ( H [ l ]  , H [i]); 
heapdown(i — 1); 

end;

Figure 38. Procedure heapsort

E xam p le  5 -2  Figures 39-42 shows how to sort the date (7, 12, 2, 15, 4, 8, 10) into

a non-decreasing order by heapsort algorithm.
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heapup(1)

heapup(2)

heapup(3)

heapup(4)

Figure 39. Part 1 of the example 5-2
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heapup(5)

heapup(6)

heapup(7)

Figure 40. Part 2 of the example 5-2
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heapdown(6)

heapdown(5)

heapdown(4)

Figure 41. Part 3 of the example 5-2
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heapdown(3)

7, 6. la  1115

heapdown(2)

©
^  heapdown(l)

4, 7. 8 ,1ft 1ft 15

Thus, the sorting order is 2, 4, 7, 8, 10, 12, 15

Figure 42. Part 4 of the example 5-2
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In  th e  b ra n ch -a n d -b o u n d  a lg o r ith m  o n  th e  G C P , w e  u se  p ro ced u re  heapup to  

b u ild  th e  h e a p  inbuf a n d  p ro ced u re  heapdown ( i f  n ecessa ry ) to  reb u ild  th e  n e w  h ea p , 

w h ic h  rep la ces  th e  r o o t  o f  th e  h ea p  b y  th e  a d d ed  d a ta , w h en ev er  th e  lim it s iz e  o f  th e  

h e a p  is  ex ceed ed . U p o n  outbuf b e in g  e m p ty , w e  rep ea tly  d o  th e  tra n sfo r m a tio n  c y c le  

to  tra n sfo rm  th e  h e a p  inbuf in to  th e  sorted  list outbuf in  n o n -d e c r ea s in g  order. T h e  

tra n sfo r m a tio n  c y c le  is a s  fo llow s: p la ce  th e  r o o t  o f  h e a p  in to  th e  ta il o f  outbuf, rep lace  

th e  r o o t  b y  th e  la st e lem en t o f  inbuf, and  c a ll p roced u re  heapdown to  reb u ild  th e  h ea p  

o n  n e w  inbuf w h ic h  rem o v ed  th e  la st  e lem en t.

D . R A N D O M  N U M B E R  G E N E R A T O R

A  multiplicative congruential generator g en era tes  a  seq u en ce  o f  in teg ers w ith in  a 

sp e c if ic  in terva l b y  th e  g en era tin g  fu n c tio n s  o f  th e  fo rm  f(x ) =  (a * x  )  m o d  m , w h ere  

a a n d  m are tw o  fixed  in teg er  param eters, a is ca lled  th e  multiplier o f  f(x ). m is ca lled  

th e  modulus o f  f(x ). T h e  seq u en ce  x„  x2, x3, ... is  g en era ted  via  th e  itera tive  e q u a tio n , 

x,+i =  A X ) = (a*  x ,) m o d  m  for i =  1, 2 , . . . .  

x, is  ca lled  th e  seed c h o s e n  fro m  1 .. m — 1 b efore  ca llin g  th e  itera tiv e  eq u a tio n . 

B eca u se  o f  th e  d eterm in istic  ch aracter istic  o f  th e  itera tiv e  e q u a tio n , th e  seed  w ill 

g u a ra n tee  to  g en era te  th e  exact sa m e se q u e n c e  for e a c h  run. T h erefo re , in s te a d  o f  

sto r in g  a  cy c le  o f  seq u en ce , w e  o n ly  n eed  to  k eep  th e  seed  in  a d d it io n  to  th e  itera tiv e  

e q u a t io n  for a seq u en ce  o f  rep ro d u cin g  w o rk . It is se en  th a t ev ery  e le m e n t o f  th e  

seq u en ce  x „  x2, x 3, ... is w ith in  th e  in terva l 0  .. m  — 1. In  order to  in su re  a  p e r io d  =  

m — 1, a prim e m is req u ire. C o n se q u e n tly , th e  p er io d  o f  th e  seq u en ce  x lt x2, x 3, ... 

b e c o m e s  1 .. m — 1. U su a lly  a large  prim e m o d u lu s  m = 231 — 1 is  u sed  to  m a k e  th e  

cy c le  o f  th e  seq u en ce  x „ x 2, x 3, ... larger [ L e 5 1 ] [ P A / 8 8 ] .  F o r  a  f ix ed  m o d u lu s , in  th is  

c a se  m -  231 — 1, a g o o d  m u ltip lier  req u ires th e  fo llo w in g  th ree  prop erties:

(1 )  f (x )  =  (a * x )  m o d  m is  a fu ll p er io d  g en era tin g  fu n c tio n . T h a t is , th e  

g en era ted  se q u e n c e  x „  x 2, . . . ,  x m_, is  a  p e r m u ta tio n  o f  1 .. m  -  1 ;



(2 )  T h e  fu ll p er io d  se q u e n c e  x „  x2, . . . ,  x*.., is  p se u d o  ra n d o m  C F A /8 6 ]  ;

(3 )  f (x )  =  (a * x )  m o d  m c a n  b e  im p lem en ted  w ith  3 2 -b it  a r ith m etic .

74

T h e m u ltip lier  a = Is ~  16807 is su g g ested  b y  P ark  and  M iller  [ P A / 8 8 ] ,  T h e  

g e n e r a to r  f(x )  =  16807x  m o d  (2 31 -  1) h a s  a  fu ll p er io d , an d  ca n  b e  im p le m e n te d  o n  

sy s te m  h a v in g  e ith er  3 2 -b it  in teg er  ty p e  or 3 2 -b it  (o r  larger) m a n tissa  real ty p e . T h e  

ra n d o m n ess  o f  th e  g en era ted  seq u en ce  o f  f (x )  =  16 8 0 7 x  m o d  (2 31 — 1) is  a c c e p ta b le  

[PA/88] a lth o u g h  it is  n o t  w ith in  th e  o p tim a l range se t  b y  F ish m a n  a n d  M o o r e  

[FM86].

T h e  b a sic  id ea  o f  3 2 -b it  im p le m e n ta tio n  o f  f(x ) =  16807 * x  m o d  (2 31 — 1) is  to  

a v o id  th e  p o te n tia l o v e r flo w  a sso c ia ted  w ith  th e  term  16807 * x. O u r im p le m e n ta tio n  

is b a se d  o n  S ch ra g e's  m e th o d  [ 5 F 8 7 ] .  T h e  th eo re tica l d e ta ils  o f  S ch rage 's m e th o d  are 

p resen ted  as fo llow s:

T h e g en era to r  f(x )  =  (a  * x )  m o d  m  

F irst, d e c o m p o sin g  m  su c h  th a t

m  =  a * q +  r w h ere  q  =  m  d iv  a , r =  m  m o d  a , r <  q.

S o  f(x ) =  (a  * x )  m o d  m

=  a * x  — m ((a  * x )  d iv  m ).

S u b tra ctin g  an d  ad d in g  m (x  d iv q)

f(x ) =  a * x  — m (x  d iv  q ) +  m (x  d iv  q ) -  m ((a  * x) d iv  m )

=  a * x  — ( a * q  +  r)(x  d iv  q ) +  m ((x  d iv  q ) -  ( (a  * x )  d iv  m )).

L et E (x )  =  (x  d iv  q ) -  ( (a  * x )  d iv  m )

f(x) =  a * x - ( a * q  +  rX x div q )  +  m (E (x ))

=  a  * x  -  (a  * q X x d iv  q )  -  r(x  d iv q ) +  m (E (x ))

=  a (x  -  q (x  d iv  q )) -  r(x d iv  q ) +  m (E (x ))

=  a (x  m o d  q )  -  r(x d iv  q )  +  m (E (x )).

L et R (x )  =  x  m o d  q , a n d  Q (x )  =  x  d iv  q.
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f ix )  = a ( R ( x ) ) - r ( Q ( x ) )  +  m (E (x » .

C la im  th a t for  x  in  1 .. m  -  1 th e  fo llo w in g s  are true:

(1 )  0  ^  a ( R ( x »  ^  m  -  1, a n d  0  ^  r (Q (x )) $  m  -  1;

(2 )  | a ( R ( x ) ) - r ( Q ( x ) ) U m - l ;

(3 )  E (x ) e  {0 , I} .

In  (1) ,  0  ^  a (R (x ))  =  a (x  m o d  q ) <  a  * q  <  m , s in ce  r >  0  ;

0  <  r (Q (x )) =  r(x  d iv  q ) <  r(m  d iv  q ) =  r * a <  q  * a <  m . 

In  (2 ) , ad d in g  0  <  a (R (x ))  ^  m  — I an d  — (m  -  1) <, -  r (Q (x )) ^  0 . 

In  (3 ) , - j -  =  (x  d iv q )  +  r„ w h ere  0  <  r, <  1 ;

a m X =  ((a  * x ) d iv m ) +  r2, w h ere  0  <  r2 <  I.

C o n sid er

x _  a * x 
q m

__ _x_______ a * x
q a * q +  r

a * q * x  +  r * x  — a * q * x

q (a  * q +  r)

-  r * x _  r * x 
q (a  * q +  r) q * m

S in ce  0  <  r <  q, an d  0  <  x  <  m.

S o  r * x  <  q * m .

T h u s q m

S u b stitu tin g  b y  (x  div q ) +  r„ and

b y  ( (a  * x )  d iv  m ) +  r2)

0  <  ( x  d iv  q ) +  r, — ((a  * x ) d iv  m ) — r2 <  1;

0  <  (x  d iv  q ) -  ( (a  * x )  d iv  m ) +  (r, — r2)  <  1.

S in ce  — 1 <  — (r, — r2) <  1,

-  1 <  (x  d iv  q ) — ( (a  * x )  d iv  m ) <  2;

-  1 <  E (x ) <  2.
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Since E(x) is an integer.

So E(x) e {0, 1}.

In the equation f(x) =  a (R (x ))  — r(Q(x)) + m(E(x)), item (1) and item (2) prevent the 

intermediate results from the potential overflow on 32-bit arithmetic. Item (3) says 

that the computation on E(x) is not necessary.

fix) = a(R(x)) -  r(Q(x)) if a(R(x)) -  r(Q(x)) > 0 ;

= a(R(x)) — r(Q(x)) -+- m otherwise.

Figure 43 shows the Turbo Pascal implementation of f(x) = (16807 * x) mod (231 — 1) 

based on Schrage's method.

Global var:
seed: integer;

function random: real; (* 0 < random < 1 *) 
const

a = 16807;
m = 2147483647; (* 231 -  1 *) 
q = 127773; (* m div a *) 
r = 2836; (* m mod a *)

var
Qx, Rx, temp: integer; 

begin
Qx : = seed div q;
Rx : = seed mod q; 
temp : = a * Rx — r * Qx; 
if temp > 0 then 

seed : = temp 
else seed := seed + m; 
random : = seed / m; 

end;

f  igure 43. A multiplicative congruential generator
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VI. SELECTION FUNCTIONS

As we know from chapter 4 within the frame of either backtracking or 

branch-and-bound, the next-uncolored-vertex selection (nucv-selection) function and 

the next-color-vertex selection (ncv-selection) function are the crucial parts of these 

algorithms. In this chapter, a number of nucv-selection functions are introduced, and 

then some ncv-selection functions corresponding to a given nucv-selection function are 

presented. Our algorithms use the nucv-selection function first. The naming scheme 

of various nucv-selection ncv-selection functions is as follows:

(1) In the first character of a name, Y represents the class of nucv-selection 

functions, and represents the class of ncv-selection functions;

(2) In the last character of a name, 'a' indicates that a look-ahead procedure is 

used.

Experimental results are shown in order to determine which algorithms have high 

running speed, good solution quality, or preferable application area (small/large scale 

graphs as well as dense/sparse graphs).

A. TERMS

Definition: In a partially colored graph G = (V, E), an uncolored vertex v is 

called a prevention vertex of an uncolored vertex i on a colored vertex j if 

(i, j) 4 E, (v, i) e E, and (v, j) 4 E, and the set of the prevention vertices of i on j is 

denoted by p-se t(ij). Meanwhile, j is called a feasible color of i.

Definition: In a partially colored graph G = (V, E), an uncolored vertex v is 

called a peer vertex of an uncolored vertex i if (i, v) e E, and the chrome-degree of v 

is equal to the chrome-degree of i. The set of the peer vertices of i is denoted by 

peer-set (i).



78

D efin ition : In  a p artia l c o lo r in g  grap h  G  =  (V , E ), a n  u n c o lo r ed  v er tex  v  is  ca lled  

a connection vertex o f  an  u n co lo red  v er tex  i o n  a c o lo r  v er tex  j i f  ( i, j)ffE , (v , i) e E , 

a n d  (v , j) e  E , an d  th e  se t  o f  c o n n e c tio n  v ertices  o f  i o n  j is  d e n o te d  b y  c-setfi, j) .

D efin ition : In  a p artia l c o lo r in g  grap h  G  =  (V , E ), a fea s ib le  c o lo r  j o f  a n  

u n c o lo r ed  v ertex  i is ca lled  a  block color o f  i i f  j is  th e  o n ly  fea s ib le  c o lo r  for  a n  a d jacen t  

u n c o lo r e d  v er tex  o f  i. A n  u n co lo red  v er tex  v  is  ca lled  a  block vertex i f  th ere  is  o n ly  o n e  

fea s ib le  c o lo r  j fo r  v, an d  j is  a b lo c k  c o lo r  o f  v.

B. N E X T -U N C O L O R E D -V E R T E X  S E L E C T IO N  F U N C T I O N S

T h e  n u c v -se le c tio n  fu n c tio n  w ill c h o o s e  th e  u n co lo red  v ertex  nucv o f  th e  h ig h e st  

d egree  o f  p referen ce  from  th e  perip hery .

ikorm an —  se lec ts  th e  n u c v  w ith  th e  sm a llest fea sib le  c o lo r  set s ize . T ies

are b ro k en  b y  c h o o s in g  th e  vertex  o f  greater degree. T h is se le c tio n  stra teg y  h e lp s  to  

red u ce th e  size  o f  the search  tree. T h is  m o v e m e n t ta k es O (n ) tim e; n  is th e  ord er o f  

a graph .

ipkorm an —  se lects  th e  n u cv  w ith  th e  sm a llest  fea s ib le  c o lo r  se t  size . I f  th ere  is  

m ore th a n  o n e  su ch  vertex , it se lec ts  th e  o n e  fo r  w h ich  th e  ca rd in a lity  o f  its p e e r -se t  is 

m axim al. T ies  are b rok en  b y  c h o o s in g  th e  o n e  i w h o se  sco re , 

S(i) =  (]£ w e ig h t(c h r o m e -d e g r e e  0 f  av), o v er  a ll a v  in th e  ad ja cen t se t o f  i), is  m a x im a l.
av

F o r a fixed  b a se  b, th e  w e ig h t  fu n c tio n  w is d efin ed  as fo llow :  

w(k) — i f  b >  0  ;

=(k + 1)-* o th erw ise .

Id ea lly , th e  w e ig h t fu n c tio n  is to  se lec t th e  n u c v  w h ich  is  a d ja cen t to  a  set o f  n e ig h b o r s  

h a v in g  p articu larly  h igh  ch ro m e-d eg ree . N o t e  th a t S (i)  is  th e  n u m b er  o f  ad ja cen t  

n e ig h b o rs  o f  i i f  b  =  0  or 1. T h is  m o v em e n t ta k e s  0 ( n J) tim e.
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ipactual — selects the nucv with the smallest feasible color set size. Ties are 

broken by choosing the one i whose score,

S(i) = ()(Xweight(chrome-degree of pv), over all pv in p-set(i, j)), over all j in
i pv

the feasible color set of i), 

is maximal. This movement takes 0(n3) time.

ipreventla (with look-ahead) — selects the nucv with the smallest feasible color 

set size. If there is more than one such vertex, it selects the one i for which the 

cardinality of (peer-set(i) fl p-set(i, j)) , for every feasible color j of i, is maximal. Ties 

are broken by choosing the one whose sum of the number of prevention vertices over 

every feasible color is maximal. The look-ahead procedure is done by eliminating block 

vertices from further consideration. This movement takes 0(n3) time.

iprevent2a (with look-ahead) — selects the nucv with the smallest feasible color 

set size. If there is more than one such vertex, it selects the one i for which the 

cardinality of (peer-set(i) (1 p-set(i, j)) , for every feasible color j of i, is maximal. Ties 

are broken by choosing the one i whose score,

S(i) = ( y  (Vweight(chrome-degree of pv), over all pv in p-set(i, j)), over all j in
i pv

the feasible color set of i), 

is maximal. This movement takes 0(n3) time.

iprevent3a (with look-ahead) — selects the nucv with the smallest feasible color 

set size. If there is more than one such vertex, it selects the one i for which the 

cardinality of (peer-set(i) (1 p-set(i, j)) , for every feasible color j of i, is maximal. Ties 

are broken by choosing the one i whose score,

S(i) = ( /  /XX^hrome-degree of pv) * (white-degree of pv)), over all pv in 
» pv

p-set(i, j)), over all j in the feasible color set of i),

is maximal. This movement takes 0(n3) time.
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S(i) = ( / .  (XX(chrome-degree of pv) * (white-degree of pv)), over all pv in
i pv

p-set(i, j)), over all j in the feasible color set of i), 

is maximal. Ties are broken by choosing the one i for which the cardinality of 

(peer-set(i) D p-set(i, j)) , for every feasible color j of i, is maximal. This movement 

takes 0(n3) time.

ip r e v e n t4 a  (with look-ahead) — selects the nucv with the smallest feasible color

set size. If there is more than one such vertex, it selects the one i whose score,

iconnecta (with look-ahead) — selects the nucv with the smallest feasible color set 

size. If there is more than one such vertex, it selects the one i for which the cardinality 

of (peer-set(i) n p-set(i, j)) , for every feasible color j of i, is maximal. Ties are broken 

by choosing the one i whose score,

S(i) = ( /  ,(Xl((chrome-degree of cv) 4- (white-degree of cv)), over all cv in
i w

c-set(i, j)), over all j in the feasible color set of i), 

is maximal. This movement takes 0(n3) time.

C. NEXT-COLORED-VERTEX SELECTION FUNCTIONS

The ncv-selection function will find the feasible color set for a vertex chosen by 

a nucv-selection function, and then order colors in the feasible color set according to 

a certain rule of preference. Note that in this section, we always let the new color be 

the last choice.

jkorman CA7>79]— sorts the feasible color set of nucv according to the index of 

the color, and assigns the smallest color to ncv. This movement takes O(n) time.

jkormana (with look-ahead) — is a look-ahead version of jkorman. The

look-ahead procedure is to prevent the block color of the nucv from being in the 

feasible color set. This movement takes 0(n2) time.
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jsucadja (with look-ahead) — sorts the feasible color set according to the 

following rules:

(a) min {white-degree of j}, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{j}.

This movement takes 0(n2) time.

jpactual — sorts the feasible color set according to the following rules:

(a) min{(£weight(chrome-degree of pv), over all pv in p-set(nucv, j))},
i pv

where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) nun{white-degree of j}.

Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{j}.

This movement takes 0(n2) time.

jpactuala (with look-ahead) — is a look-ahead version of the jpactual. This 

movement takes 0(n2) time.

jpreventla (with look-ahead)— sorts the feasible color set according to the 

following rules:

(a) min{ | peer-set(nucv) fl p-set(nucv, j) | }, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{ | p-set(nucv, j ) |}.

Finally, if (a) and (b) do not distinguish between colors, use (c)

(c) min{j}.

This movement takes 0(n2) time.
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jprevent2a (with look-ahead)— sorts the feasible color set according to the 

following rules:

(a) min{ | peer-set(nucv) fl p-set(nucv, j ) |}, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{(5]weight(chrome-degree of pv), over all pv in p-set(nucv, j))},i pv
where j is a feasible color.

Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{j).

This movement takes 0(nJ) time.

jprevent3a (with look-ahead)— sorts the feasible color set according to the 

following rules:

(a) min{ | peer-set(nucv) fl p-set(nucv, j ) |}, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{(2((chrome-degree of pv) * (white-degree of pv)), over all pv in
J pv

p-set(nucv, j))}, where j is a feasible color.

Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{j}.

This movement takes 0(n2) time.

jprevent4a (with look-ahead)— sorts the feasible color set according to the 

following rules:

(a) min{GL((chrome-degree o f pv) * (white-degree o f pv)), over all pv in
J pv

p-set(nucv, j))}, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{ | peer-set(nucv) fl p-set(nucv, j) | }.

Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{]}.
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This movement takes 0 (n 2) time.

jconnecta (with look-ahead)--- sorts the feasible color set according to the 

following rules:

(a) min{ | peer-set(nucv) fl p-set(nucv, j) | }, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{(2((chrome-degree of cv) + (white-degree of cv)), over all cv in
] cv

c-set(nucv, j))}, where j is a feasible color.

Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{j}.

This movement takes 0 (n 2) time.

D. WEIGHTED SCALE ON THE SCORE OF THE NEW COLOR

In the last section, the new color is always the last choice. However, this kind 

of arrangement may require more backward and forward moves for some graph. In 

this section we attempted to beat this problem in the average sense by employing a 

weighted scale on the score of the new color.

In Tables XVII-XXIV, the score of the new color is equal to the score, which is 

computed according to the formula in the rule (a) of algorithm jpactual or algorithm 

jprevent4a , with the factor of the given weight. The results in Tables XVII-XX 

support the claim that the method putting weighted scale on the score of the new color 

fails to significantly improve the performance of coloring in the global sense.

E. SWAPPING BETWEEN THE CORE AND THE PERIPHERY

With regard to the computational time, we find that the algorithm Korman is 

simple but fast because of its linear time complexity for each forward movement. I he
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algorithm Korman can be improved by swapping between the core and the periphery. 

Let us assume that c„, c , ..., c* form the core, and vA+I, v*+2..., v„ form the periphery. 

If there exists a vertex vit among vA+1..., vm, which is connected to all colors in the 

core but cjt the pair (c,, v,) is said to be 1-1 swappable. In this case, we move v, to the 

core and cy to the periphery. If there exist two adjacent vertices va, va in the periphery 

such that each of them adjacents to all colors in the core but cJf the triple 

(Cj, v„, vi2) is said to be 2-1 swappable. In this case, we move v„, va to the core and 

Cj to the periphery. It is evident that the 2-1 swapping will introduce a new color to 

the core. Similarly, if there exist three mutually connected vertices v,,, v,2, and v,3 in the 

periphery such that each of them adjacent to all colors in the core but cyl and c,2, the 

5-tuple (cyl, cj7, v(1, v,2, vl3) is said to be 3-2 swappable. In this case, we move v,„ va, 

vl3, the the core and cyl, c^ to the periphery. The 3-2 swapping also adds a new color 

to the core. The swapping method iterates the cycle: finding a swappable candidate 

and performing (if necessary) the swapping process until there is no swappable 

candidate. The vertex sequential coloring algorithm with swapping is as follows: (1) if 

there is an vertex v which is adjacent to all existing color , color it with new color; (2) 

else search for 2-1 swappable, do swapping if found; (3) else use the vertex sequential 

coloring algorithm, the swapping method is done before a new forward movement. 

The algorithms in this section differ only in the swapping method from the 

corresponding algorithms mentioned in section B.

ikorqkZ — is the ikorman algorithm with the swapping method which searchs for 

a 2-1 swappable candidate as early as possible and does the swapping process. This 

movement takes 0(n3).

ikorpw2 — is the ikorman algorithm with the swapping method which searchs for 

all 2-1 swappable triples (c;, v,„ va). If there is more than one candidate, it takes the
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2-1 sw a p p a b le  ca n d id a te  w h o se  v a lu e  (w h ite -d e g r e e ^ ,)  + w h ite -d eg ree (v a) )  is  

m a x im a l. T h is  m o v e m e n t  ta k es  0 ( n 3).

ikorw2 — is the ikorman algorithm with the swapping method which first searchs 

for all 2-1 swappable triples (cJt v„, va). If there is a candidate, it takes the 2-1 

swappable candidate whose value (white-degree^,,) + white-degree(va) 

-  white-degree(c,)) is maximal. This movement takes 0 (nJ).

ikorw2p — is similar to ikorw2 except that all 2-1 swappable triples (c;, va, va) in 

the first part of the swapping method satisfy the condition (white-degree(v„) 

4- white-degree(va) -  white-degree(c,)) > 0.

ikormaxw2 — is the ikorman algorithm with the following swapping method. The 

swapping method searchs for all 2-1 swappable triples (cy, v,„ va). If there is a 

candidate, it takes the 2-1 swappable candidate whose value max{white-degree(v,,), 

white-degree(va)} is maximal. This movement takes 0(n3) time.

ikorw23 — is the ikorman algorithm with the swapping method. The swapping 

method is as follows:

step I: search for all 2-1 swappable triples. If there is no candidate, go to step

3.

step 2: take the candidate (c;, va, va) whose value (white-degree(v,,)

+ white-degree(va) — white-degree(cy)) is maximal, and perform the swapping process. 

Goto step 1.

step 3: search for all 3-2 swappable 5-tuples. If there is no candidate, then go to 

step 5.

step 4: take the candidate (c,„ cp, v,„ va, v0) whose value (white-degree(v,,) 

+ white-degree(va) + white-degree(va) -  white-degree(c;1) -  white-degree(c^)) is 

maximal, and perform the swapping process. Goto step 1.
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step 5: begin the ikorman selection.

This movement takes 0(n4) time.

ikorqk23 — is similar to ikorw23 except that instead of searching for all possible 

swapping triples in order to select the best one, it picks the swapping candidate as soon 

as it appears.

ikonv2e (scale) — is analogous to ikorw2 except that all 2-1 swappable condidates 

(cy, v,„ v,2) must satisfy the following condition: wscore > threshold, where wscore = 

white-degree(vfl) +  white-degree(vQ) -  white-degree^), and threshold = 

lower_bound(wscore) + (upper_bound(wscore) — lower_bound(wscore)) * scale. Note 

that ikorw2e with scale = 0 is equivalent to ikorw2. This movement takes 

0(n3) time. Default scale = 0.0.

ikorw21e (scale 1, scale2) — is the ikorman algorithm with the following swapping 

method:

step I: search for all 2-1 swappable triples (cy, v,„ va) satisfying the condition: 

wscore2 > threshold2, where wscore2 = white-degree(va) + white-degree(v,2) 

— white-degree(Cy), and threshold2 = lower_bound(wscore2) + 

(upper_bound(wscore2) — lower_bound(wscore2)) * scale2. If there is no candidate, 

go to step 3.

step 2: take the candidate with maximal score on wscore2, and perform the 

swapping process. Goto step 1.

step 3: search for all 1-1 swappable pairs (cy, v,) satisfying the condition: 

wscore 1 > threshold 1, where wscore 1 = white-degree(v,)p -  white-degree(c,), and

threshold 1 = lowerbound(wscorel) + (upper_bound(wscorel) -

lower_bound(wscorel)) * scalel. If there is no candidate, then go to step 5.

step 4: take the candidate with maximal score on wscore 1, and perform the

swapping process. Goto step 1.
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step 5: begin the ikorman selection.

Default scale 1 = 0.5, and scale2 = 0.0.

ikorwl2e (scale!, scale2) — instead of searching for 2-1 swappable candidate first 

in the algorithm ikorw21e, the algorithm ikorwl2e search for 1-1 swappable candidate 

first and then 2-1 swappable candidate.

ikorw21ec (scalel, scale2) — Algorithm ikorw21e always does 2-1 swapping first 

and then 1-1 swapping (if there is no 2-1 swappable candidate). Another algorithm 

ikorwl2e does the swapping method by giving 1-1 swapping a higher priority (than 2-1 

swapping). In the global sense, ikorw21ec searchs for all 1-1 swappable pairs and 2-1 

swappable triples. Meanwhile, the score of each candidate is evaluated (see 

ikorw2\e). The swapping process takes the candidate which has the maximal score 

among 1-1 and 2-1 swappable candidates.

ikormaxw21e (scale) — is similar to ikorw2Ie except replacing step 1, 2 in 

ikorw21e by the ikormaxw2 algorithm. Default scale = 0.5.

ipactqk2 — is the ipactual algorithm with the swapping method which searchs for 

a 2-1 swappable candidate as early as possible and perform the swapping process. This 

movement takes 0(n3).

ipactmaxw2 — is the ipactual algorithm with the swapping method. The swapping 

method searchs for all 2-1 swappable triples (c,, v„, va). If there is a candidate, it takes 

the 2-1 swappable candidate with maximal score on max{white-degree(v,,), 

white-degree(va)}. This movement takes 0 (n3) time.
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F. HEURISTIC ALGORITHMS

Recall that the ncv-selection function keeps all feasible colors of nucv in a certain 

order according to the user-defined preference. The heuristic algorithm can by done 

by pruning some feasible colors of lower preference. From the experimental results, in 

about 95% of all random graphs, using our algorithms, the number of branches of 

every node in the backtrack-tree is either I or 2. We introduce two straightforwards 

but effective pruning techniques.

1. Limit.

Assume that L , \ < , L < 2 ,  branches of every node are expected to be left after 

pruning, and b denotes the number of branches of a node. The limit pruning technique 

is as follow: If b = 1, then it does nothing; otherwise the second branch of lower 

preference is chosen with probability L A .

2. Epsilon.

The epsilon prunning technique is to set a threshold for the user-defined 

preference. Any branch with degree of preference less than threshold is eliminated. 

Assume that the full range between the lower bound of potential degree of preference 

and the upper bound of potential degree of preference is treated as one unit. The 

threshold is defined to be the lower bound plus the product of eps, where 0 < eps <  1, 

and the absolute difference between the upper bound and lower bound .
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G. COMPUTATIONAL RESULTS

The various coloring algorithms under the backtracking scheme (refer to chapter 

4) were applied to an identical sequence of random graphs, and the results were 

tabulated in order to compare their speed. The random graphs were generated utilizing 

the pseudo random number generator according to two parameters, the order of a 

random graph and the edgeload. The detailed description of the pseudo random 

number generator has been discussed in chapter 5. The edgeload of a random graph 

is the ratio of the number of actual edges to the number of potential edges. For each 

constant order of a random graph, four different classes of random graphs were 

produced with edgeloads: 0.3, 0.5, 0.7, and 0.9. For each order and edgeload, 100 

random graphs were generated. Every figure in the tables is the mean of 100 graphs. 

The "exact color" column is the chromatic number, the "first color" column is the 

number of colors required for the first complete coloring of the backtrack tree, "moves" 

column is the number of forward moves, "S.D." column is the standard deviation of 

forward moves, and "var cof." column is the variance coefficient which is the ratio of 

standard deviation to mean of forward moves.

Tables I-IV show that Pkorman algorithms with weight other than 0 and 1 run 

faster than Pkorman with weight 0 or 1 except the situation, vertices = 40 and 

edgeload = 0.7. Tables V-VIII display that weight other than 0 and 1 in the Pactual 

algorithm performs better in speed than weight = 0 or 1 even in the situation, edgeload 

= 0.7. From Tables I-VIII, we know that finding the best weight other than 0 and 1 

according to the computational time is not possible. However, we observe that weight 

= 2 has a relatively good performance (especially for edgeload = 0.7).

There is no apparent relation between "first colors" and "moves". An algorithm 

with fewer "first colors" may take more forward moves. Tables IX-XVI show that a 

fixed nucv-selection function with various ncv-selection functions produce algorithms
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with "moves" which are within 0-7% of the mean for the corresponding set of forward 

moves. On the other hand, a fixed ncv-selection function with various nucv-selection 

functions generate widely different numbers of forward moves; for example, (ikorman, 

jkorman) and (ipactual, jkorman) .

Tables XXXVII-XLVI contain the computational results of a number of exact 

coloring algorithms. The variance coefficient is the ratio of standard deviation to mean. 

When observing the following algorithms: (ikorman, jkorman), (ikorman, jkormana), 

(ipactual, jpactual) and (ipactual, jpactuala), we find that adding the look-ahead 

procedure to the backtracking sequential algorithm yields significant (9% - 15%) 

improvement on the forward movement except the case, edgeload = 0.9. The linear 

Korman selection is nearly the fastest algorithm (Pactual is shown to be faster than 

Korman in Table XLIV). The Connecta algorithm is the slowest one. Most of the 

other algorithms produce a significant cut on the forward movement. However, the 

additional computation time for the search tree pruning is also significant. For 

example, for the algorithm (ipkorman, jkorman), the additional computation time 

required for the prior work of tree pruning is more than the time saved by tree pruning 

over algorithm ikorman. The algorithm (ikorman, jsucadja) generates better "first 

colors" than other algorithms.

Tables XVII-XX show that raising the preference of the new color increases both 

the forward moves and the colors required for the first complete coloring except for 

edgeload = 0.5, the Pactual algorithm with w = 0.6 has slightly fewer (about 1.5%) 

forward moves. Similar situations occur both for edgeload = 0.5 and w = 0.4 in Table 

XXII and for edgeload = 0.7 and w = 0.3 or 0.4 in Table XXIII.

Tables XXV-XXVIII show that ikorw21e and ikorw21ec are slightly better than 

ikorwI2e , and the performance of ikorw21e is nearly similar to that of ikorw2Iec.
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Tables XXIX-XXXII show that (1) the case, scale2 = O.O, (full 2-1 swapping) 

takes fewer forward moves than the case, scale2 = 0.0 and scalel = 0.5 (full 2-1 

swapping plus full 1-1 swapping); (2) the case, scale2 = 1.0 and scalel = 0.5 (full 1-1 

swapping), takes fewer forward moves than the case, scale2 = 1.0 (without 2-1 

swapping); (3) the full 2-1 swapping takes fewer forward moves than the partial 2-1 

swapping (scale2 #  0.0); it seems that the wider the range of 2-1 swapping is, the less 

the forward moves are; (4) the full 1-1 swapping only behaves better than the Korman 

algorithm in "moves" and "first color"; and (5) the full 2-1 swapping without 1-1 

swapping takes fewer forward moves than other algorithms.

Tables XXXIII-XXXVI show that (1) ikorw2 has slightly better performance 

than either ikorpw2 or ikorw2p ; (2) adding 3-2 swapping process to either ikorqk2 or 

ikorw2 creates a significant improvement on the "moves" (about 19% for edgeload =

0.3, about 27% for edgeload = 0.5, about 21% for edgeload = 0.7, and about 10% 

for edgeload = 0.9). Both ikorqk23 and ikorw23 , however, pay a significant overhead 

in time (about 50% for edgeload = 0.3, about 108% for edgeload = 0.5, about 260% 

for edgeload = 0.7, and about 450% for edgeload = 0.9); (3) the Korman algorithm 

with 2-1 swapping or its variations take fewer forward moves than the Korman 

algorithm and needs fewer "first color" except the case, edgeload = 0.9; (4) the Pactual 

algorithm with 2-1 swapping has better performance in "moves" and "first color" than 

the Pactual algorithm; and (5) the algorithms, (ipactqk2, jpactual) and (ipactmaxw2, 

jpactual), need fewer "first color" than other algorithms.

Tables XXXVII-XL, XLI-XLII, XLIII-XLVI, and XLVII-XLVIII show that (1) 

both ikorw2 and ikormaxw2 makes a substantial improvement on the forward moves 

(about 25% better than Korman) and the computational time (about 10% better than 

Korman for edgeload = 0.5 and 0.7); and (2) (ipactmaxw2, jpactual) behaves
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exceptionally better (about 50%) than Korman on the forward moves and colors a 

graph using fewer colors than Korman.

In Figures 44-59, Korman algorithm represents (ikorman, jkorman) algorithm, 

Korw2 algorithm represents (ikorw2, jkorman) algorithm, Pactual algorithm represents 

(ipactual, jpactual) algorithm, and Pactmaxw2 algorithm stands for (ipactmaxw2, 

jpactual) algorithm. Every continuous curve in Figures 44-60 is developed by (1) 

computing the data points associating with |V | = 28, 32, 36, 40, 44, 48, 52, and 56; 

and (2) using the cubic spline function to fit a curve to the data points. Figures 44-47 

show that (1) Chrome represents the exact colors; (2) Pactmaxw2 algorithm with 

non-backtracking makes use of fewer heuristic colors than Korman, Korw2, and 

Pactual for 100 identical random graphs; and (3) every curve is nearly linear. Figures 

52-55 show that (1) Pactmaxw2 takes fewer forward moves than Pactual, Pactual takes 

fewer forward moves than Korw2, and Korw2 takes fewer forward moves than 

Korman; (2) the conjecture, bigger graphs requires more forward moves to get the 

chromatic number, is not always true; for example, | V | = 52 and 56 for edgeload = 

0.3 and |V | = 40 and 44 for edgeload = 0.3; (3) all curves for edgeload = 0.5, 0.7, 

and 0.9 are exponential, and they go up sharply after passing |V | =44 ;  and (4) for 

edgeload = 0.5, 0.7 and 0.9, the gap between Pactmaxw2 and Korman becomes bigger 

as the number of vertices becomes larger. Figures 56-59 have the same data points as 

Figures 52-55, plotted on a logarithmic scale on the forward moves axis. Figures 48-51 

show that (1) Korw2 is faster than Korman; (2) Pactmaxw2 is faster than Pactual; and

(3) for edgeload = 0.3, 0.5, 0.7, and 0.9, all curves are exponential.

In Tables LI-LII display that (1) "mean" column is the mean of differences of 

running time between Korw2 and Korman; (2) "S.D." column is the standard deviation 

of the differences of running time; (3) "better" column is the percentage of graphs in 

which Korw2 is faster Korman; (4) "worse" column is the percentage of graphs in
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which Korw2 is slower than Korman; and (5) Korw2 is faster than Korman on the 

average. Tables LIII-LIV show that (1) Pactual is slower than Korman for most of 

graphs except that n = 56 on edgeload = 0.5 and 0.7, and n = 52 on edgeload = 0.7. 

Tables LV-LVI show that (1) for edgeload = 0.3, Pactmaxw2 is slower than Korman 

for most of graphs except n = 52 and 56; (2) for edgeload = 0.5 and 0.7, Pactmaxw2 

is faster than Korman for most of graphs except n = 28, 32, and 36; and (3) for 

edgeload = 0.9, Pactmaxw2 is slower than Korman for most of graphs. Tables 

LVII-LVI11 show that Pactmaxw2 is faster than Pactual on the average and for most 

of graphs.

In Tables LIX-LXX, the equation, c-ap = q, means that q of the 100 graphs can 

be colored with (c + chromatic number) colors by the limit pruning technique. The 

jkorlm, jpaclm, and jpv4lm are the modified version of jkorman, jpactual, and jprevent4a 

respectively. In Tables LXVII-LXX, iprv4a is a shorthand of iprevent4a. The "heur. 

color" column is the mean of the heuristic colors of 100 random graphs. Tables LIX 

and LXII show that for edgeload =0 . 3  and edgeload = 0.9, the 0-ap decreases slowly 

as the eps becomes smaller. On the other hand, for the limit pruning technique, the 

0-ap may not decrease as the lim becomes smaller, such as lim = 1.6 and 1.7 and 

edgeload = 0.9 in Table LXVI, because of using the probability for picking the second 

branch of every node of the backtrack tree.

H. DISCUSSION

The weight function shown in pkorman is helpful for deciding the next uncolored 

vertex in the average sense. A nucv-selection function with various ncv-selection 

functions generate the number of forward moves which are within 7% of the mean of 

its corresponding set. However, a ncv-selection with various nucv-selection functions 

have widely different performances. We suspect that the reason is that, the
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nucv-selection function is called first. The look-ahead procedure either in the 

nucv-selection function or the ncv-selection function has a significant improvement on 

the forward moves and the running time.

From the worst case analysis, the Korman algorithm is O(n), the Pkorman 

algorithm is 0(nJ), and Pactual, Prevent la, Prevent2a, Prevent3a, Prevent4a, and 

Connecta are 0 (n3). However, from experimental results, the Pkorman algorithm is 

inferior to algorithms, in 0(n3) time complexity, except Connecta in the average sense. 

The variations of the Korman algorithm, Pactual, Prevent la, Prevent2a, Prevent3a, 

and Prevent4a, prune the backtrack tree effectively. However, the computational time 

for choosing a good forward movement is also significant.

Although the 3-2 swapping method makes fewer forward moves, its overhead for 

searching for a 3-2 swapping candidate is significant ( especially for dense graphs). The 

Korman algorithm with either 2-1 swapping or 2-1 swapping plus 1-1 swapping is 

superior to the Korman algorithm on the forward moves and the running time. The 

Pactual algorithm with 2-1 swapping is superior to the Korman algorithm on the 

forward moves and the running time. The Pactual algorithm with 2-1 swapping 

generates the smallest "first color" among Korman's algorithm and the algorithms 

which have been developed. That is, it is a good heuristic algorithm of the vertex-color 

sequential without backtracking type.

