
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Summer 1989

Graph coloring algorithms on random graphs Graph coloring algorithms on random graphs

Shi-Jen Lin

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Lin, Shi-Jen, "Graph coloring algorithms on random graphs" (1989). Doctoral Dissertations. 736.
https://scholarsmine.mst.edu/doctoral_dissertations/736

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/736?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F736&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

GRAPH COLORING ALGORITHMS ON RANDOM GRAPHS

BY

SHI-JEN LIN, 1955-

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI - ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

1989

iii

ABSTRACT

The graph coloring problem, which is to color the vertices of a simple undirected

graph with the minimum number of colors such that no adjacent vertices are assigned

the same color, arises in a variety of scheduling problems. This dissertation focuses

attention on vertex sequential coloring. Two basic approaches, backtracking and

branch-and-bound, serve as a foundation for the developed algorithms. The various

algorithms have been programmed and applied to random graphs. This dissertation

will present several variatons of the Korman algorithm, Korw2, Pactual, and

Pactmaxw2, which produce exact colorings quicker than the Korman algorithm in the

average for some classes of graphs. In addition to exact algorithms, we also look at

some heuristic algorithms, limit, epsilon, and branch-and-bound.

iii

I would like to thank my advisor, Dr. Thomas J. Sager, for his guidance and a

great deal of moral encouragement in preparation of this work. I am also grateful for

the assistance of the other members of my advisory committee: Dr. Billy E. Gillett,

Dr. A. K. Rigler, and Dr. Farroll T. Wright.

I especially thank my parents for all their love and their financial assistance.

Finally, I would like to thank my wife, Tan Li, and my daughter, I-Shen, for their

love and encouragement. Without them, this work would not have been completed.

ACKNOWLEDGEMENTS

iv

TABLE OF CONTENTS

Page

ABSTRACT .. ii

ACKNOWLEDGEMENTS ..iii

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ... x

I. INTRODUCTION .. 1

II. PRELIMINARIES .. 5

A. GRAPH THEORETIC TERMS .. 5

B. GRAPH COLORING TERMS ... 7

C. ASYMPTOTIC NOTATION ... 10

D. RANDOM GRAPH ... 11

E. BASIC PROPERTIES ... 12

III. LITERATURE REVIEW ...16

A. EXACT ALGORITHMS .. 16

1. 0-1 Integer Programming Approach 16

2. Dichotomous Search Approach ..18

3. Dynamic Programming Approach ... 20

4. Implicit Enumeration Approach ..23

B. HEURISTIC ALGORITHMS ... 27

1. Vertex-color Sequential Algorithm ... 29

2. Color-vertex Sequential Algorithm ... 31

3. Vertex-vertex pair scanning... 34

C. APPLICATIONS ..36

1. Loading Problem ... 36

2. Timetable Scheduling .. 37

3. Resource Allocation .. 37

IV. VARIATIONS ON THE IMPLICIT ENUMERATION
APPROACH ..38

A. BACKGROUND .. 38

1. Terminology of Trees .. 38

2. Tree Search Techniques ... 40

a. Depth-first Search (DFS) .. 40

b. Breadth-first Search (BFS) ..41

B. BACKTRACKING ... 42

C. BRANCH-AND-BOUND .. 47

D. PROGRAMMING FRAME OF BACKTRACKING ON THE
GCP ...50

E. PROGRAMMING FRAME OF BRANCH-AND-BOUND ON
THE GCP ... 54

V. IMPLEMENTATION NOTES ..59

A. GRAPHS REPRESENTATIONS .. 59

B. MEMORY SWAPPING .. 62

C. HEAPSORT ...64

D. RANDOM NUMBER GENERATOR ... 73

VI. SELECTION FUNCTIONS .. 77

A. TERMS ..77

B. NEXT-UNCOLORED-VERTEX SELECTION FUNCTIONS . 78

C. NEXT-COLORED-VERTEX SELECTION FU N C T IO N S___ 80

D. WEIGHTED SCALE ON THE SCORE OF THE NEW COLOR 83

E. SWAPPING BETWEEN THE CORE AND THE PERIPHERY 83

F. HEURISTIC ALGORITHMS ..88

1. Limit .. 88

V

2. Epsilon .. 88

G. COMPUTATIONAL RESULTS ...89

H. DISCUSSION .. 93

VII. A BRANCH-AND-BOUND PREFERENCE FUNCTION190

A. CONSTRUCTION OF A PREFERENCE F U N C T IO N 190

B. COMPUTATIONAL RESULTS ...194

C. DISCUSSION ...196

VIII. CONCLUSIONS .. 205

A. SUMMARY ...205

B. FURTHER RESEARCH TOPICS .. 208

REFERENCES ...209

VITA ..213

vi

Figure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

vii

Page

6

7

9

13

20

21

22

25

28

32

33

35

35

39

44

45

46

48

49

50

51

52

53

53

LIST OF ILLUSTRATIONS

Example of graphs ...

A graph and its subgraphs ..

Example of a graph ...

Mycielski's graphs ...

Zykov's Algorithm..

Example of Zykov-tree ..

Christofides's Algorithm...

Implicit Enumeration Approach..

Brown's Algorithm..

Approximately Maximum Independent Set

Leighton's Algorithm ...

Wood's Algorithm...

Dutton-Brigham's Algorithm...

Example of tree TS ...

General Backtracking A lgorithm ...

Tree representation of the 4-queens problem

Backtrack-tree of 4-queens problem ..

General Branch-and-bound Algorithm ...

Examples of BNB-tree ...

Intelligent Branch-and-bound A lgorithm ...

Procedures newcolor and mergecolor ..

Backtracking scheme on the GCP ..

Procedure node to process in backtracking and branch-and-bound

Procedure forward in backtracking ..

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

viii

54

56

56

57

57

58

60

63

64

65

67

67

68

68

69

70

71

72

76

153

154

155

156

157

158

159

160

Procedure backward in backtracking................

Branch-and-bound scheme on the GCP

Procedure getnextstate in branch-and-bound . . ,

Procedure savestatus in branch-and-bound

Procedure forward in branch-and-bound

Procedure backward in branch-and-bound

Representations of a g ra p h

Memory swapping in the backtracking scheme

Procedure node_to_process of memory swapping

Procedure backward of memory sw apping.........

Example of full tree ...

Procedure heapup ...

Procedure heapdown ...

Procedure heapsort ...

Part 1 of the example 5-2

Part 2 of the example 5-2

Part 3 of the example 5-2

Part 4 of the example 5-2

A multiplicative congruential generato r.............

heuristic colors for edgeload = 0.3

heuristic colors for edgeload = 0.5

heuristic colors for edgeload = 0.7

heuristic colors for edgeload = 0.9

running time for edgeload = 0 .3

running time for edgeload = 0 .5

running time for edgeload = 0 .7

running time for edgeload = 0 . 9

52

53

54

55

56

57

58

59

60

61

62

63

ix

161

162

163

164

165

166

167

168

169

193

194

195

forward moves for edgeload = 0.3

forward moves for edgeload = 0.5

forward moves for edgeload = 0.7

forward moves for edgeload = 0.9

forward moves on log scale for edgeload = 0.3

forward moves on log scale for edgeload = 0.5

forward moves on log scale for edgeload = 0.7

forward moves on log scale for edgeload = 0.9

exact colors ..

part 1 of the preference function

part 2 of the preference function

part 3 of the preference fu nc tion

X

LIST OF TABLES

Table Page

I VERTICES = 40, EDGELOAD = 0.3 95

II VERTICES = 40, EDGELOAD = 0.5 96

III VERTICES = 40, EDGELOAD = 0.7 97

IV VERTICES = 40, EDGELOAD = 0.9 98

V VERTICES = 40, EDGELOAD = 0.3 99

VI VERTICES = 40, EDGELOAD = 0.5 100

VII VERTICES = 40, EDGELOAD = 0.7 101

VIII VERTICES = 40, EDGELOAD = 0.9 102

IX VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2 103

X VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2 104

XI VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2 105

XII VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2 106

XIII VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2 107

XIV VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2 108

XV VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2 109

XVI VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2 110

XVII VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2 I l l

XVIII VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2 112

XIX VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2 113

XX VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2 114

XXI VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2 115

XXII VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2 116

XXIII VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2 117

XXIV VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2 118

XXV VERTICES = 40, EDGELOAD = 0.3 ... 119

XXVI VERTICES = 40, EDGELOAD = 0.5 ... 120

XXVII VERTICES = 40, EDGELOAD = 0.7 .. 121

XXVIII VERTICES = 40, EDGELOAD = 0.9 .. 122

XXIX VERTICES = 40, EDGELOAD = 0.3 AND 0.5 123

XXX VERTICES = 40, EDGELOAD = 0.7 AND 0.9 124

XXXI VERTICES = 44, EDGELOAD = 0.3 AND 0.5 125

XXXII VERTICES = 44, EDGELOAD = 0.7 AND 0.9 126

XXXIII VERTICES = 40, EDGELOAD = 0.3 .. 127

XXXIV VERTICES = 40, EDGELOAD = 0.5 128

XXXV VERTICES = 40, EDGELOAD = 0.7 .. 129

XXXVI VERTICES = 40, EDGELOAD = 0.9 .. 130

XXXVII VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2 131

XXXVIII VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2 132

XXXIX VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2 133

XL VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2 134

XLI VERTICES = 44, EDGELOAD = 0.3 AND 0.5, WEIGHT = 2 135

XLII VERTICES = 44, EDGELOAD = 0.7 AND 0.9, WEIGHT = 2 136

XLIII VERTICES = 48, EDGELOAD = 0.3, WEIGHT = 2 137

XLIV VERTICES = 48, EDGELOAD = 0.5, WEIGHT = 2 138

XLV VERTICES = 48, EDGELOAD = 0.7, WEIGHT = 2 139

XLVI VERTICES = 48, EDGELOAD = 0.9, WEIGHT = 2 140

XLVII VERTICES = 52, EDGELOAD = 0.3 AND 0.5, WEIGHT = 2 141

XLVIII VERTICES = 52, EDGELOAD = 0.7 AND 0.9, WEIGHT = 2 142

XLIX VERTICES = 56, EDGELOAD = 0.3 AND 0.5, WEIGHT = 2 143

L VERTICES = 56, EDGELOAD = 0.7 AND 0.9, WEIGHT = 2 144

XU

LI COMPARISON KORW2 WITH KORMAN IN RUNNING
TIME .. 145

LII COMPARISON KORW2 WITH KORMAN IN RUNNING
TIME .. 146

LIII COMPARISON PACTUAL WITH KORMAN IN RUNNING
TIME .. 147

LIV COMPARISON PACTUAL WITH KORMAN IN RUNNING
TIME .. 148

LV COMPARISON PACTMAXW2 WITH KORMAN IN
RUNNING TIME ... 149

LVI COMPARISON PACTMAXW2 WITH KORMAN IN
RUNNING TIME ... 150

LVI I COMPARISON PACTMAXW2 WITH PACTUAL IN
RUNNING TIME ... 151

LVI 11 COMPARISON PACTMAXW2 WITH PACTUAL IN
RUNNING TIME ... 152

LIX VERTICES = 40, EDGELOAD = 0.3 .. 170

LX VERTICES = 40, EDGELOAD = 0.5 .. 171

LXI VERTICES = 40, EDGELOAD = 0.7 .. 172

LXII VERTICES = 40, EDGELOAD = 0.9 .. 173

LXIII VERTICES = 40, EDGELOAD = 0.3 174

LXIV VERTICES = 40, EDGELOAD = 0.5 175

LXV VERTICES = 40, EDGELOAD = 0.7 176

LXVI VERTICES = 40, EDGELOAD = 0.9 177

LXVII VERTICES = 40, EDGELOAD = 0.3 .. 178

LXVI 11 VERTICES = 40, EDGELOAD = 0.5 .. 179

LXIX VERTICES = 40, EDGELOAD = 0.7 .. 180

LXX VERTICES = 40, EDGELOAD = 0.9 .. 181

LXXI VERTICES = 40, EDGELOAD = 0.3 .. 182

LXX 11 VERTICES = 40, EDGELOAD = 0.5 .. 183

LXXIII VERTICES = 40, EDGELOAD = 0.7 .. 184

xiii

LXXIV VERTICES = 40, EDGELOAD = 0.9 ... 185

LXXV VERTICES = 40, EDGELOAD = 0.3 ... 186

LXXVI VERTICES = 40, EDGELOAD = 0.5 ... 187

LXXVII VERTICES = 40, EDGELOAD = 0.7 .. 188

LXXVIII VERTICES = 40, EDGELOAD = 0.9 ... 189

LXXIX VERTICES = 30, EDGELOAD = 0.3 ... 197

LXXX VERTICES = 30, EDGELOAD = 0.5 198

LXXXI VERTICES = 30, EDGELOAD = 0.7 .. 199

LXXXII VERTICES = 30, EDGELOAD = 0.9 ... 200

LXXXIII VERTICES = 40, EDGELOAD = 0.3 ... 201

LXXXIV VERTICES = 40, EDGELOAD = 0.5 ... 202

LXXXV VERTICES = 40, EDGELOAD = 0.7 ... 203

LXXXVI VERTICES = 40, EDGELOAD = 0.9 ... 204

1

I. INTRODUCTION

The graph coloring problem (GCP), which is to color the vertices of a simple

undirected graph with the minimum number of colors such that no adjacent vertices

are assigned the same color, arises in a variety of problems of optimal partitioning of

mutually exclusive events or objects. For instance, the timetable scheduling problem

is to find the schedule of persons such that no two persons are using the same hardware

tool in the same period of time, and all jobs are executed with the minimum process

time. Christofides employed graph coloring to solve the resource allocation problem

CC/t75], and Elion and Christofides used it to solve the loading problem

C£C71]. The partitioning of mutually exclusive objects is usually embodied through

a graph in such a way that each object is represented by a node, and every pair of

exclusive objects is connected by an edge. Thus, optimal solutions to such problems

can be found by applying a graph coloring algorithm to the corresponding graph.

Even though the GCP has received considerable attention because of its various

applications, there is no known algorithm which will optimally color every graph in a

polynomial time function in the number of vertices of the given graph. Moreover, the

GCP has been shown to be N IP-complete [A HI A] QG/79] ; that is, it seems unlikely

that any such algorithm can be found. Therefore, it is necessary to seek a heuristic

algorithm with a polynomial time bound. For some N IP-complete problems such as

the bin packing problem, there is a nlogn heuristic algorithm obtaining the solution

within a small multiple of the optimal solution (actually solution < 1.7 * (optimal

solution) + 2) [/fS78]. Unfortunately, many known heuristic algorithms have

extremely bad worst case behavior [7o743: the ratio A(G)/x(G), where A(G) denotes

the number of colors used by algorithm A to color a graph G and x(G) denotes the

minimal number of colors with which G can be colored, can be shown to grow linearly

with the number of vertices in G. Furthermore, Garey and Johnson showed that even

2

Johnson showed that many popular heuristic algorithms will color a graph by

using the number of colors which is linear to the order of the graph, but how often does

the worst cases appear? Grimmett and McDiarmid showed that the vertex-color

sequential algorithm, VS, (refer to chapter 3) has the property, for almost all graphs

G„, VS(Gn)/x(G„) < 2 + £ as n -» oo _GM15~\. Therefore, we know that the

average behavior of some heuristic algorithms such as the vertex-color sequential

algorithm is much better than their worst behavior. McDiarmid [M c79] showed that

all variations of the vertex-color sequential algorithm have the aforementioned

property. These variations act as follows: whenever a new color is introduced, a

checking and recoloring procedure is called in order to find a color, which has already

been used, for the current vertex. This procedure then recolors some of the previously

colored vertices. The goal is to find a fast and accurate algorithm that includes the

checking and recoloring technique.

The chrome-degree of vertex v is the number of colors used so far on vertices

adjacent to v. The Korman algorithm without backtracking (refer to chapter 6)

sequentially picks the vertex with the highest chrome-degree and colors it. Manvel

proposed that the Korman algorithm without backtracking is superior to the

vertex-color sequential algorithm and the vertex-color sequential algorithm with

pre-ordering by the largest-first principle [A fa8l]. In terms of running speed,

Korman presented experimental results showing that the Korman algorithm is also

superior to the vertex-color sequential algorithm and the LF vertex-color sequential

algorithm in the backtracking scheme [Ko79]. This dissertation will present several

variations of the vertex-color sequential algorithm which perform better than the

Korman algorithm in the mean for some graphs. These algorithms, Korw, Pactual, and

finding an efficient algorithm which colors every graph G in r * *(G) + d colors,

where r < 2 , remains a N IP-complete problem

3

Chapter 2 introduces basic graph-theoretic terms and graph coloring related

terms. It also presents some well-known properties on graph colorability.

Chapter 3 reviews four different exact approaches: 0-1 integer programming,

dichotomous search, dynamic programming, and implicit enumeration, three different

heuristic algorithms: a vertex-color sequential algorithm, a color-vertex sequential

algorithm, and a vertex-vertex pair scanning; and finally three basic applications: a

loading problem, timetable scheduling and resource allocation.

In chapter 4, two distinct programming schemes, backtracking and

branch-and-bound, serve as a foundation for the developed algorithms. The profiles

for both programming schemes are presented.

Chapter 5 describes some implementation notes on data structures, memory

swapping, and a random number generator.

Chapter 6 proposes a number of next-uncolored-vertex selection (nucv-selection)

functions and next-color-vertex selection (ncv-selection) functions, which are the heart

of the developed algorithms. The experimental results of the backtracking scheme with

various combinations of nucv-selection and ncv-selection functions are also included.

Finally two heuristic algorithms which are based on the backtracking scheme are

presented.

Chapter 7 introduces the procedure of constructing a preference function of the

branch-and-bound scheme. The computational results of various algorithms are

Pactmaxw2, will be described in chapter 6. In addition to exact algorithms, we will

look at some variations of the Korman algorithm, limit, epsilon, and branch-and-bound,

which produce heuristic colorings.

included.

4

Chapter 8 deals with conclusions and further research directions.

5

II. PRELIMINARIES

A. GRAPH THEORETIC TERMS

A graph G = (V, E) is a finite set of vertices V, together with a set of undirected

or directed edges E. An undirected graph is a graph with undirected edges, and a

directed graph is a graph with directed edges. The elements of E are unordered

(ordered) pairs of vertices. The number of vertices in a graph is called the order of the

graph, denoted by | V | .

For the edge e = <x, y > , vertex x is called its initial endpoint, and vertex y is

called its terminal endpoint. Of course, there is no difference between initial endpoint

and terminal endpoint in an undirected graph. A loop is an edge whose initial endpoint

and terminal endpoint are the same.

An undirected graph (or multigraph) is called a simple graph if it has (1) no loops;

(2) no more than one edge joining any two vertices.

Example 2.1. In Figure 1-1, V = {a, b, c}, E = {< b, a> , < c, a> }.

In Figure 1-2, V = {a, b, c}, E = {<a, a > , <a, b > , <a, c > , <a, c>}. <a, a> is

a loop, and there are two edges between a and c. In this case, E is a multiset. In

Figure 1-3, V = {a, b, c}, E = { < a, b> , < a, c > }.

Hereafter we refer to an undirected graph as a graph. Two edges are called

adjacent if they have at least one endpoint in common. The degree of the vertex v is

the number of edges with v as endpoint. The degree of v is denoted by da{y). Note that

each loop is counted twice. A graph is k-regular if each vertex has the same degree k.

A graph K„ = (V, E) is said to be complete if every pair of distinct vertices has

an associated edge and | V | = n. A graph is k-partite if its vertices can be partitioned

into k subsets such that no two vertices in the same subset are adjacent. For k = 2,

6

A
o
a

b c b c b c

(1) directed graph (2) undirected graph (3) simple graph

such graphs are called bipartite. A null graph is a graph with no edges. An empty graph

is a graph which has no vertices and no edge.

A path is a sequence of vertices such that every pair of consecutive vertices is an

edge. A path is simple if all vertices on the path are distinct with exception that the

initial endpoint and the terminal endpoint may be the same. The length of a path is

the number of edges along the path. A cycle is a simple path that connects a vertex

to itself.

A connected graph is a graph that contains a path for every pair of distinct

vertices. A graph is cyclic if it contains at least one cycle. A connected acyclic graph

is sometimes called a tree. A cycle graph of order n, denoted by C„, is a connected

graph whose edges form a cycle of length n.

of order 3 of order 3 of order 3

Figure 1. Example of graphs

7

A subgraph of G = (V, E) is a graph G' = (V', E') such that (1) V' is a subset

of V; and (2) E' consists of edges < x, y> in E such that x as well as y are in V". G'

is an induced subgraph of G if G' contains all edges in E such that both endpoints of

the edge are in V'.

G G»

Figure 2. A graph and its subgraphs

Example 2.2. In Figure 2, both G' and G" are subgraphs of G. G ' is an induced

subgraph of G. However, G" is not an induced subgraph of G because it does not

contain the edge < b, c> .

B. GRAPH COLORING TERMS

An assignment of color to each vertex of a graph G such that no adjacent vertices

have been assigned the same color is called a coloring of G. We refer to this coloring

8

as a complete coloring, in contrast to a partial coloring, which is an assignment of colors

to part of the vertices of G.

f is a k-coloring function of a graph G = (V, E) if f is an onto function from V to

the set {1,2,..., k} such that f(v) = j if and only if vertex v is colored with color j. G

is said to be k-colorable if G has a k-coloring function. The minimum k for which G

is k-colorable is called the chromatic number of G and is denoted by *(G).

An independent set of a graph G = (V, E) is a subset of V, no two vertices of

which are adjacent. An independent set is a maximal independent set, denoted by MIS,

if it is not a proper subset of an independent set. In graph coloring, each subset of

vertices of the same color is called a color class. From the definition of the independent

set, a color class is an independent set. The independence number of G, denoted a(G),

is the number of vertices of the largest MIS in G.

In contrast, a completely connected set of a graph G = (V, E) is a subset of V,

every two vertices of which are adjacent. A maximal completely connected set is called

a clique. It is seen that a complete graph is a clique of itself. We know that a MIS

of a graph G is a clique of G , its complement graph, and vice versa. The clique number

of G, denoted w(G), is the number of vertices of the largest clique in G.

Example 2.3 In Figure 3, G = (V, E), V = {a, b, c, d, e),

E = { <a, b> , <a, c> , <a, d> , <a, e> , <c, e> }. We can define a 3-coloring

function f as follow:

f(a) = I, f(b) = 2, f(c) = 2,

f(d) = 2, f(e) - 3.

We say G is k-colorable for all k > 3.

The following sets are all completely connected sets of G:

{a}, (b), (c), {d}, {e},

9

a
Figure 3. Example of a graph

{a, b}, {a, c}, {a, d}, {a, e}, {c, e}(

{a, c, e}.

(a, b}, {a, d}, and {a, c, e} are clique. co(G) = 3.

P is the class of problems solvable by deterministic Turing machines which

operate in polynomial time. W P is the class of problems solvable by non-deterministic

Turing machines which operate in polynomial time. A problem A is reducible to a

problem B if there is a polynomial-time bounded function f from A to B such that for

every instance x, f(x) e B if and only if x e A. A problem L is NP-complete if (1)

L e MP ; and (2) every problem in NP is reducible to L. A problem L is HP-hard if

every problem in WP is reducible to L. As we see all NP-complete problems are

f^P-hard but all NP-hard problems are not f^lP-complete. Garey and Johnson

offered a complete picture of NP-completeness in their publication [G /79X

10

Some examples of classes of problems that are in W or NP are as follow:

Minimum Spanning Tree e P [A>56]

Given a connected graph G = (V, E), a cost function C on E, and an integer m.

Is there a spanning tree of G with cost m or less?

Shortest Path e P [Z)/59]

Given a graph G = (V, E), a weight function on E, source and destination in V,

and an integer w. Is there a path between source and destination of G with

weight w or less?

Clique e NP-complete [/4/T74] [PS82]

Does an undirected graph have a clique of order k?

Satisfiability e NP-complete [C<?71] [AHld] [PS82]

Is a boolean expression satisfiable?

Colorability e NP-complete _AHld]

Is an undirected graph k-colorable for k > 3?

Context-sensitive Recognition e hJP-hard [_Kal2 [̂

Given a context-sensitive grammar C and a string s. Is s in the language

generated by C? Note that this problem is not known to be NP-complete because its

membership in N P is presently in doubt.

An exact algorithm can always produce an optimal solution. A heuristic algorithm

will sometimes find an optimal solution. In general, a heuristic algorithm is trying to

find a good solution within an acceptable amount of time.

C. ASYMPTOTIC NOTATION

Here we introduce two mathematical notations which will be used for the analysis

of the complexity.

O-notation can be used to express the upper bound of the performance of an

algorithm. It ignores the constant term of the leading term (as g(n) in the definition).

However, sometimes we need a more precise description, which also takes into account

the constant term, of the algorithm's performance. A stronger mathematical notation

is given below.

fTrt)
Definition f(«) = o(g(«)) if and only if lim------ = 1.

g(«)

Example 2.4 Let f(n) = n2 4- n. f(«) = Ĉ rt2) by picking c — 2, and n0 = 1,

but f(«) = o(n2). Consider g(/j) = 2n2. g(n) = O(n2) by picking c = 2,

n0 = 1. However g(«) ¥= o(n2) since lim ~~y- — 2. But g(n) = 0(n2).

Definition f(«) = 0(g(n)) if and only if there exist two positive integers c and «0

such that 1fly?) | < c * | g(n) | , for all n > n0.

D. RANDOM GRAPH

A random graph , GnP(n), has n vertices. Its edges are independently chosen from
(n \
{ 1 possible edges by the probability function P(n), where 0 < P(n) < 1. We include

the edge with probability P(n). It is seen that GM is a complete graph, and G„0 is a

null graph. Suppose that P(n) = X is a constant. X is called the edgeload of G„ The
M

number of edges of G„ x is binomially distributed with parameters X and (), and thus
M ’ (n\ \ v

has mean 21 1 and variance 2(1 - 2)1 I.

For programming, each potential edge is obtained by getting a uniformly

distributed pseudo random number between 0 and 1 from the pseudo random number

generator; if the obtained pseudo random number is less than the desirable edgeload,

the edge is included. The experimental results presented later are obtained by giving

the edgeload 2 and the total number of edges 2^ J chosen randomly from the ^ ^

possible edges.

12

E. BASIC PROPERTIES

For the clique G' of order m, since all vertices are adjacent, the chromatic number

of G' is m. It is seen that the clique number of a graph G is an lower bound of

y(G). However, this lower bound can be very poor. Consider the following

construction of Mycielski [My55] [SZ)83]. Initially, M, = M2 = K2 and for k > 2,

constructing from Mk. Suppose | Mk\ — m, v1(..., vm are the vertices of Mk. Let

| Mk+i | = 2m + 1 and have vertices v„ ... ,vm, v '„ ..., v’m, w*+1, The edge set of Mk,,

consists of (1) all edges of Mk, (2) all edges between / , and the neighbors of v„

i = 1,... ,m, and (3) < wk+u v' > , /= 1,... ,m. Figure 4 shows the construction of A/3

from Xf2, and M4 from My In the sequence Mu M2, ... , y(M.) = i but

oj(M) — 2. Therefore, the lower bound a{M) for y(M() can be very bad as i becomes

very large.

We now present some well-known theorems on graph colorability.

Theorem 2.1 If G is a graph of order n, then

X(G) < n + 1 - a(G).

(See [5c73]).

Theorem 2.2 If G is a simple graph with n vertices and m edges, then

n2X(G) > n2 — 2m
(See [5e73]).

Theorem 2.3 G = (V, E) is a simple graph, then

X(G) ^ 1 + max [dc(v)}, for v e V.

13

Figure 4. Mycielski's graphs

14

(See 0 4 1] , 0 7 3]) .

There are only two kinds of graphs for which Theorem 2.3 holds with equality

above: odd cycle graphs and complete graphs. This result is known as Brook's

Theorem

Theorem 2.4 Any planar graph is 4-colorable.

(See [AH11 a], [A H llf], [7/«77], 0 7 7]) .

A map coloring is to find an assignment of a color to each region so that all

contiguous regions have different colors. For a map M in the plane we can construct

a dual graph G whose vertices are in one-to-one correspondence with the regions of

M and whose edges are in one-to-one correspondence with the border lines between

regions. Thus, the map coloring is equivalent to the planar graph coloring. The

conjecture, any planar graph is 4-colorable, had been a well-known unsolved problem

in mathematics for over a century. Kempe CATe79] is the first person known to have

attacked the 4-coloring conjecture. Although Kempe's work contained a flaw which

Heawood C//t?90U pointed out, it contained a valuable contribution which became the

basis of many later attempts to prove the conjecture. In 1972, Appel, Haken, and

Koch took three and a half years to develop the method based on Kempe's works to

solve the 4-coloring conjecture and another 6 months to verify the 4-color reducibihty

of nearly 1900 cases. The verification part was done by computer.

Theorem 2.5 The coloring problem is NP-complete.

(See [/l 7/74]).

Theorem 2.6 Consider the graph coloring of a graph G. If for some constant r

< 2 and constant d there exists a polynomial time bounded algorithm A such that

A(G) < r * x(G) + d, where A(G) denotes the number of colors when A is applied

to G, then there is a polynomial time bounded exact algorithm B.

15

(See [GJ76]).

Theorem 2.6 states that even finding an efficient near-optimal graph coloring

algorithm is as hard as discovering an efficient exact algorithm.

16

III. LITERATURE REVIEW

The graph coloring problem has received considerable attention for many years.

This chapter reviews exact as well as heuristic algorithms known earlier, and describes

a number of applications of the graph coloring problem.

A. EXACT ALGORITHMS

In this section we describe four classic approachs which are exact in the sense that

they guarantee the correct value of the chromatic number for any arbitrary graph.