In Figure 52, all curves go down between | V| = 52 and 56. We suspect that it 

is only a local action. From the global sense, the curves are still exponential.

In our algorithms, the top two feasible colors, of higher degree of preference, of a 

nucv chosen by using the nucv-selection function almost always (within 95% up to 52 

vertices) yield an optimal coloring. Two heuristic algorithms, limit and epsilon , based 

on the above fact are presented.
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Table I. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ikorman jkorman - 5.96 183.86 6.40 2

ipkorman jkorman 0 153.77 6.21 3

ipkorman jkorman 1 153.77 6.21 3

ipkorman jkorman 2 147.43 6.23 3

ipkorman jkorman 3 148.97 6.24 3

ipkorman jkorman 4 143.62 6.25 3

ipkorman jkorman 5 144.77 6.24 3

ipkorman jkorman 6 143.79 6.25 3

ipkorman jkorman 7 143.98 6.25 3

ipkorman jkorman 8 143.94 6.25 3

ipkorman jkorman 9 143.90 6.25 3

ipkorman jkorman -1 153.71 6.22 3

ipkorman jkorman -2 143.58 6.24 3

ipkorman jkorman -3 143.59 6.24 3

ipkorman jkorman -4 144.24 6.26 3

ipkorman jkorman -5 144.18 6.26 3

ipkorman jkorman -6 143.83 6.25 3

ipkorman jkorman -7 143.88 6.25 3

ipkorman jkorman -8 143.95 6.25 3

ipkorman jkorman -9 143.93 6.25 3



96

Table II. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ikorman jkorman - 8.23 1108.45 9.44 15

ipkorman jkorman 0 1209.46 9.36 24

ipkorman jkorman 1 1209.46 9.36 24

ipkorman jkorman 2 1076.45 9.42 21

ipkorman jkorman 3 1026.46 9.40 20

ipkorman jkorman 4 1012.69 9.35 20

ipkorman jkorman 5 1007.52 9.34 20

ipkorman jkorman 6 1007.25 9.34 20

ipkorman jkorman 7 1007.21 9.33 20

ipkorman jkorman 8 1008.18 9.34 20

ipkorman jkorman 9 1008.41 9.34 20

ipkorman jkorman -1 1163.14 9.46 23

ipkorman jkorman -2 1094.72 9.44 22

ipkorman jkorman -3 1036.52 9.42 20

ipkorman jkorman -4 1016.94 9.37 20

ipkorman jkorman -5 1018.65 9.38 20

ipkorman jkorman -6 1019.91 9.39 20

ipkorman jkorman -7 1006.79 9.35 20

ipkorman jkorman -8 1003.70 9.33 20

ipkorman jkorman -9 1006.82 9.33 20
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Table III. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ikorman jkorman - 11.88 833.55 13.14 11

ipkorman jkorman 0 979.34 13.11 20

ipkorman jkorman 1 979.34 13.11 20

ipkorman jkorman 2 880.44 13.22 18

ipkorman jkorman 3 1009.44 13.22 20

ipkorman jkorman 4 981.67 13.28 19

ipkorman jkorman 5 961.39 13.23 19

ipkorman jkorman 6 967.88 13.24 19

ipkorman jkorman 7 970.87 13.23 19

ipkorman jkorman 8 971.03 13.23 19

ipkorman jkorman 9 972.87 13.24 19

ipkorman jkorman -1 923.28 13.21 19

ipkorman jkorman -2 884.06 13.20 18

ipkorman jkorman -3 963.17 13.21 19

ipkorman jkorman -4 981.06 13.22 20

ipkorman jkorman -5 899.73 13.20 18

ipkorman jkorman -6 965.37 13.21 19

ipkorman jkorman -7 984.18 13.21 20

ipkorman jkorman -8 1031.85 13.22 20

ipkorman jkorman -9 963.04 13.23 19
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Table IV. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ikorman jkorman - 19.20 78.83 19.53 1

ipkorman jkorman 0 64.03 19.59 3

ipkorman jkorman 1 64.03 19.59 3

ipkorman jkorman 2 62.88 19.62 3

ipkorman jkorman 3 62.46 19.61 3

ipkorman jkorman 4 63.45 19.66 3

ipkorman jkorman 5 63.54 19.67 3

ipkorman jkorman 6 63.83 19.65 3

ipkorman jkorman 7 61.76 19.61 3

ipkorman jkorman 8 64.01 19.67 3

ipkorman jkorman 9 62.99 19.66 3

ipkorman jkorman -1 63.05 19.58 3

ipkorman jkorman -2 62.72 19.60 3

ipkorman jkorman -3 63.34 19.59 3

ipkorman jkorman -4 62.05 19.59 3

ipkorman jkorman -5 62.10 19.56 3

ipkorman jkorman -6 62.83 19.61 3

ipkorman jkorman -7 63.32 19.62 3

ipkorman jkorman -8 62.40 19.62 3

ipkorman jkorman -9 62.96 19.60 3
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Table V. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Pactual algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ipactual jpactual 0 5.96 161.40 6.33 4

ipactual jpactual I 161.40 6.33 4

ipactual jpactual 2 129.22 6.25 3

ipactual jpactual 3 121.38 6.22 3

ipactual jpactual 4 118.35 6.16 3

ipactual jpactual 5 119.41 6.14 3

ipactual jpactual 6 122.67 6.14 3

ipactual jpactual 7 123.52 6.14 3

ipactual jpactual 8 123.68 6.11 3

ipactual jpactual 9 124.26 6.12 3

ipactual jpactual -1 140.24 6.24 4

ipactual jpactual -2 124.53 6.23 3

ipactual jpactual -3 120.08 6.22 3

ipactual jpactual -4 120.40 6.18 3

ipactual jpactual -5 120.88 6.18 3

ipactual jpactual -6 124.03 6.17 3

ipactual jpactual -7 123.73 6.12 3

ipactual jpactual -8 124.88 6.13 3

ipactual jpactual -9 125.11 6.12 3
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Table VI. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Pactual algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ipactual jpactual 0 8.23 851.32 9.52 20

ipactual jpactual 1 851.32 9.52 20

ipactual jpactual 2 702.96 9.35 16

ipactual jpactual 3 639.00 9.34 15

ipactual jpactual 4 650.68 9.33 15

ipactual jpactual 5 740.20 9.30 17

ipactual jpactual 6 735.63 9.29 17

ipactual jpactual 7 741.08 9.29 17

ipactual jpactual 8 745.38 9.27 17

ipactual jpactual 9 745.66 9.26 17

ipactual jpactual -1 768.78 9.38 18

ipactual jpactual -2 780.65 9.39 18

ipactual jpactual -3 729.55 9.33 17

ipactual jpactual -4 765.62 9.32 18

ipactual jpactual -5 696.12 9.36 16

ipactual jpactual -6 698.95 9.38 16

ipactual jpactual -7 722.55 9.39 17

ipactual jpactual -8 738.51 9.34 17

ipactual jpactual -9 735.30 9.31 17
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Table VII. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Pactual algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ipactual jpactual 0 11.88 690.55 13.29 17

ipactual jpactual I 690.55 13.29 17

ipactual jpactual 2 479.94 13.08 12

ipactual jpactual 3 533.84 13.16 13

ipactual jpactual 4 620.75 13.20 14

ipactual jpactual 5 610.39 13.24 14

ipactual jpactual 6 619.17 13.26 14

ipactual jpactual 7 613.84 13.25 14

ipactual jpactual 8 613.99 13.23 14

ipactual jpactual 9 614.17 13.23 14

ipactual jpactual -1 669.09 13.24 16

ipactual jpactual -2 644.43 13.19 16

ipactual jpactual -3 580.39 13.14 14

ipactual jpactual -4 538.26 13.15 13

ipactual jpactual -5 531.43 13.07 13

ipactual jpactual -6 530.50 13.07 13

ipactual jpactual -7 567.34 13.09 14

ipactual jpactual -8 629.25 13.16 15

ipactual jpactual -9 590.23 13.22 14
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Table VIII. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pactual algorithm with different weights on the weight function

n u cv ncv w eight exact
co lo r

m oves first
co lo r

tim e
(sec)

ip a c tu a l jp a c tu a l 0 19.20 73.42 19.54 3

ip a c tu a l jp a c tu a l 1 73.42 19.54 3

ip a c tu a l jp ac tu a l 2 60.31 19.50 2

ip a c tu a l jp ac tu a l 3 56.21 19.50 2

ip a c tu a l jp a c tu a l 4 58.12 19.50 2

ip a c tu a l jp a c tu a l 5 58.17 19.49 2

ip a c tu a l jp ac tu a l 6 58.51 19.52 2

ip a c tu a l jp a c tu a l 7 58.37 19.52 2

ip a c tu a l jp a c tu a l 8 58.18 19.50 2

ip ac tu a l jp a c tu a l 9 58.71 19.51 2

ip a c tu a l jp a c tu a l - l 59.90 19.46 3

ip ac tu a l jp a c tu a l -2 60.84 19.47 3

ip a c tu a l jp a c tu a l -3 60.12 19.47 3

ip a c tu a l jp ac tu a l -4 60.81 19.51 3

ip a c tu a l jp a c tu a l -5 61.13 19.53 3

ip a c tu a l jp a c tu a l -6 60.03 19.48 3

ip a c tu a l jp a c tu a l -7 60.32 19.54 3

ip ac tu a l jp a c tu a l -8 60.45 19.52 3

ip a c tu a l jp a c tu a l -9 61.34 19.52 3
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Table IX. VERTICES = 40, EDGELOAD = 0.3, WEIGHT -  2
(backtracking scheme), ikorman selection function with different
kinds of ncv-selection functions

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.3 5.96 183.86 157.38 0.86 6.40 2

ikorman jpactual 181.55 156.50 0.86 6.32 2

ikorman jkormana 166.33 137.89 0.83 6.40 2

ikorman jsucadja 167.55 140.41 0.84 6.48 2

ikorman jpactuala 164.21 137.12 0.84 6.32 2

ikorman jpreventla 164.71 138.19 0.84 6.32 2

ikorman jprevent2a 164.37 138.56 0.84 6.32 2

ikorman jprevent3a 164.10 138.34 0.84 6.29 2

ikorman jprevent4a 163.16 137.71 0.84 6.28 2

ikorman jconnecta 164.38 138.57 0.84 6.31 3

*** S.D. column is the standard deviation of the forward moves.
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Table X. VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme), ikorman selection function with different
kinds of ncv-selection functions

nu cv ncv edge
load

ex act
c o lo r

m oves S.D . v a r
cof.

firs t
c o lo r

tim e
(sec)

ik o rm a n jk o rm an 0.5 8.23 1108.45 1355.63 1.22 9.44 15

ik o rm a n jp ac tu a l 1046.49 1324.86 1.27 9.36 15

ik o rm a n jk o rm a n a 957.15 1157.19 1.21 9.44 14

ik o rm a n jsu cad ja 961.71 1148.28 1.19 9.59 15

ik o rm a n jp a c tu a la 904.46 1133.29 1.25 9.36 14

ik o rm a n jp re v e n tla 925.96 1150.04 1.24 9.38 14

ik o rm a n jp rev en t2 a 919.41 1143.75 1.24 9.38 14

ik o rm a n jp rev en t3 a 921.82 1150.43 1.25 9.37 14

ik o rm a n jp rev en t4 a 926.41 1161.72 1.25 9.41 14

ik o rm a n jco n n ec ta 960.32 1157.19 1.21 9.42 16

*** S.D. column is the standard deviation of the forward moves.
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Table XI. VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme), ikorman selection function with different
kinds of ncv-selection functions

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.7 11.88 833.55 736.86 0.88 13.14 11

ikorman jpactual 751.28 669.39 0.89 13.03 11

ikorman jkormana 714.82 620.46 0.87 13.14 11

ikorman jsucadja 724.93 603.87 0.83 13.37 11

ikorman jpactuala 647.18 566.28 0.88 13.03 10

ikorman jpreventla 690.41 614.46 0.89 13.13 11

ikorman jprevent2a 687.09 610.14 0.89 13.11 11

ikorman jprevent3a 686.94 609.32 0.89 13.12 11

ikorman jprevent4a 690.55 616.66 0.89 13.09 11

ikorman jconnecta 709.08 622.57 0.88 13.19 12

*** S.D. column is the standard deviation of the forward moves.
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Table XII. VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2
(backtracking scheme), ikorman selection function with different
kinds of ncv-selection functions

n u cv ncv edge
lo ad

ex ac t
co lo r

m oves S.D . v a r
cof.

first
co lo r

tim e
(sec)

ik o rm a n jk o rm a n 0.9 19.20 78.83 67.79 0 .86 19.53 1

ik o rm a n jp a c tu a l 73.99 50.39 0.68 19.49 1

ik o rm a n jk o rm a n a 72.84 46.91 0 .64 19.53 1

ik o rm a n jsu cad ja 74.31 45.40 0.61 19.64 1

ik o rm a n jp a c tu a la 69.98 43.46 0.62 19.49 1

ik o rm a n jp re v e n tla 71.77 45.72 0.64 19.50 1

ik o rm a n jp rev en t2 a 71.86 45.70 0.64 19.50 1

ik o rm a n jp re v e n t3 a 71.74 45.70 0.64 19.50 1

ik o rm a n jp rev en t4 a 71.75 45.70 0.64 19.49 1

ik o rm a n jco n n e c ta 72.92 45.79 0.63 19.56 1

*** S.D. column is the standard deviation of the forward moves.
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Table XIII. VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2
(backtracking scheme), ipactual selection function with different
kinds of ncv-selection function

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ipactual jkorman 0.3 5.96 130.05 102.48 0.79 6.27 3

ipactual jpactual 129.22 101.18 0.78 6.25 3

ipactual jkormana 118.43 89.65 0.76 6.27 3

ipactual jsucadja 119.37 89.77 0.75 6.33 3

ipactual jpactuala 117.68 88.38 0.75 6.25 3

ipactual jpreventla 117.87 88.87 0.75 6.25 3

ipactual jprevent2a 117.74 89.01 0.76 6.24 3

ipactual jprevent3a 117.27 88.66 0.76 6.23 3

ipactual jprevent4a 117.16 87.40 0.75 6.25 3

ipactual jconnecta 116.45 88.62 0.76 6.20 3

*** S.D. column is the standard deviation of the forward moves.
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Table XIV. VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme), ipactual selection function with different
kinds of ncv-selection function

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ipactual jkorman 0.5 8.23 716.25 1009.91 1.41 9.43 16

ipactual jpactual 702.96 1012.97 1.44 9.35 16

ipactual jkormana 619.31 858.36 1.39 9.43 16

ipactual jsucadja 600.25 847.55 1.41 9.59 15

ipactual jpactuala 607.75 860.57 1.42 9.35 16

ipactual jpreventla 601.10 867.39 1.44 9.32 15

ipactual jprevent2a 612.43 866.59 1.42 9.32 16

ipactual jprevent3a 593.17 861.28 1.45 9.31 15

ipactual jprevent4a 590.71 855.35 1.45 9.35 15

ipactual jconnecta 602.85 863.88 1.43 9.36 16

*** S.D. column is the standard deviation of the forward moves.
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Table XV. VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme), ipactual selection function with different
kinds of ncv-selection function

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ipactual jkorman 0.7 11.88 502.67 603.20 1.20 13.09 12

ipactual jpactual 479.94 571.13 1.19 13.08 12

ipactual jkormana 430.99 499.09 1.16 13.09 11

ipactual jsucadja 409.01 445.82 1.09 13.16 11

ipactual jpactuala 411.81 472.76 1.15 13.08 11

ipactual jpreventla 411.23 488.54 1.19 13.07 11

ipactual jprevent2a 411.48 488.43 1.19 13.07 11

ipactual jprevent3a 411.96 488.58 1.19 13.08 11

ipactual jprevent4a 420.41 499.87 1.19 13.08 11

ipactual jconnecta 416.75 453.84 1.09 13.10 11

*** S.D. column is the standard deviation of the forward moves.
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Table XVI. VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2
(backtracking scheme), ipactual selection function with different
kinds of ncv-selection function

n u cv ncv edge
lo ad

ex ac t
c o lo r

m oves S.D. v ar
cof.

first
co lo r

tim e
(sec)

ip a c tu a l jk o rm a n 0.9 19.20 61.11 38.25 0.63 19.52 2

ip a c tu a l jp a c tu a l 60.31 38.54 0.64 19.50 2

ip a c tu a l jk o rm a n a 58.56 33.73 0.58 19.52 2

ip a c tu a l jsu cad ja 58.40 27.10 0.46 19.66 2

ip ac tu a l jp a c tu a la 57.85 34.02 0.59 19.50 2

ip a c tu a l jp re v e n tla 58.13 34.24 0.59 19.50 2

ip a c tu a l jp rev en t2 a 58.13 34.24 0.59 19.50 2

ip a c tu a l jp rev en t3 a 58.28 34.15 0.59 19.51 2

ip a c tu a l jp rev en t4 a 58.38 33.63 0.58 19.51 2

ip a c tu a l jco n n e c ta 57.94 33.55 0.58 19.52 3

*** S.D. column is the standard deviation of the forward moves.
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Table XVII. VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2
(backtracking scheme). Pactual algorithm with different weights on
the new color

nucv ncv edge
load

weight 
new clr

exact
color

moves first
color

time
(sec)

ipactual jpactual 0.3 1.0 5.96 129.22 6.25 3

ipactual jpactual 0.9 146.93 7.62 4

ipactual jpactual 0.8 154.63 7.92 4

ipactual jpactual 0.7 173.59 8.57 5

ipactual jpactual 0.6 216.70 10.09 6

ipactual jpactual 0.5 266.22 11.96 8

ipactual jpactual 0.4 369.05 16.46 13

ipactual jpactual 0.3 481.35 21.75 20

ipactual jpactual 0.2 569.62 26.37 26

ipactual jpactual 0.1 614.23 28.69 29

*** Weight column is the weight of new color.
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Table XVIII. VERTICES -  40, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme). Pactual algorithm with different weights on
the new color

nu cv ncv edge
lo ad

w eigh t 
new  clr

exact
co lo r

m oves firs t
c o lo r

tim e
(sec)

ip a c tu a l jp a c tu a l 0.5 1.0 8.23 702.96 9.35 18

ip a c tu a l jp a c tu a l 0.9 709.88 9.94 18

ip a c tu a l jp a c tu a l 0.8 720.14 9.98 18

ip a c tu a l jp a c tu a l 0.7 723.36 10.22 18

ip ac tu a l jp a c tu a l 0.6 692.23 10.70 17

ip ac tu a l jp ac tu a l 0.5 720.82 11.53 18

ip ac tu a l jp a c tu a l 0.4 769.12 14.10 20

ip a c tu a l jp a c tu a l 0.3 770.46 17.87 21

ip a c tu a l jp a c tu a l 0.2 883.05 23.29 27

ip a c tu a l jp a c tu a l 0.1 970.60 28.43 32

*** Weight column is the weight of new color.



113

Table XIX. VERTICES -  40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme). Pactual algorithm with different weights on
the new color

n u cv ncv edge
lo ad

w eigh t 
n ew  clr

ex ac t
co lo r

m oves first
co lo r

tim e
(sec)

ip ac tu a l jp a c tu a l 0.7 1.0 11.88 479.94 13.08 12

ip ac tu a l jp a c tu a l 0.9 481.33 13.24 12

ip a c tu a l jp a c tu a l 0.8 488.99 13.24 13

ip a c tu a l jp a c tu a l 0.7 488.46 13.30 13

ip a c tu a l jp a c tu a l 0.6 507.22 13.47 13

ip ac tu a l jp a c tu a l 0.5 488.89 13.60 13

ip ac tu a l jp a c tu a l 0.4 518.58 14.70 13

ip a c tu a l jp a c tu a l 0.3 540.24 16.45 14

ip a c tu a l jp a c tu a l 0.2 605.18 20.17 16

ip a c tu a l jp a c tu a l 0.1 677.58 25.66 19

*** Weight column is the weight of new color.
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Table XX. VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2
(backtracking scheme). Pactual algorithm with different weights on
the new color

nucv ncv edge
load

weight 
new clr

exact
color

moves first
color

time
(sec)