1. 0-1 Integer Programming Approach.

The GCP can be formulated as a number of 0-1 integer programming problems

[C/i75] based on different kinds of variables. Unfortunately, not every formulated 0-1

integer programming problem can be solved efficiently because of the huge size of both

variable set and constraints. Let us consider the following two models. Let the graph

G = (V, E) be of order n, be the adjacency matrix of G with all diagonal

elements set to zero, and [cy]„x, be a coloring matrix of G such that

cu = 1 if vertex v, is assigned color j ;
= 0 otherwise,

where q is an upper bound of *(G). The GCP can be rewritten as
<J n

Minimize z = X £w,c,y
y=l i=l

(3.1)

subject to

£ c</= 1, for all / = 1 ,..., n
;=i

(3.2)
n

n * Cy + < n (3.3)
k=\

for all / = 1 ,..., n, and j — 1 ,..., q.

17

In the object function (3.1), w) is a weight of the color j; the weight satisfies

wyM > n * w;. Constraint (3.2) ensures that any vertex can be colored with one and only

one color. Condition (3.3) simulates the requirement, every pair of adjacent vertices

cannot have the same color. If vertex v, is colored with color j, then the first term is

n. Thus the second term must be zero; if aik = 1 then ckj = 0. In other words, any

adjacent vertex v, is not colored with color j, the second term of (3.3) can go up to

deg(Vj), which is less than n. So the condition (3.3) is satisfied. Note that if x and y

are both adjacent to v,. and also adjacent to each other, condition (3.3) of v, can not

avoid coloring x and y with the same color. However, conditon (3.3) of x (or y) can

prevent x and y from being assigned the same color.

Alternatively, let M„ M2, ..., M, be all the MIS's of G and define the inclusion

matrix [w0]nx)) such that

m0 = 1 if vertex v, e My ;
= 0 otherwise.

We also define the cost variable c; associated with My such that

Cj = 1 if My includes a color class of the optimal coloring;
= 0 otherwise.

We have the following 0-1 integer programming problem which is equivalent to the

GCP:
P

Minimize z = X C>
/= i

subject to
P

Vm,yCy > 1 for all / = 1,..., n.
j= i

Note that the inequalities mean the over-coloring possibility. If the over-coloring

occurs, we arbitrarily pick one from the feasible color set.

The former programming model has nq variables in the coloring matrix and n + nq

constraints; the latter has np + p variables (including matrix plus cost variables) and n

constraints. Both models require pre-processing work. The upper bound of the first

18

model can be computed by a heuristic coloring algorithm or simply set to | V | , and the

MIS enumeration of the second one can be solved approximately by an efficient

algorithm proposed by Bron and Kerbosch [5A 73]. In terms of the complexity, the

latter model is much better than the former.

Example 3.1 Consider Figure 3 again. Let M, = {a}, M2 = {b, c, d}, and

M3 = {b, d, e} be all MIS's of G.

The inclusion matrix is as follow:

My M1 m 2 m 3

a 1
b 1 1
c 1
d 1 1
e 1

The O s in the inclusion matrix are represented by blanks. The GCP is to find the

minimum number of columns which cover all rows. The optimal solution is

Cj = 1, c2 = 1, and c3 = 1, where b and d are over-colored.

2. Dichotomous Search Approach.

This method was proposed by Zykov in 1952 [Zy52]. The basic idea of this

approach is to reduce a graph to a complete graph by continuously applying the

following basic step to any pair of non-adjacent vertices of the corresponding reduced

graph. For these two vertices, there are only two choices; one is to color them with the

same color; another is to color them with distinct colors. In the Zykov-tree, if we

represent the pre-work graph as the father node, the two choices mentioned earlier are

two branches, and the corresponding reduced graphs are sons of the father node. The

method terminates whenever all leaves of the Zykov-tree become complete. Therefore

the chromatic number of the graph is the minimum of chromatic numbers of leaves.

19

Before describing Zykov's algorithm, we introduce two terms from Zykov.

Definition Let G = (V, E) be a graph with non-adjacent vertices x and y. G/xy

= (V', E') is a join of G by adding the edge <x,y> . That is, V' = V; E' =

E U { < x,y> }.

Definition Let G = (V, E) be a graph with non-adjacent vertices x and y. G:xy

= (V", E') is a contraction of G by identifying x and y. That is,

V ' = v — {y};

E = { < u,v > | u =7 y, v # y, and < u,v > e E} U

{ < u,x> | < u,y> e E}.

Theorem 3.1 If x and y are non-adjacent vertices in G, then

X(G) = min{*(G/xy), *(G:xy)}.

Proof. For a proof of this theorem, see [2?r77].

Theorem 3.1 can be applied to a graph recursively such that

y(G) =min {IG ,|, |G 2| , ... , |G j} ,

where each G, is an irreducible (complete) graph; that is, G, is a leaf of the Zykov-tree.

We now present Zykov's algorithm in Figure 5. We can easily improve Zykov's

algorithm by the branch-and-bound method. If there exists an irreducible subgraph

K in the Zykov-tree, any reducible subgraph H in the Zykov-tree containing a clique

of order y(K) need not be reduced further. Unfortunately, this kind of

branch-and-bound approach is not effective because the clique finding problem is also

NP-complete [(7779]. A depth-first search with a branch-and-bound heuristic

algorithm was proposed by Corned and Graham in 1973 [CG73], which, instead of

looking for an a-clique, found an a-cluster, a highly dense graph of order a, in

0 (n3) time.

2 0

P roced ure Reduce(H: graph)
b eg in

if H is complete th e n retu rn
e lse b eg in

choose any two nonadjacent vertices x, y in H;
construct H:xy and H/xy;
Reduce(H:xy);
Reducc(H/xy);

end
end; (* Reduce *)

P rogram Zykov tree of G
begin

Reduce(G);
end.

Figure 5. Zykov's Algorithm.

E xam p le 3.2 Figure 6 shows the Zykov-tree of graph G0, where G, = G0/bd,

G2 = Gi/bc, G3 = G,:bc, and G4 = G0:bd.

3. Dynamic Programming Approach.

As we mentioned earlier, a color class is an independent set. The dynamic

programming approach employs the following property of MIS: for every A-coloring

of a graph G there exists an /^-coloring of G, where p < k, and the family of color

classes of the /^-coloring contains at least one MIS. Christofides first published this

method in 1971 [C /i7lJ. So we would like to introduce the following theorem

CC/i71] in advance.

Theorem 3.2 Any graph G = (V, E) can be optimally colored by first coloring a

MIS M, of G, next coloring a MIS M2 of Gv_Ml and so on until all vertices are colored.

21

Figure 6. Example of Zykov-tree

22

Before going through Christofides's algorithm, we would like to define the

maximal r-chromatic subset Mr and a recurrence relation.

D efin it io n A maximal r-chromatic subset o f G = (V, E) is a maximal subset of V

which can be colored with r colors but not with fewer.

Two facts can be inferred from the defmition above: (1) any MIS of G is a

maximal 1-chromatic subset of G; and (2) G is a x(G)-chromatic subset of itself.

Let denote a family of maximal k-chromatic subsets of G, and Mi be the i-th

element of K*. Then XA+I is the union of T;, where

T, = {Mi U S | S is a MIS of GV_M̂}, for i = 1,... ,|K * |.

in p u t G = (V , E)
o u tp u t k is the chromatic number of G
b eg in

k : = 1;
compute a family of MIS's of G; C5/T73]
if order of = 1 then STOP
else loop

T := 0;
for each M in do

for each M IS M ' of G V_M do
i f M U M ' = V then

b eg in k := k + 1; S T O P end
e lse begin

T : = T U { M U M '};
maximize T such that every element in T is maximal;

end
k := k + 1;

T;
end

end.

Figure 7. Christofides's Algorithm.

23

Example 3.3 Illustrate Christofides's algorithm by Figure 3.

K, = {{a}, {b, c, d}, {b, d, e}}.

T, = {{a} U {b, c, d}, {a} U {b, d, e}}.

T2 = {{b, c, d} U {a}, {b, c, d} U {e}}.

Since {b, c, d} U {a} is a subset of {a} U {b, c, d}, we get rid of {b, c, d} U {a}.

T3 = {{b, d, e} U {a}, {b, d, e} U {c}}.

Remove {b, d, e} U {a} because it has already appeared in TV The same situation

happens on {b, d, e} U {c} since it is in T2.

K2 = {{a} U {b, c, d}, {a} U {b, d, e}f {b, c, d} U {e}}.

T, = {{a} U {b, c, d} U {e}}.

k = 3, STOP.

Christofides's algorithm is a breadth-first search implementation of theorem 3.2;

it wastes computation time and space because it traverses one step on all possible paths

before going one more step further. One improvement of Christofides's algorithm is

that the computation of MIS of a subgraph of G can be done by the fact that each

MIS of a subgraph of G must be a subset of a MIS of G Thus, the

MIS-finding C5A73] can be done only once. In 1974, Wang proposed a

depth-first search implementation on the search tree which is much smaller than the

search tree implied in Christofides's algorithm.

4. Implicit Enumeration Approach.

The implicit enumeration approach is another tree search method for solving the

GCP; it is sometimes named the backtracking sequential method. There are two basic

steps to this approach:

(1) Pre-ordering of vertices of G;

24

(2) Forward movement, the coloring procedure, which traverses the search tree

vertex by vertex according to the pre-ordering sequence of vertices by assigning

the smallest color of the feasible color set of the current uncolored vertex, and

updates, if necessary, the upper bound q of the chromatic number.

The recursive procedure coloring constructs the frame of the search tree vertex

by vertex until it reaches the following conditions: either every color of the feasible

color set of the current vertex has been used, or no uncolored vertex is left. In the

former case we backtrack to the previous vertex; in the latter case a better upper bound

of the chromatic number of G is found. If we get a better upper bound q of *(G), we

update q and backtrack to the previous vertex. This approach terminates whenever

we backtrack to the beginning vertex of the pre-ordering sequence of vertices of G.

One more question we have not mentioned is how to determine the feasible color

set such that there is no redundant coloring. Let us take a look at the following

theorem first.

Definition If a coloring of G can be derived from another coloring of G by

permuting colors without changing the associated color classes. We say this coloring

is redundant.

Example 3.4 Let G = (V, E), V = {v„ \ 2, v3, v4, v5}. Define a coloring f of G as

follow:

fK> = 0, f(v2) = 0,

f iX H l , f(v4)= 1,

flv,) = 2.

If g is another coloring function of G such that

g (v ,)= l, g(v2) = l ,

g(v3) = 0, g(v4) = 0,

25

In p u t a graph G of order n;
O u tp u t

q : integer; (* number of colors required *)

P roced ure coloring (k: l . . n + 1);
var

j: integer;
b eg in

if k = n + 1 th e n update q
e lse b eg in

compute the feasible set o f v*;
i f k = n th en begin

j 0;
repeat

iH + i;
until j in feasible(v*) ;
color v* with j;
coloring(k+ 1);

end else begin
i« -1 ;
repeat

if j in feasible(vA) th e n b eg in
color v* with color j;
coloring(k+ 1);

end;
j «- j +

until j - q;
end

end
end; (* coloring *)

b eg in (* main *)
let v„ v2, ..., v„ be a sequence of vertices of G according to a

rearrangement of vertices;
q «- upper bound of *(G);
coloring(l);

end. (* main *)

Figure 8. Implicit Enumeration Approach.

g(v5) = 2.

Then g is redundant because g can be derived from f by interchanging color 0 and 1.

However, if we assigned v2 with color 2 in the coloring g, g would be not redundant

because the family of color classes of g, {{v3, v4}, {v,}, {v2, v5}}, is different from that

off, {{v„v2}, {v3,v4}, {v5}}.

26

Theorem 3.3 Let v „ ..., v,_, be a /^-coloring. If no redundant coloring is to be

generated, then the assigned color of v, can not be greater than p + 1.

Proof. This theorem is proved by induction,

i = 1, there is only one color for v,.

Assume that there is no redundant coloring for v „ ..., v,._j. For a p-coloring C of

v „ ..., v,_„ if the extended coloring C' of v „ ..., v,_„ v(is also p-coloring, C' is not

redundant since C is not redundant. If v, must be assigned a new color, we know that

v, should be colored by color p + 1. Otherwise C'(v,) > p + 1 is redundant because of

the interchangeability between C'(v,) and p + 1. Therefore, v, can not be colored with

color greater than p + 1. Q.E.D.

Suppose v„ v2, ..., v,_, have already been colored with p colors. Then every

feasible color j of v, must satisfy the following conditions:

(1) j < p + l ;

(2) j has not been assigned to any colored adjacent vertex of v, ;

(3) j < q — 1, where q is an upper bound of *(G).

Brown [_Brl2] is the first person who used the implicit enumeration algorithm to

solve the GCP. It is obvious that if we construct a clique C of G, then each vertex of

C can be colored by only one possible color. Therefore, we can terminate Brown's

algorithm when backtracking to the clique because the upper part of the search tree is

linear. Brown's algorithm can be improved from the forwjnove procedure, the

backjnove procedure, or both. The forw_move and the back_move are shown in

Figure 9. The forwjnove procedure can be improved by using either the dynamic

reordering of the uncolored vertices or a look-ahead procedure [5 r72]. On

the other hand, Christofides CCA75] advanced the backjnove procedure and

unintentionally ended up with a heuristic algorithm. In 1979, Brelaz _Brl9~\ made two

errors in his Randall-Brown's modified algorithm and also arrived at a heuristic

27

algorithm. The correct version of the Brelaz's algorithm was given by Peemoller

_Pe 83].

A very complete reference to the implicit enumeration approach of the GCP was

given by Kubale and Jackowski [AU85].

Example 3.4 An illustration of Brown s algorithm is given in Figure 3. For the

preordering, the largest-first preordering will arrange the vertices in non-increasing

degree.

With largest-first preordering:

a, c, e, b, d is the coloring sequence of vertices.

The first pass:

C(a) = 1, C(c) = 2, C(e) = 3, C(b) = 2, C(d) = 2.

upper bound q = 3.

Backtrack to vertex c. Since F [c] = <f>, the algorithm immediately backtracks

again to vertex a, and STOP.

With arbitrary ordering: a, b, c, d, e.

the first pass:

C(a) = 1, C(b) = 2, C(c) = 2, C(d) = 2, C(e) = 3.

upper bound q = 3.

Backtrack to d. F^d] = 4> after we remove the feasible color 3 (Since q = 3 now);

we move back to c. Again F [c] = 0 after we update the feasible color set, and

FCb] = <f> originally. We reach the top vertex a, and then STOP.

B. HEURISTIC ALGORITHMS

Before taking the coloring action, most graph coloring algorithms in existence

determine both the vertex (or vertices) to be colored and the color to be utilized. That

is, the execution order of choosing the next uncolored vertex and the next color can

In p u t a graph G of order n;
O u tp u t

q : integer; (* number of colors required *)
the coloring function;

G lob a l V ariab le
k : 1 .. n + 1 (* index of the current processing vertex *)

L oca l V ariable
q u it: boolean

P roced u re forw_move
b eg in

compute the feasible set of v*;
i f feasible(v*) = 4> th en

return;
else b eg in

color v* with the smallest feasible color;
if k = n th en begin

k «- n + 1;
return;

end e lse forw move;
end

end; (* forw move *)

P roced ure b ack move
b eg in

if k = n + 1 th en begin
find the smallest index, r, such that vr was colored with color q;
k <- r — 1;

end e lse k <- k — 1 ;
return;

end; (* back_move *)

b eg in (* main *)
let Vi, v2, ..., v„ be a sequence of vertices of G according to

non-increasing degree;
q *- upper bound of *(G);
k<- 1;
quit <- false;
repeat

forwmove;
i f k = n + 1 then

update both q and the coloring function;
backmove;
if k = 1 th e n quit <- true ;

u n til quit;
end. (* main *)

Figure 9. Brown's Algorithm.

29

change an algorithm from one to another. Consequently, this section will cover three

methods of selection of alternatives: (1) vertex-color sequential algorithm, (2)

color-vertex sequential algorithm, and (3) vertex-vertex pair scanning.

1. Vertex-color Sequential Algorithm.

Let v„ v2, ..., v„ be an ordering of vertices of a graph G. The vertex-color

sequential algorithm colors the first vertex v, with color 1, and then it makes use of the

basic procedure recursively as follow:

If v„ ..., V i have been colored, then v,. is assigned the smallest possible

color not occurring on adjacent vertices of v,. v, is colored with the new

color if all existing colors do not fit for v,.

The algorithm terminates whenever there is no uncolored vertex. The efficiency of the

algorithm is mainly based on the ordering of vertices. It is evident that there is at least

one optimal ordering of vertices. However, we have not found any algorithm which

selects the optimal ordering from n\ possible orderings in polynomial time bound.

There are a number of algorithms in this category. We are going to review some

well-known algorithms here. One of the first versions of the vertex-color sequential

algorithms was proposed by Welsh and Powell [1F.P673, who arranged the vertices

according to non-increasing degree. Such an algorithm is called the largest-first

sequential algorithm (LFS). The total number of colors used by the LFS will not

exceed max{min{i, deg(v,)+ 1}}.

In contrast to the LFS, another algorithm named smallest-last sequential

algorithm (SLS) was proposed by Matula, Marble, and Isaacson [M M 72]. The

smallest-last ordering is found according to:

1. v„ is the vertex of the smallest degree of G;

30

2. v, is the vertex having the smallest degree of the induced subgraph

G V-(v,+ i , — ,v„>-

L em m a The number of colors used in the smallest-last sequential algorithm are

bounded by 1 + max{ min{ degw.(v,)}}, where H, is a subgraph of G induced by

{Vi,V2 t ... , v,}.

Proof. From the procedure of sequential algorithm, there is at least one feasible

color between 1 and 1 + degH.(v,) for every vertex v,. That is, C(v,) ^ 1 + degH|.(v,),

where C is a coloring function of G. By the definition of SLS, degH.(v,) =

min {degH.(v,)}. So C(v,.) < 1 + min {degHj.(v,)}, Therefore, y(G) < max {C(v,)J

- ^ ,a<? ^ + ® {de8H((vy)}} = 1 + max {nun {degH.(v,)}}. Q.E.D.

Theorem 3.4 y(G) < 1 + mgx {nun {deg^v)}}.

Proof. It can be easily derived from the Lemma above because the family of

Hu ..., H„ = G is only a subset of the power set of G. Q.E.D.

The upper bound of theorem 3.4 is called Szekeres- Wilf bound [SJF68]. It is

evident that degH.(v) <; degG(v). Thus, we have a better upper bound of the chromatic

number while using SLS.

Brelaz [/?r79] presented a dynamic way of ordering vertices, called Dsatur

algorithm (DLF). The DLF ordering is determined as follow:

1. Vj is the largest degree of G.

2. v,. is adjacent to the maximum number of distinct colors.

DLF successively colors the vertices in a DLF ordering with the smallest possible

color, we obviously color a clique of v, first. Thus we obtain a lower bound, the order

of a clique, of the chromatic number. The clique found by the DLF may not be

maximal. We may obtain a maximal clique by taking advantage of the interchange

31

method proposed by Matula et al [AfA/72]. Note that the DLF is an exact algorithm

for bipartite graphs.

The interchange method is a way of attempting to repack the existing colors by

recoloring a subgraph of the partially colored graph whenever a new color is

introduced. Suppose v „ ..., vf_, have already been colored in k colors. An

(a,b)-colored subgraph of V = {v,,..., v,_,} is the induced subgraph of vertices, V'

= {veV | C(v)= a or C(v)= b}. An (a,b)-component is a component of

(a,6)-colored subgraph. Suppose that v, has a feasible color m ,m <,k, then C(v,) = m

and go to the next uncolored vertex. On the other hand, if the only feasible color for

v, is k + 1, we consider every pair (a,b), 1 < a < b < k . If there exist an (a,6)-colored

subgraph such that in every (a,6)-component the vertices which are adjacent to v, are

of at most one color, then we recolor every adjacent vertex of v, having the existing

color a with color b and yield a feasible color a for v(. Otherwise, v, is colored with the

new color k+ 1.

The combination of SLS and interchange method will color any planar graph in

five or fewer colors [AfA/72].

2. Color-vertex Sequential Algorithm.

The color-vertex sequential algorithm is as follow:

1. k = 1;

2. Initially we place the first uncolored vertex into the color set C*;

3. All uncolored vertices are examined in order; any vertex which is not

adjacent to any vertex of C* is added to C*;

4. If there is no uncolored vertex, then STOP ; otherwise, k = k + 1, and

goto step 2.

32

Peck and Williams [PW66~\ arranged the vertices by non-increasing order of

degree, and performed the color-vertex sequential coloring. A few years later, Williams

[Wi69] modified the Peck-Williams algorithm by pre-ordering the vertices; he made

use of d" instead of d, where d is the degree. dm comes from the following recursive

relation:

d? = degc(v,);

d* = X ayd*-|) where [a,y] is the adjacency matrix.
j

William also mentioned that if IV | — n, then m = is generally sufficient.

The following algorithm is called Approximately Maximum Independent Set

(AMIS) [_Jo74~\ which is a heuristic algorithm for determining the MIS. Figure 10

shows the sketch of AMIS. In Figure 10, P is the prohibited set of vertices of each

MIS finding; H is the subgraph of G induced by all uncolored vertices. Every member

v of MIS is the vertex with the minimum degree in the current subgraph

HV(H)-p* Of course, P has to be updated after we select and color vertex v.

begin
H := G;
k := 0;
while H is not null do begin

k : - k + I ;
p := 0;
while P ± V(H) do begin

find vertex v of minimum degree in H V(H).p ;
C(v) := k \
P : = P U (v) U adj(v) ;

end ;
H : = subgraph of H induced by uncolored vertices;

end ;
end ;

Figure 10. Approximately Maximum Independent Set

33

All the other heuristic algorithms in this section are capable of producing a worst

case G having colors proportional to *(G) * n, where n = |G |. However, AMIS

will color any graph G with n vertices in 0 (—- —)y(G) or fewer colors _Jol4).
log/?

Leighton _Lel9] presented the Recursive-Largest-First algorithm (RLF), which

makes use of the LFS strategy in the AMIS algorithm. Let U be the set of uncolored

vertices which are not adjacent to any colored vertex, and W be the set of uncolored

vertices which are adjacent to at least one color vertex. For each MIS, RLF chooses

the vertex having maximal degree in H as the first element of MIS, and then selects

another member v of MIS by the rule: (1) |adjH(v)n W | is maximal; and (2)

| adjH(v) fl U | is minimal if (1) is tied.

begin
H := G;
k := 0;
w h ile H is not null do begin

k .= k + 1;
find v e V(H) such that degH(v) is maximal;
C(v) : = k;
construct U and W;
w h ile U <t> do begin

find v e U such that | adjH(v) n W | is maximal;
(tie is, if possible, broken by | adjH(v) n U | is minimal)
C(v):= k;
update U and W;

end;
H := subgraph of H induced by W;

end
end;

Figure 11. Leighton's Algorithm

34

The RLF algorithm can color sparse graphs with the chromatic number near to

i H i in 0 (| V | , time. Such graph, happen very often in practice, appiication such

as timetable scheduling.

3. Vertex-vertex pair scanning.

The vertex-vertex pair scanning will inspect all pairs of vertices. It is evident that

this class of algorithms has a time-consuming step while selecting a candidate on the

basis of analysis of all pairs of vertices.

Wood's algorithm ZWo6S \̂ arranges the order of pairs of nonadjacent vertices

by the number of connection vertices, which are adjacent to both nonadjacent vertices.

Figure 12 shows the frame of Wood's algorithm. Wood made use of the fact that an

vertex of degree less than the number of colors can always be colored with one of the

existing colors.

The heart of Wood's algorithm is quite sophisticated because there are many

comparisons before the next move of the selecting pair of nonadjacent vertices. A

method which simplified the next move of the selected pair of nonadjacent vertices by

the operation, contraction, in Zykov's algorithm and dynamically chooses the pair with

the largest number of connection vertices was proposed by Dutton and Brigham

[Z)58l].

35

construct the queue L of pairs of nonadjacent vertices by
non-increasing order of the number of vertices which are
adjacent to both vertices of the indicated pair;

p := 0; /* number of colors for the current partial coloring */
repeat

take pair (x,y) from the head of L;
delete (x,y) from L;
case I: both x and y are colored

go into next pair;
case 2: exactly one vertex of x, y is colored. Assume x is uncolored,

and y e C„ where C, is the i-th color class,
i f (deg(x) ^ p) and (adj(x) fl C, = </>) th en

C ,: = C, U {*} ;
case 3: neither x nor y is colored

i f (deg(x) ^ p) or (deg(y) > p) th en
if there exists the smallest index i< ,p such that both x and y

can be colored with i th e n
C, := C, U {x,y} /* otherwise go into next pair */

e lse b eg in
p := p + \ ;
c, := {x>y} ;

end;
until (L is empty) or (no uncolored vertices left);
if uncolored vertices left th en

do the sequential coloring for all uncolored vertices;
end ;

Figure 12. Wood's Algorithm.

begin
w hile there is a pair of nonadjacent vertices do

b eg in
select the pair of nonadjacent vertices (x, y) with the largest

number of connection vertices;
identify x and y;

end;
| existing vertices | is an upper bound of the chromatic number;

end;

Figure 13. Dutton-Brigham's Algorithm.

36

C. APPLICATIONS

This section indicates a number of applications that are most often encountered.

1. Loading Problem.

We are given a set of objects. Assuming that part of the objects can't be packed

together because of some reason such as chemical contamination. The loading problem

[£ C 7 l] CC/i75j is to find the minimum number of boxes to accommodate the

objects. Let each object be a vertex of a graph, and two objects are joined by an edge

if they can't be placed in the same box. Supposing that the capacity requirement of

two objects is additive. That is, two objects of size Ox and 0 2 can by packed with a box

of capacity 0, + 02. There are several cases which take account of both the size of the

objects and the capacity of boxes.

Case 1. Object of same size and boxes of infinite capacity.

This is the standard coloring problem where each box corresponds to a color.

Case 2. Objects of same size 0 and boxes of same finite capacity B.
g

This is saying that no more than — objects can be put together in the same box. That
D

is, we add one more constraint that no more — vertices can be assigned to the same

color to the fundamental constraint that no adjacent vertices can be colored with the

same color.

Case 3. Objects of different size and boxes of the same finite capacity.

Case 3 of the loading problem is similiar to the knapsack problem in which every two

objects can be put together. Algorithms of this kind are highly similar to those of case

37

Case 4. Objects of different size and boxes of different capacity.

This is the most general case. All 4 cases are NP-complete and computationally

equivalent.

2. Timetable Scheduling.

Given a set of jobs which are to be accomplished by a set of people with some

hardware tools. Assume that the company has one of each kind of hardware tool, and

every job has the same process time. The timetable scheduling problem is to

find a schedule such that all jobs can be executed with the minimum process time.

Each job is denoted by a vertex of a graph; every two jobs are adjacent if they have to

be performed by either the same person or the same hardware tool. Every period of

the timetable is equivalent to a color of the graph coloring.

3. Resource Allocation.

We submit n jobs to a computer which owns m resources. Let us suppose that

each job can be executed in a fixed time slot with a subset of the m available resources.

Each job is represented by a vertex of a graph; the edge of two vertices is introduced

if the associated jobs require a common resource which can't be allocated at the same

time. The greatest resource utilization CC/i75] can be achieved by the optimal

coloring of the vertices of the graph.

38

IV. VARIATIONS ON THE IMPLICIT ENUMERATION APPROACH

A. BACKGROUND

I. Terminology of Trees.

A tree is a connected acyclic graph. Vertices of a tree are called nodes, one of

which is named the root of that tree. The edges of a tree are called branches. A

spanning tree of a graph G is a tree of G having all vertices of G. After the root is

removed, the remainder of the tree is partitioned into a family of disjoint sets, where

each of these family is called a subtree of the root. Within each disjoint set, the node

y which is connected to the root x is called a son of x. Meanwhile, x is called the father

of y. A node with no son is called a leaf. Sons of the same father are said to be

siblings. The number of sons of a node v is called the degree of v. The degree of a tree

is the maximum degree of the nodes in the tree. The level of a node is recursively

defined as follows: the root is initially at level 0; if a node is at level a, then its sons are

at level (a + 1). The depth of a node v in a tree is the absolute difference between the

level of v and the level of the root. The height of a node v in a tree is recursively

defined as follow: the height of a leaf is initially 0; the height of v = 1 + max { height

of v,| for every son v, of v }.

Example 4-1 In Figure 14, node a is a root of TS, node b as well as node c are

sons of node a. Nodes d, g, h, i, and j are leaves of TS. Nodes g and h are the siblings

of node i because they have the same father node e.

Depth(a) = 0;

depth(b) = 1; depth(c) = 1;

depth(d) = 2; depth(e) = 2; depth(f) = 2;

depth(g) = 3; depth(h) = 3; depth(i) = 3; depth(j) = 3.

39

Figure 14. Example of tree TS

Height(a) = 3;

height(b) = 2; height(c) = 2;

height(e) = 1; height(0 = 1;

height(d) = 0; height(g) = 0; height(h) = 0; height(i) =

height(j) = 0.

Degree(a) = 2; degree(b) = 2; degree(c) = 1; degree(d) =

degree(e) = 3; degree(f) = 1; degree(g) = 0; degree(h) =

degree(i) - 0; degree(j) = 0.

Degree of TS is 3.

40

2. Tree Search Techniques.

For constructing a search tree, we have to visit all the nodes of the search tree

systematically. Depth-first search and breadth-first search

are two common ways to accomplish this work.

a. Depth-first Search (DFS).