ipactual jpactual 0.9 1.0 19.20 60.31 19.50 3

ipactual jpactual 0.9 61.09 19.64 3

ipactual jpactual 0.8 61.44 19.65 3

ipactual jpactual 0.7 61.41 19.68 3

ipactual jpactual 0.6 61.92 19.69 3

ipactual jpactual 0.5 62.00 19.67 3

ipactual jpactual 0.4 63.68 19.94 3

ipactual jpactual 0.3 65.48 20.31 3

ipactual jpactual 0.2 78.46 21.35 3

ipactual jpactual 0.1 113.08 23.80 4

*** Weight column is the weight of new color.
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Table XXI. VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2
(backtracking scheme). Prevent4a algorithm with different weights
on the new color

n u cv ncv edge
lo ad

w eight 
new  clr

ex ac t
c o lo r

m oves first
c o lo r

tim e
(sec)

ip rev en t4 a jp rev en t4 a 0.3 1.0 5.96 111.01 6.26 3

ip rev en t4 a jp rev en t4 a 0.9 130.50 7.58 4

ip rev en t4 a jp rev en t4 a 0.8 144.58 8.12 4

ip rev en t4 a jp re v e n t4 a 0.7 166.02 9.02 5

ip rev en t4 a jp rev en t4 a 0.6 218.58 11.03 7

ip rev en t4 a jp rev en t4 a 0.5 284.87 13.66 10

ip rev en t4 a jp rev en t4 a 0.4 399.04 18.86 16

ip rev en t4 a jp rev en t4 a 0.3 523.99 24.42 24

ip rev en t4 a jp rev en t4 a 0.2 585.56 28.21 29

ip rev en t4 a jp rev en t4 a 0.1 613.53 29.35 31

*** Weight column is the weight of new color.
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Table XXII. VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme). Prevent4a algorithm with different weights
on the new color

nucv ncv edge
load

weight 
new clr

exact
color

moves first
color

time
(sec)

iprevent4a jprevent4a 0.5 1.0 8.23 631.19 9.35 17

iprevent4a jprevent4a 0.9 632.28 9.83 17

iprevent4a jprevent4a 0.8 634.82 9.95 17

iprevent4a jprevent4a 0.7 647.29 10.43 18

iprevent4a jprevent4a 0.6 637.85 11.11 17

iprevent4a jprevent4a 0.5 633.77 12.61 17

iprevent4a jprevent4a 0.4 615.32 16.37 18

iprevent4a jprevent4a 0.3 787.18 21.65 25

iprevent4a jprevent4a 0.2 856.56 27.87 31

iprevent4a jprevent4a 0.1 1088.01 31.19 39

*** Weight column is the weight of new color.
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Table XXIII. VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme). Prevent4a algorithm with different weight
on the new color

nucv ncv edge
load

weight 
new clr

exact
color

moves first
color

time
(sec)

iprevent4a jprevent4a 0.7 1.0 11.88 532.47 13.31 15

iprevent4a jprevent4a 0.9 539.40 13.45 15

iprevent4a jprevent4a 0.8 533.69 13.44 15

iprevent4a jprevent4a 0.7 553.00 13.65 15

iprevent4a jprevent4a 0.6 563.75 13.94 15

iprevent4a jprevent4a 0.5 566.49 14.40 16

iprevent4a jprevent4a 0.4 520.16 15.49 14

iprevent4a jprevent4a 0.3 485.32 18.08 14

iprevent4a jprevent4a 0.2 639.00 23.24 19

iprevent4a jprevent4a 0.1 769.65 29.56 24

*** Weight column is the weight of new color.
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Table XXIV. VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2
(backtracking scheme). Prevent4a algorithm with different weight
on the new color

nucv ncv edge
load

weight 
new clr

exact
color

moves first
color

time
(sec)

iprevent4a jprevent4a 0.9 1.0 19.20 59.34 19.52 3

iprevent4a jprevent4a 0.9 60.49 19.61 3

iprevent4a jprevent4a 0.8 60.73 19.59 3

iprevent4a jprcvent4a 0.7 61.12 19.62 3

iprevent4a jprevent4a 0.6 61.35 19.65 3

iprevent4a jprevent4a 0.5 61.49 19.68 3

iprevent4a jprevent4a 0.4 64.63 20.00 3

iprevent4a jprevent4a 0.3 73.49 20.53 3

iprevent4a jprevent4a 0.2 85.35 21.92 4

iprevent4a jprevent4a 0.1 143.30 25.57 5

*** Weight column is the weight of new color.
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Table XXV. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Korw21e, Korw21ec, and Korwl2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale
2

scale
1

exact
color

moves first
color

time
(sec)

ikorw21e jkorman 0.0 0.5 5.96 144.66 6.41 2

ikorw21e jkorman 0.0 0.7 143.04 6.35 2

ikorw21e jkorman 0,0 0.9 143.01 6.35 2

ikorw21e jkorman 0.5 0.5 181.97 6.39 3

ikorw21e jkorman 0.5 0.7 183.51 6.41 3

ikorw2le jkorman 0.5 0.9 183.51 6.41 3

ikorvv21ec jkorman 0.0 0.5 144.84 6.41 2

ikorw21ec jkorman 0.0 0.7 143.04 6.35 2

ikorw21ec jkorman 0.0 0.9 143.01 6.35 2

ikorw21ec jkorman 0.5 0.5 181.97 6.39 3

ikorw21ec jkorman 0.5 0.7 183.51 6.41 3

ikorw21 ec jkorman 0.5 0.9 183.51 6.41 3

ikorwl2e jkorman 0.0 0.5 149.97 6.39 2

ikorwl2e jkorman 0.0 0.7 143.06 6.35 2

ikorwl2e jkorman 0.0 0.9 143.01 6.35 2

ikorwl2e jkorman 0.5 0.5 182.04 6.39 2

ikorwl2e jkorman 0.5 0.7 183.53 6.41 3

ikorwl2e jkorman 0.5 0.9 183.51 6.41 3
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Table XXVI. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Korw21e, Korw21ec, and Korwl2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale
2

scale
1

exact
color

moves first
color

time
(sec)

ikorw21e jkorman 0.0 0.5 8.23 853.51 9.36 13

ikorw21e jkorman 0.0 0.7 817.45 9.37 13

ikorw21e jkorman 0.0 0.9 816.79 9.37 13

ikorw21e jkorman 0.5 0.5 1026.26 9.36 16

ikorvv21e jkorman 0.5 0.7 995.00 9.40 16

ikorw21e jkorman 0.5 0.9 993.98 9.40 16

ikorw21ec jkorman 0.0 0.5 853.06 9.36 13

ikorw21ec jkorman 0.0 0.7 817.46 9.37 13

ikorw21ec jkorman 0.0 0.9 816.79 9.37 13

ikorw21ec jkorman 0.5 0.5 1026.26 9.36 16

ikorw21ec jkorman 0.5 0.7 995.00 9.40 16

ikorvv21ec jkorman 0.5 0.9 993.98 9.40 16

ikorwl2e jkorman 0.0 0.5 926.76 9.36 13

ikorwl2e jkorman 0.0 0.7 824.32 9.38 13

ikorwl2e jkorman 0.0 0.9 816.84 9.37 13

ikorwl2e jkorman 0.5 0.5 1053.01 9.36 15

ikorwl2e jkorman 0.5 0.7 1000.76 9.40 16

ikorwl2e jkorman 0.5 0.9 994.00 9.40 16
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Table XXVII. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Korw2Ie, Korw21ec, and Korwl2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale
2

scale
1

exact
color

moves first
color

time
(sec)

ikorw21e jkorman 0.0 0.5 11.88 633.70 12.98 10

ikorw21e jkorman 0.0 0.7 621.53 13.08 10

ikorw21e jkorman 0.0 0.9 623.22 13.11 10

ikorw21e jkorman 0.5 0.5 707.15 13.00 11

ikorw21e jkorman 0.5 0.7 668.12 13.03 11

ikorw21e jkorman 0.5 0.9 665.84 13.04 11

ikorw21ec jkorman 0.0 0.5 633.67 12.98 10

ikorw21ec jkorman 0.0 0.7 621.44 13.08 10

ikorw21ec jkorman 0.0 0.9 623.22 13.11 10

ikorw21ec jkorman 0.5 0.5 707.15 13.00 11

ikorw21ec jkorman 0.5 0.7 668.12 13.03 11

ikorw21ec jkorman 0.5 0.9 665.84 13.04 11

ikorwl2e jkorman 0.0 0.5 704.41 13.00 10

ikorwl2e jkorman 0.0 0.7 638.76 13.08 11

ikorwI2e jkorman 0.0 0.9 623.53 13.11 11

ikorwl2e jkorman 0.5 0.5 775.56 12.94 11

ikorwl2e jkorman 0.5 0.7 686.16 13.03 11

ikorw!2e jkorman 0.5 0.9 666.17 13.04 11
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Table XXVIII. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Korw21e, Korw21ec, and Korwi2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale
2

scale
1

exact
color

moves first
color

time
(sec)

ikorw21e jkorman 0.0 0.5 19.20 61.87 19.60 1

ikorw21e jkorman 0.0 0.7 59.29 19.56 1

ikorw21e jkorman 0.0 0.9 58.52 19.56 l

ikorw21e jkorman 0.5 0.5 62.28 19.60 1

ikorw21e jkorman 0.5 0.7 59.36 19.55 1

ikorw21e jkorman 0.5 0.9 58.54 19.55 1

ikorvv21cc jkorman 0.0 0.5 61.87 19.60 1

ikorvv21ec jkorman 0.0 0.7 59.29 19.56 1

ikorw21ec jkorman 0.0 0.9 58.52 19.56 1

ikorw21ec jkorman 0.5 0.5 62.28 19.60 1

ikorw21ec jkorman 0.5 0.7 59.36 19.55 1

ikorw21ec jkorman 0.5 0.9 58.54 19.55 1

ikorwl2e jkorman 0.0 0.5 64.40 19.61 1

ikorwl2e jkorman 0.0 0.7 60.24 19.56 1

ikorwl2e jkorman 0.0 0.9 58.77 19.56 1

ikorwl2e jkorman 0.5 0.5 64.79 19.61 1

ikorwl2e jkorman 0.5 0.7 60.30 19.55 1

ikorw!2e jkorman 0.5 0.9 58.79 19.55 1
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Table XXIX. VERTICES = 40, EDGELOAD = 0.3 AND 0.5 (backtracking
scheme). Korw2e and Korw21e with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0.5

nucv ncv scale
2

scale
1

edge
load

exact
color

moves var
cof.

first
color

time
(sec)

ikorw2e jkorman 0.0 0.3 5.96 143.01 0.822 6.35 2

ikorw21e jkorman 0.0 0.5 144.66 0.766 6.41 2

ikorw2e jkorman 0.5 183.51 0.852 6.41 2

ikorw21e jkorman 0.5 0.5 181.97 0.837 6.39 3

ikorw2e jkorman 1.0 183.86 0.856 6.40 2

ikorw21e jkorman 1.0 0.5 182.04 0.839 6.39 3

ikorw2e jkorman 0.0 0.5 8.23 816.79 1.378 9.37 12

ikorw21e jkorman 0.0 0.5 853.51 1.412 9.36 13

ikorw2e jkorman 0.5 993.98 1,233 9.40 15

ikorwr21e jkorman 0.5 0.5 1026.26 1.255 9.36 16

ikorw2e jkorman 1.0 1108.45 1.223 9.44 16

ikorw21e jkorman 1.0 0.5 1065.36 1.264 9.36 16
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Table XXX. VERTICES = 40, EDGELOAD = 0.7 AND 0.9 (backtracking
scheme). Korw2e and Korw21e with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0,5

nucv ncv scale
2

scale
1

edge
load

exact
color

moves var
cof.

first
color

time
(sec)

ikorw2e jkorman 0.0 0.5 11.88 623.14 1.107 13.11 10

ikorw21e jkorman 0.0 0.5 633.70 1.077 12.98 10

ikorw2e jkorman 0.5 665.77 1.149 13.04 10

ikorw21e jkorman 0.5 0.5 707.15 1.113 13.00 11

ikorw2e jkorman 1.0 833.55 0.884 13.14 13

ikorvv21e jkorman 1.0 0.5 716.81 0.754 13.03 11

ikorw2e jkorman 0.0 0.5 19.20 58.47 0.523 19.56 1

ikorw21e jkorman 0.0 0.5 61.87 0.518 19.60 1

ikorw2e jkorman 0.5 58.47 0.528 19.55 1

ikorw21e jkorman 0.5 0.5 62.28 0.533 19.60 1

ikorw2e jkorman 1.0 78.83 0.707 19.53 1

ikorw21 e jkorman 1.0 0.5 77.30 0.634 19.48 1
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Table XXXI. VERTICES = 44, EDGELOAD = 0.3 AND 0.5 (backtracking
scheme). Korw2e and Korw21e with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0.5

nucv ncv scale
2

scale
1

edge
load

exact
color

moves var
cof.

first
color

time
(sec)

ikorw2e jkorman 0.0 0.3 6.00 139.26 0.982 6.75 2

ikorw21e jkorman 0.0 0.5 141.95 0.998 6.72 2

ikorw2e jkorman 0.5 181.66 1.121 6.75 2

ikorw21e jkorman 0.5 0.5 158.60 1.067 6.72 2

ikorw2e jkorman 1.0 181.73 1.122 6.74 2

ikorw21e jkorman 1.0 0.5 158.67 1.067 6.72 2

ikorw2e jkorman 0.0 0.5 8.92 975.65 0.742 10.02 14

ikorw21e jkorman 0.0 0.5 986.64 0.748 9.91 14

ikorw2e jkorman 0.5 1240.22 0.822 10.00 18

ikorw21e jkorman 0.5 0.5 1277.36 0.787 10.01 19

ikorw2e jkorman 1.0 1408.74 0.845 10.07 20

ikor\v21e jkorman 1.0 0.5 1331.66 0.796 10.01 20
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Table XXXII. VERTICES = 44, EDGELOAD = 0.7 AND 0.9 (backtracking
scheme). Korw2e and Korw21e with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0.5

nucv ncv scale
2

scale
1

edge
load

exact
color

moves var
cof.

first
color

time
(sec)

ikorw2e jkorman 0.0 0.5 11.88 623.14 1.107 13.11 10

ikorw21e jkorman 0.0 0.5 633.70 1.077 12.98 10

ikorw2e jkorman 0.5 665.77 1.149 13.04 10

ikorw21e jkorman 0.5 0.5 707.15 1.113 13.00 11

ikorw2e jkorman 1.0 833.55 0.884 13.14 13

ikorw21e jkorman 1.0 0.5 716.81 0.754 13.03 11

ikorw2e jkorman 0.0 0.5 19.20 58.47 0.523 19.56 1

ikorw21e jkorman 0.0 0.5 61.87 0.518 19.60 1

ikonv2e jkorman 0.5 58.47 0.528 19.55 1

ikorw21e jkorman 0.5 0.5 62.28 0.533 19.60 1

ikorvv2e jkorman 1.0 78.83 0.707 19.53 1

ikorw21e jkorman 1.0 0.5 77.30 0.634 19.48 1
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Table XXXIII. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 5.96 183.86 157.38 0.86 6.40 2

ikorqk2 jkorman 143.31 116.37 0.81 6.36 2

ikorpw2 jkorman 145.09 120.28 0.83 6.36 2

ikorw2 jkorman 143.01 117.55 0.82 6.35 2

ikorw2p jkorman 152.14 128.25 0.84 6.36 2

ikorw21e jkorman 144.66 110.81 0.77 6.41 2

ikormaxw2 jkorman 145.19 120.94 0.83 6.36 2

ikormaxw21e jkorman 147.96 114.23 0.77 6.42 2

ikorqk23 jkorman 116.93 87.70 0.75 6.36 3

ikorw23 jkorman 115.41 91.40 0.79 6.34 3

ipactqk2 jkorman 115.25 87.36 0.76 6.22 3

ipactqk2 jpactual 111.03 87.71 0.79 6.15 3

ipactmaxw2 jkorman 114.38 86.81 0.76 6.24 3

ipactmaxw2 jpactual 112.80 87.31 0.77 6.18 3

ipactual jpactuala 117.68 88.38 0.75 6.25 3

*** S.D. column is the standard deviation of the forward moves.
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Table XXXIV. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 8.23 1108.45 1355.63 1.22 9.44 15

ikorqk2 jkorman 836.46 1137.59 1.36 9.45 12

ikorpw2 jkorman 812.58 1118.92 1.38 9.42 12

ikorw2 jkorman 816.79 1125.54 1.38 9.37 12

ikorw2p jkorman 828.04 1146.01 1.38 9.35 12

ikorw21e jkorman 853.51 1205.16 1.41 9.36 13

ikormaxw2 jkorman 755.45 929.96 1.23 9.42 11

ikormaxw21e jkorman 785.61 974.16 1.24 9.37 12

ikorqk23 jkorman 612.04 870.32 1.42 9.39 23

ikorw23 jkorman 593.44 854.55 1.44 9.41 27

ipactqk2 jkorman 595.80 824.59 1.38 9.36 14

ipactqk2 jpactual 598.23 830.34 1.39 9.19 15

ipactmaxw2 jkorman 577.88 816.54 1.41 9.38 13

ipactmaxw2 jpactual 580.28 824.00 1.42 9.21 14

ipactual jpactuala 607.75 860.57 1.42 9.35 16

*** S.D. column is the standard deviation of the forward moves.
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Table XXXV. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 11.88 833.55 736.86 0.88 13.14 11

ikorqk2 jkorman 579.78 613.99 1.06 13.08 9

ikorpw2 jkorman 666.11 750.04 1.13 13.11 10

ikorw2 jkorman 623.14 689.82 1.11 13.11 10

ikorw2p jkorman 623.52 690.86 1.11 13.11 10

ikorw21e jkorman 633.70 682.49 1.08 12.98 10

ikormaxw2 jkorman 621.53 679.95 1.09 13.09 10

ikormaxw21e jkorman 611.86 622.87 1.02 12.98 9

ikorqk23 jkorman 470.74 496.16 1.05 12.95 31

ikorw23 jkorman 479.32 554.09 1.16 12.97 38

ipactqk2 jkorman 397.00 452.58 1.14 12.99 10

ipactqk2 jpactual 381.62 441.15 1.16 12.89 10

ipactmaxw2 jkorman 381.16 434.14 1.14 13.01 9

ipactmaxw2 jpactual 366.49 424.40 1.16 12.89 9

ipactual jpactuala 411.81 472.76 1.15 13.08 12

*** S.D. column is the standard deviation of the forward moves.
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Table XXXVI. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 19.20 78.83 67.79 0.86 19.53 1

ikorqk2 jkorman 57.79 29.88 0.52 19.55 1

ikorpw2 jkorman 58.96 30.66 0.52 19.56 1

ikorw2 jkorman 58.47 30.58 0.52 19.56 1

ikorw2p jkorman 58.47 30.58 0.52 19.56 1

ikorw21e jkorman 61.87 32.05 0.52 19.60 1

ikormaxw2 jkorman 58.10 30.68 0.53 19.54 1

ikormaxw21e jkorman 61.47 32.15 0.52 19.58 1

ikorqk23 jkorman 52.96 23.57 0.45 19.55 5

ikorw23 jkorman 51.90 21.49 0.41 19.55 6

ipactqk2 jkorman 54.59 29.81 0.55 19.46 2

ipactqk2 jpactual 53.65 28.86 0.54 19.44 2

ipactmaxw2 jkorman 54.59 29.81 0.55 19.46 2

ipactmaxw2 jpactual 53.65 28.86 0.54 19.44 2

ipactual jpactuala 57.85 34.02 0.59 19.50 2

*** S.D. column is the standard deviation of the forward moves.



131

Table XXXVII. VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2
(backtracking scheme), variations of Korman without swapping

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 5.96 183.86 157.38 0.86 6.40 2

ikorman jkormana 166.33 137.89 0.83 6.40 2

ikorman jsucadja 167.55 140.41 0.84 6.48 2

ipkorman jkorman 147.43 128.56 0.87 6.23 3

ipactual jpactual 129.22 101.18 0.78 6.25 3

ipactual jpactuala 117.68 88.38 0.75 6.25 3

ipreventla jpreventla 121.79 91.71 0.75 6.16 3

iprevent2a jprevent2a 114.15 82.64 0.72 6.14 3

iprevent3a jprevent3a 116.60 89.20 0.77 6.20 3

iprevent4a jprevent4a 111.01 76.71 0.69 6.26 3

iconnecta jconnecta 150.41 120.18 0.80 6.28 4

*** S.D. column is the standard deviation of the forward moves.
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Table XXXVIII. VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman without swapping

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 8.23 1108.45 1355.63 1.22 9.44 15

ikorman jkormana 957.15 1157.19 1.21 9.44 14

ikorman jsucadja 961.71 1148.28 1.19 9.59 15

ipkorman jkorman 1076.45 1815.97 1.69 9.42 21

ipactual jpactual 702.96 1012.97 1.44 9.35 16

ipactual jpactuala 607.75 860.57 1.42 9.35 16

ipreventla jpreventla 765.27 1435.65 1.88 9.33 17

iprevent2a jprevent2a 656.13 1076.71 1.64 9.36 15

iprevent3a jprevent3a 700.80 1140.20 1.63 9.36 16

iprevent4a jprevent4a 631.19 883.03 1.40 9.35 15

iconnecta jconnecta 1051.76 1880.55 1.79 9.42 29

*** S.D. column is the standard deviation of the forward moves.
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Table XXXIX. VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme), variations of Korman without swapping

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 11.88 833.55 736.86 0.88 13.14 11

ikorman jkormana 714.82 620.46 0.87 13.14 11

ikorman jsucadja 724.93 603.87 0.83 13.37 11

ipkorman jkorman 880.44 967.60 1.10 13.22 18

ipactual jpactual 479.94 571.13 1.19 13.08 12

ipactual jpactuala 411.81 472.76 1.15 13.08 11

ipreventla jpreventla 545.57 598.49 1.10 13.09 12

iprevent2a jprevent2a 528.60 565.07 1.07 13.16 13

iprevent3a jprevent3a 529.34 601.33 1.14 13.05 13

iprevent4a jprevent4a 532.47 530.34 1.00 13.31 13

iconnecta jconnecta 847.48 1125.45 1.33 13.12 23

*** S.D. column is the standard deviation of the forward moves.



134

Table XL. VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2
(backtracking scheme), variations of Korman without swapping

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 19.20 78.83 67.79 0.86 19.53 1

ikorman jkormana 72.84 46.91 0.64 19.53 1

ikorman jsucadja 74.31 45.40 0.61 19.64 1

ipkorman jkorman 62.88 103.88 1.65 19.62 3

ipactual jpactual 60.31 38.54 0.64 19.50 2

ipactual jpactuala 57.85 34.02 0.59 19.50 2

ipreventla jpreventla 58.08 33.22 0.57 19.55 2

iprevent2a jprevent2a 56.18 31.29 0.56 19.51 3

iprevent3a jprevent3a 56.04 32.90 0.59 19.48 3

iprevent4a jprevent4a 59.34 27.83 0.47 19.52 3

iconnecta jconnecta 79.64 121.05 1.52 19.59 3

*** S.D. column is the standard deviation of the forward moves.
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Table XLI. VERTICES = 44, EDGELOAD = 0.3 AND 0.5, WEIGHT = 2 
(backtracking scheme), variations of Korman with swapping and 
Pactual with swapping

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.3 6.00 181.73 203.90 1.12 6.74 2

ikorw2 jkorman 139.26 136.75 0.98 6.75 2

ikorw21e jkorman 141.95 141.67 1.00 6.72 2

ikormaxw2 jkorman 140.25 138.43 0.99 6.74 2

ikormaxw21e jkorman 145.42 141.93 0.98 6.72 2

ipactmaxw2 jpactual 104.76 69.25 0.66 6.57 2

ikorman jkorman 0.5 8.92 1408.74 1190.39 0.85 10.07 17

ikorw2 jkorman 975.65 723.93 0.74 10.02 14

ikorw21e jkorman 986.64 738.01 0.75 9.91 14

ikormaxw2 jkorman 981.87 727.57 0.74 9.97 15

ikormaxw21e jkorman 1009.88 740.24 0.73 9.88 15

ipactmaxw2 jpactual 656.32 539.50 0.82 9.69 16

*** S.D. column is the standard deviation of the forward moves.
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Table XLII. VERTICES = 44, EDGELOAD = 0.7 AND 0.9, WEIGHT = 2 
(backtracking scheme), variations of Korman with swapping and 
Pactual with swapping

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.7 12.72 2133.82 2528.58 1.19 14.18 27

ikorw2 jkorman 1565.48 1682.89 1.08 14.25 23

ikorw21e jkorman 1496.65 1731.62 1.16 14.07 23

ikormaxw2 jkorman 1605.68 1679.54 1.05 14.29 25

ikormaxw21e jkorman 1535.77 1738.49 1.13 14.09 23

ipactmaxw2 jpactual 1018.76 1407.93 1.38 13.99 26

ikorman jkorman 0.9 20.52 172.54 224.47 1.30 21.03 2

ikorw2 jkorman 143.41 273.63 1.91 21.02 2

ikorw21e jkorman 135.12 227.68 1.69 20.91 2

ikormaxw2 jkorman 128.55 204.27 1.59 21.02 2

ikormaxw21e jkorman 121.85 173.15 1.42 20.90 2

ipactmaxw2 jpactual 99.34 135.00 1.36 20.85 3

*** S.D. column is the standard deviation of the forward moves.
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Table XLIII. VERTICES = 48, EDGELOAD = 0.3, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 6.03 888.34 1430.23 1.61 7.20 10

ikorman jkormana 792.46 1256.84 1.59 7.20 11

ikorman jsucadja 816.78 1184.33 1.45 7.22 12

ipkorman jkorman 760.85 1292.68 1.70 7.01 14

ipactual jpactual 599.01 909.30 1.52 7.02 14

ipactual jpactuala 532.76 785.82 1.48 7.02 14

ipreventla jpreventla 611.68 1071.66 1.75 7.01 14

iprevent2a jprevent2a 606.67 1000.40 1.65 7.01 14

iprevent3a jprevent3a 567.97 942.83 1.66 7.03 14

iprevent4a jprevent4a 572.21 790.79 1.38 7.06 14

ikorqk2 jkorman 793.20 1460.28 1.84 7.17 10

ikorw2 jkorman 735.36 1261.88 1.72 7.15 9

ikorw21e jkorman 759.51 1269.90 1.67 7.12 10

ikormaxw2 jkorman 769.72 1290.82 1.68 7.16 10

ikormaxw21e jkorman 791.74 1292.12 1.63 7.10 11

ipactqk2 jpactual 517.88 775.78 1.50 6.99 13

ipactmaxw2 jpactual 500.69 747.03 1.49 6.98 12

*** s.D. column is the standard deviation of the forward moves.
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Table XLIV. VERTICES = 48, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 9.09 6297.14 7606.95 1.21 10.52 81

ikorman jkormana 5413.61 6517.99 1.20 10.52 83

ikorman jsucadja 5459.40 6655.01 1.22 10.72 88

ipkorman jkorman 6160.09 9671.34 1.57 10.67 123

ipactual jpactual 3150.71 3708.39 1.18 10.51 78

ipactual jpactuala 2715.87 3185.72 1.17 10.51 75

iprevent 1 a jpreventla 3884.14 4711.46 1.21 10.62 92

iprevent2a jprevent2a 3701.90 4534.83 1.23 10.60 92

iprevent3a jprevent3a 3604.15 4847.58 1.35 10.52 89

iprevent4a jprevent4a 2757.97 3251.65 1.18 10.61 72

ikorqk2 jkorman 5474.47 7910.61 1.45 10.70 81

ikorw2 jkorman 4738.64 6046.50 1.28 10.61 70

ikorw21e jkorman 4720.14 6060.66 1.28 10.55 73

ikormaxw2 jkorman 4432.30 5473.89 1.24 10.58 66

ikormaxw21e jkorman 4422.06 5403.76 1.22 10.55 69

ipactqk2 jpactual 2859.02 4151.30 1.45 10.33 77

ipactmaxw2 jpactual 2586.49 2974.46 1.15 10.34 68

*** S.D. column is the standard deviation of the forward moves.
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Table XLV. VERTICES = 48, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 13.36 9399.03 14248.93 1.52 15.11 126

ikorman jkormana 7995.03 12064.50 1.51 15.11 125

ikorman jsucadja 7964.36 11850.97 1.49 15.30 132

ipkorman jkorman 8845.18 13435.83 1.52 15.11 182

ipactual jpactual 5030.90 7938.76 1.58 15.03 126

ipactual jpactuala 4274.90 6685.94 1.56 15.03 119

ipreventla jpreventla 5499.27 9354.26 1.70 15.19 131

iprevent2a jprevent2a 4708.43 6827.22 1.45 15.12 117

iprevent3a jprevent3a 5114.55 8945.35 1.75 15.04 128

iprevent4a jprevent4a 4849.15 8287.20 1.71 15.24 128

ikorqk2 jkorman 6527.48 10502.72 1.61 15.17 103

ikorw2 jkorman 6990.07 15000.69 2.15 15.13 112

ikorw21e jkorman 7084.65 15579.15 2.20 15.04 116

ikormaxw2 jkorman 6642.25 10873.36 1.64 15.14 106

ikormaxw21 e jkorman 6605.28 11248.79 1.70 15.05 109

ipactqk2 jpactual 3993.22 7311.59 1.83 14.83 111

ipactmaxw2 jpactual 4023.01 7337.97 1.82 14.80 111

*** S.D. column is the standard deviation of the forward moves.
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Table XLVI. VERTICES = 48, EDGELOAD = 0.9, WEIGHT -  2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 21.85 428.55 1021.66 2.38 22.61 5

ikorman jkormana 375.73 877.33 2.34 22.61 5

ikorman jsucadja 385.89 878.29 2.28 22.76 6

ipkorman jkorman 687.64 3109.51 4.52 22.64 13

ipactual jpactual 271.59 747.42 2.75 22.51 8

ipactual jpactuala 240.66 637.99 2.65 22.51 8

ipreventla jpreventla 279.22 758.36 2.72 22.60 8

iprevent2a jprevent2a 437.66 1896.82 4.33 22.58 11

iprevent3a jprcvent3a 342.05 1492.36 4.36 22.48 9

iprevent4a jprevent4a 253.45 389.30 1.54 22.68 9

ikorqk2 jkorman 313.63 684.65 2.18 22.58 5

ikorw2 jkorman 309.98 686.30 2.21 22.59 5

ikorw21e jkorman 286.24 545.29 1.91 22.54 5

ikormaxw2 jkorman 303.76 683.46 2.25 22.59 5

ikormaxw21e jkorman 277.28 535.43 1.93 22.54 5

ipactqk2 jpactual 211.88 522.71 2.47 22.39 7

ipactmaxw2 jpactual 211.57 522.37 2.47 22.39 7

*** S.D. column is the standard deviation of the forward moves.
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Table XLVII. VERTICES = 52, EDGELOAD = 0.3 AND 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.3 6.78 3196.80 3631.56 1.14 7.43 52

ikorw2 jkorman 2581.08 2981.22 1.16 7.50 45

ikormaxw2 jkorman 2535.05 2849.40 1.12 7.46 44

ikormaxw21e jkorman 2593.06 2935.34 1.13 7.49 46

ipactmaxw2 jpactual 1582.63 1834.27 1.16 7.27 48

ikorman jkorman 0.5 9.93 15096.79 15685.56 1.04 11.29 260

ikorw2 jkorman 11365.67 12408.66 1.09 11.17 216

ikormaxw2 jkorman 11458.22 12420.71 1.08 11.14 218

ikormaxw21e jkorman 11855.98 13053.43 1.10 11.14 226

ipactmaxw2 jpactual 7580.97 8278.42 1.09 11.14 238

*** S.D. column is the standard deviation of the fonvard moves.
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Table XLVIII. VERTICES = 52, EDGELOAD -  0.7 AND 0.9, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.7 14.07 30856.41 35268.88 1.14 16.09 536

ikorw2 jkorman 19604.14 21411.50 1.10 16.12 392

ikormaxw2 jkorman 20455.95 23769.81 1.16 16.10 407

ikormaxw21e jkorman 19131.89 22269.52 1.16 15.86 371

ipactmaxw2 jpactual 9030.25 10673.76 1.18 15.82 291

ikorman jkorman 0.9 23.10 691.42 1028.83 1.49 24.20 11

ikorw2 jkorman 498.50 1158.39 2.32 24.14 9

ikormaxw2 jkorman 517.23 1164.28 2.25 24.11 9

ikormaxw21e jkorman 458.22 727.65 1.59 23.96 9

ipactmaxw2 jpactual 316.38 398.96 1.26 23.89 11

*** S.D. column is the standard deviation of the forward moves.
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Table XL1X. VERTICES = 56, EDGELOAD -  0.3 AND 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.3 7.00 2283.26 2282.69 1.00 7.92 41

ikorw2 jkorman 1736.23 1719.78 0.99 7.84 34

ipactual jpactual 1426.96 1420.42 1.00 7.77 50

ipactmaxw2 jpactual 1187.76 1114.47 0.94 7.70 41

ikorman jkorman 0.5 10.03 40819.83 61973.11 1.52 11.98 728

ikorw2 jkorman 32495.33 58278.02 1.79 11.86 644

ipactual jpactual 16859.05 23336.84 1.38 11.77 548

ipactmaxw2 jpactual 14917.26 20858.73 1.40 11.69 491

*** S.D. column is the standard deviation of the forward moves.
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Table L. VERTICES -  56, EDGELOAD = 0.7 AND 0.9, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.7 14.86 100592.26 138854.67 1.38 16.96 1864

ikorw2 jkorman 67298.88 76181.61 1.13 16.88 1448

ipactual jpactual 50482.88 67243.74 1.33 17.05 1663

ipactmaxw2 jpactual 35781.40 38021.55 1.06 16.82 1251

ikorman jkorman 0.9 24.47 3194.90 9295.03 2.91 25.70 54

ikorw2 jkorman 2209.50 6524.20 2.95 25.72 51

ipactual jpactual 1528.46 4353.31 2.85 25.59 45

ipactmaxw2 jpactual 1145.27 2976.75 2.60 25.49 37

*** S.D. column is the standard deviation of the forward moves.
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Table LI. COMPARISON KORW2 WITH KORMAN IN RUNNING TIME
(backtracking scheme).

edgeload = 0.3

n= 28 n= 32 n= 36

oIIC n = 44
OO1!G n= 52 n = 56

mean -0.01 0.03 -0.02 *-0.37 *-0.31 -1.03 *-7.24 *-7.44

S.D. 0.10 0.46 0.97 0.84 1.56 10.52 18.45 10.14

better 1% 5% 22% 34% 21% 51% 84% 88%

worse 0% 5% 13% 4% 8% 29% 9% 11%

edgeload = 0.5

n= 28 n= 32 n= 36 n = 40 n = 44 n = 48 n= 52 n = 56

mean *-0.12 -0.11 *-0.97 *-2.69 *-3.67 *-11.55 *-44.29 -83.70

S.D. 0.38 0.72 2.82 10.87 6.81 49.88 55.82 737.34

better 14% 22% 45% 65% 75% 71% 92% 72%

worse 2% 13% 8% 17% 17% 26% 7% 27%

1. Mean and standard deviation of difference in running time.

2. Percentage of trials in which Korw2 is better (worse) than Korman.

3. mean is significant at 0.05 level.
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edgeload = 0.7

Table LII. COMPARISON KORW2 WITH KORMAN IN RUNNING TIME
(backtracking scheme).

3 1) UJ oo n = 32 n= 36 n= 40 n = 44 n = 48 n = 52 n= 56

mean *-0.13 *-0.25 *-0.82 -1.69 *-3".79 -15.22 *-143.84 *-415.76

S.D. 0.46 0.81 2.32 9.50 15.66 111.41 326.92 1547.02

better 14% 24% 53% 65% 61% 63% 74% 75%

worse 3% 6% 18% 23% 30% 34% 24% 24%

edgeload = 0.9

3 II to OO n= 32 n= 36 n = 40 n= 44 n = 48

C41!C n = 56

mean 0.01 -0.04 *-0.11 -0.02 0.01 *-0.76 *-2.05 *-9.85

S.D. 0.10 0.24 0.47 0.64 2.22 3.67 9.40 33.97

better 0% 5% 15% 17% 25% 36% 67% 67%

worse 1% 1% 5% 17% 14% 14% 13% 17%

1. Mean and standard deviation of difference in running time.

2. Percentage of trials in which Korw2 is better (worse) than Korman.

3 . mean is significant at 0.05 level.
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edgeload = 0.3

Table LIII. COMPARISON PACTUAL WITH KORMAN IN RUNNING
TIME (backtracking scheme).

n= 28 n= 32 n= 36

o'TIIc n = 44
OOIIC n = 52 n = 56

mean *0.63 *0.90 *0.84 *1.03 *1.05 *3.94 4.19 *8.51

S.D. 0.49 0.56 1.82 1.57 1.86 17.72 37.79 20.20

better 0% 1% 9% 8% 9% 29% 34% 24%

worse 63% 84% 59% 66% 77% 65% 60% 72%

edgeload = 0.5

n= 28 n= 32 n= 36 n = 40 n=44 n = 48 n = 52 n = 56

mean *0.66 *0.70 0.36 1.79 *2.71 -3.05 13.23 *-179.61

S.D. 1.08 1.40 3.35 16.99 11.66 83.13 159.17 829.88

better 2% 8% 23% 37% 34% 39% 47% 60%

worse 59% 55% 57% 55% 61% 59% 52% 40%

1 Mean and standard deviation of difference in running time.

2. Percentage of trials in which Pactual is better (worse) than Korman.

3. mean is significant at 0.05 level.
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edgeload = 0.7

Table LIV. COMPARISON PACTUAL WITH KORMAN IN RUNNING
TIME (backtracking scheme).

n= 28 n= 32 n= 36 n = 40 3 II -C* n = 48 n= 52 n= 56

mean *0.67 *0.63 *1.14 0.30 3.19 -0.26 *-190.23 -201.08

S.D. 0.53 1.13 3.69 12.50 25.14 88.18 561.78 2140.45

better 1% 6% 20% 48% 37% 45% 62% 68%

worse 66% 60% 57% 43% 58% 55% 37% 32%

edgeload = 0.9

n= 28 D 1) K) n= 36 n= 40 IIG n = 48 n= 52 n = 56

mean *0.99 *0.94 *1.67 *1.54 *1.96 *2.30 *2.87 -8.87

S.D. 0.10 0.24 0.59 0.73 1.41 4.99 14.44 46.16

better 0% 0% 0% 0% 3% 15% 17% 42%

worse 99% 94% 94% 93% 89% 81% 79% 55%

1. Mean and standard deviation of difference in running time.

2. P ercen tag e  of trials in which Pactual is better (worse) than Korman.

3. mean is significant at 0.05 level.
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cdgeload = 0.3

Table LV. COMPARISON PACTMAXW2 WITH KORMAN IN RUNNING
TIME (backtracking scheme).

n= 28 n= 32 n = 36

§IIc n = 44 n = 48 n= 52 n= 56

mean *0.41 *0.80 *0.50 *0.59 *0.55 1.82 -4.18 -0.60

S.D. 0.49 0.49 1.54 1.34 2.06 16.53 36.58 18.62

better 0% 1% 13% 13% 15% 34% 51% 51%

worse 41% 78% 50% 53% 67% 56% 44% 43%

edgeload = 0.5

3 II
1 

°° n= 32 n= 36 n= 40 n= 44 n= 48 n= 52 n= 56

mean *0.45 *0.48 -0.27 -0.63 -1.10 -13.09 -22.09 *-236.86

S.D. 0.86 1.31 3.26 14.99 10.00 80.34 112.87 897.88

better 3% 9% 29% 46% 49% 51% 61% 62%

worse 42% 49% 46% 43% 43% 48% 39% 37%

1 Mean and standard deviation of difference in running time.

2. Percentage of trials in which Pactmaxw2 is better (worse) than Korman.

3. mean is significant at 0.05 level.