For a connected graph G, we start at a vertex v0 , mark it as having been visited,

and then visit an unmarked vertex v^ which is adjacent to v0. Next we visit an

unmarked vertex v2, which is adjacent to v,. We continue to penetrate the graph G

until a vertex vm , which has no unmarked adjacent vertex, is met. At this time, we

backtrack from vm to its previous adjacent vertex vm_„ and then apply the same

process to vm_,. After backtracking to v0 again, we terminate the algorithm.

Procedure DFS(w)
begin

mark(w);
for each vertex v in adj(w) do

if v has not been marked then
DFS(v);

end;

In constructing a search tree, we start at the root of the search tree, and then

penetrate the tree via branches until a leaf is met. At that time we backtrack to the

father of that leaf and do the same penetration work. Finally, we terminate the tree

traversing when the root of the search tree is reached again.

E xam p le 4-2 In Figure 14, we apply the DFS on TS by starting at the root a.

Assume that we visit sons of a father from left to right. Then we can visit the nodes

in the order a, b, d e, g, h, i, c, f, and j.

41

b. Breadth-first Search (BFS).

For a connected graph G, we start at a vertex v0 , mark it as having been visited,

and then visit all unmarked vertices which are adjacent to v0 in an order such as

v01, v02, ..., v0mQ. Next we visit all unmarked adjacent vertices of v01 such as

v0n, von, - , v01mi, all unmarked adjacent vertices of v02 such as v021, v022, ..., v02„2, ..., and

all unmarked adjacent vertices of v0m such as v0(nl, v0m2, ..., v0mMm. We continue this

process until there is no unmarked vertex. In other words, BFS recursively explores a

pending vertex (marked node not yet explored) v and all sons of v by initially starting

from a vertex v0 of a graph.

P roced ure B F S (w)
V ar

Q: queue of pending vertices;
begin

m ark (w);
empty Q;
add w to Q;
repeat

get the first pending vertex x from Q;
for each vertex v in adj(x) do

if v has not been marked th e n begin
mark(v);
add v to Q;

end;
u n til Q is empty;

In constructing a search tree, we start at the root v0 of the search tree and then

visit all the sons of v0 such as v0„ v ^ ,..., v0m. Next we visit all the sons of v0„ all the

sons of v^ ,..., and all the sons of v0m. The procedure, BFS, is called level by level until

there is no pending node.

42

E xam p le 4 -3 In Figure 14, BFS is applied on TS by starting from the root a.

Assume we visit the sons of a father from left to right. Then we traverse the nodes of

TS in the order a, b, c, d, e, f, g, h, i, and j.

So far, we describe DFS and BFS in a connected graph. How can we apply DFS

and BFS to a graph? Taking a closer look at the algorithms of DFS and BFS, we

discover that these algorithms terminate whenever a maximal connected subgraph of

a graph is found. Thus, the DFS (or BFS) of a graph is carried out by repeatedly

calling DFS (or BFS) from a new unmarked starting vertex.

B. BACKTRACKING

For many problems which we have encountered so far, there is a certain

deterministic approach, which takes a certain amount of computational work, for

obtaining a solution. For some combinatorial problems, however, there is no such

approach. In this case, we may start on one attempt at a solution. If discovering that

the solution cannot be achieved under the direction of the first attempt after an amount

of work, we have to make an adjustment on the first attempt and start over with a

second attempt. To solve this kind of problem, we must search through a finite set of

possible solutions. Since we do not know the positive principle of searching direction

which leads to a solution, this nondeterministic approach is usually very slow for a

large-scale problem. For example, the 4-queens problem, placing 4 queens on a 4x4

chessboard such that no queens can attack another queen (i.e. no queens on the same

row, column, or diagonal), there are 16 possible positions for 4 queens. The brute-force

approach will evaluate possible configurations one by one until a solution is

found. However, if we do a clever organization of the finite set of the possible

solutions, most of the configurations will not be visited in searching. One way to

achieve this job is to employ the backtracking technique.

43

Backtracking[_HS78^[_Hu&2] is a technique of organizing a search tree on a finite

set of possible solutions such that at one time a subset of possible solutions can be

eliminated from further consideration. To solve problems with backtracking, we have

to solve the following problems: (1) How to systematically search the finite set of

possible solutions? (2) How to set the bounding functions to eliminate a subset of

possible solutions from further consideration? For the searching part of backtracking,

one first represents the finite set of possible solution as a tree and then traverses the

generated tree by DFS. Usually the finite set of possible solutions is expressed as a

n-tuple vector (x„ x2, ..., x„), where each x, is chosen from a possible component set.

For example, in the 4-queens problem, we represent each possible configuration as a

4-tuple vector (x„ x2, x3, x j, where component x, indicates the position of the chess

queen on the i-th row. The possible component set of x, is {1,2, 3,4}. Before

introducing the enumeration of (x„ x2, ... ,x„), we define the lexicographical ordering.

A vector (x„ x2, ... , x„) is lexicographically smaller than (ylf y2, ... , y„) if and only if there

exists i, 1 < i < n, such that x, < y, and x; = y) for all 1 < j < i. The search of

backtracking is done by lexicographically enumerating the vectors starting from the

lexicographically smallest vector.

The bounding functions can be the explicit constraints (except the constraints

deciding the finite set of possible solutions), the implicit constraints, or both. Some

problems may not have the implicit constraints; for example, the 4-queens problem,

1 < x, < 4 form the set of possible solutions, and those conditions that two queens are

neither on the same column nor on the same diagonal are the explicit constraints.

There are no implicit constraints in the 4-queens problem. However, in optimization

problems such as minimum optimization, which is to find the global minimum among

all possible solutions, the current lower bound of the possible solutions is an implicit

constraint. The search tree built by a backtracking algorithm is called a backtrack-tree.

44

Leaves of the backtrack-tree are either solutions of the problem or dead nodes which

are found by the bounding functions.

Input: a n-tuple vector (x„ x2, ..., x„) representation of a problem
O u tp u t: all possible solutions of the problem
G lobal V ariab le

k: the current component of the n-tuple vector;
CIBF: the current implicit bounding functions;

P roced ure backtrack(k)
begin

compute the feasible set F* of xA using bounding functions;
for each x in F* do

i f CIBF(x) = true th en begin
x* <- x;
if k = n th en b eg in

save the path from the root to this leaf;
update, if necessary, CIBF;

end e ls e backtrack(k+ 1);
end;

end;

begin (* main *)
initialize CIBF;
backtrack(l);

end.

Figure 15. General Backtracking Algorithm

45

- Q

- ©

gu
re

 1
6.

Tr
ee

 r
ep

re
se

nt
at

io
n

of
 th

e
4-

qu
ee

ns
 p

ro
bl

em

46

Fi
gu

re
 1

7.
B

ac
kt

ra
ck

-tr
ec

 o
f 4

-q
ue

en
s

pr
ob

le
m

47

E xam p le 4 -4 The tree representation of the feasible set (called the tree of 4-queens

in this example), is shown in Figure 16, and the backtrack-tree of the 4-queens problem

are shown in Figure 17. The nodes are labeled by the ordering of tree traversing in the

tree of 4-queens. The branches are labeled by possible values of the x/s assigning from

the root to it; for example, the node 23 represents that x, = 2, x2 = 1, x3 = 4, and

x« = 3. There are 24 (4!) possible configurations, which are described as leaves in the

tree of 4-queens. In the backtrack-tree of 4-queens, the picture shows the steps that

the backtracking technique goes through as it tries to find a solution. The star beside

a node indicates that further consideration of the subtree rooted at that node can be

disregarded. The backtrack-tree, which has 16 nodes, has already cut 15 nodes from

the tree of 4-queens as the first solution is found.

C. BRANCH-AND-BOUND

The branch-and-bound method CT/*S78]CLW/66][M /70] is another powerful

alternative to do the exhaustive enumeration on a search tree. In contrast to the

backtracking which is a DFS-like method, the branch-and-bound is a BFS-like strategy

which generates all sons of the current node before visiting another node. The search

tree of the branch-and-bound is called the BNB-tree Each node of the BNB-tree

represents a class of possible solutions to the problem. All nodes but the solution

nodes of the BNB-tree are called pending nodes, and the union of all pending nodes is

the set of all possible solutions. The algorithm begins by assigning the formal

representation of the original problem to the root of the BNB-tree. The job of

branching is to replace a pending node v by all sons of v. That is, branching will divide

a subproblem into a class of subsubproblems. The algorithm stops when it is not

possible to do any further branching. The branch-and-bound requires a buffer for

temporarily buffering the pending nodes. Basically there are two strategies to

implement the buffer: One is FIFO (first in first out); another is LIFO (last in first out).

48

Input: r o o t n o d e o f th e B N B -tree
O u tp u t: so lu tio n s

P rogram branch-and-bound
V ar

buffer: sequence of pending nodes of BNB-tree;
begin

empty buffer;
add root node of BNB-tree to buffer;
w h ile buffer is not empty do b eg in

get node x from buffer;
for each son x' of x do b eg in

if x' is a possible solution th en begin
save x' ;
update the bounding functions;

end;
add x' to buffer;

end;
end;

end.

Figure 18. General Branch-and-bound Algorithm

Example 4-5 Figure 19 shows FIFO BNB-tree and LIFO BNB-tree, where the

labels of nodes represent the ordering of the tree traversing.

In the general branch-and-bound algorithm, the selection rule for the next

pending node is in a blind sense. This kind of selection rules does not choose a node,

which has a good chance to reach the solution quickly, according to the degree of

preference. One way to speed up the branch-and-bound technique is to find a nice

preference function, and then the selection of the next node from the buffer is totally

based on the preference function. We will discuss an intelligent branch-and-bound

algorithm on the GCP in the later section.

49

Figure 19. Examples of BNB-tree

50

Input:
root node of the BNB-tree;
preference function P;

O utp ut: solution nodes

Program intelligent_branch_and_bound
V ar

buffer: sequence of pending nodes of BNB-tree;
begin

empty buffer;
add root node of BNB-tree to buffer;
w h ile buffer is not empty do b eg in

get node x with greatest degree of preference P(x) from buffer;
for each son x' of x do begin

if x' is a possible solution th en begin
save x' ;
update the bounding functions;

end;
add x' to buffer;

end;
end;

end.

Figure 20. Intelligent Branch-and-bound Algorithm

D. PROGRAMMING FRAME OF BACKTRACKING ON THE GCP

The graph-coloring system we designed is based on Brown's algorithm which was

mentioned in chapter 3. Before describing the graph coloring system, we introduce

several terms. In a graph, the vertices which have been labeled by a suitable color are

called colored vertices In contrast to the colored vertices, we name the vertices which

are going to be colored uncolored vertices. Therefore, the vertices of a graph are

divided into two parts: colored vertices and uncolored vertices. A pool of the colored

vertices of a graph is called the core of a graph. A pool of the uncolored vertices is

called the periphery of a graph. For a vertex v of a graph, the number of neighbors

of v in the core is called the chrome-degree of v; and the number of neighbors in

51

periphery is called the white-degree of v. Two key operations in the graph-coloring

system are newcolor and mergecolor. In the graph-coloring system, we always put core

ahead of periphery. The ordering of core is as follows: color 1, color2,

..., color|corc|. The jobs of both newcolor and mergecolor are listed in Figure 21.

Procedure newcolor(i, j)
begin

exchange vertices i and j;
for each vertex v in (adj(i) U adj(j)) do

update both white-degree(v) and chrome-degree(v);
end;

Procedure mergecolor(i, j)
begin

merge uncolored vertex i into colored vertex j;
move the last vertex w of the periphery to the position of vertex i;
for each vertex v in (adj(i) U adj(j) U adj(w)) do

update both white-degree(v) and chrome-degree(v);
shrink the periphery by discarding the last vertex;

Figure 21. Procedures newcolor and mergecolor

The process of the graph coloring system can conveniently be presented as a

cyclic process. Within an unit step, both next-uncolored-vertex (nucv) and

next-color-vertex (ncv) are chosen according to a nucv-selection function and a

ncv-selection function, and then either newcolor (nucv, ncv) or mergecolor (nucv, ncv) is

performed. The coloring process stops as soon as the periphery becomes empty. We

will discuss several nucv-selection functions as well as ncv-selection functions in a later

chapter. Note that nucv is executed first, and then a feasible color ncv for nucv is

chosen in the graph-coloring system.

52

In the backtrack algorithm on the GCP shown below, the root of backtrack-tree

is the original graph G. The nodes of backtrack-tree represent the subgraphs of G after

performing either the newcolor operation or the mergecolor operation. Every branch

denotes a pair of (nucv, ncv) corresponding to the father node. The bounding function

q is initially set to the upper bound of *(G). We update q whenever a better coloring

path in backtrack-tree is found. Procedure nodejo_process indicates the proper node

of the coloring path in backtrack-tree. Along the coloring path in backtrack-tree,

nodejo_process advances one branch at a time and also backtracks branch by branch

except the first backtracking movement of a path of complete coloring. Variable

subgrCO .. n] represents the nodes on a possible path of complete coloring (from the

root to a leaf).

Inpu t a graph G of order n
O utp ut

q: integer; (* *(G) *)
Global Variable

subgr[0 .. n]: nodes on the current path of coloration;
k: the index of the current processing node of the path of coloration;
nucv e subgr[0 .. n]: the uncolored vertex which is to be colored next;
ncv e subgrCO .. n]: best color for vertex nucv;
quit: boolean;

P rogram backtrack_on_GCP
begin

k <---- 2; /* initialization */
q «- upper bound of x(G);
qu it«- false;
repeat

forward;
backward;

u n til quit;
end.

Figure 22. Backtracking scheme on the GCP

53

P roced ure n o d e _ to _ p r o c e s s (m)
begin

if m = k + 1 th en begin
c o p y su b g r C k] to subgr[k+ 1] ; (* m o v e to s u b g r [k + 1] *)
k « - k + 1;

end e lse i f m < k th en b eg in
move back to subgr[m] ;
k <- m;

end e lse begin
writeln('ch ec k m-value');
halt;

end;
end;

Figure 23. Procedure node_to_process in backtracking and branch-and-bound

P rocedure forward
begin

if k = — 2 th en begin (* place a graph into the root *)
subgr[03 <- graph G;
k<-0;

end e lse b eg in
node_to_process(k+ 1);
if ncv is a new color th en

newcolor(nucv, ncv)
e lse mergecolor(nucv, ncv);
if periphery is empty th en b eg in

update q;
return;

end;
end;
choose nucv according to nucv-selection function;
choose ncv according to ncv-selection function;
if ncv < q th en forward;

Figure 24. Procedure forward in backtracking

54

Procedure backward
begin

if k = 0 then quit <- true
else if k - n then begin

find the smallest index r such that subgr[r].ncv = q ;
node_to_process(r - 1);

end else node_to_process(k - 1);
update ncv;
if there is no feasible color for nucv then

backward;

Figure 25. Procedure backward in backtracking

Basically the backtracking algorithm on the GCP is an exact algorithm. It is

usually difficult to color a graph of order over 50 using the backtracking algorithm.

We will present various nucv-selection functions as well as ncv-selection functions in

chapter 6.

E. PROGRAMMING FRAME OF BRANCH-AND-BOUND ON THE GCP

Basically our branch-and-bound implementation is a modification of the

intelligent branch-and bound method. Instead of visiting all possible nodes which are

in the same level of the search tree, we use DFS to find all pending nodes (those which

can be partially colored with m + 1 colors) of all m-partially colored nodes. Starting

from the 0-partially colored node of a given graph, we search all 1-partially colored

pending nodes by DFS. Then we find all 2-partially colored pending nodes from each

of 1-partially colored pending nodes in a sequence in accordance with the degree of

preference. We continue this process. The coloring process stops as soon as the leaf

of a complete coloring appears.

55

In the branch-and-bound algorithm on the GCP shown below, we use the sorted

list outbuf, which treats the degree of preference as the priority, to buffer all pending

nodes which are partially colored with m colors and the priority queue inbuf to buffer

all pending nodes which are partially colored with m-f- 1 colors. Subgr [0 .. n] is the

working space for running DFS on the root subgr [0]. Variable k is the index of the

current node of the working space subgr[0 .. n], We initially place the given graph

G into the outbuf, and then recursively do the process cycle: For every node v with the

highest priority in outbuf, finding all pending nodes, which call the newcolor procedure

in the previous movement, of the subtree with the root v in DFS, and placing them into

the priority queue inbuf according to the degree of preference. After finishing each

process cycle, we copy all nodes of inbuf to outbuf in the non-increasing order of

priority of nodes. Procedure savestatus inserts the pending node into inbuf with respect

to the computed degree of preference. Procedure getnextstate is to get a new node with

the highest priority from outbuf.

There are four problems to be solved in the branch-and-bound algorithm on the

GCP: (1) How to find a good (heuristic) preference function? (2) How to handle a huge

set of pending nodes whose size grows in an exponential way corresponding to the

order of a given graph? (3) What kind of data structure is suitable for inbuf and outbuf

in order to speed up the in-out actions of nodes of inbuf and outbuf ? (4) How to find

good (heuristic) nucv-selection as well as ncv-selection function? Since the GCP is

N IP-complete, we suspect there is no perfect (exact) preference function. However,

we will propose a preference function construction in chapter 7. In practice, we limit

the number of pending nodes stored in the buffers. That is, the branch-and-bound

algorithm on the GCP becomes a heuristic GCP algorithm. We choose the data

structure, heapsort, to implement inbuf and outbuf because heapsort is an 0(« log n)

comparison sort. The detail description of heapsort will be in chapter 5. The

56

nucv-selection functions as well as the ncv-selection functions are the same functions

mentioned in the backtracking algorithm on the GCP.

Input a graph G of order n
O u tp u t

q: integer; (* *(G) *)
Global Variable

inbuf, outbuf: sequence of pending nodes which have the same core size;
subgr[0 .. n]: working space;
k: the index of the current processing node of the current working subtree;
nucv e subgr[[0 .. n]: the uncolored vertex which is to be colored next;
ncv e subgr[0 .. n]: best color for vertex nucv;
quit: boolean;

Program branch_and_bound_on_GCP
begin

k <----1;
empty inbuf;
empty outbuf;
place graph G into outbuf;
quit <- false;
repeat

forward;
if not quit then backward;

until quit;
end.

Figure 26. Branch-and-bound scheme on the GCP

Procedure getnextstate
begin

if outbuf is empty then begin
outbuf <- inbuf; (* maintain the same ordering *)
empty inbuf;

end;
subgr[0] «- the first element of outbuf;
delete the first element of outbuf;
k <- 0;

end;

Figure 27. Procedure getnextstate in branch-and-bound

57

P roced ure savestatus
b eg in

compute the degree of preference of subgr[k] ;
place subgr[k3 as well as its degree of preference into the suitable

position of inbuf w.r.t. the degree of preference;
end;

Figure 28. Procedure savestatus in branch-and-bound

P roced ure forward
begin

if k = — 1 th en getnextstate
end e ls e begin

node_to_process(k + 1);
i f ncv is a new color th e n b eg in

newcolor(nucv, ncv)
savestatus;
return

end e lse mergecolor(nucv, ncv);
i f periphery is empty th e n b eg in

quit <- true;
return;

end;
end;
choose nucv according to nucv-selection function;
choose ncv according to ncv-selection function;
forward;

Figure 29. Procedure forward in branch-and-bound

58

P roced u re backward
begin

if k = 0 th en k <---- 1
e lse b eg in

node_to_process(k - 1);
update ncv;

i f there is no feasible color for nucv th en
backward;

end;

Figure 30. Procedure backward in branch-and-bound

59

V . I M P L E M E N T A T I O N N O T E S

In order to compare the time efficiency of various algorithms on the same

experimental ground, all algorithms were coded in Turbo Pascal 4.0 from Borland

International and run on an 16 MHz IBM PS2-80.

A. GRAPHS REPRESENTATIONS

There are two common ways to represent a graph. One is the adjacency matrix;

another is the adjacency list. An adjacency matrix for the graph G = (V, E) of order

n is an n x n matrix [a ^]^ such that

av = 1 if < v,, \j > e E ;

= 0 otherwise.

Because G is a simple undirected graph, a(> = a;j, and a„ = 0. In the adjacency list

representation of a graph, each vertex has an associated list of its adjacent vertices.

Example 5-1 Figure 31 shows the adjacency matrix and the adjacency list of a

graph G.

The adjacency matrix representation is convenient for the graph algorithms which

frequently check whether certain edges exist because the time for deciding the existence

of an edge is fixed and independent of |V | and |E |. The initialization of the

adjacency matrix requires 0 (|V |2) time even if a graph has edges with the property,

| E | | V | 2. In our experiment, we select the adjacency matrix representation because

of (1) the fixed time for deciding the existence of an edge (this operation occurs very

often), and (2) the space efficiency (the rows of an adjacency matrix are represented

by bit vectors which are implemented by the set type in Turbo Pascal).

adjacency matrix of G;

1 2 3 4 5

1 0 1 1 1 0

2 1 0 1 0 1

3 1 1 0 0 1

4 1 0 0 0 0

5 0 1 1 0 0

adjacency list of G;

1

2
3

4

5

header

> 2

> 1

-> rrn
■» rm
■> d tp

> 3

•> 3

-> it ->

4 X

5 X

cr
t X

■> rm
Figure 31. Representations of a graph

61

In a d d itio n to th e a d ja cen cy m atrix , a d d itio n a l in fo r m a tio n is req u ired to

rep resen t th e curren t s ta tu s o f th e c o lo r in g o f n o d es in th e sea rch tree. T h e b a s ic d a ta

ty p e for a n o d e in th e search tree is sh o w n a s fo llow s:

vertex = 0 . . | V | — 1 ;
v r tx se t = se t o f vertex;
v rtx m a t = array
vrtxarr = array

[v e r t e x] o f vrtxset;
[v e r t e x] o f bytes;

g ra p h ty p e = record
adj : vrtxm at;
ch rom e-d eg ree
w h ite -d eg ree
fea sib le

: vrtxarr;
: vrtxarr;
: array L — 1 •• 1V |] o f in teger;

fea s to p : integer;
rsm pt : integer;
n u cv : integer;
n cv : integer;
fclr : integer;
clr : integer;
vrtx : integer;

end;

In itia lly w e a ssu m e th a t th ere is a o n e - to -o n e m a p p in g b e tw e e n th e se t V a n d th e

in teg er se q u e n c e 0 . . | V | — 1. E lev en fie ld s are a ss ig n ed to th e g ra p h ty p e .

adj is a n a d ja cen cy m atrix in set form ,

ch ro m e-d eg ree is th e n u m b er o f ad jacen t co lo red vertices .

w h ite -d eg ree is th e n u m b er o f ad jacen t u n co lo red vertices ,

feasib le is a sorted list c o n ta in in g all fea s ib le c o lo r s w h ic h h a v e n o t b e e n

a ss ig n e d to n cv yet.

fea s to p is th e in d ex o f th e h ea d o f th e so r te d list fea sib le ,

rsm p t is th e lo w e s t in d ex o f a n o d e w h ic h p erfo rm s th e p ro ced u re

newcolor to th e current h ig h est c o lo r ,

n u cv is a n u n c o lo r ed vertex o f the h ig h e s t d eg ree o f p re feren ce,

n c v is a fea s ib le c o lo r , w h ic h h as th e h ig h e s t d eg ree o f p re feren ce ,

fo r n u cv .

fclr is th e first v er tex o f co re ,

clr is th e la st v er tex o f core.

62

vrtx is the last vertex of periphery.

It requires 0 (| V [2) time to formalize a graph to the root of the search tree.

B. MEMORY SWAPPING

As we declared in the backtracking and branch-and-bound programming frame,

subgr[i], 0 ^ i <, n, is in graphtype shown in the previous section. The memory space

for a graphtype grows in 0 (|V]2). Consequently, the declaration of subgr[0 .. n]

requires 0(| V | 3) space reserved from the main memory. However, the working space

is limited. So the memory swapping is required for running the graphs of huge size.

In the obvious sense, the memory swapping will slow dowm the problem solving time.

In the memory swapping, we keep (1 + physlimit) nodes in the main memory.

The content of k always locates between 0 and physlimit in a circular list form; that is,

k = k mod (physlimit + I). The inmemory[0 .. physlimit] are used to bookkeep

whether subgr[0 physlimit] are in the main memory.

inmemory[i] = 1 if subgr[i] is in the main memory;

= 0 otherwise.

For the forward movement, if inmemory[next-node] = false, where next-node =

((k+ 1) mod (phylimit-h 1)), then we process subgr [next-node] in the main memory.

Otherwise we push subgr[next-node] to stackfl, which hold the overflow nodes in

LIFO, and process subgr[next-node]. For the backward movement, if

inmemory[prior-node] = true, where prior-node = ((k — 1) mod (physlimit + 1)), ,

we process subgr[prior-node] in the main memory. Otherwise we pop

subgr[prior~node] from stackfl , set inmemory[prior-node] = true, and process

subgr[prior-node]. Figures 32-34 show how the memory swapping is placed into the

backtracking algorithm on the GCP.

63

Global Constant
p h y s lim it

Global Variable
in m em ory: array CO .. p h y s l im it] o f b o o lea n ;
subgr: array [0 .. p h y s l im it] o f grap h typ e;
stackfl: file o f grap h typ e;
k: 0 .. p h yslim it;

In it ia liz a tio n (* m a in *)
rew rite(stack fl);
i n m e m o r y [0] « - true;
for i : = 1 to p h y slim it do

in m e m o r y [i] <- fasle;

F igu re 32. M e m o r y sw a p p in g in th e b a ck tra ck in g sch em e

64

P roced ure node_to_process(m)
var

fp: integer; (* file pointer of stackfl *)
begin

if m = k + 1 th en begin
if k = physlimit th en m <- 0 ;
if inmemory [m] then

write(stackfl, aCm])
e lse inmemory Cm] <- true ;
a [m] «- aCk];
k «- m;

end e ls e if m == k — 1 th en begin
inmemoryCk] «- false;
if k = 0 then k <- physlimit e lse k
if not inmemoryCk] th en begin

fp «- filepos(stackfl);
fp <- fp - 1;
seek(stackfl, fp);
read(stackfl, aCk]) ;
seek(stackfl, fp);
inmemoryCk] <- true;

end;
end e lse b eg in

writeln('check m-value');
halt;

end;

m ;

Figure 33. Procedure node to process of memory swapping

C. HEAPSORT

In the frame of the branch-and-bound algorithm on the GCP mentioned in

chapter 4, we employ heapsort to implement the priority queue inbuf and the sorted list

outbuf. First we build a heap in inbuf and then transform the nodes in the heap to the

sorted list outbuf

65

Procedure b a ck w a rd
var

fp: in teger;
begin

fp « - f ilep o s(sta ck fl);
if (k = 0) a n d (fp = 0) then q u it <- true
else if p erip h ery is e m p ty then begin

repeat
in m e m o r y C k] <- false;
if k = 0 then k <- p h y slim it
else k « - k - 1 ;
if not in m e m o r y C k] then begin

f p « - f p - 1;
seek (s ta ck fl, fp);
rea d (sta ck fl, a f k]) ;
seek(stackfl, fp);
inmemoryCk] <- true;

end;
until aCk].ncv = q ;
node_to_process(k — 1);
update ncv;
if there is no feasible color for ncv then

backward;
end

end;

F igu re 34. P roced u re b ack w ard o f m em o r y sw a p p in g

B efore d escrib in g th e h ea p so r t in th e b r a n c h -a n d -b o u n d a lg o r ith m , w e w o u ld like

to in tro d u ce th e gen era l c o n c e p t o f h ea p so r t. A tree is ca lled a binary tree i f e a c h n o d e

h a s at most two so n s . T h e b in ary tree o f d ep th d w h ic h h a s e x a c tly 2d+l — 1 n o d e s is

ca lled a full b in ary tree. In order to d escrib e a fu ll b in ary tree b y a s e q u e n tia l

rep resen ta tio n , w e start fro m th e r o o t o n lev e l 0 , th e n g o to th o s e o n lev e l 1, an d so

o n . N o d e s o n e a c h lev e l are n u m b ered fro m left to r igh t. F or ex a m p le , F ig u re 35 is a

fu ll b in ary tree. T h e complete tree o f ord er n ca n b e d e n o te d b y th e s e q u e n tia l

r ep resen ta tio n o f a fu ll b in a ry tree fro m 1 to n. It is se e n th a t th e lea v es o f a c o m p le te

tree o ccu r o n a t m o st tw o ad ja cen t lev e ls . A heap is a c o m p le te b in ary tree w ith th e

p ro p er ty , th e v a lu e o f e a c h n o d e is greater th a n or e q u a l to th a t o f its s o n s . A h e a p

66

having n nodes is denoted by an array H [l .. n] in which H [l] is the root and the

sons of HDD are at H[2iD and HC2i+lD- There are two basic operations in

heapsort. One is heapup which forms a bigger heap by inserting one additional node

into an already existing heap. Another is heapdown which forms a smaller heap by

taking the root away from an already existing heap. In Figure 36, procedure heapup(n)

compares the input data which is in HCnD (assuming H [l] ... H [n — 1] have already

formed a heap) with its father, grandfather, greatgrandfather, etc. until it is less than

or equal to one of these values. In Figure 37, procedure heapdown(n) compares the

input data wrhich is in the root H[lD of H having a heap from HC2] to HCnD with

its sons, grandsons, greatgrandsons, etc, until it is greater than or equal to one of these

values. While comparing the target item in the position of HDD with its sons,

H [2 i] and HC2i + lD, we move the greater value of H|~2i] and HC2i + l] up if either

H t2 i] or H£2i+ l] is greater than the target item.

The heap is first built by repeatly calling the procedure heapup whenever a new

element is added. Second it exchanges the largest element with the last element of heap

(Le. exchange(H[l], H [n])), and then applies procedure heapdown(n — 1). We

continue this cycle of process until the size of the heap becomes I. The worst case time

complexity of heapsort is O(n log n).

67

F igu re 35. E x a m p le o f fu ll tree

P roced ure h ea p u p (n)
begin

ta rg e t H [n] ;
i n;
ii -«— i d iv 2 ;
w h ile (ii > 0) a n d (ta r g e t > H C i i]) do

b eg in
H [i] « - H [i i3 ; (* m o v e th e fa th er n o d e d o w n *)
i <- ii;
ii *- i d iv 2;

end;
H C i] *- target;

Figure 36. Procedure heapup

68

P rocedure heapdown(n)
begin

target«- H [l] ;
i * - 1;
i i«- i * 2;
if H C ii + 1D > HJj Q th en ii «- ii + 1 ;
w h ile (ii < n) and (target < H [ii]) do

begin
H[i3 <- H [ii]; (* move the son node up *)
i <- ii;
ii <- i * 2;
i f H [ii+ 1] > H [ii] th en ii *- ii + 1 ;

end;
H [i] «- target;

end;

Figure 37. Procedure heapdown

(* sorting H [l] , H C 2],..., HCN] to an non-decreasing order *)
Procedure heapsort(N)

begin
for i : = 1 to N do (* build the heap *)

heapup(i);
for i : = N dow nto 2 do

begin
exchange (H [l] , H [i]);
heapdown(i — 1);

end;

Figure 38. Procedure heapsort

E xam p le 5 -2 Figures 39-42 shows how to sort the date (7, 12, 2, 15, 4, 8, 10) into

a non-decreasing order by heapsort algorithm.

69

heapup(1)

heapup(2)

heapup(3)

heapup(4)

Figure 39. Part 1 of the example 5-2

70

heapup(5)

heapup(6)

heapup(7)

Figure 40. Part 2 of the example 5-2

71

heapdown(6)

heapdown(5)

heapdown(4)

Figure 41. Part 3 of the example 5-2

72

heapdown(3)

7, 6. la 1115

heapdown(2)

©
^ heapdown(l)

4, 7. 8 ,1ft 1ft 15

Thus, the sorting order is 2, 4, 7, 8, 10, 12, 15

Figure 42. Part 4 of the example 5-2

73

In th e b ra n ch -a n d -b o u n d a lg o r ith m o n th e G C P , w e u se p ro ced u re heapup to

b u ild th e h e a p inbuf a n d p ro ced u re heapdown (i f n ecessa ry) to reb u ild th e n e w h ea p ,

w h ic h rep la ces th e r o o t o f th e h ea p b y th e a d d ed d a ta , w h en ev er th e lim it s iz e o f th e

h e a p is ex ceed ed . U p o n outbuf b e in g e m p ty , w e rep ea tly d o th e tra n sfo r m a tio n c y c le

to tra n sfo rm th e h e a p inbuf in to th e sorted list outbuf in n o n -d e c r ea s in g order. T h e

tra n sfo r m a tio n c y c le is a s fo llow s: p la ce th e r o o t o f h e a p in to th e ta il o f outbuf, rep lace

th e r o o t b y th e la st e lem en t o f inbuf, and c a ll p roced u re heapdown to reb u ild th e h ea p

o n n e w inbuf w h ic h rem o v ed th e la st e lem en t.

D . R A N D O M N U M B E R G E N E R A T O R

A multiplicative congruential generator g en era tes a seq u en ce o f in teg ers w ith in a

sp e c if ic in terva l b y th e g en era tin g fu n c tio n s o f th e fo rm f(x) = (a * x) m o d m , w h ere

a a n d m are tw o fixed in teg er param eters, a is ca lled th e multiplier o f f(x). m is ca lled

th e modulus o f f(x). T h e seq u en ce x„ x2, x3, ... is g en era ted via th e itera tive e q u a tio n ,

x,+i = A X) = (a* x ,) m o d m for i = 1, 2 ,

x, is ca lled th e seed c h o s e n fro m 1 .. m — 1 b efore ca llin g th e itera tiv e eq u a tio n .

B eca u se o f th e d eterm in istic ch aracter istic o f th e itera tiv e e q u a tio n , th e seed w ill

g u a ra n tee to g en era te th e exact sa m e se q u e n c e for e a c h run. T h erefo re , in s te a d o f

sto r in g a cy c le o f seq u en ce , w e o n ly n eed to k eep th e seed in a d d it io n to th e itera tiv e

e q u a t io n for a seq u en ce o f rep ro d u cin g w o rk . It is se en th a t ev ery e le m e n t o f th e

seq u en ce x „ x2, x 3, ... is w ith in th e in terva l 0 .. m — 1. In order to in su re a p e r io d =

m — 1, a prim e m is req u ire. C o n se q u e n tly , th e p er io d o f th e seq u en ce x lt x2, x 3, ...

b e c o m e s 1 .. m — 1. U su a lly a large prim e m o d u lu s m = 231 — 1 is u sed to m a k e th e

cy c le o f th e seq u en ce x „ x 2, x 3, ... larger [L e 5 1] [P A / 8 8] . F o r a f ix ed m o d u lu s , in th is

c a se m - 231 — 1, a g o o d m u ltip lier req u ires th e fo llo w in g th ree prop erties:

(1) f (x) = (a * x) m o d m is a fu ll p er io d g en era tin g fu n c tio n . T h a t is , th e

g en era ted se q u e n c e x „ x 2, . . . , x m_, is a p e r m u ta tio n o f 1 .. m - 1 ;

(2) T h e fu ll p er io d se q u e n c e x „ x2, . . . , x*.., is p se u d o ra n d o m C F A /8 6] ;

(3) f (x) = (a * x) m o d m c a n b e im p lem en ted w ith 3 2 -b it a r ith m etic .

74

T h e m u ltip lier a = Is ~ 16807 is su g g ested b y P ark and M iller [P A / 8 8] , T h e

g e n e r a to r f(x) = 16807x m o d (2 31 - 1) h a s a fu ll p er io d , an d ca n b e im p le m e n te d o n

sy s te m h a v in g e ith er 3 2 -b it in teg er ty p e or 3 2 -b it (o r larger) m a n tissa real ty p e . T h e

ra n d o m n ess o f th e g en era ted seq u en ce o f f (x) = 16 8 0 7 x m o d (2 31 — 1) is a c c e p ta b le

[PA/88] a lth o u g h it is n o t w ith in th e o p tim a l range se t b y F ish m a n a n d M o o r e

[FM86].

T h e b a sic id ea o f 3 2 -b it im p le m e n ta tio n o f f(x) = 16807 * x m o d (2 31 — 1) is to

a v o id th e p o te n tia l o v e r flo w a sso c ia ted w ith th e term 16807 * x. O u r im p le m e n ta tio n

is b a se d o n S ch ra g e's m e th o d [5 F 8 7] . T h e th eo re tica l d e ta ils o f S ch rage 's m e th o d are

p resen ted as fo llow s:

T h e g en era to r f(x) = (a * x) m o d m

F irst, d e c o m p o sin g m su c h th a t

m = a * q + r w h ere q = m d iv a , r = m m o d a , r < q.

S o f(x) = (a * x) m o d m

= a * x — m ((a * x) d iv m).

S u b tra ctin g an d ad d in g m (x d iv q)

f(x) = a * x — m (x d iv q) + m (x d iv q) - m ((a * x) d iv m)

= a * x — (a * q + r)(x d iv q) + m ((x d iv q) - ((a * x) d iv m)).

L et E (x) = (x d iv q) - ((a * x) d iv m)

f(x) = a * x - (a * q + rX x div q) + m (E (x))

= a * x - (a * q X x d iv q) - r(x d iv q) + m (E (x))

= a (x - q (x d iv q)) - r(x d iv q) + m (E (x))

= a (x m o d q) - r(x d iv q) + m (E (x)).

L et R (x) = x m o d q , a n d Q (x) = x d iv q.

75

f ix) = a (R (x)) - r (Q (x)) + m (E (x » .

C la im th a t for x in 1 .. m - 1 th e fo llo w in g s are true:

(1) 0 ^ a (R (x » ^ m - 1, a n d 0 ^ r (Q (x)) $ m - 1;

(2) | a (R (x)) - r (Q (x)) U m - l ;

(3) E (x) e {0 , I} .

In (1) , 0 ^ a (R (x)) = a (x m o d q) < a * q < m , s in ce r > 0 ;

0 < r (Q (x)) = r(x d iv q) < r(m d iv q) = r * a < q * a < m .

In (2) , ad d in g 0 < a (R (x)) ^ m — I an d — (m - 1) <, - r (Q (x)) ^ 0 .

In (3) , - j - = (x d iv q) + r„ w h ere 0 < r, < 1 ;

a m X = ((a * x) d iv m) + r2, w h ere 0 < r2 < I.

C o n sid er

x _ a * x
q m

__ _x_______ a * x
q a * q + r

a * q * x + r * x — a * q * x

q (a * q + r)

- r * x _ r * x
q (a * q + r) q * m

S in ce 0 < r < q, an d 0 < x < m.

S o r * x < q * m .

T h u s q m

S u b stitu tin g b y (x div q) + r„ and

b y ((a * x) d iv m) + r2)

0 < (x d iv q) + r, — ((a * x) d iv m) — r2 < 1;

0 < (x d iv q) - ((a * x) d iv m) + (r, — r2) < 1.

S in ce — 1 < — (r, — r2) < 1,

- 1 < (x d iv q) — ((a * x) d iv m) < 2;

- 1 < E (x) < 2.

76

Since E(x) is an integer.

So E(x) e {0, 1}.

In the equation f(x) = a (R (x)) — r(Q(x)) + m(E(x)), item (1) and item (2) prevent the

intermediate results from the potential overflow on 32-bit arithmetic. Item (3) says

that the computation on E(x) is not necessary.

fix) = a(R(x)) - r(Q(x)) if a(R(x)) - r(Q(x)) > 0 ;

= a(R(x)) — r(Q(x)) -+- m otherwise.

Figure 43 shows the Turbo Pascal implementation of f(x) = (16807 * x) mod (231 — 1)

based on Schrage's method.

Global var:
seed: integer;

function random: real; (* 0 < random < 1 *)
const

a = 16807;
m = 2147483647; (* 231 - 1 *)
q = 127773; (* m div a *)
r = 2836; (* m mod a *)

var
Qx, Rx, temp: integer;

begin
Qx : = seed div q;
Rx : = seed mod q;
temp : = a * Rx — r * Qx;
if temp > 0 then

seed : = temp
else seed := seed + m;
random : = seed / m;

end;

f igure 43. A multiplicative congruential generator

77

VI. SELECTION FUNCTIONS

As we know from chapter 4 within the frame of either backtracking or

branch-and-bound, the next-uncolored-vertex selection (nucv-selection) function and

the next-color-vertex selection (ncv-selection) function are the crucial parts of these

algorithms. In this chapter, a number of nucv-selection functions are introduced, and

then some ncv-selection functions corresponding to a given nucv-selection function are

presented. Our algorithms use the nucv-selection function first. The naming scheme

of various nucv-selection ncv-selection functions is as follows:

(1) In the first character of a name, Y represents the class of nucv-selection

functions, and represents the class of ncv-selection functions;

(2) In the last character of a name, 'a' indicates that a look-ahead procedure is

used.

Experimental results are shown in order to determine which algorithms have high

running speed, good solution quality, or preferable application area (small/large scale

graphs as well as dense/sparse graphs).

A. TERMS

Definition: In a partially colored graph G = (V, E), an uncolored vertex v is

called a prevention vertex of an uncolored vertex i on a colored vertex j if

(i, j) 4 E, (v, i) e E, and (v, j) 4 E, and the set of the prevention vertices of i on j is

denoted by p-se t(ij). Meanwhile, j is called a feasible color of i.

Definition: In a partially colored graph G = (V, E), an uncolored vertex v is

called a peer vertex of an uncolored vertex i if (i, v) e E, and the chrome-degree of v

is equal to the chrome-degree of i. The set of the peer vertices of i is denoted by

peer-set (i).

78

D efin ition : In a p artia l c o lo r in g grap h G = (V , E), a n u n c o lo r ed v er tex v is ca lled

a connection vertex o f an u n co lo red v er tex i o n a c o lo r v er tex j i f (i, j)ffE , (v , i) e E ,

a n d (v , j) e E , an d th e se t o f c o n n e c tio n v ertices o f i o n j is d e n o te d b y c-setfi, j) .

D efin ition : In a p artia l c o lo r in g grap h G = (V , E), a fea s ib le c o lo r j o f a n

u n c o lo r ed v ertex i is ca lled a block color o f i i f j is th e o n ly fea s ib le c o lo r for a n a d jacen t

u n c o lo r e d v er tex o f i. A n u n co lo red v er tex v is ca lled a block vertex i f th ere is o n ly o n e

fea s ib le c o lo r j fo r v, an d j is a b lo c k c o lo r o f v.

B. N E X T -U N C O L O R E D -V E R T E X S E L E C T IO N F U N C T I O N S

T h e n u c v -se le c tio n fu n c tio n w ill c h o o s e th e u n co lo red v ertex nucv o f th e h ig h e st

d egree o f p referen ce from th e perip hery .

ikorm an — se lec ts th e n u c v w ith th e sm a llest fea sib le c o lo r set s ize . T ies

are b ro k en b y c h o o s in g th e vertex o f greater degree. T h is se le c tio n stra teg y h e lp s to

red u ce th e size o f the search tree. T h is m o v e m e n t ta k es O (n) tim e; n is th e ord er o f

a graph .

ipkorm an — se lects th e n u cv w ith th e sm a llest fea s ib le c o lo r se t size . I f th ere is

m ore th a n o n e su ch vertex , it se lec ts th e o n e fo r w h ich th e ca rd in a lity o f its p e e r -se t is

m axim al. T ies are b rok en b y c h o o s in g th e o n e i w h o se sco re ,

S(i) = (]£ w e ig h t(c h r o m e -d e g r e e 0 f av), o v er a ll a v in th e ad ja cen t se t o f i), is m a x im a l.
av

F o r a fixed b a se b, th e w e ig h t fu n c tio n w is d efin ed as fo llow :

w(k) — i f b > 0 ;

=(k + 1)-* o th erw ise .

Id ea lly , th e w e ig h t fu n c tio n is to se lec t th e n u c v w h ich is a d ja cen t to a set o f n e ig h b o r s

h a v in g p articu larly h igh ch ro m e-d eg ree . N o t e th a t S (i) is th e n u m b er o f ad ja cen t

n e ig h b o rs o f i i f b = 0 or 1. T h is m o v em e n t ta k e s 0 (n J) tim e.

79

ipactual — selects the nucv with the smallest feasible color set size. Ties are

broken by choosing the one i whose score,

S(i) = ()(Xweight(chrome-degree of pv), over all pv in p-set(i, j)), over all j in
i pv

the feasible color set of i),

is maximal. This movement takes 0(n3) time.

ipreventla (with look-ahead) — selects the nucv with the smallest feasible color

set size. If there is more than one such vertex, it selects the one i for which the

cardinality of (peer-set(i) fl p-set(i, j)) , for every feasible color j of i, is maximal. Ties

are broken by choosing the one whose sum of the number of prevention vertices over

every feasible color is maximal. The look-ahead procedure is done by eliminating block

vertices from further consideration. This movement takes 0(n3) time.

iprevent2a (with look-ahead) — selects the nucv with the smallest feasible color

set size. If there is more than one such vertex, it selects the one i for which the

cardinality of (peer-set(i) (1 p-set(i, j)) , for every feasible color j of i, is maximal. Ties

are broken by choosing the one i whose score,

S(i) = (y (Vweight(chrome-degree of pv), over all pv in p-set(i, j)), over all j in
i pv

the feasible color set of i),

is maximal. This movement takes 0(n3) time.

iprevent3a (with look-ahead) — selects the nucv with the smallest feasible color

set size. If there is more than one such vertex, it selects the one i for which the

cardinality of (peer-set(i) (1 p-set(i, j)) , for every feasible color j of i, is maximal. Ties

are broken by choosing the one i whose score,

S(i) = (/ /XX^hrome-degree of pv) * (white-degree of pv)), over all pv in
» pv

p-set(i, j)), over all j in the feasible color set of i),

is maximal. This movement takes 0(n3) time.

80

S(i) = (/ . (XX(chrome-degree of pv) * (white-degree of pv)), over all pv in
i pv

p-set(i, j)), over all j in the feasible color set of i),

is maximal. Ties are broken by choosing the one i for which the cardinality of

(peer-set(i) D p-set(i, j)) , for every feasible color j of i, is maximal. This movement

takes 0(n3) time.

ip r e v e n t4 a (with look-ahead) — selects the nucv with the smallest feasible color

set size. If there is more than one such vertex, it selects the one i whose score,

iconnecta (with look-ahead) — selects the nucv with the smallest feasible color set

size. If there is more than one such vertex, it selects the one i for which the cardinality

of (peer-set(i) n p-set(i, j)) , for every feasible color j of i, is maximal. Ties are broken

by choosing the one i whose score,

S(i) = (/ ,(Xl((chrome-degree of cv) 4- (white-degree of cv)), over all cv in
i w

c-set(i, j)), over all j in the feasible color set of i),

is maximal. This movement takes 0(n3) time.

C. NEXT-COLORED-VERTEX SELECTION FUNCTIONS

The ncv-selection function will find the feasible color set for a vertex chosen by

a nucv-selection function, and then order colors in the feasible color set according to

a certain rule of preference. Note that in this section, we always let the new color be

the last choice.

jkorman CA7>79]— sorts the feasible color set of nucv according to the index of

the color, and assigns the smallest color to ncv. This movement takes O(n) time.

jkormana (with look-ahead) — is a look-ahead version of jkorman. The

look-ahead procedure is to prevent the block color of the nucv from being in the

feasible color set. This movement takes 0(n2) time.

81

jsucadja (with look-ahead) — sorts the feasible color set according to the

following rules:

(a) min {white-degree of j}, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{j}.

This movement takes 0(n2) time.

jpactual — sorts the feasible color set according to the following rules:

(a) min{(£weight(chrome-degree of pv), over all pv in p-set(nucv, j))},
i pv

where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) nun{white-degree of j}.

Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{j}.

This movement takes 0(n2) time.

jpactuala (with look-ahead) — is a look-ahead version of the jpactual. This

movement takes 0(n2) time.

jpreventla (with look-ahead)— sorts the feasible color set according to the

following rules:

(a) min{ | peer-set(nucv) fl p-set(nucv, j) | }, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{ | p-set(nucv, j) |}.

Finally, if (a) and (b) do not distinguish between colors, use (c)

(c) min{j}.

This movement takes 0(n2) time.

82

jprevent2a (with look-ahead)— sorts the feasible color set according to the

following rules:

(a) min{ | peer-set(nucv) fl p-set(nucv, j) |}, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{(5]weight(chrome-degree of pv), over all pv in p-set(nucv, j))},i pv
where j is a feasible color.

Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{j).

This movement takes 0(nJ) time.

jprevent3a (with look-ahead)— sorts the feasible color set according to the

following rules:

(a) min{ | peer-set(nucv) fl p-set(nucv, j) |}, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{(2((chrome-degree of pv) * (white-degree of pv)), over all pv in
J pv

p-set(nucv, j))}, where j is a feasible color.

Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{j}.

This movement takes 0(n2) time.

jprevent4a (with look-ahead)— sorts the feasible color set according to the

following rules:

(a) min{GL((chrome-degree o f pv) * (white-degree o f pv)), over all pv in
J pv

p-set(nucv, j))}, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{ | peer-set(nucv) fl p-set(nucv, j) | }.

Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{]}.

83

This movement takes 0 (n 2) time.

jconnecta (with look-ahead)--- sorts the feasible color set according to the

following rules:

(a) min{ | peer-set(nucv) fl p-set(nucv, j) | }, where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):

(b) min{(2((chrome-degree of cv) + (white-degree of cv)), over all cv in
] cv

c-set(nucv, j))}, where j is a feasible color.

Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{j}.

This movement takes 0 (n 2) time.

D. WEIGHTED SCALE ON THE SCORE OF THE NEW COLOR

In the last section, the new color is always the last choice. However, this kind

of arrangement may require more backward and forward moves for some graph. In

this section we attempted to beat this problem in the average sense by employing a

weighted scale on the score of the new color.

In Tables XVII-XXIV, the score of the new color is equal to the score, which is

computed according to the formula in the rule (a) of algorithm jpactual or algorithm

jprevent4a , with the factor of the given weight. The results in Tables XVII-XX

support the claim that the method putting weighted scale on the score of the new color

fails to significantly improve the performance of coloring in the global sense.

E. SWAPPING BETWEEN THE CORE AND THE PERIPHERY

With regard to the computational time, we find that the algorithm Korman is

simple but fast because of its linear time complexity for each forward movement. I he

84

algorithm Korman can be improved by swapping between the core and the periphery.

Let us assume that c„, c , ..., c* form the core, and vA+I, v*+2..., v„ form the periphery.

If there exists a vertex vit among vA+1..., vm, which is connected to all colors in the

core but cjt the pair (c,, v,) is said to be 1-1 swappable. In this case, we move v, to the

core and cy to the periphery. If there exist two adjacent vertices va, va in the periphery

such that each of them adjacents to all colors in the core but cJf the triple

(Cj, v„, vi2) is said to be 2-1 swappable. In this case, we move v„, va to the core and

Cj to the periphery. It is evident that the 2-1 swapping will introduce a new color to

the core. Similarly, if there exist three mutually connected vertices v,,, v,2, and v,3 in the

periphery such that each of them adjacent to all colors in the core but cyl and c,2, the

5-tuple (cyl, cj7, v(1, v,2, vl3) is said to be 3-2 swappable. In this case, we move v,„ va,

vl3, the the core and cyl, c^ to the periphery. The 3-2 swapping also adds a new color

to the core. The swapping method iterates the cycle: finding a swappable candidate

and performing (if necessary) the swapping process until there is no swappable

candidate. The vertex sequential coloring algorithm with swapping is as follows: (1) if

there is an vertex v which is adjacent to all existing color , color it with new color; (2)

else search for 2-1 swappable, do swapping if found; (3) else use the vertex sequential

coloring algorithm, the swapping method is done before a new forward movement.

The algorithms in this section differ only in the swapping method from the

corresponding algorithms mentioned in section B.

ikorqkZ — is the ikorman algorithm with the swapping method which searchs for

a 2-1 swappable candidate as early as possible and does the swapping process. This

movement takes 0(n3).

ikorpw2 — is the ikorman algorithm with the swapping method which searchs for

all 2-1 swappable triples (c;, v,„ va). If there is more than one candidate, it takes the

85

2-1 sw a p p a b le ca n d id a te w h o se v a lu e (w h ite -d e g r e e ^ ,) + w h ite -d eg ree (v a)) is

m a x im a l. T h is m o v e m e n t ta k es 0 (n 3).

ikorw2 — is the ikorman algorithm with the swapping method which first searchs

for all 2-1 swappable triples (cJt v„, va). If there is a candidate, it takes the 2-1

swappable candidate whose value (white-degree^,,) + white-degree(va)

- white-degree(c,)) is maximal. This movement takes 0 (nJ).

ikorw2p — is similar to ikorw2 except that all 2-1 swappable triples (c;, va, va) in

the first part of the swapping method satisfy the condition (white-degree(v„)

4- white-degree(va) - white-degree(c,)) > 0.

ikormaxw2 — is the ikorman algorithm with the following swapping method. The

swapping method searchs for all 2-1 swappable triples (cy, v,„ va). If there is a

candidate, it takes the 2-1 swappable candidate whose value max{white-degree(v,,),

white-degree(va)} is maximal. This movement takes 0(n3) time.

ikorw23 — is the ikorman algorithm with the swapping method. The swapping

method is as follows:

step I: search for all 2-1 swappable triples. If there is no candidate, go to step

3.

step 2: take the candidate (c;, va, va) whose value (white-degree(v,,)

+ white-degree(va) — white-degree(cy)) is maximal, and perform the swapping process.

Goto step 1.

step 3: search for all 3-2 swappable 5-tuples. If there is no candidate, then go to

step 5.

step 4: take the candidate (c,„ cp, v,„ va, v0) whose value (white-degree(v,,)

+ white-degree(va) + white-degree(va) - white-degree(c;1) - white-degree(c^)) is

maximal, and perform the swapping process. Goto step 1.

86

step 5: begin the ikorman selection.

This movement takes 0(n4) time.

ikorqk23 — is similar to ikorw23 except that instead of searching for all possible

swapping triples in order to select the best one, it picks the swapping candidate as soon

as it appears.

ikonv2e (scale) — is analogous to ikorw2 except that all 2-1 swappable condidates

(cy, v,„ v,2) must satisfy the following condition: wscore > threshold, where wscore =

white-degree(vfl) + white-degree(vQ) - white-degree^), and threshold =

lower_bound(wscore) + (upper_bound(wscore) — lower_bound(wscore)) * scale. Note

that ikorw2e with scale = 0 is equivalent to ikorw2. This movement takes

0(n3) time. Default scale = 0.0.

ikorw21e (scale 1, scale2) — is the ikorman algorithm with the following swapping

method:

step I: search for all 2-1 swappable triples (cy, v,„ va) satisfying the condition:

wscore2 > threshold2, where wscore2 = white-degree(va) + white-degree(v,2)

— white-degree(Cy), and threshold2 = lower_bound(wscore2) +

(upper_bound(wscore2) — lower_bound(wscore2)) * scale2. If there is no candidate,

go to step 3.

step 2: take the candidate with maximal score on wscore2, and perform the

swapping process. Goto step 1.

step 3: search for all 1-1 swappable pairs (cy, v,) satisfying the condition:

wscore 1 > threshold 1, where wscore 1 = white-degree(v,)p - white-degree(c,), and

threshold 1 = lowerbound(wscorel) + (upper_bound(wscorel) -

lower_bound(wscorel)) * scalel. If there is no candidate, then go to step 5.

step 4: take the candidate with maximal score on wscore 1, and perform the

swapping process. Goto step 1.

87

step 5: begin the ikorman selection.

Default scale 1 = 0.5, and scale2 = 0.0.

ikorwl2e (scale!, scale2) — instead of searching for 2-1 swappable candidate first

in the algorithm ikorw21e, the algorithm ikorwl2e search for 1-1 swappable candidate

first and then 2-1 swappable candidate.

ikorw21ec (scalel, scale2) — Algorithm ikorw21e always does 2-1 swapping first

and then 1-1 swapping (if there is no 2-1 swappable candidate). Another algorithm

ikorwl2e does the swapping method by giving 1-1 swapping a higher priority (than 2-1

swapping). In the global sense, ikorw21ec searchs for all 1-1 swappable pairs and 2-1

swappable triples. Meanwhile, the score of each candidate is evaluated (see

ikorw2\e). The swapping process takes the candidate which has the maximal score

among 1-1 and 2-1 swappable candidates.

ikormaxw21e (scale) — is similar to ikorw2Ie except replacing step 1, 2 in

ikorw21e by the ikormaxw2 algorithm. Default scale = 0.5.

ipactqk2 — is the ipactual algorithm with the swapping method which searchs for

a 2-1 swappable candidate as early as possible and perform the swapping process. This

movement takes 0(n3).

ipactmaxw2 — is the ipactual algorithm with the swapping method. The swapping

method searchs for all 2-1 swappable triples (c,, v„, va). If there is a candidate, it takes

the 2-1 swappable candidate with maximal score on max{white-degree(v,,),

white-degree(va)}. This movement takes 0 (n3) time.

88

F. HEURISTIC ALGORITHMS

Recall that the ncv-selection function keeps all feasible colors of nucv in a certain

order according to the user-defined preference. The heuristic algorithm can by done

by pruning some feasible colors of lower preference. From the experimental results, in

about 95% of all random graphs, using our algorithms, the number of branches of

every node in the backtrack-tree is either I or 2. We introduce two straightforwards

but effective pruning techniques.

1. Limit.

Assume that L , \ < , L < 2 , branches of every node are expected to be left after

pruning, and b denotes the number of branches of a node. The limit pruning technique

is as follow: If b = 1, then it does nothing; otherwise the second branch of lower

preference is chosen with probability L A .

2. Epsilon.

The epsilon prunning technique is to set a threshold for the user-defined

preference. Any branch with degree of preference less than threshold is eliminated.

Assume that the full range between the lower bound of potential degree of preference

and the upper bound of potential degree of preference is treated as one unit. The

threshold is defined to be the lower bound plus the product of eps, where 0 < eps < 1,

and the absolute difference between the upper bound and lower bound .

89

G. COMPUTATIONAL RESULTS

The various coloring algorithms under the backtracking scheme (refer to chapter

4) were applied to an identical sequence of random graphs, and the results were

tabulated in order to compare their speed. The random graphs were generated utilizing

the pseudo random number generator according to two parameters, the order of a

random graph and the edgeload. The detailed description of the pseudo random

number generator has been discussed in chapter 5. The edgeload of a random graph

is the ratio of the number of actual edges to the number of potential edges. For each

constant order of a random graph, four different classes of random graphs were

produced with edgeloads: 0.3, 0.5, 0.7, and 0.9. For each order and edgeload, 100

random graphs were generated. Every figure in the tables is the mean of 100 graphs.

The "exact color" column is the chromatic number, the "first color" column is the

number of colors required for the first complete coloring of the backtrack tree, "moves"

column is the number of forward moves, "S.D." column is the standard deviation of

forward moves, and "var cof." column is the variance coefficient which is the ratio of

standard deviation to mean of forward moves.