150

edgeload = 0.7

Table LVI. COMPARISON PACTMAXW2 WITH KORMAN IN RUNNING
TIME (backtracking scheme).

n= 28 n= 32 n= 36 oTTIIC r̂IIc n = 48 n= 52 n= 56

mean *0.59 *0.37 0.16 -1.78 -1.27 -15.57 *-244.69 *-613.09

S.D. 0.53 1.06 3.19 9.82 26.64 84.86 546.24 2245.21

better 1% 8% 30% 56% 51% 58% 70% 72%

worse 59% 43% 40% 35% 46% 41% 29% 27%

edgeload = 0.9

n= 28 n= 32 n= 36 n = 40 n = 44 n = 48 n= 52 n= 56

mean *0.99 *0.94 *1.40 *1.37 *1.38 *1.46 0.26 *-16.69

S.D. 0.10 0.24 0.77 0.68 1.44 4.35 10.76 72.43

better 0% 0% 2% 0% 6% 17% 27% 45%

worse 99% 94% 87% 90% 85% 79% 70% 49%

1. Mean and standard deviation of difference in running time.

2. Percentage of trials in which Pactmaxw2 is better (worse) than Korman.

3. mean is significant at 0.05 level.
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Table LVII. COMPARISON PACTMAXW2 WITH PACTUAL IN RUNNING
TIME (backtracking scheme).

edgeload = 0.3

n= 28 n= 32 n= 36 n = 40 n = 44 n= 48 n = 52 n= 56

mean *-0.22 *-0.10 *-0.34 *-0.44 *-0.50 *-2.12 *-8.37 *-9.11

S.D. 0.44 0.41 0.71 0.74 1.33 6.29 17.29 13.50

better 23% 9% 31% 44% 37% 55% 91% 92%

worse 1% 1% 4% 4% 6% 15% 4% 7%

edgeload = 0.5

n= 28 n= 32 n= 36

oIIa n = 44 n = 48 n= 52 n= 56

mean *-0.21 *-0.22 *-0.63 *-2.42 *-3.81 *-10.04 *-35.32 -57.25

S.D. 0.48 0.46 1.33 5.77 4.88 33.53 89.48 356.59

better 19% 20% 52% 66% 82% 83% 87% 70%

worse 0% 0% 11% 13% 10% 14% 13% 30%

1. Mean and standard deviation of difference in running time.

2. Percentage of trials in which Pactmaxw2 is better (worse) than Pactual.

3. mean is significant at 0.05 level.
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edgeload = 0.7

Table LVIII. COMPARISON PACTMAXW2 WITH PACTUAL IN RUNNING
TIME (backtracking scheme).

n= 28 n= 32 n= 36 n = 40 n= 44
OO1!CJ n = 52 n = 56

mean *-0.08 *-0.26 *-0.98 *-2.08 *-4.46 *-15.31 *-54.46 *-412.01

S.D. 0.27 0.60 1.46 4.68 13.78 60.16 83.31 1381.41

better 8% 26% 57% 69% 82% 82% 83% 83%

worse 0% 4% 6% 7% 8% 16% 16% 17%

edgeload = 0.9

n= 28 n= 32 n= 36

ôrIIc r̂,̂rIIc n = 48 n= 52 n = 56

mean 0.00 0.00 *-0.27 *-0.17 *-0.58 *-0.84 *-2.61 *-7.82

S.D. 0.00 0.00 0.45 0.38 1.18 3.57 12.70 29.93

better 0% 0% 27% 17% 54% 38% 43% 72%

worse 0% 0% 0% 0% 5% 8% 9% 12%

1 Mean and standard deviation of difference in running time.

2. Percentage of trials in which Pactmaxw2 is better (worse) than Pactual.

3. '*' mean is significant at 0.05 level.
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Table LIX. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Korman algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ikorman jkorman - 5.96 183.86 6.40 2 - - - -

ikorman jkorlm 2.0 5.96 181.20 6.40 2 100 0 0 0

ikorman jkorlm 1.9 5.97 147.21 2 99 1 0 0

ikorman jkorlm 1.8 5.98 132.28 2 98 2 0 0

ikorman jkorlm 1.7 5.98 122.84 1 98 2 0 0

ikorman jkorlm 1.6 5.99 95.73 1 97 3 0 0

ikorman jkorlm 1.5 5.99 87.64 1 97 3 0 0

ikorman jkorlm 1.4 5.99 75.55 1 97 3 0 0

ikorman jkorlm 1.3 6.03 67.18 1 93 7 0 0

ikorman jkorlm 1.2 6.13 59.89 1 83 17 0 0

ikorman jkorlm 1.1 6.18 52.14 1 78 22 0 0

*** Color column oflimit technique is not exact.
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Table LX. VERTICES = 40, EDGELOAD -  0.5 (backtracking scheme).
Korman algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ikorman jkorman - 8.23 1108.45 9.44 15 - - - -

ikorman jkorlm 2.0 8.26 953.68 9.44 13 97 3 0 0

ikorman jkorlm 1.9 8.30 792.51 11 93 7 0 0

ikorman jkorlm 1.8 8.44 532.98 7 79 21 0 0

ikorman jkorlm 1.7 8.54 432.29 6 69 31 0 0

ikorman jkorlm 1.6 8.62 309.19 4 61 39 0 0

ikorman jkorlm 1.5 8.71 228.64 3 53 46 1 0

ikorman jkorlm 1.4 8.81 174.89 2 43 56 1 0

ikorman jkorlm 1.3 8.88 115.05 1 35 65 0 0

ikorman jkorlm 1.2 9.04 87.12 I 25 69 6 0

ikorman jkorlm 1.1 9.18 58.24 1 21 63 16 0

*** Color column of limit technique is not exact.
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Table LXI. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Korman algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ikorman jkorman - 11.88 833.55 13.14 11 - - - -

ikorman jkorlm 2.0 11.88 784.93 13.14 11 100 0 0 0

ikorman jkorlm 1.9 11.92 630.27 9 96 4 0 0

ikorman jkorlm 1.8 11.99 521.74 7 89 11 0 0

ikorman jkorlm 1.7 12.01 433.21 6 87 13 0 0

ikorman jkorlm 1.6 12.17 331.70 4 71 29 0 0

ikorman jkorlm 1.5 12.25 260.83 3 64 35 1 0

ikorman jkorlm 1.4 12.37 178.60 2 54 43 3 0

ikorman jkorlm 1.3 12.53 126.64 2 38 59 3 0

ikorman jkorlm 1.2 12.69 85.02 1 28 64 7 1

ikorman jkorlm 1.1 12.99 55.16 1 16 60 21 3

* * *  C o lo r  c o lu m n  o f  l im it  te c h n iq u e  is n o t  ex a c t.
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T a b le  L X II . V E R T IC E S  =  4 0 , E D G E L O A D  =  0 .9  (b a c k tr a c k in g  sc h e m e ).
K o r m a n  a lg o r ith m  w ith  lim it te c h n iq u e  o n  d ifferen t v a lu e s  o f
p a r a m e te r  lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ikorman jkorman - 19.20 78.83 19.53 1 - - - -

ikorman jkorlm 2.0 19.20 78.73 19.53 1 100 0 0 0

ikorman jkorlm 1.9 19.21 75.59 1 99 1 0 0

ikorman jkorlm 1.8 19.24 71.31 1 96 4 0 0

ikorman jkorlm 1.7 19.25 68.74 1 95 5 0 0

ikorman jkorlm 1.6 19.26 64.80 1 94 6 0 0

ikorman jkorlm 1.5 19.30 61.23 1 90 10 0 0

ikorman jkorlm 1.4 19.31 57.23 1 89 11 0 0

ikorman jkorlm 1.3 19.36 51.44 1 84 16 0 0

ikorman jkorlm 1.2 19.45 47.16 1 75 25 0 0

ikorman jkorlm 1.1 19.44 44.17 0 77 22 1 0

*** Color column of limit technique is not exact.
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Table LXIII. VERTICES = 40, EDGELOAD -  0.3 (backtracking scheme).
Pactual algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ipactual jpactual - 5.96 129.22 6.25 3 - - - -

ipactual jpaclm 2.0 5.96 126.79 6.25 3 100 0 0 0

ipactual jpaclm 1.9 5.97 114.18 3 100 0 0 0

ipactual jpaclm 1.8 5.98 103.84 3 99 1 0 0

ipactual jpaclm 1.7 5.98 93.32 2 99 1 0 0

ipactual jpaclm 1.6 5.99 84.16 2 97 3 0 0

ipactual jpaclm 1.5 5.99 74.82 2 95 5 0 0

ipactual jpaclm 1.4 5.99 69.41 2 98 2 0 0

ipactual jpaclm 1.3 6.03 61.13 2 95 5 0 0

ipactual jpaclm 1.2 6.13 54.34 1 93 7 0 0

ipactual jpaclm 1.1 6.18 48.24 l 88 12 0 0

*** Color column of limit technique is not exact.
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Table LXIV. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Pactual algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ipactual jpactual - 8.23 702.96 9.35 16 - - - -

ipactual jpaclm 2.0 8.24 594.18 9.35 14 99 1 0 0

ipactual jpaclm 1.9 8.30 478.19 11 93 7 0 0

ipactual jpaclm 1.8 8.43 396.20 9 80 20 0 0

ipactual jpaclm 1.7 8.49 327.42 8 74 26 0 0

ipactual jpaclm 1.6 8.51 230.38 6 72 28 0 0

ipactual jpaclm 1.5 8.66 188.70 5 58 41 1 0

ipactual jpaclm 1.4 8.77 127.46 3 46 54 0 0

ipactual jpaclm 1.3 8.83 105.58 3 41 58 1 0

ipactual jpaclm 1.2 8.95 72.74 2 30 68 2 0

ipactual jpaclm 1.1 9.16 55.33 2 21 65 14 0

*** Color column oflimit technique is not exact.
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Table LXV. VERTICES = 40, EDGELOAD = 0.7 {backtracking scheme).
Pactual algorithm with limit technique on different values of
parameter lim

nucv ncv lim color m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
a p

3-
ap

ip ac tu a l jp ac tu a l - 11.88 479.94 13.08 12 - - - -

ip ac tu a l jpaclm 2.0 11.88 438.69 13.08 11 100 0 0 0

ip ac tu a l jpaclm 1.9 11.92 367.54 9 96 4 0 0

ip ac tu a l jpac lm 1.8 11.95 312.41 8 93 7 0 0

ip ac tu a l jpaclm 1.7 12.03 309.02 8 85 15 0 0

ip ac tu a l jpaclm 1.6 12.06 222.93 6 82 18 0 0

ip ac tu a l jpaclm 1.5 12.17 181.35 5 71 29 0 0

ip ac tu a l jpac lm 1.4 12.20 150.44 4 68 32 0 0

ip ac tu a l jpaclm 1.3 12.51 110.41 3 41 55 4 0

ip ac tu a l jpaclm 1.2 12.60 76.59 2 2}7 54 9 0

ip ac tu a l jpac lm 1.1 12.82 56.79 2 24 58 18 0

***  C o lo r  c o lu m n  o f  lim it te c h n iq u e  is n o t  e x a c t.
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Table LXVI. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pactual algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ipactual jpactual - 19.20 60.31 19.50 2 - - - -

ipactual jpaclm 2.0 19.20 60.73 19.50 2 100 0 0 0

ipactual jpaclm 1.9 19.22 59.17 2 98 2 0 0

ipactual jpaclm 1.8 19.23 59.17 2 97 3 0 0

ipactual jpaclm 1.7 19.25 55.91 2 95 5 0 0

ipactual jpaclm 1.6 19.22 54.84 2 98 2 0 0

ipactual jpaclm 1.5 19.24 51.88 2 96 4 0 0

ipactual jpaclm 1.4 19.28 50.43 2 92 8 0 0

ipactual jpaclm 1.3 19.30 47.97 2 90 10 0 0

ipactual jpaclm 1.2 19.40 44.11 2 80 20 0 0

ipactual jpaclm 1.1 19.42 43.08 2 78 22 0 0

*** Color column of limit technique is not exact.
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Table LXVII. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Prevent4a algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

iprevent4a jprevent4a - 5.96 111.01 6.26 3 - - - -

iprv4a jpv41m 2.0 5.96 109.75 6.26 3 100 0 0 0

iprv4a jpv41m 1.9 5.96 99.82 3 100 0 0 0

iprv4a jpv41m 1.8 5.97 89.77 2 99 1 0 0

iprv4a jpv41m 1.7 5.98 84.61 2 98 2 0 0

iprv4a jpv41m 1.6 5.99 75.20 2 97 3 0 0

iprv4a jpv41m 1.5 6.00 66.78 2 96 4 0 0

iprv4a jpv41m 1.4 6.01 63.33 2 95 5 0 0

iprv4a jpv41m 1.3 6.00 58.00 2 97 2 1 0

iprv4a jpv41m 1.2 6.06 51.91 1 90 10 0 0

iprv4a jpv41m 1.1 6.13 47.08 1 83 17 0 0

*** Color column of limit technique is not exact.



179

Table LXVIII. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Prevent4a algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

iprevent4a jprevent4a - 8.23 631.19 9.35 15 - - - -

iprv4a jpv41m 2.0 8.25 529.16 9.35 13 98 2 0 0

iprv4a jpv41m 1.9 8.33 397.95 10 90 10 0 0

iprv4a jpv41m 1.8 8.35 320.81 8 88 12 0 0

iprv4a jpv41m 1.7 8.48 291.73 7 75 25 0 0

iprv4a jpv41m 1,6 8.56 219.60 6 68 31 1 0

iprv4a jpv41m 1.5 8.65 166.53 4 58 42 0 0

iprv4a jpv41m 1.4 8.78 120.59 3 47 51 2 0

iprv4a jpv41m 1.3 8.87 100.86 3 38 60 2 0

iprv4a jpv41m 1.2 8.90 77.63 2 33 67 0 0

iprv4a jpv41m 1.1 9.09 54.67 2 26 62 12 0

*** Color column oflimit technique is not exact.
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Table LXIX. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Prevent4a algorithm with limit technique on different values of
parameter lim

n u cv ncv lim co lo r m oves first
c o lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ip rev en t4 a jp rev en t4 a - 11.88 532.47 13.31 13 - - - -

ip rv4a jpv41m 2.0 11.89 497.11 13.31 12 99 1 0 0

iprv4a jpv41m 1.9 11.95 452.62 11 93 7 0 0

ip rv4a jpv41m 1.8 11.98 351.54 9 90 10 0 0

ip rv4a jpv41m 1.7 12.04 314.78 8 84 16 0 0

ip rv4a jpv41m 1.6 12.18 234.28 6 70 30 1 0

ip rv4a jpv41m 1.5 12.26 175.92 5 67 28 5 0

ip rv4a jpv41m 1.4 12.44 140.39 4 50 45 4 1

ip rv4a jpv41m 1.3 12.61 101.48 3 36 56 7 I

ip rv4a jpv41m 1.2 12.79 78.17 2 29 53 16 2

iprv4a jpv41m 1.1 12.99 58.44 2 18 56 23 3

*** Color column of limit technique is not exact.
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Table LXX. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Prevent4a algorithm with limit technique on different values of
parameter lim

nucv ncv lim co lo r m oves first
c o lo r

tim e
(sec)

0-
a p

1-
ap

2-
a p

3-
ap

ip rev en t4 a jp rev en t4 a - 19.20 59.34 19.52 3 - - - -

ip rv4a jpv41m 2.0 19.20 59.34 19.52 3 100 0 0 0

iprv4a jpv41m 1.9 19.22 59.37 3 98 2 0 0

ip rv4a jpv41m 1.8 19.21 57.50 3 99 1 0 0

iprv4a jpv41m 1.7 19.24 54.53 3 96 4 0 0

ip rv4a jpv41m 1.6 19.28 51.74 3 92 8 0 0

iprv4a jpv41m 1.5 19.28 51.67 3 92 8 0 0

ip rv4a jpv41m 1.4 19.38 47.70 3 82 18 0 0

ip rv4a jpv41m 1.3 19.41 47.32 3 79 21 0 0

ip rv4a jpv41m 1.2 19.39 44.82 3 82 17 1 0

iprv4a jpv41m 1.1 19.47 42.30 3 73 27 0 0

*** Color column of limit technique is not exact.
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Table LXXI. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(see)

0-
ap

1-
ap

2-
ap

3-
ap

ip ac tu a l jp aen h 0.3 1.0 5.96 129.22 6.25 3 100 0 0 0

ip ac tu a l jp aen h 0.9 5.96 129.22 3 100 0 0 0

ip ac tu a l jp aen h 0.8 5.96 128.53 3 100 0 0 0

ip ac tu a l jp aen h 0.7 5.96 124.20 3 100 0 0 0

ip ac tu a l jp aen h 0.6 5.97 115.41 3 99 1 0 0

ip ac tu a l jp aen h 0.5 5.97 101.95 3 99 1 0 0

ip ac tu a l jp aen h 0.4 5.97 83.55 2 99 1 0 0

ip ac tu a l jp aen h 0.3 5.98 74.70 2 98 2 0 0

ip ac tu a l jp aen h 0.2 5.98 59.61 2 98 2 0 0

ip a c tu a l jp aen h 0.1 6.07 49.91 1 89 11 0 0
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Table LXXI1. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
a p

ip ac tu a l jp ae n h 0.5 1.0 8.23 702.96 9.35 17 100 0 0 0

ip ac tu a l jp ae n h 0.9 8.23 702.15 17 100 0 0 0

ip a c tu a l jp ae n h 0.8 8.25 672.20 17 98 2 0 0

ip a c tu a l jp a e n h 0.7 8.30 522.32 13 93 7 0 0

ip ac tu a l jp aen h 0.6 8.48 366.15 9 75 25 0 0

ip ac tu a l jp ae n h 0.5 8.65 209.67 5 58 42 0 0

ip ac tu a l jp aen h 0.4 8.84 129.26 3 44 51 5 0

ip ac tu a l jp ae n h 0.3 9.00 90.25 2 31 61 8 0

ip ac tu a l jp ae n h 0.2 9.09 64.18 2 27 60 13 0

ip ac tu a l jp ae n h 0.1 9.21 51.05 1 19 64 17 0
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Table LXXIII. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

O-
ap

1-
ap

2-
ap

3-
ap

ip ac tu a l jp aen h 0.7 1.0 11.88 479.94 13.08 12 100 0 0 0

ip ac tu a l jp aen h 0.9 11.89 445.24 11 99 1 0 0

ip ac tu a l jp aen h 0.8 11.96 331.52 8 92 8 0 0

ip ac tu a l jp aen h 0.7 12.15 179.18 5 74 25 1 0

ip ac tu a l jp aen h 0.6 12.41 98.31 3 50 47 3 0

ip ac tu a l jp aen h 0.5 12.66 72.39 2 37 50 11 2

ip ac tu a l jp aen h 0.4 12.80 58.85 2 30 50 18 2

ip ac tu a l jp aen h 0.3 12.85 55.61 2 26 53 19 2

ip ac tu a l jp aen h 0.2 12.91 51.31 2 22 55 21 2

ip ac tu a l jp aen h 0.1 12.99 45.10 2 19 53 26 2
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Table LXXIV. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
a p