Tables I-IV show that Pkorman algorithms with weight other than 0 and 1 run

faster than Pkorman with weight 0 or 1 except the situation, vertices = 40 and

edgeload = 0.7. Tables V-VIII display that weight other than 0 and 1 in the Pactual

algorithm performs better in speed than weight = 0 or 1 even in the situation, edgeload

= 0.7. From Tables I-VIII, we know that finding the best weight other than 0 and 1

according to the computational time is not possible. However, we observe that weight

= 2 has a relatively good performance (especially for edgeload = 0.7).

There is no apparent relation between "first colors" and "moves". An algorithm

with fewer "first colors" may take more forward moves. Tables IX-XVI show that a

fixed nucv-selection function with various ncv-selection functions produce algorithms

90

with "moves" which are within 0-7% of the mean for the corresponding set of forward

moves. On the other hand, a fixed ncv-selection function with various nucv-selection

functions generate widely different numbers of forward moves; for example, (ikorman,

jkorman) and (ipactual, jkorman) .

Tables XXXVII-XLVI contain the computational results of a number of exact

coloring algorithms. The variance coefficient is the ratio of standard deviation to mean.

When observing the following algorithms: (ikorman, jkorman), (ikorman, jkormana),

(ipactual, jpactual) and (ipactual, jpactuala), we find that adding the look-ahead

procedure to the backtracking sequential algorithm yields significant (9% - 15%)

improvement on the forward movement except the case, edgeload = 0.9. The linear

Korman selection is nearly the fastest algorithm (Pactual is shown to be faster than

Korman in Table XLIV). The Connecta algorithm is the slowest one. Most of the

other algorithms produce a significant cut on the forward movement. However, the

additional computation time for the search tree pruning is also significant. For

example, for the algorithm (ipkorman, jkorman), the additional computation time

required for the prior work of tree pruning is more than the time saved by tree pruning

over algorithm ikorman. The algorithm (ikorman, jsucadja) generates better "first

colors" than other algorithms.

Tables XVII-XX show that raising the preference of the new color increases both

the forward moves and the colors required for the first complete coloring except for

edgeload = 0.5, the Pactual algorithm with w = 0.6 has slightly fewer (about 1.5%)

forward moves. Similar situations occur both for edgeload = 0.5 and w = 0.4 in Table

XXII and for edgeload = 0.7 and w = 0.3 or 0.4 in Table XXIII.

Tables XXV-XXVIII show that ikorw21e and ikorw21ec are slightly better than

ikorwI2e , and the performance of ikorw21e is nearly similar to that of ikorw2Iec.

91

Tables XXIX-XXXII show that (1) the case, scale2 = O.O, (full 2-1 swapping)

takes fewer forward moves than the case, scale2 = 0.0 and scalel = 0.5 (full 2-1

swapping plus full 1-1 swapping); (2) the case, scale2 = 1.0 and scalel = 0.5 (full 1-1

swapping), takes fewer forward moves than the case, scale2 = 1.0 (without 2-1

swapping); (3) the full 2-1 swapping takes fewer forward moves than the partial 2-1

swapping (scale2 # 0.0); it seems that the wider the range of 2-1 swapping is, the less

the forward moves are; (4) the full 1-1 swapping only behaves better than the Korman

algorithm in "moves" and "first color"; and (5) the full 2-1 swapping without 1-1

swapping takes fewer forward moves than other algorithms.

Tables XXXIII-XXXVI show that (1) ikorw2 has slightly better performance

than either ikorpw2 or ikorw2p ; (2) adding 3-2 swapping process to either ikorqk2 or

ikorw2 creates a significant improvement on the "moves" (about 19% for edgeload =

0.3, about 27% for edgeload = 0.5, about 21% for edgeload = 0.7, and about 10%

for edgeload = 0.9). Both ikorqk23 and ikorw23 , however, pay a significant overhead

in time (about 50% for edgeload = 0.3, about 108% for edgeload = 0.5, about 260%

for edgeload = 0.7, and about 450% for edgeload = 0.9); (3) the Korman algorithm

with 2-1 swapping or its variations take fewer forward moves than the Korman

algorithm and needs fewer "first color" except the case, edgeload = 0.9; (4) the Pactual

algorithm with 2-1 swapping has better performance in "moves" and "first color" than

the Pactual algorithm; and (5) the algorithms, (ipactqk2, jpactual) and (ipactmaxw2,

jpactual), need fewer "first color" than other algorithms.

Tables XXXVII-XL, XLI-XLII, XLIII-XLVI, and XLVII-XLVIII show that (1)

both ikorw2 and ikormaxw2 makes a substantial improvement on the forward moves

(about 25% better than Korman) and the computational time (about 10% better than

Korman for edgeload = 0.5 and 0.7); and (2) (ipactmaxw2, jpactual) behaves

92

exceptionally better (about 50%) than Korman on the forward moves and colors a

graph using fewer colors than Korman.

In Figures 44-59, Korman algorithm represents (ikorman, jkorman) algorithm,

Korw2 algorithm represents (ikorw2, jkorman) algorithm, Pactual algorithm represents

(ipactual, jpactual) algorithm, and Pactmaxw2 algorithm stands for (ipactmaxw2,

jpactual) algorithm. Every continuous curve in Figures 44-60 is developed by (1)

computing the data points associating with |V | = 28, 32, 36, 40, 44, 48, 52, and 56;

and (2) using the cubic spline function to fit a curve to the data points. Figures 44-47

show that (1) Chrome represents the exact colors; (2) Pactmaxw2 algorithm with

non-backtracking makes use of fewer heuristic colors than Korman, Korw2, and

Pactual for 100 identical random graphs; and (3) every curve is nearly linear. Figures

52-55 show that (1) Pactmaxw2 takes fewer forward moves than Pactual, Pactual takes

fewer forward moves than Korw2, and Korw2 takes fewer forward moves than

Korman; (2) the conjecture, bigger graphs requires more forward moves to get the

chromatic number, is not always true; for example, | V | = 52 and 56 for edgeload =

0.3 and |V | = 40 and 44 for edgeload = 0.3; (3) all curves for edgeload = 0.5, 0.7,

and 0.9 are exponential, and they go up sharply after passing |V | =44 ; and (4) for

edgeload = 0.5, 0.7 and 0.9, the gap between Pactmaxw2 and Korman becomes bigger

as the number of vertices becomes larger. Figures 56-59 have the same data points as

Figures 52-55, plotted on a logarithmic scale on the forward moves axis. Figures 48-51

show that (1) Korw2 is faster than Korman; (2) Pactmaxw2 is faster than Pactual; and

(3) for edgeload = 0.3, 0.5, 0.7, and 0.9, all curves are exponential.

In Tables LI-LII display that (1) "mean" column is the mean of differences of

running time between Korw2 and Korman; (2) "S.D." column is the standard deviation

of the differences of running time; (3) "better" column is the percentage of graphs in

which Korw2 is faster Korman; (4) "worse" column is the percentage of graphs in

93

which Korw2 is slower than Korman; and (5) Korw2 is faster than Korman on the

average. Tables LIII-LIV show that (1) Pactual is slower than Korman for most of

graphs except that n = 56 on edgeload = 0.5 and 0.7, and n = 52 on edgeload = 0.7.

Tables LV-LVI show that (1) for edgeload = 0.3, Pactmaxw2 is slower than Korman

for most of graphs except n = 52 and 56; (2) for edgeload = 0.5 and 0.7, Pactmaxw2

is faster than Korman for most of graphs except n = 28, 32, and 36; and (3) for

edgeload = 0.9, Pactmaxw2 is slower than Korman for most of graphs. Tables

LVII-LVI11 show that Pactmaxw2 is faster than Pactual on the average and for most

of graphs.

In Tables LIX-LXX, the equation, c-ap = q, means that q of the 100 graphs can

be colored with (c + chromatic number) colors by the limit pruning technique. The

jkorlm, jpaclm, and jpv4lm are the modified version of jkorman, jpactual, and jprevent4a

respectively. In Tables LXVII-LXX, iprv4a is a shorthand of iprevent4a. The "heur.

color" column is the mean of the heuristic colors of 100 random graphs. Tables LIX

and LXII show that for edgeload =0 . 3 and edgeload = 0.9, the 0-ap decreases slowly

as the eps becomes smaller. On the other hand, for the limit pruning technique, the

0-ap may not decrease as the lim becomes smaller, such as lim = 1.6 and 1.7 and

edgeload = 0.9 in Table LXVI, because of using the probability for picking the second

branch of every node of the backtrack tree.

H. DISCUSSION

The weight function shown in pkorman is helpful for deciding the next uncolored

vertex in the average sense. A nucv-selection function with various ncv-selection

functions generate the number of forward moves which are within 7% of the mean of

its corresponding set. However, a ncv-selection with various nucv-selection functions

have widely different performances. We suspect that the reason is that, the

94

nucv-selection function is called first. The look-ahead procedure either in the

nucv-selection function or the ncv-selection function has a significant improvement on

the forward moves and the running time.

From the worst case analysis, the Korman algorithm is O(n), the Pkorman

algorithm is 0(nJ), and Pactual, Prevent la, Prevent2a, Prevent3a, Prevent4a, and

Connecta are 0 (n3). However, from experimental results, the Pkorman algorithm is

inferior to algorithms, in 0(n3) time complexity, except Connecta in the average sense.

The variations of the Korman algorithm, Pactual, Prevent la, Prevent2a, Prevent3a,

and Prevent4a, prune the backtrack tree effectively. However, the computational time

for choosing a good forward movement is also significant.

Although the 3-2 swapping method makes fewer forward moves, its overhead for

searching for a 3-2 swapping candidate is significant (especially for dense graphs). The

Korman algorithm with either 2-1 swapping or 2-1 swapping plus 1-1 swapping is

superior to the Korman algorithm on the forward moves and the running time. The

Pactual algorithm with 2-1 swapping is superior to the Korman algorithm on the

forward moves and the running time. The Pactual algorithm with 2-1 swapping

generates the smallest "first color" among Korman's algorithm and the algorithms

which have been developed. That is, it is a good heuristic algorithm of the vertex-color

sequential without backtracking type.

In Figure 52, all curves go down between | V| = 52 and 56. We suspect that it

is only a local action. From the global sense, the curves are still exponential.

In our algorithms, the top two feasible colors, of higher degree of preference, of a

nucv chosen by using the nucv-selection function almost always (within 95% up to 52

vertices) yield an optimal coloring. Two heuristic algorithms, limit and epsilon , based

on the above fact are presented.

95

Table I. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ikorman jkorman - 5.96 183.86 6.40 2

ipkorman jkorman 0 153.77 6.21 3

ipkorman jkorman 1 153.77 6.21 3

ipkorman jkorman 2 147.43 6.23 3

ipkorman jkorman 3 148.97 6.24 3

ipkorman jkorman 4 143.62 6.25 3

ipkorman jkorman 5 144.77 6.24 3

ipkorman jkorman 6 143.79 6.25 3

ipkorman jkorman 7 143.98 6.25 3

ipkorman jkorman 8 143.94 6.25 3

ipkorman jkorman 9 143.90 6.25 3

ipkorman jkorman -1 153.71 6.22 3

ipkorman jkorman -2 143.58 6.24 3

ipkorman jkorman -3 143.59 6.24 3

ipkorman jkorman -4 144.24 6.26 3

ipkorman jkorman -5 144.18 6.26 3

ipkorman jkorman -6 143.83 6.25 3

ipkorman jkorman -7 143.88 6.25 3

ipkorman jkorman -8 143.95 6.25 3

ipkorman jkorman -9 143.93 6.25 3

96

Table II. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ikorman jkorman - 8.23 1108.45 9.44 15

ipkorman jkorman 0 1209.46 9.36 24

ipkorman jkorman 1 1209.46 9.36 24

ipkorman jkorman 2 1076.45 9.42 21

ipkorman jkorman 3 1026.46 9.40 20

ipkorman jkorman 4 1012.69 9.35 20

ipkorman jkorman 5 1007.52 9.34 20

ipkorman jkorman 6 1007.25 9.34 20

ipkorman jkorman 7 1007.21 9.33 20

ipkorman jkorman 8 1008.18 9.34 20

ipkorman jkorman 9 1008.41 9.34 20

ipkorman jkorman -1 1163.14 9.46 23

ipkorman jkorman -2 1094.72 9.44 22

ipkorman jkorman -3 1036.52 9.42 20

ipkorman jkorman -4 1016.94 9.37 20

ipkorman jkorman -5 1018.65 9.38 20

ipkorman jkorman -6 1019.91 9.39 20

ipkorman jkorman -7 1006.79 9.35 20

ipkorman jkorman -8 1003.70 9.33 20

ipkorman jkorman -9 1006.82 9.33 20

97

Table III. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ikorman jkorman - 11.88 833.55 13.14 11

ipkorman jkorman 0 979.34 13.11 20

ipkorman jkorman 1 979.34 13.11 20

ipkorman jkorman 2 880.44 13.22 18

ipkorman jkorman 3 1009.44 13.22 20

ipkorman jkorman 4 981.67 13.28 19

ipkorman jkorman 5 961.39 13.23 19

ipkorman jkorman 6 967.88 13.24 19

ipkorman jkorman 7 970.87 13.23 19

ipkorman jkorman 8 971.03 13.23 19

ipkorman jkorman 9 972.87 13.24 19

ipkorman jkorman -1 923.28 13.21 19

ipkorman jkorman -2 884.06 13.20 18

ipkorman jkorman -3 963.17 13.21 19

ipkorman jkorman -4 981.06 13.22 20

ipkorman jkorman -5 899.73 13.20 18

ipkorman jkorman -6 965.37 13.21 19

ipkorman jkorman -7 984.18 13.21 20

ipkorman jkorman -8 1031.85 13.22 20

ipkorman jkorman -9 963.04 13.23 19

98

Table IV. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ikorman jkorman - 19.20 78.83 19.53 1

ipkorman jkorman 0 64.03 19.59 3

ipkorman jkorman 1 64.03 19.59 3

ipkorman jkorman 2 62.88 19.62 3

ipkorman jkorman 3 62.46 19.61 3

ipkorman jkorman 4 63.45 19.66 3

ipkorman jkorman 5 63.54 19.67 3

ipkorman jkorman 6 63.83 19.65 3

ipkorman jkorman 7 61.76 19.61 3

ipkorman jkorman 8 64.01 19.67 3

ipkorman jkorman 9 62.99 19.66 3

ipkorman jkorman -1 63.05 19.58 3

ipkorman jkorman -2 62.72 19.60 3

ipkorman jkorman -3 63.34 19.59 3

ipkorman jkorman -4 62.05 19.59 3

ipkorman jkorman -5 62.10 19.56 3

ipkorman jkorman -6 62.83 19.61 3

ipkorman jkorman -7 63.32 19.62 3

ipkorman jkorman -8 62.40 19.62 3

ipkorman jkorman -9 62.96 19.60 3

99

Table V. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Pactual algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ipactual jpactual 0 5.96 161.40 6.33 4

ipactual jpactual I 161.40 6.33 4

ipactual jpactual 2 129.22 6.25 3

ipactual jpactual 3 121.38 6.22 3

ipactual jpactual 4 118.35 6.16 3

ipactual jpactual 5 119.41 6.14 3

ipactual jpactual 6 122.67 6.14 3

ipactual jpactual 7 123.52 6.14 3

ipactual jpactual 8 123.68 6.11 3

ipactual jpactual 9 124.26 6.12 3

ipactual jpactual -1 140.24 6.24 4

ipactual jpactual -2 124.53 6.23 3

ipactual jpactual -3 120.08 6.22 3

ipactual jpactual -4 120.40 6.18 3

ipactual jpactual -5 120.88 6.18 3

ipactual jpactual -6 124.03 6.17 3

ipactual jpactual -7 123.73 6.12 3

ipactual jpactual -8 124.88 6.13 3

ipactual jpactual -9 125.11 6.12 3

100

Table VI. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Pactual algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ipactual jpactual 0 8.23 851.32 9.52 20

ipactual jpactual 1 851.32 9.52 20

ipactual jpactual 2 702.96 9.35 16

ipactual jpactual 3 639.00 9.34 15

ipactual jpactual 4 650.68 9.33 15

ipactual jpactual 5 740.20 9.30 17

ipactual jpactual 6 735.63 9.29 17

ipactual jpactual 7 741.08 9.29 17

ipactual jpactual 8 745.38 9.27 17

ipactual jpactual 9 745.66 9.26 17

ipactual jpactual -1 768.78 9.38 18

ipactual jpactual -2 780.65 9.39 18

ipactual jpactual -3 729.55 9.33 17

ipactual jpactual -4 765.62 9.32 18

ipactual jpactual -5 696.12 9.36 16

ipactual jpactual -6 698.95 9.38 16

ipactual jpactual -7 722.55 9.39 17

ipactual jpactual -8 738.51 9.34 17

ipactual jpactual -9 735.30 9.31 17

101

Table VII. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Pactual algorithm with different weights on the weight function

nucv ncv weight exact
color

moves first
color

time
(sec)

ipactual jpactual 0 11.88 690.55 13.29 17

ipactual jpactual I 690.55 13.29 17

ipactual jpactual 2 479.94 13.08 12

ipactual jpactual 3 533.84 13.16 13

ipactual jpactual 4 620.75 13.20 14

ipactual jpactual 5 610.39 13.24 14

ipactual jpactual 6 619.17 13.26 14

ipactual jpactual 7 613.84 13.25 14

ipactual jpactual 8 613.99 13.23 14

ipactual jpactual 9 614.17 13.23 14

ipactual jpactual -1 669.09 13.24 16

ipactual jpactual -2 644.43 13.19 16

ipactual jpactual -3 580.39 13.14 14

ipactual jpactual -4 538.26 13.15 13

ipactual jpactual -5 531.43 13.07 13

ipactual jpactual -6 530.50 13.07 13

ipactual jpactual -7 567.34 13.09 14

ipactual jpactual -8 629.25 13.16 15

ipactual jpactual -9 590.23 13.22 14

102

Table VIII. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pactual algorithm with different weights on the weight function

n u cv ncv w eight exact
co lo r

m oves first
co lo r

tim e
(sec)

ip a c tu a l jp a c tu a l 0 19.20 73.42 19.54 3

ip a c tu a l jp a c tu a l 1 73.42 19.54 3

ip a c tu a l jp ac tu a l 2 60.31 19.50 2

ip a c tu a l jp ac tu a l 3 56.21 19.50 2

ip a c tu a l jp a c tu a l 4 58.12 19.50 2

ip a c tu a l jp a c tu a l 5 58.17 19.49 2

ip a c tu a l jp ac tu a l 6 58.51 19.52 2

ip a c tu a l jp a c tu a l 7 58.37 19.52 2

ip a c tu a l jp a c tu a l 8 58.18 19.50 2

ip ac tu a l jp a c tu a l 9 58.71 19.51 2

ip a c tu a l jp a c tu a l - l 59.90 19.46 3

ip ac tu a l jp a c tu a l -2 60.84 19.47 3

ip a c tu a l jp a c tu a l -3 60.12 19.47 3

ip a c tu a l jp ac tu a l -4 60.81 19.51 3

ip a c tu a l jp a c tu a l -5 61.13 19.53 3

ip a c tu a l jp a c tu a l -6 60.03 19.48 3

ip a c tu a l jp a c tu a l -7 60.32 19.54 3

ip ac tu a l jp a c tu a l -8 60.45 19.52 3

ip a c tu a l jp a c tu a l -9 61.34 19.52 3

103

Table IX. VERTICES = 40, EDGELOAD = 0.3, WEIGHT - 2
(backtracking scheme), ikorman selection function with different
kinds of ncv-selection functions

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.3 5.96 183.86 157.38 0.86 6.40 2

ikorman jpactual 181.55 156.50 0.86 6.32 2

ikorman jkormana 166.33 137.89 0.83 6.40 2

ikorman jsucadja 167.55 140.41 0.84 6.48 2

ikorman jpactuala 164.21 137.12 0.84 6.32 2

ikorman jpreventla 164.71 138.19 0.84 6.32 2

ikorman jprevent2a 164.37 138.56 0.84 6.32 2

ikorman jprevent3a 164.10 138.34 0.84 6.29 2

ikorman jprevent4a 163.16 137.71 0.84 6.28 2

ikorman jconnecta 164.38 138.57 0.84 6.31 3

*** S.D. column is the standard deviation of the forward moves.

104

Table X. VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme), ikorman selection function with different
kinds of ncv-selection functions

nu cv ncv edge
load

ex act
c o lo r

m oves S.D . v a r
cof.

firs t
c o lo r

tim e
(sec)

ik o rm a n jk o rm an 0.5 8.23 1108.45 1355.63 1.22 9.44 15

ik o rm a n jp ac tu a l 1046.49 1324.86 1.27 9.36 15

ik o rm a n jk o rm a n a 957.15 1157.19 1.21 9.44 14

ik o rm a n jsu cad ja 961.71 1148.28 1.19 9.59 15

ik o rm a n jp a c tu a la 904.46 1133.29 1.25 9.36 14

ik o rm a n jp re v e n tla 925.96 1150.04 1.24 9.38 14

ik o rm a n jp rev en t2 a 919.41 1143.75 1.24 9.38 14

ik o rm a n jp rev en t3 a 921.82 1150.43 1.25 9.37 14

ik o rm a n jp rev en t4 a 926.41 1161.72 1.25 9.41 14

ik o rm a n jco n n ec ta 960.32 1157.19 1.21 9.42 16

*** S.D. column is the standard deviation of the forward moves.

105

Table XI. VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme), ikorman selection function with different
kinds of ncv-selection functions

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.7 11.88 833.55 736.86 0.88 13.14 11

ikorman jpactual 751.28 669.39 0.89 13.03 11

ikorman jkormana 714.82 620.46 0.87 13.14 11

ikorman jsucadja 724.93 603.87 0.83 13.37 11

ikorman jpactuala 647.18 566.28 0.88 13.03 10

ikorman jpreventla 690.41 614.46 0.89 13.13 11

ikorman jprevent2a 687.09 610.14 0.89 13.11 11

ikorman jprevent3a 686.94 609.32 0.89 13.12 11

ikorman jprevent4a 690.55 616.66 0.89 13.09 11

ikorman jconnecta 709.08 622.57 0.88 13.19 12

*** S.D. column is the standard deviation of the forward moves.

106

Table XII. VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2
(backtracking scheme), ikorman selection function with different
kinds of ncv-selection functions

n u cv ncv edge
lo ad

ex ac t
co lo r

m oves S.D . v a r
cof.

first
co lo r

tim e
(sec)

ik o rm a n jk o rm a n 0.9 19.20 78.83 67.79 0 .86 19.53 1

ik o rm a n jp a c tu a l 73.99 50.39 0.68 19.49 1

ik o rm a n jk o rm a n a 72.84 46.91 0 .64 19.53 1

ik o rm a n jsu cad ja 74.31 45.40 0.61 19.64 1

ik o rm a n jp a c tu a la 69.98 43.46 0.62 19.49 1

ik o rm a n jp re v e n tla 71.77 45.72 0.64 19.50 1

ik o rm a n jp rev en t2 a 71.86 45.70 0.64 19.50 1

ik o rm a n jp re v e n t3 a 71.74 45.70 0.64 19.50 1

ik o rm a n jp rev en t4 a 71.75 45.70 0.64 19.49 1

ik o rm a n jco n n e c ta 72.92 45.79 0.63 19.56 1

*** S.D. column is the standard deviation of the forward moves.

107

Table XIII. VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2
(backtracking scheme), ipactual selection function with different
kinds of ncv-selection function

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ipactual jkorman 0.3 5.96 130.05 102.48 0.79 6.27 3

ipactual jpactual 129.22 101.18 0.78 6.25 3

ipactual jkormana 118.43 89.65 0.76 6.27 3

ipactual jsucadja 119.37 89.77 0.75 6.33 3

ipactual jpactuala 117.68 88.38 0.75 6.25 3

ipactual jpreventla 117.87 88.87 0.75 6.25 3

ipactual jprevent2a 117.74 89.01 0.76 6.24 3

ipactual jprevent3a 117.27 88.66 0.76 6.23 3

ipactual jprevent4a 117.16 87.40 0.75 6.25 3

ipactual jconnecta 116.45 88.62 0.76 6.20 3

*** S.D. column is the standard deviation of the forward moves.

108

Table XIV. VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme), ipactual selection function with different
kinds of ncv-selection function

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ipactual jkorman 0.5 8.23 716.25 1009.91 1.41 9.43 16

ipactual jpactual 702.96 1012.97 1.44 9.35 16

ipactual jkormana 619.31 858.36 1.39 9.43 16

ipactual jsucadja 600.25 847.55 1.41 9.59 15

ipactual jpactuala 607.75 860.57 1.42 9.35 16

ipactual jpreventla 601.10 867.39 1.44 9.32 15

ipactual jprevent2a 612.43 866.59 1.42 9.32 16

ipactual jprevent3a 593.17 861.28 1.45 9.31 15

ipactual jprevent4a 590.71 855.35 1.45 9.35 15

ipactual jconnecta 602.85 863.88 1.43 9.36 16

*** S.D. column is the standard deviation of the forward moves.

109

Table XV. VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme), ipactual selection function with different
kinds of ncv-selection function

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ipactual jkorman 0.7 11.88 502.67 603.20 1.20 13.09 12

ipactual jpactual 479.94 571.13 1.19 13.08 12

ipactual jkormana 430.99 499.09 1.16 13.09 11

ipactual jsucadja 409.01 445.82 1.09 13.16 11

ipactual jpactuala 411.81 472.76 1.15 13.08 11

ipactual jpreventla 411.23 488.54 1.19 13.07 11

ipactual jprevent2a 411.48 488.43 1.19 13.07 11

ipactual jprevent3a 411.96 488.58 1.19 13.08 11

ipactual jprevent4a 420.41 499.87 1.19 13.08 11

ipactual jconnecta 416.75 453.84 1.09 13.10 11

*** S.D. column is the standard deviation of the forward moves.

110

Table XVI. VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2
(backtracking scheme), ipactual selection function with different
kinds of ncv-selection function

n u cv ncv edge
lo ad

ex ac t
c o lo r

m oves S.D. v ar
cof.

first
co lo r

tim e
(sec)

ip a c tu a l jk o rm a n 0.9 19.20 61.11 38.25 0.63 19.52 2

ip a c tu a l jp a c tu a l 60.31 38.54 0.64 19.50 2

ip a c tu a l jk o rm a n a 58.56 33.73 0.58 19.52 2

ip a c tu a l jsu cad ja 58.40 27.10 0.46 19.66 2

ip ac tu a l jp a c tu a la 57.85 34.02 0.59 19.50 2

ip a c tu a l jp re v e n tla 58.13 34.24 0.59 19.50 2

ip a c tu a l jp rev en t2 a 58.13 34.24 0.59 19.50 2

ip a c tu a l jp rev en t3 a 58.28 34.15 0.59 19.51 2

ip a c tu a l jp rev en t4 a 58.38 33.63 0.58 19.51 2

ip a c tu a l jco n n e c ta 57.94 33.55 0.58 19.52 3

*** S.D. column is the standard deviation of the forward moves.

Ill

Table XVII. VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2
(backtracking scheme). Pactual algorithm with different weights on
the new color

nucv ncv edge
load

weight
new clr

exact
color

moves first
color

time
(sec)

ipactual jpactual 0.3 1.0 5.96 129.22 6.25 3

ipactual jpactual 0.9 146.93 7.62 4

ipactual jpactual 0.8 154.63 7.92 4

ipactual jpactual 0.7 173.59 8.57 5

ipactual jpactual 0.6 216.70 10.09 6

ipactual jpactual 0.5 266.22 11.96 8

ipactual jpactual 0.4 369.05 16.46 13

ipactual jpactual 0.3 481.35 21.75 20

ipactual jpactual 0.2 569.62 26.37 26

ipactual jpactual 0.1 614.23 28.69 29

*** Weight column is the weight of new color.

112

Table XVIII. VERTICES - 40, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme). Pactual algorithm with different weights on
the new color

nu cv ncv edge
lo ad

w eigh t
new clr

exact
co lo r

m oves firs t
c o lo r

tim e
(sec)

ip a c tu a l jp a c tu a l 0.5 1.0 8.23 702.96 9.35 18

ip a c tu a l jp a c tu a l 0.9 709.88 9.94 18

ip a c tu a l jp a c tu a l 0.8 720.14 9.98 18

ip a c tu a l jp a c tu a l 0.7 723.36 10.22 18

ip ac tu a l jp a c tu a l 0.6 692.23 10.70 17

ip ac tu a l jp ac tu a l 0.5 720.82 11.53 18

ip ac tu a l jp a c tu a l 0.4 769.12 14.10 20

ip a c tu a l jp a c tu a l 0.3 770.46 17.87 21

ip a c tu a l jp a c tu a l 0.2 883.05 23.29 27

ip a c tu a l jp a c tu a l 0.1 970.60 28.43 32

*** Weight column is the weight of new color.

113

Table XIX. VERTICES - 40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme). Pactual algorithm with different weights on
the new color

n u cv ncv edge
lo ad

w eigh t
n ew clr

ex ac t
co lo r

m oves first
co lo r

tim e
(sec)

ip ac tu a l jp a c tu a l 0.7 1.0 11.88 479.94 13.08 12

ip ac tu a l jp a c tu a l 0.9 481.33 13.24 12

ip a c tu a l jp a c tu a l 0.8 488.99 13.24 13

ip a c tu a l jp a c tu a l 0.7 488.46 13.30 13

ip a c tu a l jp a c tu a l 0.6 507.22 13.47 13

ip ac tu a l jp a c tu a l 0.5 488.89 13.60 13

ip ac tu a l jp a c tu a l 0.4 518.58 14.70 13

ip a c tu a l jp a c tu a l 0.3 540.24 16.45 14

ip a c tu a l jp a c tu a l 0.2 605.18 20.17 16

ip a c tu a l jp a c tu a l 0.1 677.58 25.66 19

*** Weight column is the weight of new color.

114

Table XX. VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2
(backtracking scheme). Pactual algorithm with different weights on
the new color

nucv ncv edge
load

weight
new clr

exact
color

moves first
color

time
(sec)

ipactual jpactual 0.9 1.0 19.20 60.31 19.50 3

ipactual jpactual 0.9 61.09 19.64 3

ipactual jpactual 0.8 61.44 19.65 3

ipactual jpactual 0.7 61.41 19.68 3

ipactual jpactual 0.6 61.92 19.69 3

ipactual jpactual 0.5 62.00 19.67 3

ipactual jpactual 0.4 63.68 19.94 3

ipactual jpactual 0.3 65.48 20.31 3

ipactual jpactual 0.2 78.46 21.35 3

ipactual jpactual 0.1 113.08 23.80 4

*** Weight column is the weight of new color.

115

Table XXI. VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2
(backtracking scheme). Prevent4a algorithm with different weights
on the new color

n u cv ncv edge
lo ad

w eight
new clr

ex ac t
c o lo r

m oves first
c o lo r

tim e
(sec)

ip rev en t4 a jp rev en t4 a 0.3 1.0 5.96 111.01 6.26 3

ip rev en t4 a jp rev en t4 a 0.9 130.50 7.58 4

ip rev en t4 a jp rev en t4 a 0.8 144.58 8.12 4

ip rev en t4 a jp re v e n t4 a 0.7 166.02 9.02 5

ip rev en t4 a jp rev en t4 a 0.6 218.58 11.03 7

ip rev en t4 a jp rev en t4 a 0.5 284.87 13.66 10

ip rev en t4 a jp rev en t4 a 0.4 399.04 18.86 16

ip rev en t4 a jp rev en t4 a 0.3 523.99 24.42 24

ip rev en t4 a jp rev en t4 a 0.2 585.56 28.21 29

ip rev en t4 a jp rev en t4 a 0.1 613.53 29.35 31

*** Weight column is the weight of new color.

116

Table XXII. VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme). Prevent4a algorithm with different weights
on the new color

nucv ncv edge
load

weight
new clr

exact
color

moves first
color

time
(sec)

iprevent4a jprevent4a 0.5 1.0 8.23 631.19 9.35 17

iprevent4a jprevent4a 0.9 632.28 9.83 17

iprevent4a jprevent4a 0.8 634.82 9.95 17

iprevent4a jprevent4a 0.7 647.29 10.43 18

iprevent4a jprevent4a 0.6 637.85 11.11 17

iprevent4a jprevent4a 0.5 633.77 12.61 17

iprevent4a jprevent4a 0.4 615.32 16.37 18

iprevent4a jprevent4a 0.3 787.18 21.65 25

iprevent4a jprevent4a 0.2 856.56 27.87 31

iprevent4a jprevent4a 0.1 1088.01 31.19 39

*** Weight column is the weight of new color.

117

Table XXIII. VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme). Prevent4a algorithm with different weight
on the new color

nucv ncv edge
load

weight
new clr

exact
color

moves first
color

time
(sec)

iprevent4a jprevent4a 0.7 1.0 11.88 532.47 13.31 15

iprevent4a jprevent4a 0.9 539.40 13.45 15

iprevent4a jprevent4a 0.8 533.69 13.44 15

iprevent4a jprevent4a 0.7 553.00 13.65 15

iprevent4a jprevent4a 0.6 563.75 13.94 15

iprevent4a jprevent4a 0.5 566.49 14.40 16

iprevent4a jprevent4a 0.4 520.16 15.49 14

iprevent4a jprevent4a 0.3 485.32 18.08 14

iprevent4a jprevent4a 0.2 639.00 23.24 19

iprevent4a jprevent4a 0.1 769.65 29.56 24

*** Weight column is the weight of new color.

118

Table XXIV. VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2
(backtracking scheme). Prevent4a algorithm with different weight
on the new color

nucv ncv edge
load

weight
new clr

exact
color

moves first
color

time
(sec)

iprevent4a jprevent4a 0.9 1.0 19.20 59.34 19.52 3

iprevent4a jprevent4a 0.9 60.49 19.61 3

iprevent4a jprevent4a 0.8 60.73 19.59 3

iprevent4a jprcvent4a 0.7 61.12 19.62 3

iprevent4a jprevent4a 0.6 61.35 19.65 3

iprevent4a jprevent4a 0.5 61.49 19.68 3

iprevent4a jprevent4a 0.4 64.63 20.00 3

iprevent4a jprevent4a 0.3 73.49 20.53 3

iprevent4a jprevent4a 0.2 85.35 21.92 4

iprevent4a jprevent4a 0.1 143.30 25.57 5

*** Weight column is the weight of new color.

119

Table XXV. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Korw21e, Korw21ec, and Korwl2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale
2

scale
1

exact
color

moves first
color

time
(sec)

ikorw21e jkorman 0.0 0.5 5.96 144.66 6.41 2

ikorw21e jkorman 0.0 0.7 143.04 6.35 2

ikorw21e jkorman 0,0 0.9 143.01 6.35 2

ikorw21e jkorman 0.5 0.5 181.97 6.39 3

ikorw21e jkorman 0.5 0.7 183.51 6.41 3

ikorw2le jkorman 0.5 0.9 183.51 6.41 3

ikorvv21ec jkorman 0.0 0.5 144.84 6.41 2

ikorw21ec jkorman 0.0 0.7 143.04 6.35 2

ikorw21ec jkorman 0.0 0.9 143.01 6.35 2

ikorw21ec jkorman 0.5 0.5 181.97 6.39 3

ikorw21ec jkorman 0.5 0.7 183.51 6.41 3

ikorw21 ec jkorman 0.5 0.9 183.51 6.41 3

ikorwl2e jkorman 0.0 0.5 149.97 6.39 2

ikorwl2e jkorman 0.0 0.7 143.06 6.35 2

ikorwl2e jkorman 0.0 0.9 143.01 6.35 2

ikorwl2e jkorman 0.5 0.5 182.04 6.39 2

ikorwl2e jkorman 0.5 0.7 183.53 6.41 3

ikorwl2e jkorman 0.5 0.9 183.51 6.41 3

120

Table XXVI. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Korw21e, Korw21ec, and Korwl2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale
2

scale
1

exact
color

moves first
color

time
(sec)

ikorw21e jkorman 0.0 0.5 8.23 853.51 9.36 13

ikorw21e jkorman 0.0 0.7 817.45 9.37 13

ikorw21e jkorman 0.0 0.9 816.79 9.37 13

ikorw21e jkorman 0.5 0.5 1026.26 9.36 16

ikorvv21e jkorman 0.5 0.7 995.00 9.40 16

ikorw21e jkorman 0.5 0.9 993.98 9.40 16

ikorw21ec jkorman 0.0 0.5 853.06 9.36 13

ikorw21ec jkorman 0.0 0.7 817.46 9.37 13

ikorw21ec jkorman 0.0 0.9 816.79 9.37 13

ikorw21ec jkorman 0.5 0.5 1026.26 9.36 16

ikorw21ec jkorman 0.5 0.7 995.00 9.40 16

ikorvv21ec jkorman 0.5 0.9 993.98 9.40 16

ikorwl2e jkorman 0.0 0.5 926.76 9.36 13

ikorwl2e jkorman 0.0 0.7 824.32 9.38 13

ikorwl2e jkorman 0.0 0.9 816.84 9.37 13

ikorwl2e jkorman 0.5 0.5 1053.01 9.36 15

ikorwl2e jkorman 0.5 0.7 1000.76 9.40 16

ikorwl2e jkorman 0.5 0.9 994.00 9.40 16

121

Table XXVII. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Korw2Ie, Korw21ec, and Korwl2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale
2

scale
1

exact
color

moves first
color

time
(sec)

ikorw21e jkorman 0.0 0.5 11.88 633.70 12.98 10

ikorw21e jkorman 0.0 0.7 621.53 13.08 10

ikorw21e jkorman 0.0 0.9 623.22 13.11 10

ikorw21e jkorman 0.5 0.5 707.15 13.00 11

ikorw21e jkorman 0.5 0.7 668.12 13.03 11

ikorw21e jkorman 0.5 0.9 665.84 13.04 11

ikorw21ec jkorman 0.0 0.5 633.67 12.98 10

ikorw21ec jkorman 0.0 0.7 621.44 13.08 10

ikorw21ec jkorman 0.0 0.9 623.22 13.11 10

ikorw21ec jkorman 0.5 0.5 707.15 13.00 11

ikorw21ec jkorman 0.5 0.7 668.12 13.03 11

ikorw21ec jkorman 0.5 0.9 665.84 13.04 11

ikorwl2e jkorman 0.0 0.5 704.41 13.00 10

ikorwl2e jkorman 0.0 0.7 638.76 13.08 11

ikorwI2e jkorman 0.0 0.9 623.53 13.11 11

ikorwl2e jkorman 0.5 0.5 775.56 12.94 11

ikorwl2e jkorman 0.5 0.7 686.16 13.03 11

ikorw!2e jkorman 0.5 0.9 666.17 13.04 11

122

Table XXVIII. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Korw21e, Korw21ec, and Korwi2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale
2

scale
1

exact
color

moves first
color

time
(sec)

ikorw21e jkorman 0.0 0.5 19.20 61.87 19.60 1

ikorw21e jkorman 0.0 0.7 59.29 19.56 1

ikorw21e jkorman 0.0 0.9 58.52 19.56 l

ikorw21e jkorman 0.5 0.5 62.28 19.60 1

ikorw21e jkorman 0.5 0.7 59.36 19.55 1

ikorw21e jkorman 0.5 0.9 58.54 19.55 1

ikorvv21cc jkorman 0.0 0.5 61.87 19.60 1

ikorvv21ec jkorman 0.0 0.7 59.29 19.56 1

ikorw21ec jkorman 0.0 0.9 58.52 19.56 1

ikorw21ec jkorman 0.5 0.5 62.28 19.60 1

ikorw21ec jkorman 0.5 0.7 59.36 19.55 1

ikorw21ec jkorman 0.5 0.9 58.54 19.55 1

ikorwl2e jkorman 0.0 0.5 64.40 19.61 1

ikorwl2e jkorman 0.0 0.7 60.24 19.56 1

ikorwl2e jkorman 0.0 0.9 58.77 19.56 1

ikorwl2e jkorman 0.5 0.5 64.79 19.61 1

ikorwl2e jkorman 0.5 0.7 60.30 19.55 1

ikorw!2e jkorman 0.5 0.9 58.79 19.55 1

123

Table XXIX. VERTICES = 40, EDGELOAD = 0.3 AND 0.5 (backtracking
scheme). Korw2e and Korw21e with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0.5

nucv ncv scale
2

scale
1

edge
load

exact
color

moves var
cof.

first
color

time
(sec)

ikorw2e jkorman 0.0 0.3 5.96 143.01 0.822 6.35 2

ikorw21e jkorman 0.0 0.5 144.66 0.766 6.41 2

ikorw2e jkorman 0.5 183.51 0.852 6.41 2

ikorw21e jkorman 0.5 0.5 181.97 0.837 6.39 3

ikorw2e jkorman 1.0 183.86 0.856 6.40 2

ikorw21e jkorman 1.0 0.5 182.04 0.839 6.39 3

ikorw2e jkorman 0.0 0.5 8.23 816.79 1.378 9.37 12

ikorw21e jkorman 0.0 0.5 853.51 1.412 9.36 13

ikorw2e jkorman 0.5 993.98 1,233 9.40 15

ikorwr21e jkorman 0.5 0.5 1026.26 1.255 9.36 16

ikorw2e jkorman 1.0 1108.45 1.223 9.44 16

ikorw21e jkorman 1.0 0.5 1065.36 1.264 9.36 16

124

Table XXX. VERTICES = 40, EDGELOAD = 0.7 AND 0.9 (backtracking
scheme). Korw2e and Korw21e with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0,5

nucv ncv scale
2

scale
1

edge
load

exact
color

moves var
cof.

first
color

time
(sec)

ikorw2e jkorman 0.0 0.5 11.88 623.14 1.107 13.11 10

ikorw21e jkorman 0.0 0.5 633.70 1.077 12.98 10

ikorw2e jkorman 0.5 665.77 1.149 13.04 10

ikorw21e jkorman 0.5 0.5 707.15 1.113 13.00 11

ikorw2e jkorman 1.0 833.55 0.884 13.14 13

ikorvv21e jkorman 1.0 0.5 716.81 0.754 13.03 11

ikorw2e jkorman 0.0 0.5 19.20 58.47 0.523 19.56 1

ikorw21e jkorman 0.0 0.5 61.87 0.518 19.60 1

ikorw2e jkorman 0.5 58.47 0.528 19.55 1

ikorw21e jkorman 0.5 0.5 62.28 0.533 19.60 1

ikorw2e jkorman 1.0 78.83 0.707 19.53 1

ikorw21 e jkorman 1.0 0.5 77.30 0.634 19.48 1

125

Table XXXI. VERTICES = 44, EDGELOAD = 0.3 AND 0.5 (backtracking
scheme). Korw2e and Korw21e with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0.5

nucv ncv scale
2

scale
1

edge
load

exact
color

moves var
cof.

first
color

time
(sec)

ikorw2e jkorman 0.0 0.3 6.00 139.26 0.982 6.75 2

ikorw21e jkorman 0.0 0.5 141.95 0.998 6.72 2

ikorw2e jkorman 0.5 181.66 1.121 6.75 2

ikorw21e jkorman 0.5 0.5 158.60 1.067 6.72 2

ikorw2e jkorman 1.0 181.73 1.122 6.74 2

ikorw21e jkorman 1.0 0.5 158.67 1.067 6.72 2

ikorw2e jkorman 0.0 0.5 8.92 975.65 0.742 10.02 14

ikorw21e jkorman 0.0 0.5 986.64 0.748 9.91 14

ikorw2e jkorman 0.5 1240.22 0.822 10.00 18

ikorw21e jkorman 0.5 0.5 1277.36 0.787 10.01 19

ikorw2e jkorman 1.0 1408.74 0.845 10.07 20

ikor\v21e jkorman 1.0 0.5 1331.66 0.796 10.01 20

126

Table XXXII. VERTICES = 44, EDGELOAD = 0.7 AND 0.9 (backtracking
scheme). Korw2e and Korw21e with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0.5

nucv ncv scale
2

scale
1

edge
load

exact
color

moves var
cof.

first
color

time
(sec)

ikorw2e jkorman 0.0 0.5 11.88 623.14 1.107 13.11 10

ikorw21e jkorman 0.0 0.5 633.70 1.077 12.98 10

ikorw2e jkorman 0.5 665.77 1.149 13.04 10

ikorw21e jkorman 0.5 0.5 707.15 1.113 13.00 11

ikorw2e jkorman 1.0 833.55 0.884 13.14 13

ikorw21e jkorman 1.0 0.5 716.81 0.754 13.03 11

ikorw2e jkorman 0.0 0.5 19.20 58.47 0.523 19.56 1

ikorw21e jkorman 0.0 0.5 61.87 0.518 19.60 1

ikonv2e jkorman 0.5 58.47 0.528 19.55 1

ikorw21e jkorman 0.5 0.5 62.28 0.533 19.60 1

ikorvv2e jkorman 1.0 78.83 0.707 19.53 1

ikorw21e jkorman 1.0 0.5 77.30 0.634 19.48 1

127

Table XXXIII. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 5.96 183.86 157.38 0.86 6.40 2

ikorqk2 jkorman 143.31 116.37 0.81 6.36 2

ikorpw2 jkorman 145.09 120.28 0.83 6.36 2

ikorw2 jkorman 143.01 117.55 0.82 6.35 2

ikorw2p jkorman 152.14 128.25 0.84 6.36 2

ikorw21e jkorman 144.66 110.81 0.77 6.41 2

ikormaxw2 jkorman 145.19 120.94 0.83 6.36 2

ikormaxw21e jkorman 147.96 114.23 0.77 6.42 2

ikorqk23 jkorman 116.93 87.70 0.75 6.36 3

ikorw23 jkorman 115.41 91.40 0.79 6.34 3

ipactqk2 jkorman 115.25 87.36 0.76 6.22 3

ipactqk2 jpactual 111.03 87.71 0.79 6.15 3

ipactmaxw2 jkorman 114.38 86.81 0.76 6.24 3

ipactmaxw2 jpactual 112.80 87.31 0.77 6.18 3

ipactual jpactuala 117.68 88.38 0.75 6.25 3

*** S.D. column is the standard deviation of the forward moves.

128

Table XXXIV. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 8.23 1108.45 1355.63 1.22 9.44 15

ikorqk2 jkorman 836.46 1137.59 1.36 9.45 12

ikorpw2 jkorman 812.58 1118.92 1.38 9.42 12

ikorw2 jkorman 816.79 1125.54 1.38 9.37 12

ikorw2p jkorman 828.04 1146.01 1.38 9.35 12

ikorw21e jkorman 853.51 1205.16 1.41 9.36 13

ikormaxw2 jkorman 755.45 929.96 1.23 9.42 11

ikormaxw21e jkorman 785.61 974.16 1.24 9.37 12

ikorqk23 jkorman 612.04 870.32 1.42 9.39 23

ikorw23 jkorman 593.44 854.55 1.44 9.41 27

ipactqk2 jkorman 595.80 824.59 1.38 9.36 14

ipactqk2 jpactual 598.23 830.34 1.39 9.19 15

ipactmaxw2 jkorman 577.88 816.54 1.41 9.38 13

ipactmaxw2 jpactual 580.28 824.00 1.42 9.21 14

ipactual jpactuala 607.75 860.57 1.42 9.35 16

*** S.D. column is the standard deviation of the forward moves.

129

Table XXXV. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 11.88 833.55 736.86 0.88 13.14 11

ikorqk2 jkorman 579.78 613.99 1.06 13.08 9

ikorpw2 jkorman 666.11 750.04 1.13 13.11 10

ikorw2 jkorman 623.14 689.82 1.11 13.11 10

ikorw2p jkorman 623.52 690.86 1.11 13.11 10

ikorw21e jkorman 633.70 682.49 1.08 12.98 10

ikormaxw2 jkorman 621.53 679.95 1.09 13.09 10

ikormaxw21e jkorman 611.86 622.87 1.02 12.98 9

ikorqk23 jkorman 470.74 496.16 1.05 12.95 31

ikorw23 jkorman 479.32 554.09 1.16 12.97 38

ipactqk2 jkorman 397.00 452.58 1.14 12.99 10

ipactqk2 jpactual 381.62 441.15 1.16 12.89 10

ipactmaxw2 jkorman 381.16 434.14 1.14 13.01 9

ipactmaxw2 jpactual 366.49 424.40 1.16 12.89 9

ipactual jpactuala 411.81 472.76 1.15 13.08 12

*** S.D. column is the standard deviation of the forward moves.

130

Table XXXVI. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 19.20 78.83 67.79 0.86 19.53 1

ikorqk2 jkorman 57.79 29.88 0.52 19.55 1

ikorpw2 jkorman 58.96 30.66 0.52 19.56 1

ikorw2 jkorman 58.47 30.58 0.52 19.56 1

ikorw2p jkorman 58.47 30.58 0.52 19.56 1

ikorw21e jkorman 61.87 32.05 0.52 19.60 1

ikormaxw2 jkorman 58.10 30.68 0.53 19.54 1

ikormaxw21e jkorman 61.47 32.15 0.52 19.58 1

ikorqk23 jkorman 52.96 23.57 0.45 19.55 5

ikorw23 jkorman 51.90 21.49 0.41 19.55 6

ipactqk2 jkorman 54.59 29.81 0.55 19.46 2

ipactqk2 jpactual 53.65 28.86 0.54 19.44 2

ipactmaxw2 jkorman 54.59 29.81 0.55 19.46 2

ipactmaxw2 jpactual 53.65 28.86 0.54 19.44 2

ipactual jpactuala 57.85 34.02 0.59 19.50 2

*** S.D. column is the standard deviation of the forward moves.

131

Table XXXVII. VERTICES = 40, EDGELOAD = 0.3, WEIGHT = 2
(backtracking scheme), variations of Korman without swapping

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 5.96 183.86 157.38 0.86 6.40 2

ikorman jkormana 166.33 137.89 0.83 6.40 2

ikorman jsucadja 167.55 140.41 0.84 6.48 2

ipkorman jkorman 147.43 128.56 0.87 6.23 3

ipactual jpactual 129.22 101.18 0.78 6.25 3

ipactual jpactuala 117.68 88.38 0.75 6.25 3

ipreventla jpreventla 121.79 91.71 0.75 6.16 3

iprevent2a jprevent2a 114.15 82.64 0.72 6.14 3

iprevent3a jprevent3a 116.60 89.20 0.77 6.20 3

iprevent4a jprevent4a 111.01 76.71 0.69 6.26 3

iconnecta jconnecta 150.41 120.18 0.80 6.28 4

*** S.D. column is the standard deviation of the forward moves.

132

Table XXXVIII. VERTICES = 40, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman without swapping

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 8.23 1108.45 1355.63 1.22 9.44 15

ikorman jkormana 957.15 1157.19 1.21 9.44 14

ikorman jsucadja 961.71 1148.28 1.19 9.59 15

ipkorman jkorman 1076.45 1815.97 1.69 9.42 21

ipactual jpactual 702.96 1012.97 1.44 9.35 16

ipactual jpactuala 607.75 860.57 1.42 9.35 16

ipreventla jpreventla 765.27 1435.65 1.88 9.33 17

iprevent2a jprevent2a 656.13 1076.71 1.64 9.36 15

iprevent3a jprevent3a 700.80 1140.20 1.63 9.36 16

iprevent4a jprevent4a 631.19 883.03 1.40 9.35 15

iconnecta jconnecta 1051.76 1880.55 1.79 9.42 29

*** S.D. column is the standard deviation of the forward moves.

133

Table XXXIX. VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme), variations of Korman without swapping

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 11.88 833.55 736.86 0.88 13.14 11

ikorman jkormana 714.82 620.46 0.87 13.14 11

ikorman jsucadja 724.93 603.87 0.83 13.37 11

ipkorman jkorman 880.44 967.60 1.10 13.22 18

ipactual jpactual 479.94 571.13 1.19 13.08 12

ipactual jpactuala 411.81 472.76 1.15 13.08 11

ipreventla jpreventla 545.57 598.49 1.10 13.09 12

iprevent2a jprevent2a 528.60 565.07 1.07 13.16 13

iprevent3a jprevent3a 529.34 601.33 1.14 13.05 13

iprevent4a jprevent4a 532.47 530.34 1.00 13.31 13

iconnecta jconnecta 847.48 1125.45 1.33 13.12 23

*** S.D. column is the standard deviation of the forward moves.

134

Table XL. VERTICES = 40, EDGELOAD = 0.9, WEIGHT = 2
(backtracking scheme), variations of Korman without swapping

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 19.20 78.83 67.79 0.86 19.53 1

ikorman jkormana 72.84 46.91 0.64 19.53 1

ikorman jsucadja 74.31 45.40 0.61 19.64 1

ipkorman jkorman 62.88 103.88 1.65 19.62 3

ipactual jpactual 60.31 38.54 0.64 19.50 2

ipactual jpactuala 57.85 34.02 0.59 19.50 2

ipreventla jpreventla 58.08 33.22 0.57 19.55 2

iprevent2a jprevent2a 56.18 31.29 0.56 19.51 3

iprevent3a jprevent3a 56.04 32.90 0.59 19.48 3

iprevent4a jprevent4a 59.34 27.83 0.47 19.52 3

iconnecta jconnecta 79.64 121.05 1.52 19.59 3

*** S.D. column is the standard deviation of the forward moves.

135

Table XLI. VERTICES = 44, EDGELOAD = 0.3 AND 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman with swapping and
Pactual with swapping

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.3 6.00 181.73 203.90 1.12 6.74 2

ikorw2 jkorman 139.26 136.75 0.98 6.75 2

ikorw21e jkorman 141.95 141.67 1.00 6.72 2

ikormaxw2 jkorman 140.25 138.43 0.99 6.74 2

ikormaxw21e jkorman 145.42 141.93 0.98 6.72 2

ipactmaxw2 jpactual 104.76 69.25 0.66 6.57 2

ikorman jkorman 0.5 8.92 1408.74 1190.39 0.85 10.07 17

ikorw2 jkorman 975.65 723.93 0.74 10.02 14

ikorw21e jkorman 986.64 738.01 0.75 9.91 14

ikormaxw2 jkorman 981.87 727.57 0.74 9.97 15

ikormaxw21e jkorman 1009.88 740.24 0.73 9.88 15

ipactmaxw2 jpactual 656.32 539.50 0.82 9.69 16

*** S.D. column is the standard deviation of the forward moves.

136

Table XLII. VERTICES = 44, EDGELOAD = 0.7 AND 0.9, WEIGHT = 2
(backtracking scheme), variations of Korman with swapping and
Pactual with swapping

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.7 12.72 2133.82 2528.58 1.19 14.18 27

ikorw2 jkorman 1565.48 1682.89 1.08 14.25 23

ikorw21e jkorman 1496.65 1731.62 1.16 14.07 23

ikormaxw2 jkorman 1605.68 1679.54 1.05 14.29 25

ikormaxw21e jkorman 1535.77 1738.49 1.13 14.09 23

ipactmaxw2 jpactual 1018.76 1407.93 1.38 13.99 26

ikorman jkorman 0.9 20.52 172.54 224.47 1.30 21.03 2

ikorw2 jkorman 143.41 273.63 1.91 21.02 2

ikorw21e jkorman 135.12 227.68 1.69 20.91 2

ikormaxw2 jkorman 128.55 204.27 1.59 21.02 2

ikormaxw21e jkorman 121.85 173.15 1.42 20.90 2

ipactmaxw2 jpactual 99.34 135.00 1.36 20.85 3

*** S.D. column is the standard deviation of the forward moves.

137

Table XLIII. VERTICES = 48, EDGELOAD = 0.3, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 6.03 888.34 1430.23 1.61 7.20 10

ikorman jkormana 792.46 1256.84 1.59 7.20 11

ikorman jsucadja 816.78 1184.33 1.45 7.22 12

ipkorman jkorman 760.85 1292.68 1.70 7.01 14

ipactual jpactual 599.01 909.30 1.52 7.02 14

ipactual jpactuala 532.76 785.82 1.48 7.02 14

ipreventla jpreventla 611.68 1071.66 1.75 7.01 14

iprevent2a jprevent2a 606.67 1000.40 1.65 7.01 14

iprevent3a jprevent3a 567.97 942.83 1.66 7.03 14

iprevent4a jprevent4a 572.21 790.79 1.38 7.06 14

ikorqk2 jkorman 793.20 1460.28 1.84 7.17 10

ikorw2 jkorman 735.36 1261.88 1.72 7.15 9

ikorw21e jkorman 759.51 1269.90 1.67 7.12 10

ikormaxw2 jkorman 769.72 1290.82 1.68 7.16 10

ikormaxw21e jkorman 791.74 1292.12 1.63 7.10 11

ipactqk2 jpactual 517.88 775.78 1.50 6.99 13

ipactmaxw2 jpactual 500.69 747.03 1.49 6.98 12

*** s.D. column is the standard deviation of the forward moves.

138

Table XLIV. VERTICES = 48, EDGELOAD = 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 9.09 6297.14 7606.95 1.21 10.52 81

ikorman jkormana 5413.61 6517.99 1.20 10.52 83

ikorman jsucadja 5459.40 6655.01 1.22 10.72 88

ipkorman jkorman 6160.09 9671.34 1.57 10.67 123

ipactual jpactual 3150.71 3708.39 1.18 10.51 78

ipactual jpactuala 2715.87 3185.72 1.17 10.51 75

iprevent 1 a jpreventla 3884.14 4711.46 1.21 10.62 92

iprevent2a jprevent2a 3701.90 4534.83 1.23 10.60 92

iprevent3a jprevent3a 3604.15 4847.58 1.35 10.52 89

iprevent4a jprevent4a 2757.97 3251.65 1.18 10.61 72

ikorqk2 jkorman 5474.47 7910.61 1.45 10.70 81

ikorw2 jkorman 4738.64 6046.50 1.28 10.61 70

ikorw21e jkorman 4720.14 6060.66 1.28 10.55 73

ikormaxw2 jkorman 4432.30 5473.89 1.24 10.58 66

ikormaxw21e jkorman 4422.06 5403.76 1.22 10.55 69

ipactqk2 jpactual 2859.02 4151.30 1.45 10.33 77

ipactmaxw2 jpactual 2586.49 2974.46 1.15 10.34 68

*** S.D. column is the standard deviation of the forward moves.

139

Table XLV. VERTICES = 48, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 13.36 9399.03 14248.93 1.52 15.11 126

ikorman jkormana 7995.03 12064.50 1.51 15.11 125

ikorman jsucadja 7964.36 11850.97 1.49 15.30 132

ipkorman jkorman 8845.18 13435.83 1.52 15.11 182

ipactual jpactual 5030.90 7938.76 1.58 15.03 126

ipactual jpactuala 4274.90 6685.94 1.56 15.03 119

ipreventla jpreventla 5499.27 9354.26 1.70 15.19 131

iprevent2a jprevent2a 4708.43 6827.22 1.45 15.12 117

iprevent3a jprevent3a 5114.55 8945.35 1.75 15.04 128

iprevent4a jprevent4a 4849.15 8287.20 1.71 15.24 128

ikorqk2 jkorman 6527.48 10502.72 1.61 15.17 103

ikorw2 jkorman 6990.07 15000.69 2.15 15.13 112

ikorw21e jkorman 7084.65 15579.15 2.20 15.04 116

ikormaxw2 jkorman 6642.25 10873.36 1.64 15.14 106

ikormaxw21 e jkorman 6605.28 11248.79 1.70 15.05 109

ipactqk2 jpactual 3993.22 7311.59 1.83 14.83 111

ipactmaxw2 jpactual 4023.01 7337.97 1.82 14.80 111

*** S.D. column is the standard deviation of the forward moves.

140

Table XLVI. VERTICES = 48, EDGELOAD = 0.9, WEIGHT - 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 21.85 428.55 1021.66 2.38 22.61 5

ikorman jkormana 375.73 877.33 2.34 22.61 5

ikorman jsucadja 385.89 878.29 2.28 22.76 6

ipkorman jkorman 687.64 3109.51 4.52 22.64 13

ipactual jpactual 271.59 747.42 2.75 22.51 8

ipactual jpactuala 240.66 637.99 2.65 22.51 8

ipreventla jpreventla 279.22 758.36 2.72 22.60 8

iprevent2a jprevent2a 437.66 1896.82 4.33 22.58 11

iprevent3a jprcvent3a 342.05 1492.36 4.36 22.48 9

iprevent4a jprevent4a 253.45 389.30 1.54 22.68 9

ikorqk2 jkorman 313.63 684.65 2.18 22.58 5

ikorw2 jkorman 309.98 686.30 2.21 22.59 5

ikorw21e jkorman 286.24 545.29 1.91 22.54 5

ikormaxw2 jkorman 303.76 683.46 2.25 22.59 5

ikormaxw21e jkorman 277.28 535.43 1.93 22.54 5

ipactqk2 jpactual 211.88 522.71 2.47 22.39 7

ipactmaxw2 jpactual 211.57 522.37 2.47 22.39 7

*** S.D. column is the standard deviation of the forward moves.

141

Table XLVII. VERTICES = 52, EDGELOAD = 0.3 AND 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.3 6.78 3196.80 3631.56 1.14 7.43 52

ikorw2 jkorman 2581.08 2981.22 1.16 7.50 45

ikormaxw2 jkorman 2535.05 2849.40 1.12 7.46 44

ikormaxw21e jkorman 2593.06 2935.34 1.13 7.49 46

ipactmaxw2 jpactual 1582.63 1834.27 1.16 7.27 48

ikorman jkorman 0.5 9.93 15096.79 15685.56 1.04 11.29 260

ikorw2 jkorman 11365.67 12408.66 1.09 11.17 216

ikormaxw2 jkorman 11458.22 12420.71 1.08 11.14 218

ikormaxw21e jkorman 11855.98 13053.43 1.10 11.14 226

ipactmaxw2 jpactual 7580.97 8278.42 1.09 11.14 238

*** S.D. column is the standard deviation of the fonvard moves.

142

Table XLVIII. VERTICES = 52, EDGELOAD - 0.7 AND 0.9, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.7 14.07 30856.41 35268.88 1.14 16.09 536

ikorw2 jkorman 19604.14 21411.50 1.10 16.12 392

ikormaxw2 jkorman 20455.95 23769.81 1.16 16.10 407

ikormaxw21e jkorman 19131.89 22269.52 1.16 15.86 371

ipactmaxw2 jpactual 9030.25 10673.76 1.18 15.82 291

ikorman jkorman 0.9 23.10 691.42 1028.83 1.49 24.20 11

ikorw2 jkorman 498.50 1158.39 2.32 24.14 9

ikormaxw2 jkorman 517.23 1164.28 2.25 24.11 9

ikormaxw21e jkorman 458.22 727.65 1.59 23.96 9

ipactmaxw2 jpactual 316.38 398.96 1.26 23.89 11

*** S.D. column is the standard deviation of the forward moves.

143

Table XL1X. VERTICES = 56, EDGELOAD - 0.3 AND 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.3 7.00 2283.26 2282.69 1.00 7.92 41

ikorw2 jkorman 1736.23 1719.78 0.99 7.84 34

ipactual jpactual 1426.96 1420.42 1.00 7.77 50

ipactmaxw2 jpactual 1187.76 1114.47 0.94 7.70 41

ikorman jkorman 0.5 10.03 40819.83 61973.11 1.52 11.98 728

ikorw2 jkorman 32495.33 58278.02 1.79 11.86 644

ipactual jpactual 16859.05 23336.84 1.38 11.77 548

ipactmaxw2 jpactual 14917.26 20858.73 1.40 11.69 491

*** S.D. column is the standard deviation of the forward moves.

144

Table L. VERTICES - 56, EDGELOAD = 0.7 AND 0.9, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv edge
load

exact
color

moves S.D. var
cof.