3-
ap

ip ac tu a l jp aen h 0.9 1.0 19.20 60.31 19.50 2 100 0 0 0

ip ac tu a l jp aen h 0.9 19.22 54.27 2 98 2 0 0

ip ac tu a l jp aen h 0.8 19.34 46.84 2 86 14 0 0

ip ac tu a l jp aen h 0.7 19.41 43.80 2 79 21 0 0

ip ac tu a l jp aen h 0.6 19.44 42.65 2 76 24 0 0

ip ac tu a l jp aen h 0.5 19.44 42.53 2 76 24 0 0

ip ac tu a l jp aen h 0.4 19.44 42.53 2 76 24 0 0

ip ac tu a l jp aen h 0.3 19.44 42.49 2 76 24 0 0

ip ac tu a l jp ae n h 0.2 19.44 42.20 2 76 24 0 0

ip ac tu a l jp aen h 0.1 19.45 41.39 2 75 25 0 0
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Table LXXV. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Prevent4a algorithm with epsilon technique on different values of
parameter eps

nu cv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

iprv4a jpv4nh 0.3 1.0 5.96 111.01 6.26 3 100 0 0 0

iprv4a jp v4nh 0.9 5.96 110.79 3 100 0 0 0

iprv4a jpv4nh 0.8 5.96 110.31 3 100 0 0 0

ip rv4a jp v4nh 0.7 5.97 106.78 3 99 1 0 0

iprv4a jpv4nh 0.6 5.97 102.69 3 99 1 0 0

iprv4a jpv4nh 0.5 5.97 91.41 3 99 1 0 0

iprv4a jpv4nh 0.4 5.97 78.08 2 99 1 0 0

ip rv4a jpv4nh 0.3 5.97 66.79 2 99 1 0 0

iprv4a jp v4nh 0.2 5.98 57.24 2 95 5 0 0

iprv4a jp v 4 n h 0.1 6.11 47.45 I 85 15 0 0
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Table LXXVI. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Prevent4a algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ip rv4a jpv4nh 0.5 1.0 8.23 631.19 9.35 17 100 0 0 0

iprv4a jp v 4 n h 0.9 8.23 626.65 17 100 0 0 0

iprv4a jp v 4 n h 0.8 8.23 612.64 16 100 0 0 0

ip rv4a jp v 4 n h 0.7 8.24 567.95 15 99 1 0 0

iprv4a jp v 4 n h 0.6 8.32 449.68 12 91 9 0 0

iprv4a jpv4nh 0.5 8.59 216.44 6 64 36 0 0

iprv4a jp v 4 n h 0.4 8.79 120.09 3 47 50 3 0

iprv4a jpv4nh 0.3 8.96 74.37 2 33 61 6 0

iprv4a jp v 4 n h 0.2 9.06 61.59 2 29 59 12 0

ip rv 4 a jp v 4 n h 0.1 9.20 50.51 2 23 57 20 0
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Table LXXVII. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Prevent4a algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ip rv4a jpv4nh 0.7 1.0 11.88 532.47 13.31 14 100 0 0 0

ip rv4a jpv4nh 0.9 11.88 522.30 14 100 0 0 0

ip rv4a jp v 4 n h 0.8 11.90 468.44 13 98 2 0 0

ip rv4a jp v 4 n h 0.7 12.06 264.80 7 82 18 0 0

ip rv4a jp v 4 n h 0.6 12.43 113.66 3 50 45 5 0

iprv4a jp v4nh 0.5 12.86 70.81 2 28 48 22 2

ip rv4a jp v 4 n h 0.4 13.04 55.16 2 20 48 28 4

iprv4a jp v 4 n h 0.3 13.12 51.59 2 18 44 34 4

ip rv4a jp v 4 n h 0.2 13.16 49.19 2 18 42 34 6

iprv4a jp v 4 n h 0.1 13.24 44.83 ->4- 16 39 38 7
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Table LXXVIII. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Prevent4a algorithm with epsilon technique on different values of
parameter eps

n ucv ncv edge
load

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ip rv4a jp v 4 n h 0.9 1.0 19.20 59.34 19.52 3 100 0 0 0

iprv4a jp v4nh 0.9 19.22 55.35 3 98 2 0 0

iprv4a jp v4nh 0.8 19.37 44.62 3 83 17 0 0

iprv4a jp v 4 n h 0.7 19.43 42.28 3 77 23 0 0

iprv4a jp v4nh 0.6 19.47 41.24 3 74 25 1 0

iprv4a jp v 4 n h 0.5 19.47 41.24 3 74 25 1 0

ip rv4a jp v4nh 0.4 19.47 41.24 3 74 25 1 0

iprv4a jp v4nh 0.3 19.47 41.24 3 74 25 1 0

iprv4a jp v4nh 0.2 19.47 41.20 3 74 25 1 0

iprv4a jpv4nh 0.1 19.49 40.66 3 72 27 1 0
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V I I .  A  B R A N C H -A N D -B O U N D  P R E F E R E N C E  F U N C T IO N

C o m bin ing  a p a ir  o f  nucv-selection  an d  ncv-selection  fu n ctio n s m en tio n ed  in 

c h a p te r  6 w ith  th e  b ran c h -an d -b o u n d  schem e m en tio n ed  in c h a p te r  4 form s a  heuristic  

a lg o rith m . H ow  can we build  a b ran c h -an d -b o u n d  preference function? F ro m  F igure 

60, we find  th a t  th e  "exact color" is nearly  a  linear  fu n c tio n  o f  th e  n u m b er o f  vertices. 

T h u s , we co n stru c t a preference function , every d a tu m  o f  w hich is the  m ean  o f  the 

e x ac t co lo rs o f  a sequence o f  ran d o m  g rap h s a re  sto red  in ta b u la r  form , an d  th en  use 

th e  linear  in te rp lo a tio n  to  find th e  value o f  th e  preference fu n ctio n  on  a  given g rap h . 

In  th is  ch ap te r, we describe a b ran ch -an d -b o u n d  preference fu n ctio n , a n d  p resen t 

c o m p u ta tio n a l resu lts u n d e r th e  b ran ch -an d -b o u n d  schem e.

A . C O N S T R U C T IO N  O F  A P R E F E R E N C E  F U N C T IO N

F o r a c-partia lly  co lored  g rap h  G ' =  (V ', E '), th e  p re feren ce  fu n c tio n  P (n , c, m),

c(c — 1)
w h ere  n  =  | V ' | ,  and  m  =  | E ' | --------- -------, is defined to  be the  difference betw een

th e  expected -co lo rs o f  G ' and  c. T he exp ec ted -co lo rs  o f  G ' is th e  m ean  value  o f  a 

seq u en ce  o f  ch ro m atic  num bers o f  ran d o m  g raphs hav ing  the  follow ing p roperties: 

e ach  o f  th em  h as  | V ' I vertices, a com pletely  co n n ected  su b g rap h  G " o f  o rd e r  c, and  

| £> j _  c(c ~  ^  edges in ad d itio n  to  th o se  th a t a rc  in G ". T he la rg er th e  value  o f  the 

p reference fu n ctio n  is, th e  less the degree o f  preference is. In  o rd er to  co m p u te  the 

va lu e  P (n , c, m ), we in te rp o la te  linearly  along  each  p a ram ete r o f  th e  p reference  

fu n c tio n  P, w hose d a ta  are sto red  in ta b u la r  form . W e are go ing  to  describe  the 

co n s tru c tio n  o f  the  preference fu n ctio n  by tw o  steps. F irs t we p o rtra y  h o w  to  c rea te  

th e  reference tab le  o f  th e  p reference fu n ction . Second we depict h o w  to  in te rp o la te  th e  

reference tab le  fo r a p a rtia lly  co lo red  g raph .
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T here  a re  three p a ram ete rs  fo r the  p reference fu n ctio n  P. W hile considering  the  

firs t p a ram ete r, the n u m b er o f  vertices, we s ta r t a t 0 an d  increase it by  ver tex -in crem en t 

e a c h  tim e. Because every exact a lg o rith m  we developed  takes 0 ( 2 |v'1) am o u n t o f  tim e 

to  get th e  ch ro m atic  num ber, we lim it th e  n u m b er o f  vertices in order to o b ta in  the

reference  tab le  w ith in  a reaso n ab le  a m o u n t o f  co m p u ta tio n a l tim e. F o r a given

n u m b e r  o f  vertices, n, m en tioned  above, the  o rder o f  any possible com plete ly

co n n e c te d  su b g rap h  is betw een 0 and  n. W h en  tak ing  a  closer look , we d iscover th a t

th e  case, c =  0, only occurs a t the  beginning  m ovem ent in the  search  tree, a n d  the  case,

c =  1, can  be converted  to  an o th e r  case, c =  2, by m aking  a m inor ad justm en t. A lso

P (n , n, m ) is alw ays equal to  0. T hus, we divide th e  in terval [ 2  .. n -  l ]  in to

co re -sh a res  sub in tervals. F o r a given n u m b er o f  vertices, n, and  a given order, c, o f  a

com p le te ly  connected  subgraph , the  n u m b er o f  edges excep t those th a t are in the  given

com p le te ly  connected  su b g rap h  is w ith in  the  in terval [ 0  ..

~  ^ ____F o r any  case, m  < c, p(n , c, m ) =  0 b ecause  no  new  co lo r
2 2

w ill be in troduced  during th e  rem ain ing  p a rt o f  coloring. A lso p (n , c,

v ( v - l )  c ( c - l ) .) =  n  — c because the orig inal g rap h  is a com p le te  g rap h  o f  o rder
v( v 1) — 1

c(c 1)
]  in ton. C o nsequen tly , we divide the in terval [ c  -  1 .. 2 - 2

ed g e -sh a res  sub in tervals. T h a t is, there  a re  usually  (edge-shares +  1) d a ta  en tries  in 

th e  reference tab le  fo r b o th  a g rap h  o f  fixed o rder an d  a com plete ly  co n n ec ted

su b g ra p h  o f  fixed o rder o f  the  given g rap h , a n d  (co re -sh ares  +  1) * (edge-shares +
v(v — 1)

1) d a ta  en tries for a g raph  o f  fixed order. I f  edge-shares > (--- ----------

c^c zJj- _  c), all in tegers w ith in  [ c  — 1 .. — — -  -  1 — — r-----]  a re  taken .

In  like m anner, all in tegers in [ 2  .. n -  l ]  a re  taken  for a specific n u m b er o f  vertices 

n  i f  core-shares >  n  -  3. F o r  each  en try , (n , c, m ), o f  th e  reference tab le , r ran d o m  

g rap h s , w hich have  p roperties: each  o f  tlw ' **.s n  vertices, a com plete ly  co n n ec ted  

su b g ra p h  o f  o rder c, a n d  m  edges besides th o se  th a t  a re  in th e  given co m ple te ly  

co n n ec ted  su bgraph , are  genera ted , any  ex ac t a lg o rith m  can  be used to  o b ta in  the
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c h ro m a tic  n u m b ers  o f  the  sequence o f ran d o m  g raphs, the expected-co lo rs is then  

fo u n d , an d  finally  the difference betw een th e  com p u ted  expected-co lors and  c is p laced 

in to  th e  c o n te n t o f  th is  entry . F o r som e en tries, th e  n u m b er o f  all possib le  g rap h s 

h av in g  the  sam e p roperties  m ay be less th a n  r. In  th is case, we co m p u te  the

ex p ected -co lo rs  by using all possible graphs.

Before describ ing the  in te rp o la tio n  a t  a partia lly  colored g rap h , we in tro d u ce  two

term s. F o r  a c -partia lly  co lored g raph  o f  o rder n, the  co red en sity  is defined to  be the

ra t io  o f  c to  n, an d  the  edgedensity  is the ra tio  o f  the  n u m b er o f  edges except th o se  th a t

a re  in the  co re  to  — —----- — — — . T he p rocedure  o f  in te rp o la tio n  is (1) to
2 2

fo rm alize  th e  given partia lly  coloring graph in to  the form  (n, c, m ), w here n is the 

n u m b e r  o f  vertices, c is the  num ber o f  colors having been used so far, an d  m is the 

n u m b er  o f  edges except those th a t are in the  core, (2) to  in te rp o la te  in th e  vertex 

d irec tio n , (3) to  in te rp o la te  ( if  necessary) in th e  core d irection , a n d  (4) to  in te rp o la te  

( i f  necessary ) in  the edge direction. W e assum e th a t p rocedures (2)-(4) alw ays try  to  

k eep  every tw o g raphs, w hich are either w ithin an  in te rp o la tio n  o r b e tw een  two 

co n secu tive  in te rp o la tio n s, in the sam e (o r closer) coredensity  and  edgedensity . F igures 

61-63 show' th a t  (1) function  l-in terpola iion  is a linear in te rp o la tio n  fu n ctio n  w hich  is 

to  in te rp o la te  a t the ta rg e t, w hose value is betw een th e  low er n e ig h b o r low nb  an d  the 

h ig h e r ne ig h b o r highnb  ; (2) fu n ctio n  edge-in terpo la tion  in te rp o la te s  linearly  a lo n g  the  

edge co o rd in a te  if  n is a  given d a tu m  in the  vertex co o rd in a te , an d  c is a lso  a given 

d a tu m  w ith  respect to  n in the  core coord inate ; (3) fu n ctio n  co re -in terp o la tio n  

in te rp o la te s  linearly along  the core co o rd in a te  if  n is a given d a tu m  in th e  vertex 

coord inate- (4) function  vertex-in terp o la tio n  does linear in te rp o la tio n  a long  th e  vertex 

co o rd in a te  i f  n  is n o t a  given d a tu m ; and  (5) function  p re fe re n ce -d eg ree  triggers ofT the  

in te rp o la tio n s , and  re tu rn s  the degree o f  p reference o f  a g raph . F o r  exam ple, P(4, 1, 

=  3 _  1 =  2 because any g rap h  hav ing  5 edges o f  o rd er 4 is 3 -co lo rab le ; P(4, 2, 2)
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=  2.2 — 2 =  0.2 because there  are 10 possible graphs, and  the m ean  o f all ch rom atic  

n u m b ers  is 2.2.

/*  linear in te rp o la tio n  a t targer, w hose value is betw een low nb 
a n d  h ighnb  */ 

function l-in te rpo la tion (
low nb, I* lower neighbor */
lowval, I* score value o f  lower neighbor */
h ighnb , /* higher neighbor */
highval, I* score value o f  higher neighbor *j
target: integer): real;

begin
re tu rn  (low val * (h ighnb -  targ e t) +  highval * (ta rg e t -  low nb)) 

/ (h ig h n b  -  low nb)
end;

function edge-in terpo la tion(n , c: integer, edensity. real), real,
I* n is a given d a tu m  in th e  vertex coord inate , and  c is also a given 

d a tu m  w. r. t. n in  the core coord inate . */ 
var

em: integer; /* estim ated  edges */ 

begin
cm  *- edensity  * (n(n  -  1) -  c(c -  l))/2; 
if em is a given d a tu m  in the edge coord inate  w. r. t. (n , c) 

then re tu rn  P(n, c, em) 
else begin

A m ong the d a ta  po in ts in the  edge coord inate  w. r. t. (n, c), 
find m, which is the closest lower neighbor to  cm and 
m 2, w hich is th e  closest u p p er neighbor to  em; 

re tu rn  l-in te rp o la tio n (m (, P(n, c, m ,), m 2, P(n, c, m 2), em ), 

end 
end;

F igure 61. p a rt l o f  the  preference function
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function  co re-in terpo la tion(n : integer; edensity, edensity: real): real;
/*  n  is a  given d a ta  in the vertex co o rd in a te  */ 

var
ec: in teger; /* estim ated  size o f  core */ 

begin
ec «- n  * edensity;
if ec is a given d a tu m  in the  core  co o rd in a te  w. r. t. n 

th en  return edge-in terpo la tion(n , ec, edensity) 
else begin

A m ong the given d a tu m  p o in ts  in the  core  co o rd in a te  w. r. t. n, 
find c, w hich is the closest lower ne ighbor to  ec and  
c2 w hich is the closest u p p e r ne ig h b o r to  ec; 

return l-in terpo la tion(c ,, cdgc-in terpo la tion (n , c„  edensity), c2, 
edge-in terpo la tion(n , c2, edensity), ec); 

end 
end;

function vertex-in terpola tion(n : integer; edensity , edensity: real): real; 

begin
if n is a given d a tu m  in the  vertex co o rd in a te

then return co rc -in te rp o la tio n (n , edensity , edensity) 
else  begin

A m ong the given d a ta  p o in ts  in the vertex  co o rd in a te
find n, which is the closest lower n e ighbor to  n  an d  n2 w hich 
is the  closest up p er ne ig h b o r to n;

return l-in terpo la tion(n ,, co re -in te rp o la tio n ( n„ edensity , edensity ), 
n2,core-in terpo la tion( n2, edensity, edensity), n); 

end 
end;

Figure 62. p a rt 2 o f  the  preference function

B. C O M P U T A T IO N A L R E SU L T S

W hile building the  reference tab le  o f  en try  fo rm  (n , c, m ), we let the  

v ertex -increm en t =  4, core-shares =  8 be tw een  2 and  n -  1, edge-shares =  10 b e tw een

, v(v — 1) , _  _£fc ~  12. a n d 100 ran d o m  g rap h s  are  g en e ra ted  in o rder to
c -  1 a n d ------r --------- 2
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function preference-degree(n , c, m: in teger): real;
/* n: n u m b er o f  vertices,

c: n u m b er o f  vertices in  core,
m: n u m b er o f  edges except th o se  th a t  a re  in  core . */
var

edensity , edensity: real; /*  co red en sity  an d  edgedensity  */ 

begin
edensity  <- c/n;
e d e n s i ty «- (2 * m) / (n (n  -  1) -  c(c -  I));
re tu rn  vertex -in tc rp o la tio n (n , edensity , edensity); 

end

F igu re  63. p a rt 3 o f  th e  preference fu n ctio n

ca lcu la te  th e  expected-co lors. In o rder to  bu ild  the  reference tab le  in a rea so n a b le  

a m o u n t o f  tim e, we co m p u te  the  given d a ta  en tries u p  to  52 vertices. W e assu m e  inbuf 

c a n  h o ld  p en d ing  nodes u p  to  128.

G iven  a g raph , w e initially convert it to  a O -partially co lo rin g  n o d e  (re fer to  

c h a p te r  4) a n d  p lace it in to  outbuf. T he co lo ring  p rocess is to  rep ea tly  m ake use  o f  the  

fo llow ing  cycle: using D F S  to  find all m -p artia lly  co lo red  nodes, w hich  a rc  so rted  by  

th e  p reference degrees, in outbuf placing th em  in to  inbuf acco rd ing  to  c o rre sp o n d in g  

v a lues o f  calling  preference-degree fu n ctio n  w ith  c =  m , a n d  tran sfo rm in g  th e  h e a p so r t 

tree , inbuf to  th e  so rted  list, outbuf. T he co lo rin g  p rocess s to p s as so o n  as th e  le a f  o f  

a  co m p le te  co lo ring  ap p ears .

In  T ab les L X X IX -L X X X V I, th e  "best co lo r"  co lu m n  p resen ts  th e  n u m b e r  o f  

co lo rs  req u ired  for a com ple te  co loring  o f  v arious se lec tion  fu n ctio n s u n d e r  th e  

b ran c h -a n d -b o u n d  schem e. A  m in o r m o d ifica tion  on  th e  2-1 sw app ing  a n d  3-2 

sw ap p in g  h a s  been  d o n e  as follow: fo r each  sw app ing  m e th o d , in stead  o f  d o in g  the
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sw app ing  cycle until there  is no sw apping  cand ida te , we do the sw apping cycle no m ore 

th a n  once.

T ab les L X X IX -L X X X V I show  th a t (1) the  K o rm an  a lg o rith m  w ith e ith e r 2-1

sw app ing  or 2-1 sw apping  plus 1-1 sw apping is superior to  the K o rm an  a lgorithm ; and  

(2 ) th e  P ac tu a l a lg o rith m  w'ith 2-1 sw apping  is su p erio r to  th e  P actual a lgo rithm ; 

m o reo v er, it is slightly b e tte r th an  K orm an  a lgo rithm  except for v =  40 an d  edgeload  

-  0.9.

C. D IS C U S S IO N

T he precision  o f  th is heuristic  a lg o rith m  is determ ined  by the size o f  buffer, 

in b u f, for ho ld ing  pending  nodes o f  the sam e n u m b er o f  p a rtia l colors (refer to  c h ap te r 

4). T he preference fu n ctio n  p ro p o sed  in th is  ch ap te r is based  on  the  d a ta  w hich are 

o b ta in e d  from  the  m ean  o f  ch ro m atic  n um bers, using an  exact a lgo rithm , o f  100 

ran d o m  graphs.

F ro m  the  experim ental resu lts, a selection function  w ith in  the  b ran c h -an d -b o u n d  

schem e takes fewer fo rw ard  m oves b u t m ore  runn ing  tim e (over 5 0 % ) th an  the sam e 

se lec tion  fu n ctio n  w ith in  the  b ack track in g  schem e. T h e  lo o k -ah ead  p roced u re  does 

n o th in g  in the  b ran c h -a n d -b o u n d  schem e because  the  b ran ch -an d -b o u n d  schem e stops 

ru n n in g  u p o n  finishing a com plete  coloring. T he sw apping  cycle, finding a can d id a te  

an d  doing  sw apping , o f  a sw apping  m eth o d  will be do n e  once for each  forw ard  m ove. 