first
color

time
(sec)

ikorman jkorman 0.7 14.86 100592.26 138854.67 1.38 16.96 1864

ikorw2 jkorman 67298.88 76181.61 1.13 16.88 1448

ipactual jpactual 50482.88 67243.74 1.33 17.05 1663

ipactmaxw2 jpactual 35781.40 38021.55 1.06 16.82 1251

ikorman jkorman 0.9 24.47 3194.90 9295.03 2.91 25.70 54

ikorw2 jkorman 2209.50 6524.20 2.95 25.72 51

ipactual jpactual 1528.46 4353.31 2.85 25.59 45

ipactmaxw2 jpactual 1145.27 2976.75 2.60 25.49 37

*** S.D. column is the standard deviation of the forward moves.

145

Table LI. COMPARISON KORW2 WITH KORMAN IN RUNNING TIME
(backtracking scheme).

edgeload = 0.3

n= 28 n= 32 n= 36

oIIC n = 44
OO1!G n= 52 n = 56

mean -0.01 0.03 -0.02 *-0.37 *-0.31 -1.03 *-7.24 *-7.44

S.D. 0.10 0.46 0.97 0.84 1.56 10.52 18.45 10.14

better 1% 5% 22% 34% 21% 51% 84% 88%

worse 0% 5% 13% 4% 8% 29% 9% 11%

edgeload = 0.5

n= 28 n= 32 n= 36 n = 40 n = 44 n = 48 n= 52 n = 56

mean *-0.12 -0.11 *-0.97 *-2.69 *-3.67 *-11.55 *-44.29 -83.70

S.D. 0.38 0.72 2.82 10.87 6.81 49.88 55.82 737.34

better 14% 22% 45% 65% 75% 71% 92% 72%

worse 2% 13% 8% 17% 17% 26% 7% 27%

1. Mean and standard deviation of difference in running time.

2. Percentage of trials in which Korw2 is better (worse) than Korman.

3. mean is significant at 0.05 level.

146

edgeload = 0.7

Table LII. COMPARISON KORW2 WITH KORMAN IN RUNNING TIME
(backtracking scheme).

3 1) UJ oo n = 32 n= 36 n= 40 n = 44 n = 48 n = 52 n= 56

mean *-0.13 *-0.25 *-0.82 -1.69 *-3".79 -15.22 *-143.84 *-415.76

S.D. 0.46 0.81 2.32 9.50 15.66 111.41 326.92 1547.02

better 14% 24% 53% 65% 61% 63% 74% 75%

worse 3% 6% 18% 23% 30% 34% 24% 24%

edgeload = 0.9

3 II to OO n= 32 n= 36 n = 40 n= 44 n = 48

C41!C n = 56

mean 0.01 -0.04 *-0.11 -0.02 0.01 *-0.76 *-2.05 *-9.85

S.D. 0.10 0.24 0.47 0.64 2.22 3.67 9.40 33.97

better 0% 5% 15% 17% 25% 36% 67% 67%

worse 1% 1% 5% 17% 14% 14% 13% 17%

1. Mean and standard deviation of difference in running time.

2. Percentage of trials in which Korw2 is better (worse) than Korman.

3 . mean is significant at 0.05 level.

147

edgeload = 0.3

Table LIII. COMPARISON PACTUAL WITH KORMAN IN RUNNING
TIME (backtracking scheme).

n= 28 n= 32 n= 36

o'TIIc n = 44
OOIIC n = 52 n = 56

mean *0.63 *0.90 *0.84 *1.03 *1.05 *3.94 4.19 *8.51

S.D. 0.49 0.56 1.82 1.57 1.86 17.72 37.79 20.20

better 0% 1% 9% 8% 9% 29% 34% 24%

worse 63% 84% 59% 66% 77% 65% 60% 72%

edgeload = 0.5

n= 28 n= 32 n= 36 n = 40 n=44 n = 48 n = 52 n = 56

mean *0.66 *0.70 0.36 1.79 *2.71 -3.05 13.23 *-179.61

S.D. 1.08 1.40 3.35 16.99 11.66 83.13 159.17 829.88

better 2% 8% 23% 37% 34% 39% 47% 60%

worse 59% 55% 57% 55% 61% 59% 52% 40%

1 Mean and standard deviation of difference in running time.

2. Percentage of trials in which Pactual is better (worse) than Korman.

3. mean is significant at 0.05 level.

148

edgeload = 0.7

Table LIV. COMPARISON PACTUAL WITH KORMAN IN RUNNING
TIME (backtracking scheme).

n= 28 n= 32 n= 36 n = 40 3 II -C* n = 48 n= 52 n= 56

mean *0.67 *0.63 *1.14 0.30 3.19 -0.26 *-190.23 -201.08

S.D. 0.53 1.13 3.69 12.50 25.14 88.18 561.78 2140.45

better 1% 6% 20% 48% 37% 45% 62% 68%

worse 66% 60% 57% 43% 58% 55% 37% 32%

edgeload = 0.9

n= 28 D 1) K) n= 36 n= 40 IIG n = 48 n= 52 n = 56

mean *0.99 *0.94 *1.67 *1.54 *1.96 *2.30 *2.87 -8.87

S.D. 0.10 0.24 0.59 0.73 1.41 4.99 14.44 46.16

better 0% 0% 0% 0% 3% 15% 17% 42%

worse 99% 94% 94% 93% 89% 81% 79% 55%

1. Mean and standard deviation of difference in running time.

2. P ercen tag e of trials in which Pactual is better (worse) than Korman.

3. mean is significant at 0.05 level.

149

cdgeload = 0.3

Table LV. COMPARISON PACTMAXW2 WITH KORMAN IN RUNNING
TIME (backtracking scheme).

n= 28 n= 32 n = 36

§IIc n = 44 n = 48 n= 52 n= 56

mean *0.41 *0.80 *0.50 *0.59 *0.55 1.82 -4.18 -0.60

S.D. 0.49 0.49 1.54 1.34 2.06 16.53 36.58 18.62

better 0% 1% 13% 13% 15% 34% 51% 51%

worse 41% 78% 50% 53% 67% 56% 44% 43%

edgeload = 0.5

3 II
1

°° n= 32 n= 36 n= 40 n= 44 n= 48 n= 52 n= 56

mean *0.45 *0.48 -0.27 -0.63 -1.10 -13.09 -22.09 *-236.86

S.D. 0.86 1.31 3.26 14.99 10.00 80.34 112.87 897.88

better 3% 9% 29% 46% 49% 51% 61% 62%

worse 42% 49% 46% 43% 43% 48% 39% 37%

1 Mean and standard deviation of difference in running time.

2. Percentage of trials in which Pactmaxw2 is better (worse) than Korman.

3. mean is significant at 0.05 level.

150

edgeload = 0.7

Table LVI. COMPARISON PACTMAXW2 WITH KORMAN IN RUNNING
TIME (backtracking scheme).

n= 28 n= 32 n= 36 oTTIIC r̂IIc n = 48 n= 52 n= 56

mean *0.59 *0.37 0.16 -1.78 -1.27 -15.57 *-244.69 *-613.09

S.D. 0.53 1.06 3.19 9.82 26.64 84.86 546.24 2245.21

better 1% 8% 30% 56% 51% 58% 70% 72%

worse 59% 43% 40% 35% 46% 41% 29% 27%

edgeload = 0.9

n= 28 n= 32 n= 36 n = 40 n = 44 n = 48 n= 52 n= 56

mean *0.99 *0.94 *1.40 *1.37 *1.38 *1.46 0.26 *-16.69

S.D. 0.10 0.24 0.77 0.68 1.44 4.35 10.76 72.43

better 0% 0% 2% 0% 6% 17% 27% 45%

worse 99% 94% 87% 90% 85% 79% 70% 49%

1. Mean and standard deviation of difference in running time.

2. Percentage of trials in which Pactmaxw2 is better (worse) than Korman.

3. mean is significant at 0.05 level.

151

Table LVII. COMPARISON PACTMAXW2 WITH PACTUAL IN RUNNING
TIME (backtracking scheme).

edgeload = 0.3

n= 28 n= 32 n= 36 n = 40 n = 44 n= 48 n = 52 n= 56

mean *-0.22 *-0.10 *-0.34 *-0.44 *-0.50 *-2.12 *-8.37 *-9.11

S.D. 0.44 0.41 0.71 0.74 1.33 6.29 17.29 13.50

better 23% 9% 31% 44% 37% 55% 91% 92%

worse 1% 1% 4% 4% 6% 15% 4% 7%

edgeload = 0.5

n= 28 n= 32 n= 36

oIIa n = 44 n = 48 n= 52 n= 56

mean *-0.21 *-0.22 *-0.63 *-2.42 *-3.81 *-10.04 *-35.32 -57.25

S.D. 0.48 0.46 1.33 5.77 4.88 33.53 89.48 356.59

better 19% 20% 52% 66% 82% 83% 87% 70%

worse 0% 0% 11% 13% 10% 14% 13% 30%

1. Mean and standard deviation of difference in running time.

2. Percentage of trials in which Pactmaxw2 is better (worse) than Pactual.

3. mean is significant at 0.05 level.

152

edgeload = 0.7

Table LVIII. COMPARISON PACTMAXW2 WITH PACTUAL IN RUNNING
TIME (backtracking scheme).

n= 28 n= 32 n= 36 n = 40 n= 44
OO1!CJ n = 52 n = 56

mean *-0.08 *-0.26 *-0.98 *-2.08 *-4.46 *-15.31 *-54.46 *-412.01

S.D. 0.27 0.60 1.46 4.68 13.78 60.16 83.31 1381.41

better 8% 26% 57% 69% 82% 82% 83% 83%

worse 0% 4% 6% 7% 8% 16% 16% 17%

edgeload = 0.9

n= 28 n= 32 n= 36

ôrIIc r̂,̂rIIc n = 48 n= 52 n = 56

mean 0.00 0.00 *-0.27 *-0.17 *-0.58 *-0.84 *-2.61 *-7.82

S.D. 0.00 0.00 0.45 0.38 1.18 3.57 12.70 29.93

better 0% 0% 27% 17% 54% 38% 43% 72%

worse 0% 0% 0% 0% 5% 8% 9% 12%

1 Mean and standard deviation of difference in running time.

2. Percentage of trials in which Pactmaxw2 is better (worse) than Pactual.

3. '*' mean is significant at 0.05 level.

edge load = 0 .3

F ig u r e 4 4 . h e u r is t ic c o lo r s fo r e d g e lo a d = 0 .3

nu
m

be
r

of
 c

ol
or

s 1 3 T

edge load = 0 .5

1 2 -

1 1 -

1 0 -

9 -

8 -

7 -

6 —
24

---- Korman
— Korw2

28 32 36 40 44 48 52
vertices

56 60

F ig u r e 4 5 . h e u r is t ic c o lo r s fo r e d g e lo a d = 0 .5
0/1

edge load = 0 .7

Figure 46. heuristic colors for edgeload = 0.7

edge load = 0 .9

F ig u re 4 7 . h e u r is t ic c o lo r s fo r e d g e lo a d = 0 .9 O N

tim
e

(s
ec

edge load = 0 .3

Figure 48. running time for edgcload = 0.3 to t

tim
e

(s
ec

edge load = 0 .5

F ig u re 4 9 . r u n n in g t im e fo r e d g c lo a d = 0 .5 O O

tim
e

(s
ec

edge load = 0 .7

F ig u re 50 . r u n n in g tim e fo r e d g e lo a d = 0 .7 L/ivO

tim
e

(s
ec

F ig u re 51. r u n n in g tim e fo r c d g c lo a d = 0 .9

fo
rw

ar
d

m
ov

es

4000
3 5 0 0 -
3 0 0 0 -
2500
2 0 0 0 -

1 5 0 0 -
1 0 0 0 -

5 0 0 -
0 -

- 5 0 0 -
-1000

edge load = 0 .3
Korman
Korw2

+ + +
24 28 32 36 40 44 48

vertices
Figure 52. forward moves for cdgcload = 0.3

52 56 60

&

fo
rw

ar
d

m
ov

es
edge load = 0 .5

Figure 53. forward moves for edgeload = 0.5

fo
rw

ar
d

m
ov

es

1.1E5 j
1 .0 E 5 -
9 .0E4
8 .0E4
7 .0E4
6 .0E4
5 .0E4
4 .0E4
3 .0E4
2 .0E4
1 .0 E 4 -

0 . 0 -

- 1 .0 E 4 -
2 4

Korman

edge load = 0 .7

H -------------- 1-------------- 1-------------- 1-------------- 1-------------- t-------------- \-------------- I-------------- 1
28 32 36 40 44 48 52 56 60

vertices
Figure 54. forward moves for edgeload = 0.7 ONU»

fo
rw

ar
d

m
ov

es

3500 T
edge load = 0 .9

3 0 0 0 -

2 5 0 0 -

2 0 0 0 -

1 5 0 0 -

1 0 0 0 -

5 0 0 -

0 -

Korman

—500 -I----- 1---------- 1----- t--------t----------1------»--------1----------1------1
24 28 32 36 40 44 48 52 56 60

vertices
Figure 55. forward moves for edgeload = 0.9

fo
rw

ar
d

m
ov

es
 (

lo
g

sc
al

e)

1E4 j

1 0 0 0 -

1 0 0 -

1 0 -

1 —

24

edge load = 0 .3
— Korman
— Korw2

28 32 36 40 44 48 52 56 60
vertices

Figure 56. forward moves on log scale for edgeload = 0.3 O '

fo
rw

ar
d

m
ov

es
 (

lo
g

sc
al

e
edge load = 0 .5

F ig u re 57 . fo rw a rd m o v e s o n lo g sc a le fo r e d g e lo a d = 0 .5 &

fo
rw

ar
d

m
ov

es
 (

lo
g

sc
al

e
edge load = 0 .7

F ig u re 58 . fo r w a r d m o v e s o n lo g sc a le fo r c d g c lo a d = 0 .7 Os~<1

fo
rw

ar
d

m
ov

es
 (

lo
g

sc
al

e
1E4

edge load = 0 .9

1 -J--------- — i----------------\-------------------1-------------- I— ------------ 1------------------ 1-----------------1---------------- \---------------- 1
24 28 32 36 40 44 48 52 56 60

vert ices
F ig u re 59 . fo rw a rd m o v e s o n lo g sc a le for c d g c lo a d = 0 .9 O''OO

30
2 7

24
21
18
15
12

9
6

3
0

edgeload
edgeload
edgeload
edgeload

0.3
0.5
0.7
0.9

28 32 36 40 44 48 52
vertices

h -------------1
56 60

F ig u r e 6 0 . e x a c t c o lo r s ovO

170

Table LIX. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Korman algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ikorman jkorman - 5.96 183.86 6.40 2 - - - -

ikorman jkorlm 2.0 5.96 181.20 6.40 2 100 0 0 0

ikorman jkorlm 1.9 5.97 147.21 2 99 1 0 0

ikorman jkorlm 1.8 5.98 132.28 2 98 2 0 0

ikorman jkorlm 1.7 5.98 122.84 1 98 2 0 0

ikorman jkorlm 1.6 5.99 95.73 1 97 3 0 0

ikorman jkorlm 1.5 5.99 87.64 1 97 3 0 0

ikorman jkorlm 1.4 5.99 75.55 1 97 3 0 0

ikorman jkorlm 1.3 6.03 67.18 1 93 7 0 0

ikorman jkorlm 1.2 6.13 59.89 1 83 17 0 0

ikorman jkorlm 1.1 6.18 52.14 1 78 22 0 0

*** Color column oflimit technique is not exact.

171

Table LX. VERTICES = 40, EDGELOAD - 0.5 (backtracking scheme).
Korman algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ikorman jkorman - 8.23 1108.45 9.44 15 - - - -

ikorman jkorlm 2.0 8.26 953.68 9.44 13 97 3 0 0

ikorman jkorlm 1.9 8.30 792.51 11 93 7 0 0

ikorman jkorlm 1.8 8.44 532.98 7 79 21 0 0

ikorman jkorlm 1.7 8.54 432.29 6 69 31 0 0

ikorman jkorlm 1.6 8.62 309.19 4 61 39 0 0

ikorman jkorlm 1.5 8.71 228.64 3 53 46 1 0

ikorman jkorlm 1.4 8.81 174.89 2 43 56 1 0

ikorman jkorlm 1.3 8.88 115.05 1 35 65 0 0

ikorman jkorlm 1.2 9.04 87.12 I 25 69 6 0

ikorman jkorlm 1.1 9.18 58.24 1 21 63 16 0

*** Color column of limit technique is not exact.

172

Table LXI. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Korman algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ikorman jkorman - 11.88 833.55 13.14 11 - - - -

ikorman jkorlm 2.0 11.88 784.93 13.14 11 100 0 0 0

ikorman jkorlm 1.9 11.92 630.27 9 96 4 0 0

ikorman jkorlm 1.8 11.99 521.74 7 89 11 0 0

ikorman jkorlm 1.7 12.01 433.21 6 87 13 0 0

ikorman jkorlm 1.6 12.17 331.70 4 71 29 0 0

ikorman jkorlm 1.5 12.25 260.83 3 64 35 1 0

ikorman jkorlm 1.4 12.37 178.60 2 54 43 3 0

ikorman jkorlm 1.3 12.53 126.64 2 38 59 3 0

ikorman jkorlm 1.2 12.69 85.02 1 28 64 7 1

ikorman jkorlm 1.1 12.99 55.16 1 16 60 21 3

* * * C o lo r c o lu m n o f l im it te c h n iq u e is n o t ex a c t.

173

T a b le L X II . V E R T IC E S = 4 0 , E D G E L O A D = 0 .9 (b a c k tr a c k in g sc h e m e).
K o r m a n a lg o r ith m w ith lim it te c h n iq u e o n d ifferen t v a lu e s o f
p a r a m e te r lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ikorman jkorman - 19.20 78.83 19.53 1 - - - -

ikorman jkorlm 2.0 19.20 78.73 19.53 1 100 0 0 0

ikorman jkorlm 1.9 19.21 75.59 1 99 1 0 0

ikorman jkorlm 1.8 19.24 71.31 1 96 4 0 0

ikorman jkorlm 1.7 19.25 68.74 1 95 5 0 0

ikorman jkorlm 1.6 19.26 64.80 1 94 6 0 0

ikorman jkorlm 1.5 19.30 61.23 1 90 10 0 0

ikorman jkorlm 1.4 19.31 57.23 1 89 11 0 0

ikorman jkorlm 1.3 19.36 51.44 1 84 16 0 0

ikorman jkorlm 1.2 19.45 47.16 1 75 25 0 0

ikorman jkorlm 1.1 19.44 44.17 0 77 22 1 0

*** Color column of limit technique is not exact.

174

Table LXIII. VERTICES = 40, EDGELOAD - 0.3 (backtracking scheme).
Pactual algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ipactual jpactual - 5.96 129.22 6.25 3 - - - -

ipactual jpaclm 2.0 5.96 126.79 6.25 3 100 0 0 0

ipactual jpaclm 1.9 5.97 114.18 3 100 0 0 0

ipactual jpaclm 1.8 5.98 103.84 3 99 1 0 0

ipactual jpaclm 1.7 5.98 93.32 2 99 1 0 0

ipactual jpaclm 1.6 5.99 84.16 2 97 3 0 0

ipactual jpaclm 1.5 5.99 74.82 2 95 5 0 0

ipactual jpaclm 1.4 5.99 69.41 2 98 2 0 0

ipactual jpaclm 1.3 6.03 61.13 2 95 5 0 0

ipactual jpaclm 1.2 6.13 54.34 1 93 7 0 0

ipactual jpaclm 1.1 6.18 48.24 l 88 12 0 0

*** Color column of limit technique is not exact.

175

Table LXIV. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Pactual algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ipactual jpactual - 8.23 702.96 9.35 16 - - - -

ipactual jpaclm 2.0 8.24 594.18 9.35 14 99 1 0 0

ipactual jpaclm 1.9 8.30 478.19 11 93 7 0 0

ipactual jpaclm 1.8 8.43 396.20 9 80 20 0 0

ipactual jpaclm 1.7 8.49 327.42 8 74 26 0 0

ipactual jpaclm 1.6 8.51 230.38 6 72 28 0 0

ipactual jpaclm 1.5 8.66 188.70 5 58 41 1 0

ipactual jpaclm 1.4 8.77 127.46 3 46 54 0 0

ipactual jpaclm 1.3 8.83 105.58 3 41 58 1 0

ipactual jpaclm 1.2 8.95 72.74 2 30 68 2 0

ipactual jpaclm 1.1 9.16 55.33 2 21 65 14 0

*** Color column oflimit technique is not exact.

176

Table LXV. VERTICES = 40, EDGELOAD = 0.7 {backtracking scheme).
Pactual algorithm with limit technique on different values of
parameter lim

nucv ncv lim color m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
a p

3-
ap

ip ac tu a l jp ac tu a l - 11.88 479.94 13.08 12 - - - -

ip ac tu a l jpaclm 2.0 11.88 438.69 13.08 11 100 0 0 0

ip ac tu a l jpaclm 1.9 11.92 367.54 9 96 4 0 0

ip ac tu a l jpac lm 1.8 11.95 312.41 8 93 7 0 0

ip ac tu a l jpaclm 1.7 12.03 309.02 8 85 15 0 0

ip ac tu a l jpaclm 1.6 12.06 222.93 6 82 18 0 0

ip ac tu a l jpaclm 1.5 12.17 181.35 5 71 29 0 0

ip ac tu a l jpac lm 1.4 12.20 150.44 4 68 32 0 0

ip ac tu a l jpaclm 1.3 12.51 110.41 3 41 55 4 0

ip ac tu a l jpaclm 1.2 12.60 76.59 2 2}7 54 9 0

ip ac tu a l jpac lm 1.1 12.82 56.79 2 24 58 18 0

*** C o lo r c o lu m n o f lim it te c h n iq u e is n o t e x a c t.

177

Table LXVI. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pactual algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ipactual jpactual - 19.20 60.31 19.50 2 - - - -

ipactual jpaclm 2.0 19.20 60.73 19.50 2 100 0 0 0

ipactual jpaclm 1.9 19.22 59.17 2 98 2 0 0

ipactual jpaclm 1.8 19.23 59.17 2 97 3 0 0

ipactual jpaclm 1.7 19.25 55.91 2 95 5 0 0

ipactual jpaclm 1.6 19.22 54.84 2 98 2 0 0

ipactual jpaclm 1.5 19.24 51.88 2 96 4 0 0

ipactual jpaclm 1.4 19.28 50.43 2 92 8 0 0

ipactual jpaclm 1.3 19.30 47.97 2 90 10 0 0

ipactual jpaclm 1.2 19.40 44.11 2 80 20 0 0

ipactual jpaclm 1.1 19.42 43.08 2 78 22 0 0

*** Color column of limit technique is not exact.

178

Table LXVII. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Prevent4a algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

iprevent4a jprevent4a - 5.96 111.01 6.26 3 - - - -

iprv4a jpv41m 2.0 5.96 109.75 6.26 3 100 0 0 0

iprv4a jpv41m 1.9 5.96 99.82 3 100 0 0 0

iprv4a jpv41m 1.8 5.97 89.77 2 99 1 0 0

iprv4a jpv41m 1.7 5.98 84.61 2 98 2 0 0

iprv4a jpv41m 1.6 5.99 75.20 2 97 3 0 0

iprv4a jpv41m 1.5 6.00 66.78 2 96 4 0 0

iprv4a jpv41m 1.4 6.01 63.33 2 95 5 0 0

iprv4a jpv41m 1.3 6.00 58.00 2 97 2 1 0

iprv4a jpv41m 1.2 6.06 51.91 1 90 10 0 0

iprv4a jpv41m 1.1 6.13 47.08 1 83 17 0 0

*** Color column of limit technique is not exact.

179

Table LXVIII. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Prevent4a algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first
color

time
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

iprevent4a jprevent4a - 8.23 631.19 9.35 15 - - - -

iprv4a jpv41m 2.0 8.25 529.16 9.35 13 98 2 0 0

iprv4a jpv41m 1.9 8.33 397.95 10 90 10 0 0

iprv4a jpv41m 1.8 8.35 320.81 8 88 12 0 0

iprv4a jpv41m 1.7 8.48 291.73 7 75 25 0 0

iprv4a jpv41m 1,6 8.56 219.60 6 68 31 1 0

iprv4a jpv41m 1.5 8.65 166.53 4 58 42 0 0

iprv4a jpv41m 1.4 8.78 120.59 3 47 51 2 0

iprv4a jpv41m 1.3 8.87 100.86 3 38 60 2 0

iprv4a jpv41m 1.2 8.90 77.63 2 33 67 0 0

iprv4a jpv41m 1.1 9.09 54.67 2 26 62 12 0

*** Color column oflimit technique is not exact.

180

Table LXIX. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Prevent4a algorithm with limit technique on different values of
parameter lim

n u cv ncv lim co lo r m oves first
c o lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ip rev en t4 a jp rev en t4 a - 11.88 532.47 13.31 13 - - - -

ip rv4a jpv41m 2.0 11.89 497.11 13.31 12 99 1 0 0

iprv4a jpv41m 1.9 11.95 452.62 11 93 7 0 0

ip rv4a jpv41m 1.8 11.98 351.54 9 90 10 0 0

ip rv4a jpv41m 1.7 12.04 314.78 8 84 16 0 0

ip rv4a jpv41m 1.6 12.18 234.28 6 70 30 1 0

ip rv4a jpv41m 1.5 12.26 175.92 5 67 28 5 0

ip rv4a jpv41m 1.4 12.44 140.39 4 50 45 4 1

ip rv4a jpv41m 1.3 12.61 101.48 3 36 56 7 I

ip rv4a jpv41m 1.2 12.79 78.17 2 29 53 16 2

iprv4a jpv41m 1.1 12.99 58.44 2 18 56 23 3

*** Color column of limit technique is not exact.

181

Table LXX. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Prevent4a algorithm with limit technique on different values of
parameter lim

nucv ncv lim co lo r m oves first
c o lo r

tim e
(sec)