In  th e  b ran ch -a n d -b o u n d  schem e as w'e have previously  show n for the back track in g  

schem e, the K o rm an  a lg o rith m  w ith  sw apping  is su p erio r to  th e  K o rm an  algo rithm .
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Table LXX1X. VERTICES = 30, EDGELOAD = 0.3 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 5.02 38.81 0.303 5.02 1 100 0

ikorman jsucadja 38.96 0.337 5.02 1 100 0

ipkorman jkorman 37.51 0.315 5.02 1 100 0

ipactual jpactual 35.39 0.257 5.02 1 100 0

ipreventla jpreventla 37.05 0.345 5.02 1 100 0

iprevent2a jprevent2a 36.60 0.316 5.02 1 100 0

iprevent3a jprevent3a 36.19 0.243 5.02 1 100 0

iprevent4a jpreventda 35.33 0.236 5.02 1 100 0

iconnecta jconnecta 36.97 0.240 5.02 1 100 0

ikorqk2 jkorman 37.72 0.279 5.02 1 100 0

ikorw2 jkorman 37.09 0.281 5.02 0 100 0

ikorw21e jkorman 38.34 0.281 5.02 1 100 0

ikormaxw2 jkorman 37.44 0.281 5.02 0 100 0

ikormaxw21e jkorman 38.67 0.281 5.02 1 100 0

ikorqk23 jkorman 36.30 0.245 5.02 1 100 0

ikorw23 jkorman 35.90 0.246 5.02 1 100 0

ipactqk2 jpactual 35.23 0.237 5.02 1 100 0

ipactmaxw2 jpactual 35.24 0.227 5.02 1 100 0
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Table LXXX. VERTICES = 30, EDGELOAD = 0.5 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 7.02 78.92 0.920 7.02 2 100 0

ikorman jsucadja 80.21 0.916 7.02 2 100 0

ipkorman jkorman 76.39 0.876 7.02 2 100 0

ipactual jpactual 69.39 0.967 7.02 2 100 0

ipreventla jpreventla 71.96 0.950 7.02 2 100 0

iprevent2a jprevent2a 75.68 0.997 7.02 2 100 0

ipreventSa jprevent3a 66.93 0.918 7.02 2 100 0

ipreventda jprevent4a 62.93 1.016 7.02 2 100 0

iconnecta jconnecta 77.08 0.810 7.02 2 100 0

ikorqk2 jkorman 72.50 1.150 7.02 1 100 0

ikorw2 jkorman 75.39 1.207 7.02 1 100 0

ikorw21e jkorman 76.67 1.160 7.02 1 100 0

ikormaxw2 jkorman 70.43 1.155 7.02 1 100 0

ikormaxw21e jkorman 74.29 1.149 7.02 1 100 0

ikorqk23 jkorman 70.25 1.335 7.02 2 100 0

ikorw23 jkorman 65.16 1.209 7.02 2 100 0

ipactqk2 jpactual 70.75 1.085 7.02 2 100 0

ipactmaxw2 jpactual 70.91 1.087 7.02 2 100 0



199

Table LXXXI. VERTICES = 30, EDGELOAD = 0.7 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 10.00 73.91 0.603 10.00 2 100 0

ikorman jsucadja 76.50 0.599 10.00 2 100 0

ipkorman jkorman 73.42 0.631 10.00 2 100 0

ipactual jpactual 60.78 0.686 10.00 2 100 0

ipreventla jpreventla 68.72 0.734 10.00 2 100 0

iprevent2a jprevent2a 62.85 0.637 10.00 2 100 0

iprevent3a jprevent3a 63.92 0.655 10.00 2 100 0

iprevent4a jprevent4a 62.06 0.603 10.00 2 100 0

iconnecta jconnecta 84.48 0.861 10.00 3 100 0

ikorqk2 jkorman 65.36 0.623 10.00 1 100 0

ikorw2 jkorman 63.46 0.585 10.00 1 100 0

ikorw21e jkorman 65.31 0.570 10.00 1 100 0

ikormaxw2 jkorman 64.53 0.625 10.00 1 100 0

ikormaxw21e jkorman 66.32 0.608 10.00 1 100 0

ikorqk23 jkorman 57.73 0.556 10.00 2 100 0

ikorw23 jkorman 55.98 0.509 10.00 2 100 0

ipactqk2 jpactual 57.05 0.644 10.00 2 100 0

ipactmaxw2 jpactual 57.03 0.645 10.00 2 100 0
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Table LXXXII. VERTICES = 30, EDGELOAD = 0.9 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 15.87 31.88 0.163 15.87 1 100 0

ikorman jsucadja 32.37 0.179 15.87 1 100 0

ipkorman jkorman 30.92 0.124 15.87 1 100 0

ipactual jpactual 30.63 0.095 15.87 1 100 0

ipreventla jpreventla 30.69 0.100 15.87 1 100 0

iprevent2a jprevent2a 30.60 0.098 15.87 1 100 0

iprevent3a jprevent3a 30.58 0.090 15.87 1 100 0

iprevent4a jprevent4a 31.72 0.154 15.87 2 100 0

iconnecta j connecta 30.65 0.093 15.87 1 100 0

ikorqk2 jkorman 31.51 0.112 15.87 1 100 0

ikorw2 jkorman 31.51 0.112 15.87 1 100 0

ikorw21e jkorman 32.41 0.083 15.87 1 100 0

ikormaxw2 jkorman 31.51 0.112 15.87 1 100 0

ikormaxw21e jkorman 32.42 0.083 15.87 1 100 0

ikorqk23 jkorman 31.09 0.052 15.87 1 100 0

ikorw23 jkorman 31.00 0.050 15.87 1 100 0

ipactqk2 jpactual 30.73 0.069 15.87 1 100 0

ipactmaxw2 jpactual 30.73 0.069 15.87 1 100 0
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Table LXXXIII. VERTICES = 40, EDGELOAD = 0.3 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 5.96 172.85 0.882 5.96 5 100 0

ikorman jsucadja 172.52 0.882 5.96 5 100 0

ipkorman jkorman 148.46 0.856 5.96 5 100 0

ipactual jpactual 132.45 0.784 5.96 6 100 0

ipreventla jpreventla 140.32 0.826 5.96 6 100 0

iprevent2a jprevent2a 133.53 0.818 5.96 6 100 0

iprevent3a jprevent3a 134.39 0.827 5.96 6 100 0

iprevent4a jprevent4a 124.97 0.751 5.96 5 100 0

iconnecta jconnecta 162.78 0.800 5.96 7 100 0

ikorqk2 jkorman 156.05 0.871 5.96 4 100 0

ikorw2 jkorman 153.38 0.889 5.96 4 100 0

ikorw21e jkorman 157.20 0.830 5.96 4 100 0

ikormaxw2 jkorman 156.65 0.889 5.96 4 100 0

ikormaxw21e jkorman 161.26 0.837 5.96 4 100 0

ikorqk23 jkorman 126.72 0.828 5.96 4 100 0

ikorw23 jkorman 125.50 0.865 5.96 5 100 0

ipactqk2 jpactual 126.65 0.790 5.96 5 100 0

ipactmaxw2 jpactual 128.80 0.786 5.96 5 100 0
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Table LXXXIV. VERTICES = 40, EDGELOAD = 0.5 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0 -

ap
1-

ap

ikorman jkorman 8.23 809.70 1.456 8.23 22 100 0

ikorman jsucadja 804.02 1.477 8.23 24 100 0

ipkorman jkorman 795.17 1.627 8.23 27 100 0

ipactual jpactual 564.77 1.533 8.23 24 100 0

ipreventla j prevent la 700.98 2.108 8.23 28 100 0

iprevent2a jprevent2a 646.85 1.755 8.23 27 100 0

iprevent3a jprevent3a 649.86 1.876 8.23 27 100 0

iprevent4a jprevent4a 600.05 1.623 8.23 26 100 0

iconnecta jconnecta 920.15 1.702 8.23 38 100 0

ikorqk2 jkorman 697.71 1.465 8.23 18 100 0

ikorw2 jkorman 693.52 1.432 8.23 18 100 0

ikorw21e jkorman 701.82 1.455 8.23 17 100 0

ikormaxw2 jkorman 719.68 1.403 8.23 18 100 0

ikormaxw21e jkorman 723.60 1.437 8.23 18 100 0

ikorqk23 jkorman 549.69 1.458 8.23 24 100 0

ikorw23 jkorman 562.62 1.419 8.23 30 100 0

ipactqk2 jpactual 541.32 1.551 8.23 21 100 0

ipactmaxw2 jpactual 542.22 1.548 8.23 20 to o 0
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Table LXXXV. VERTICES = 40, EDGELOAD = 0.7 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 11.88 575.70 0.819 11.88 17 100 0

ikorman jsucadja 581.97 0.809 11.88 18 100 0

ipkorman jkorman 546.78 0.888 11.88 20 100 0

ipactual jpactual 366.46 0.906 11.88 16 100 0

ipreventla jprevent la 435.31 0.868 11.88 19 100 0

iprevent2a jprevent2a 394.58 0.807 11.88 18 100 0

iprevent3a jprevent3a 383.48 0.797 11.88 17 100 0

iprevent4a jprevent4a 398.99 0.846 11.88 19 100 0

iconnecta jconnecta 551.03 1.082 11.88 24 100 0

ikorqk2 jkorman 485.78 0.822 11.88 13 100 0

ikorw'2 jkorman 477.00 0.809 11.88 13 100 0

ikorw21e jkorman 452.62 0,784 11.88 11 100 0

ikormaxw2 jkorman 503.17 0.891 11.88 14 100 0

ikormaxw21e jkorman 471.21 0.825 11.88 12 100 0

ikorqk23 jkorman 400.75 0.929 11.88 29 100 0

ikorw23 jkorman 394.14 0.932 11.88 35 100 0

ipactqk2 jpactual 336.00 0.944 11.88 14 100 0

ipactmaxw2 jpactual 337.41 0.961 11.88 13 100 0
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Table LXXXVI. VERTICES = 40, EDGELOAD = 0.9 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 19.20 72.87 0.630 19.20 2 100 0

ikorman jsucadja 73.62 0.619 19.20 2 100 0

ipkorman jkorman 56.49 0.541 19.20 3 100 0

ipactual jpactual 52.17 0.415 19.20 3 100 0

ipreventla jpreventla 55.13 0.489 19.20 3 100 0

iprevent2a jprevent2a 52.20 0.455 19.20 3 100 0

iprevent3a jprevent3a 54.94 0.534 19.20 3 100 0

iprevent4a jprevent4a 61.25 0.557 19.20 4 100 0

iconnecta jconnecta 75.18 1.642 19.21 4 99 1

ikorqk2 jkorman 56.61 0.477 19.20 1 100 0

ikonv2 jkorman 56.73 0.471 19.20 1 100 0

ikorw21e jkorman 61.57 0.633 19.20 1 100 0

ikormaxw2 jkorman 56.44 0.472 19.20 1 100 0

ikormaxw21e jkorman 61.43 0.636 19.20 1 100 0

ikorqk23 jkorman 51.42 0.415 19.20 5 100 0

ikorw23 jkorman 50.14 0.377 19.20 6 100 0

ipactqk2 jpactual 51.46 0.428 19.20 3 100 0

ipactmaxw2 jpactual 51.46 0.428 19.20 3 100 0
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VIII. CONCLUSIONS

A . S U M M A R Y

The graph coloring problem (GCP) is a classic graph related problem. In 

addition, it is NP-complete. There are many well-known algorithms for the GCP. 

We distinguish a good graph coloring algorithm by two parameters, the number of 

forward moves and the running time, which are obtained by running the algorithms 

on a sequence of random graphs. From all the algorithms we have tried, we have 

found two variations on Korman which seem to be beneficial especially for finding 

exact colorings. We have not tested these algorithms on graphs of order more than 

56. Thus, although one might suspect that similar conclusions will hold for larger 

graphs, we do not know this. The evidence is entirely experimental. No asymptotic 

results have been proved to show that the trend established on graphs of up to 56 

vertices will continue. Although we have looked at some heuristic algorithms, our 

results are mainly in exact colorings. From the observation of experimental results, 

we draw the following conclusions.

(1) The Korman algorithm which has been the de facto standard for many years 

is a simple and efficient algorithm. For small graphs, whose order is smaller than 40, 

the Korman algorithm with backtracking finds the chromatic number reasonably

quickly.

(2) The Pactual algorithm substantially cuts the number of forward moves, but 

the additional computational time is, however, also significant. For graphs of order 

36, 40, 44, 48, 52, and 56 on edgeload = 0.3, Pactual saves 25% - 42% forward moves 

over Korman. For graphs o f  order 36, 40, 44, 48, 52, and 56 on edgeload = 0.5, 

Pactual saves 36% - 59% forw ard m o v es  over  K orm an. For graphs o f  order 32, 36, 

40 44 48, 52, and 56 on  ed ge load  = 0.7, Pactual saves 29% - 63% forward moves over
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K o rm an . F o r  g rap h s o f  o rder 36, 40, 44, 48, 52, and  56 on edgeload =  0.9, Pactual 

saves 23%  - 52%  forw ard  m oves over K orm an . H ow ever, P ac tu a l is slow er th an  

K o rm a n  excep t th a t  n =  52 on edgeload =  0.7 (saving 35%), and  n =  56 on cdgeload

=  0 .5 , 0.7, a n d  0.9 (sav ing  10% - 24% ). O ne m ight conjecture th a t for large graphs, 

th e  c o m p ariso n  w ould be sim ilar to  g raphs o f  order 56. How ever, th is is n o t certain .

(3) The effect o f  adding  th e  2-1 sw apping to the K orm an a lgorithm  or any  o f  its 

v a ria tio n  is significantly  beneficial, especially when edgeload = 0.5 and  0.7. For 

g rap h s  o f  o rd er 48, 52, a n d  56 on cdgcload =  0.3, K orw 2 is 10% to 18% faste r th an  

K o rm an . F o r g raphs o f  o rder 40, 44, 48, 52, and  56 on edgeload =  0.5, Korw2 is 12% 

to  20%  faster th an  K orm an. F o r graphs o f  order 40, 44, 48, 52, an d  56 on edgeload 

=  0 .7 , K orw 2 is 10% to  16% faster th an  K orm an. It seems th a t Korw2 will n o t run 

fa s te r  th an  K o rm an  for graphs o f  order less th an  52 on 90%  edgeload. F o r g rap h s o f 

o rd e r  36, 44, 48, 52, an d  56 on edgeload = 0.3, Pactm axw 2 is 14% to  33%  faste r th an  

P ac tu a l. F o r g raphs o f  order 36, 40, 44, 48, 52, and 56 on edgeload =  0.5, Pactm axw 2 

is 10%  to  25%  faster th an  Pactual. F or g raphs o f order 36, 40, 44, 48, 52, an d  56 on 

ed g e lo ad  = 0.7, Pactm axw 2 is 12% to  25%  faster th an  Pactual. F or g raphs o f  order 

44, 48, 52, and  56 on edgeload =  0.9, Pactm axw 2 is 13% to  25%  faste r th an  P actual.

S w apping  app ears  to  be beneficial in th e  m ean except perhaps on som e g raphs 

o f  sm all order. Pactual only  begins to  be beneficial in term s o f  ru n n in g  tim e on g raphs 

o f  o rd er ap p rox im ate ly  56. H ow ever, P ac tua l and  sw apping to g ether, P actm axw 2, 

a p p e a r  to  be exceptionally  beneficial for g raphs o f  o rder 56. A lth o u g h  we do n o t know  

th is  fo r certain , we suspect th a t for g raphs o f  higher order, these varia tions on K orm an  

will p ro v e  to  be a t least as beneficial as on g rap h s o f  o rder 56.

(4) The lo o k -ahead  p rocedure , w hich elim inates from  fu rth e r  co n sid e ra tio n  a 

b lock  vertex (refer to  ch ap te r 6) and  rem oves b lock  colors (refer to  ch ap te r 6) from  the
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feasib le  co lo r set, significantly  im proved runn ing  tim e and  the nu m b er o f  forw ard

m oves.

(5 ) U n d e r n o n -b ack track in g , the P actual a lgorithm  w ith  2-1 sw apping colors a 

g ra p h  w ith  few er colors th an  the K orm an algorithm . Pactm axw 2 uses the nu m b er o f 

h eu ris tic  co lo rs w hich is ab o u t 0.13 - 0.38 colors closer to the chrom atic  n u m b er th an  

K o rm an  except n =  28 on  edgeload =  0.9, n =  32 on edgeload =  0.5 and 0.9, n = 

36 o n  edgeload  =  0.3, an d  n =  40 on edgeload =  0.9, a b o u t 0.02 - 0.09 co lo rs closer 

th a n  K o rm an . F o r  g rap h s o f  o rder 56 on edgeload = 0.5, 0.7, an d  0.9, Pactm axw 2 is 

b e tte r  th a n  K o rm an  by th e  am o u n t o f the difference in runn ing  tim e which is larger 

th a n  the  a m o u n t o f  the  difference in running tim e betw een K orw 2 and K orm an. 

P ac tm ax w 2  w ith o u t back track ing  appears to  be the best heuristic a lgo rithm  am o n g  the 

v a ria tio n s  o f  th e  vertex-co lor sequential a lgorithm  which we have p rogram m ed.

(6) In  co m paring  b ran ch -an d -b o u n d  as any exact a lgorithm  w ith back track in g , 

b ran c h -a n d -b o u n d  is m uch  slower due to the necessity o f  saving partia lly  co lored 

g rap h s , and  is n o t recom m ended.

(7) A m o n g  the heuristic  a lgorithm , we have considered lim it, ep s ilo n , and 

branch-and-bound. Limit is a probab ilistic  algorithm  which narro w s the average 

n u m b e r  o f  b ran ch es from  a node to a real num ber betw een 1 and  2. Epsilon  n a rrow s 

th e  n u m b er o f  b ran ch es o f  a node by setting a th resho ld  on the  scores o f  each  b ranch . 

B ra n c h -a n d -b o u n d  uses a preference function and  a preset buffer size to  p rune  the 

search  tree in a b read th  first search. It appears th a t the  Pactual a lg o rith m  with 2-1 

swapping is a lso  beneficial for heuristic coloring of large graphs. W e h av e  n o t 

compared these heunstic algorithms sufficiently with other heuristic algorithms to  yield

an y  defin itive conclusion.
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B. F U R T H E R  R E S E A R C H  T O P IC S

( l )  C o m p a re  th e  4 exact a lgorithm s, K orm an , K orw 2, P ac tua l, and  Pactm axw 2, 

o n  g ra p h s  o f  o rd e r  m o re  th a n  56. T his will requ ire  a considerab le  am o u n t o f  co m p u te r 

tim e.

(2) T he n ew  color, in the  feasible co lo r set, is alw ays the last choice in our 

d ev e lo p ed  ncv -se lec tio n  functions. H ow ever, th is kind o f  a rran g em en t m ay need  m ore 

b a c k w a rd  m o v es a n d  fo rw ard  m oves fo r som e graph. Is there  a ncv-selection function  

w h ich  h an d les  th e  new  co lo r b e tte r th an  we did?

(3) T h e  w eigh t fu n c tio n  m entioned  in ipkorm an  in ch ap te r 6 is helpful in selecting 

th e  n u cv  w h ich  is ad jacen t to  a ne ighbor having a particu larly  high chrom e-degree. 

W h ile  observ in g  the  experim ental resu lts o f  various bases, we only know  it is helpful 

in th e  s itu a tio n , w eight ^  0 or 1. W e w onder if  there are  certa in  w eights th a t  are 

ex cep tio n a lly  help fu l in im proving  perform ance.

(4) In  th e  selection  functions (nucv-selection plus ncv-selection function), we use 

th re e  p a ra m e te rs , the  set o f  ad jacen t vertices, the chrom e-degree, and  the w hite-degree, 

to  decide  th e  n u cv  and  th e  ncv. Is there  an exceptionally  good selection function  w hose 

co m p lex ity  is c lose  to  th a t  o f  the K orm an  algorithm  using those th ree  p a ram ete rs  or 

a n  e x tra  p a ram ete r?

(5) In  th e  b ran ch -an d -b o u n d  schem e, is there a good  preference function  which 

o b ta in s  a co lo rin g  close to  the ch rom atic  n u m b er using a small nu m b er o f  buffers?

(6) C o m p a re  the heuristic  a lgo rithm s, lim it, epsilon, and  branch-and-bound , w ith 

o th e r  k n o w n  heu ris tic  a lg o rith m s and  a tte m p t to  find o p tim al values on  the  p a ram ete rs  

o f  lim it, epsilon , an d  branch-and-bound. T est w hether heuristic  a lg o rith m s given here 

w ith  o p tim al p a ra m e te r  a re  p referab le  to  o th e r heuristic  a lgo rithm s on  large g rap h s.
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