0-
a p

1-
ap

2-
a p

3-
ap

ip rev en t4 a jp rev en t4 a - 19.20 59.34 19.52 3 - - - -

ip rv4a jpv41m 2.0 19.20 59.34 19.52 3 100 0 0 0

iprv4a jpv41m 1.9 19.22 59.37 3 98 2 0 0

ip rv4a jpv41m 1.8 19.21 57.50 3 99 1 0 0

iprv4a jpv41m 1.7 19.24 54.53 3 96 4 0 0

ip rv4a jpv41m 1.6 19.28 51.74 3 92 8 0 0

iprv4a jpv41m 1.5 19.28 51.67 3 92 8 0 0

ip rv4a jpv41m 1.4 19.38 47.70 3 82 18 0 0

ip rv4a jpv41m 1.3 19.41 47.32 3 79 21 0 0

ip rv4a jpv41m 1.2 19.39 44.82 3 82 17 1 0

iprv4a jpv41m 1.1 19.47 42.30 3 73 27 0 0

*** Color column of limit technique is not exact.

182

Table LXXI. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(see)

0-
ap

1-
ap

2-
ap

3-
ap

ip ac tu a l jp aen h 0.3 1.0 5.96 129.22 6.25 3 100 0 0 0

ip ac tu a l jp aen h 0.9 5.96 129.22 3 100 0 0 0

ip ac tu a l jp aen h 0.8 5.96 128.53 3 100 0 0 0

ip ac tu a l jp aen h 0.7 5.96 124.20 3 100 0 0 0

ip ac tu a l jp aen h 0.6 5.97 115.41 3 99 1 0 0

ip ac tu a l jp aen h 0.5 5.97 101.95 3 99 1 0 0

ip ac tu a l jp aen h 0.4 5.97 83.55 2 99 1 0 0

ip ac tu a l jp aen h 0.3 5.98 74.70 2 98 2 0 0

ip ac tu a l jp aen h 0.2 5.98 59.61 2 98 2 0 0

ip a c tu a l jp aen h 0.1 6.07 49.91 1 89 11 0 0

183

Table LXXI1. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
a p

ip ac tu a l jp ae n h 0.5 1.0 8.23 702.96 9.35 17 100 0 0 0

ip ac tu a l jp ae n h 0.9 8.23 702.15 17 100 0 0 0

ip a c tu a l jp ae n h 0.8 8.25 672.20 17 98 2 0 0

ip a c tu a l jp a e n h 0.7 8.30 522.32 13 93 7 0 0

ip ac tu a l jp aen h 0.6 8.48 366.15 9 75 25 0 0

ip ac tu a l jp ae n h 0.5 8.65 209.67 5 58 42 0 0

ip ac tu a l jp aen h 0.4 8.84 129.26 3 44 51 5 0

ip ac tu a l jp ae n h 0.3 9.00 90.25 2 31 61 8 0

ip ac tu a l jp ae n h 0.2 9.09 64.18 2 27 60 13 0

ip ac tu a l jp ae n h 0.1 9.21 51.05 1 19 64 17 0

184

Table LXXIII. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

O-
ap

1-
ap

2-
ap

3-
ap

ip ac tu a l jp aen h 0.7 1.0 11.88 479.94 13.08 12 100 0 0 0

ip ac tu a l jp aen h 0.9 11.89 445.24 11 99 1 0 0

ip ac tu a l jp aen h 0.8 11.96 331.52 8 92 8 0 0

ip ac tu a l jp aen h 0.7 12.15 179.18 5 74 25 1 0

ip ac tu a l jp aen h 0.6 12.41 98.31 3 50 47 3 0

ip ac tu a l jp aen h 0.5 12.66 72.39 2 37 50 11 2

ip ac tu a l jp aen h 0.4 12.80 58.85 2 30 50 18 2

ip ac tu a l jp aen h 0.3 12.85 55.61 2 26 53 19 2

ip ac tu a l jp aen h 0.2 12.91 51.31 2 22 55 21 2

ip ac tu a l jp aen h 0.1 12.99 45.10 2 19 53 26 2

185

Table LXXIV. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
a p

3-
ap

ip ac tu a l jp aen h 0.9 1.0 19.20 60.31 19.50 2 100 0 0 0

ip ac tu a l jp aen h 0.9 19.22 54.27 2 98 2 0 0

ip ac tu a l jp aen h 0.8 19.34 46.84 2 86 14 0 0

ip ac tu a l jp aen h 0.7 19.41 43.80 2 79 21 0 0

ip ac tu a l jp aen h 0.6 19.44 42.65 2 76 24 0 0

ip ac tu a l jp aen h 0.5 19.44 42.53 2 76 24 0 0

ip ac tu a l jp aen h 0.4 19.44 42.53 2 76 24 0 0

ip ac tu a l jp aen h 0.3 19.44 42.49 2 76 24 0 0

ip ac tu a l jp ae n h 0.2 19.44 42.20 2 76 24 0 0

ip ac tu a l jp aen h 0.1 19.45 41.39 2 75 25 0 0

186

Table LXXV. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Prevent4a algorithm with epsilon technique on different values of
parameter eps

nu cv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

iprv4a jpv4nh 0.3 1.0 5.96 111.01 6.26 3 100 0 0 0

iprv4a jp v4nh 0.9 5.96 110.79 3 100 0 0 0

iprv4a jpv4nh 0.8 5.96 110.31 3 100 0 0 0

ip rv4a jp v4nh 0.7 5.97 106.78 3 99 1 0 0

iprv4a jpv4nh 0.6 5.97 102.69 3 99 1 0 0

iprv4a jpv4nh 0.5 5.97 91.41 3 99 1 0 0

iprv4a jpv4nh 0.4 5.97 78.08 2 99 1 0 0

ip rv4a jpv4nh 0.3 5.97 66.79 2 99 1 0 0

iprv4a jp v4nh 0.2 5.98 57.24 2 95 5 0 0

iprv4a jp v 4 n h 0.1 6.11 47.45 I 85 15 0 0

187

Table LXXVI. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Prevent4a algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ip rv4a jpv4nh 0.5 1.0 8.23 631.19 9.35 17 100 0 0 0

iprv4a jp v 4 n h 0.9 8.23 626.65 17 100 0 0 0

iprv4a jp v 4 n h 0.8 8.23 612.64 16 100 0 0 0

ip rv4a jp v 4 n h 0.7 8.24 567.95 15 99 1 0 0

iprv4a jp v 4 n h 0.6 8.32 449.68 12 91 9 0 0

iprv4a jpv4nh 0.5 8.59 216.44 6 64 36 0 0

iprv4a jp v 4 n h 0.4 8.79 120.09 3 47 50 3 0

iprv4a jpv4nh 0.3 8.96 74.37 2 33 61 6 0

iprv4a jp v 4 n h 0.2 9.06 61.59 2 29 59 12 0

ip rv 4 a jp v 4 n h 0.1 9.20 50.51 2 23 57 20 0

188

Table LXXVII. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Prevent4a algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge
lo ad

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ip rv4a jpv4nh 0.7 1.0 11.88 532.47 13.31 14 100 0 0 0

ip rv4a jpv4nh 0.9 11.88 522.30 14 100 0 0 0

ip rv4a jp v 4 n h 0.8 11.90 468.44 13 98 2 0 0

ip rv4a jp v 4 n h 0.7 12.06 264.80 7 82 18 0 0

ip rv4a jp v 4 n h 0.6 12.43 113.66 3 50 45 5 0

iprv4a jp v4nh 0.5 12.86 70.81 2 28 48 22 2

ip rv4a jp v 4 n h 0.4 13.04 55.16 2 20 48 28 4

iprv4a jp v 4 n h 0.3 13.12 51.59 2 18 44 34 4

ip rv4a jp v 4 n h 0.2 13.16 49.19 2 18 42 34 6

iprv4a jp v 4 n h 0.1 13.24 44.83 ->4- 16 39 38 7

189

Table LXXVIII. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Prevent4a algorithm with epsilon technique on different values of
parameter eps

n ucv ncv edge
load

eps heur.
co lo r

m oves first
co lo r

tim e
(sec)

0-
ap

1-
ap

2-
ap

3-
ap

ip rv4a jp v 4 n h 0.9 1.0 19.20 59.34 19.52 3 100 0 0 0

iprv4a jp v4nh 0.9 19.22 55.35 3 98 2 0 0

iprv4a jp v4nh 0.8 19.37 44.62 3 83 17 0 0

iprv4a jp v 4 n h 0.7 19.43 42.28 3 77 23 0 0

iprv4a jp v4nh 0.6 19.47 41.24 3 74 25 1 0

iprv4a jp v 4 n h 0.5 19.47 41.24 3 74 25 1 0

ip rv4a jp v4nh 0.4 19.47 41.24 3 74 25 1 0

iprv4a jp v4nh 0.3 19.47 41.24 3 74 25 1 0

iprv4a jp v4nh 0.2 19.47 41.20 3 74 25 1 0

iprv4a jpv4nh 0.1 19.49 40.66 3 72 27 1 0

190

V I I . A B R A N C H -A N D -B O U N D P R E F E R E N C E F U N C T IO N

C o m bin ing a p a ir o f nucv-selection an d ncv-selection fu n ctio n s m en tio n ed in

c h a p te r 6 w ith th e b ran c h -an d -b o u n d schem e m en tio n ed in c h a p te r 4 form s a heuristic

a lg o rith m . H ow can we build a b ran c h -an d -b o u n d preference function? F ro m F igure

60, we find th a t th e "exact color" is nearly a linear fu n c tio n o f th e n u m b er o f vertices.

T h u s , we co n stru c t a preference function , every d a tu m o f w hich is the m ean o f the

e x ac t co lo rs o f a sequence o f ran d o m g rap h s a re sto red in ta b u la r form , an d th en use

th e linear in te rp lo a tio n to find th e value o f th e preference fu n ctio n on a given g rap h .

In th is ch ap te r, we describe a b ran ch -an d -b o u n d preference fu n ctio n , a n d p resen t

c o m p u ta tio n a l resu lts u n d e r th e b ran ch -an d -b o u n d schem e.

A . C O N S T R U C T IO N O F A P R E F E R E N C E F U N C T IO N

F o r a c-partia lly co lored g rap h G ' = (V ', E '), th e p re feren ce fu n c tio n P (n , c, m),

c(c — 1)
w h ere n = | V ' | , and m = | E ' | --------- -------, is defined to be the difference betw een

th e expected -co lo rs o f G ' and c. T he exp ec ted -co lo rs o f G ' is th e m ean value o f a

seq u en ce o f ch ro m atic num bers o f ran d o m g raphs hav ing the follow ing p roperties:

e ach o f th em h as | V ' I vertices, a com pletely co n n ected su b g rap h G " o f o rd e r c, and

| £> j _ c(c ~ ^ edges in ad d itio n to th o se th a t a rc in G ". T he la rg er th e value o f the

p reference fu n ctio n is, th e less the degree o f preference is. In o rd er to co m p u te the

va lu e P (n , c, m), we in te rp o la te linearly along each p a ram ete r o f th e p reference

fu n c tio n P, w hose d a ta are sto red in ta b u la r form . W e are go ing to describe the

co n s tru c tio n o f the preference fu n ctio n by tw o steps. F irs t we p o rtra y h o w to c rea te

th e reference tab le o f th e p reference fu n ction . Second we depict h o w to in te rp o la te th e

reference tab le fo r a p a rtia lly co lo red g raph .

191

T here a re three p a ram ete rs fo r the p reference fu n ctio n P. W hile considering the

firs t p a ram ete r, the n u m b er o f vertices, we s ta r t a t 0 an d increase it by ver tex -in crem en t

e a c h tim e. Because every exact a lg o rith m we developed takes 0 (2 |v'1) am o u n t o f tim e

to get th e ch ro m atic num ber, we lim it th e n u m b er o f vertices in order to o b ta in the

reference tab le w ith in a reaso n ab le a m o u n t o f co m p u ta tio n a l tim e. F o r a given

n u m b e r o f vertices, n, m en tioned above, the o rder o f any possible com plete ly

co n n e c te d su b g rap h is betw een 0 and n. W h en tak ing a closer look , we d iscover th a t

th e case, c = 0, only occurs a t the beginning m ovem ent in the search tree, a n d the case,

c = 1, can be converted to an o th e r case, c = 2, by m aking a m inor ad justm en t. A lso

P (n , n, m) is alw ays equal to 0. T hus, we divide th e in terval [2 .. n - l] in to

co re -sh a res sub in tervals. F o r a given n u m b er o f vertices, n, and a given order, c, o f a

com p le te ly connected subgraph , the n u m b er o f edges excep t those th a t are in the given

com p le te ly connected su b g rap h is w ith in the in terval [0 ..

~ ^ ____F o r any case, m < c, p(n , c, m) = 0 b ecause no new co lo r
2 2

w ill be in troduced during th e rem ain ing p a rt o f coloring. A lso p (n , c,

v (v - l) c (c - l) .) = n — c because the orig inal g rap h is a com p le te g rap h o f o rder
v(v 1) — 1

c(c 1)
] in ton. C o nsequen tly , we divide the in terval [c - 1 .. 2 - 2

ed g e -sh a res sub in tervals. T h a t is, there a re usually (edge-shares + 1) d a ta en tries in

th e reference tab le fo r b o th a g rap h o f fixed o rder an d a com plete ly co n n ec ted

su b g ra p h o f fixed o rder o f the given g rap h , a n d (co re -sh ares + 1) * (edge-shares +
v(v — 1)

1) d a ta en tries for a g raph o f fixed order. I f edge-shares > (--- ----------

c^c zJj- _ c), all in tegers w ith in [c — 1 .. — — - - 1 — — r-----] a re taken .

In like m anner, all in tegers in [2 .. n - l] a re taken for a specific n u m b er o f vertices

n i f core-shares > n - 3. F o r each en try , (n , c, m), o f th e reference tab le , r ran d o m

g rap h s , w hich have p roperties: each o f tlw ' **.s n vertices, a com plete ly co n n ec ted

su b g ra p h o f o rder c, a n d m edges besides th o se th a t a re in th e given co m ple te ly

co n n ec ted su bgraph , are genera ted , any ex ac t a lg o rith m can be used to o b ta in the

192

c h ro m a tic n u m b ers o f the sequence o f ran d o m g raphs, the expected-co lo rs is then

fo u n d , an d finally the difference betw een th e com p u ted expected-co lors and c is p laced

in to th e c o n te n t o f th is entry . F o r som e en tries, th e n u m b er o f all possib le g rap h s

h av in g the sam e p roperties m ay be less th a n r. In th is case, we co m p u te the

ex p ected -co lo rs by using all possible graphs.

Before describ ing the in te rp o la tio n a t a partia lly colored g rap h , we in tro d u ce two

term s. F o r a c -partia lly co lored g raph o f o rder n, the co red en sity is defined to be the

ra t io o f c to n, an d the edgedensity is the ra tio o f the n u m b er o f edges except th o se th a t

a re in the co re to — —----- — — — . T he p rocedure o f in te rp o la tio n is (1) to
2 2

fo rm alize th e given partia lly coloring graph in to the form (n, c, m), w here n is the

n u m b e r o f vertices, c is the num ber o f colors having been used so far, an d m is the

n u m b er o f edges except those th a t are in the core, (2) to in te rp o la te in th e vertex

d irec tio n , (3) to in te rp o la te (if necessary) in th e core d irection , a n d (4) to in te rp o la te

(i f necessary) in the edge direction. W e assum e th a t p rocedures (2)-(4) alw ays try to

k eep every tw o g raphs, w hich are either w ithin an in te rp o la tio n o r b e tw een two

co n secu tive in te rp o la tio n s, in the sam e (o r closer) coredensity and edgedensity . F igures

61-63 show' th a t (1) function l-in terpola iion is a linear in te rp o la tio n fu n ctio n w hich is

to in te rp o la te a t the ta rg e t, w hose value is betw een th e low er n e ig h b o r low nb an d the

h ig h e r ne ig h b o r highnb ; (2) fu n ctio n edge-in terpo la tion in te rp o la te s linearly a lo n g the

edge co o rd in a te if n is a given d a tu m in the vertex co o rd in a te , an d c is a lso a given

d a tu m w ith respect to n in the core coord inate ; (3) fu n ctio n co re -in terp o la tio n

in te rp o la te s linearly along the core co o rd in a te if n is a given d a tu m in th e vertex

coord inate- (4) function vertex-in terp o la tio n does linear in te rp o la tio n a long th e vertex

co o rd in a te i f n is n o t a given d a tu m ; and (5) function p re fe re n ce -d eg ree triggers ofT the

in te rp o la tio n s , and re tu rn s the degree o f p reference o f a g raph . F o r exam ple, P(4, 1,

= 3 _ 1 = 2 because any g rap h hav ing 5 edges o f o rd er 4 is 3 -co lo rab le ; P(4, 2, 2)

193

= 2.2 — 2 = 0.2 because there are 10 possible graphs, and the m ean o f all ch rom atic

n u m b ers is 2.2.

/* linear in te rp o la tio n a t targer, w hose value is betw een low nb
a n d h ighnb */

function l-in te rpo la tion (
low nb, I* lower neighbor */
lowval, I* score value o f lower neighbor */
h ighnb , /* higher neighbor */
highval, I* score value o f higher neighbor *j
target: integer): real;

begin
re tu rn (low val * (h ighnb - targ e t) + highval * (ta rg e t - low nb))

/ (h ig h n b - low nb)
end;

function edge-in terpo la tion(n , c: integer, edensity. real), real,
I* n is a given d a tu m in th e vertex coord inate , and c is also a given

d a tu m w. r. t. n in the core coord inate . */
var

em: integer; /* estim ated edges */

begin
cm *- edensity * (n(n - 1) - c(c - l))/2;
if em is a given d a tu m in the edge coord inate w. r. t. (n , c)

then re tu rn P(n, c, em)
else begin

A m ong the d a ta po in ts in the edge coord inate w. r. t. (n, c),
find m, which is the closest lower neighbor to cm and
m 2, w hich is th e closest u p p er neighbor to em;

re tu rn l-in te rp o la tio n (m (, P(n, c, m ,), m 2, P(n, c, m 2), em),

end
end;

F igure 61. p a rt l o f the preference function

194

function co re-in terpo la tion(n : integer; edensity, edensity: real): real;
/* n is a given d a ta in the vertex co o rd in a te */

var
ec: in teger; /* estim ated size o f core */

begin
ec «- n * edensity;
if ec is a given d a tu m in the core co o rd in a te w. r. t. n

th en return edge-in terpo la tion(n , ec, edensity)
else begin

A m ong the given d a tu m p o in ts in the core co o rd in a te w. r. t. n,
find c, w hich is the closest lower ne ighbor to ec and
c2 w hich is the closest u p p e r ne ig h b o r to ec;

return l-in terpo la tion(c ,, cdgc-in terpo la tion (n , c„ edensity), c2,
edge-in terpo la tion(n , c2, edensity), ec);

end
end;

function vertex-in terpola tion(n : integer; edensity , edensity: real): real;

begin
if n is a given d a tu m in the vertex co o rd in a te

then return co rc -in te rp o la tio n (n , edensity , edensity)
else begin

A m ong the given d a ta p o in ts in the vertex co o rd in a te
find n, which is the closest lower n e ighbor to n an d n2 w hich
is the closest up p er ne ig h b o r to n;

return l-in terpo la tion(n ,, co re -in te rp o la tio n (n„ edensity , edensity),
n2,core-in terpo la tion(n2, edensity, edensity), n);

end
end;

Figure 62. p a rt 2 o f the preference function

B. C O M P U T A T IO N A L R E SU L T S

W hile building the reference tab le o f en try fo rm (n , c, m), we let the

v ertex -increm en t = 4, core-shares = 8 be tw een 2 and n - 1, edge-shares = 10 b e tw een

, v(v — 1) , _ _£fc ~ 12. a n d 100 ran d o m g rap h s are g en e ra ted in o rder to
c - 1 a n d ------r --------- 2

195

function preference-degree(n , c, m: in teger): real;
/* n: n u m b er o f vertices,

c: n u m b er o f vertices in core,
m: n u m b er o f edges except th o se th a t a re in core . */
var

edensity , edensity: real; /* co red en sity an d edgedensity */

begin
edensity <- c/n;
e d e n s i ty «- (2 * m) / (n (n - 1) - c(c - I));
re tu rn vertex -in tc rp o la tio n (n , edensity , edensity);

end

F igu re 63. p a rt 3 o f th e preference fu n ctio n

ca lcu la te th e expected-co lors. In o rder to bu ild the reference tab le in a rea so n a b le

a m o u n t o f tim e, we co m p u te the given d a ta en tries u p to 52 vertices. W e assu m e inbuf

c a n h o ld p en d ing nodes u p to 128.

G iven a g raph , w e initially convert it to a O -partially co lo rin g n o d e (re fer to

c h a p te r 4) a n d p lace it in to outbuf. T he co lo ring p rocess is to rep ea tly m ake use o f the

fo llow ing cycle: using D F S to find all m -p artia lly co lo red nodes, w hich a rc so rted by

th e p reference degrees, in outbuf placing th em in to inbuf acco rd ing to c o rre sp o n d in g

v a lues o f calling preference-degree fu n ctio n w ith c = m , a n d tran sfo rm in g th e h e a p so r t

tree , inbuf to th e so rted list, outbuf. T he co lo rin g p rocess s to p s as so o n as th e le a f o f

a co m p le te co lo ring ap p ears .

In T ab les L X X IX -L X X X V I, th e "best co lo r" co lu m n p resen ts th e n u m b e r o f

co lo rs req u ired for a com ple te co loring o f v arious se lec tion fu n ctio n s u n d e r th e

b ran c h -a n d -b o u n d schem e. A m in o r m o d ifica tion on th e 2-1 sw app ing a n d 3-2

sw ap p in g h a s been d o n e as follow: fo r each sw app ing m e th o d , in stead o f d o in g the

196

sw app ing cycle until there is no sw apping cand ida te , we do the sw apping cycle no m ore

th a n once.

T ab les L X X IX -L X X X V I show th a t (1) the K o rm an a lg o rith m w ith e ith e r 2-1

sw app ing or 2-1 sw apping plus 1-1 sw apping is superior to the K o rm an a lgorithm ; and

(2) th e P ac tu a l a lg o rith m w'ith 2-1 sw apping is su p erio r to th e P actual a lgo rithm ;

m o reo v er, it is slightly b e tte r th an K orm an a lgo rithm except for v = 40 an d edgeload

- 0.9.

C. D IS C U S S IO N

T he precision o f th is heuristic a lg o rith m is determ ined by the size o f buffer,

in b u f, for ho ld ing pending nodes o f the sam e n u m b er o f p a rtia l colors (refer to c h ap te r

4). T he preference fu n ctio n p ro p o sed in th is ch ap te r is based on the d a ta w hich are

o b ta in e d from the m ean o f ch ro m atic n um bers, using an exact a lgo rithm , o f 100

ran d o m graphs.

F ro m the experim ental resu lts, a selection function w ith in the b ran c h -an d -b o u n d

schem e takes fewer fo rw ard m oves b u t m ore runn ing tim e (over 5 0 %) th an the sam e

se lec tion fu n ctio n w ith in the b ack track in g schem e. T h e lo o k -ah ead p roced u re does

n o th in g in the b ran c h -a n d -b o u n d schem e because the b ran ch -an d -b o u n d schem e stops

ru n n in g u p o n finishing a com plete coloring. T he sw apping cycle, finding a can d id a te

an d doing sw apping , o f a sw apping m eth o d will be do n e once for each forw ard m ove.

In th e b ran ch -a n d -b o u n d schem e as w'e have previously show n for the back track in g

schem e, the K o rm an a lg o rith m w ith sw apping is su p erio r to th e K o rm an algo rithm .

197

Table LXX1X. VERTICES = 30, EDGELOAD = 0.3 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 5.02 38.81 0.303 5.02 1 100 0

ikorman jsucadja 38.96 0.337 5.02 1 100 0

ipkorman jkorman 37.51 0.315 5.02 1 100 0

ipactual jpactual 35.39 0.257 5.02 1 100 0

ipreventla jpreventla 37.05 0.345 5.02 1 100 0

iprevent2a jprevent2a 36.60 0.316 5.02 1 100 0

iprevent3a jprevent3a 36.19 0.243 5.02 1 100 0

iprevent4a jpreventda 35.33 0.236 5.02 1 100 0

iconnecta jconnecta 36.97 0.240 5.02 1 100 0

ikorqk2 jkorman 37.72 0.279 5.02 1 100 0

ikorw2 jkorman 37.09 0.281 5.02 0 100 0

ikorw21e jkorman 38.34 0.281 5.02 1 100 0

ikormaxw2 jkorman 37.44 0.281 5.02 0 100 0

ikormaxw21e jkorman 38.67 0.281 5.02 1 100 0

ikorqk23 jkorman 36.30 0.245 5.02 1 100 0

ikorw23 jkorman 35.90 0.246 5.02 1 100 0

ipactqk2 jpactual 35.23 0.237 5.02 1 100 0

ipactmaxw2 jpactual 35.24 0.227 5.02 1 100 0

198

Table LXXX. VERTICES = 30, EDGELOAD = 0.5 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 7.02 78.92 0.920 7.02 2 100 0

ikorman jsucadja 80.21 0.916 7.02 2 100 0

ipkorman jkorman 76.39 0.876 7.02 2 100 0

ipactual jpactual 69.39 0.967 7.02 2 100 0

ipreventla jpreventla 71.96 0.950 7.02 2 100 0

iprevent2a jprevent2a 75.68 0.997 7.02 2 100 0

ipreventSa jprevent3a 66.93 0.918 7.02 2 100 0

ipreventda jprevent4a 62.93 1.016 7.02 2 100 0

iconnecta jconnecta 77.08 0.810 7.02 2 100 0

ikorqk2 jkorman 72.50 1.150 7.02 1 100 0

ikorw2 jkorman 75.39 1.207 7.02 1 100 0

ikorw21e jkorman 76.67 1.160 7.02 1 100 0

ikormaxw2 jkorman 70.43 1.155 7.02 1 100 0

ikormaxw21e jkorman 74.29 1.149 7.02 1 100 0

ikorqk23 jkorman 70.25 1.335 7.02 2 100 0

ikorw23 jkorman 65.16 1.209 7.02 2 100 0

ipactqk2 jpactual 70.75 1.085 7.02 2 100 0

ipactmaxw2 jpactual 70.91 1.087 7.02 2 100 0

199

Table LXXXI. VERTICES = 30, EDGELOAD = 0.7 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 10.00 73.91 0.603 10.00 2 100 0

ikorman jsucadja 76.50 0.599 10.00 2 100 0

ipkorman jkorman 73.42 0.631 10.00 2 100 0

ipactual jpactual 60.78 0.686 10.00 2 100 0

ipreventla jpreventla 68.72 0.734 10.00 2 100 0

iprevent2a jprevent2a 62.85 0.637 10.00 2 100 0

iprevent3a jprevent3a 63.92 0.655 10.00 2 100 0

iprevent4a jprevent4a 62.06 0.603 10.00 2 100 0

iconnecta jconnecta 84.48 0.861 10.00 3 100 0

ikorqk2 jkorman 65.36 0.623 10.00 1 100 0

ikorw2 jkorman 63.46 0.585 10.00 1 100 0

ikorw21e jkorman 65.31 0.570 10.00 1 100 0

ikormaxw2 jkorman 64.53 0.625 10.00 1 100 0

ikormaxw21e jkorman 66.32 0.608 10.00 1 100 0

ikorqk23 jkorman 57.73 0.556 10.00 2 100 0

ikorw23 jkorman 55.98 0.509 10.00 2 100 0

ipactqk2 jpactual 57.05 0.644 10.00 2 100 0

ipactmaxw2 jpactual 57.03 0.645 10.00 2 100 0

200

Table LXXXII. VERTICES = 30, EDGELOAD = 0.9 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 15.87 31.88 0.163 15.87 1 100 0

ikorman jsucadja 32.37 0.179 15.87 1 100 0

ipkorman jkorman 30.92 0.124 15.87 1 100 0

ipactual jpactual 30.63 0.095 15.87 1 100 0

ipreventla jpreventla 30.69 0.100 15.87 1 100 0

iprevent2a jprevent2a 30.60 0.098 15.87 1 100 0

iprevent3a jprevent3a 30.58 0.090 15.87 1 100 0

iprevent4a jprevent4a 31.72 0.154 15.87 2 100 0

iconnecta j connecta 30.65 0.093 15.87 1 100 0

ikorqk2 jkorman 31.51 0.112 15.87 1 100 0

ikorw2 jkorman 31.51 0.112 15.87 1 100 0

ikorw21e jkorman 32.41 0.083 15.87 1 100 0

ikormaxw2 jkorman 31.51 0.112 15.87 1 100 0

ikormaxw21e jkorman 32.42 0.083 15.87 1 100 0

ikorqk23 jkorman 31.09 0.052 15.87 1 100 0

ikorw23 jkorman 31.00 0.050 15.87 1 100 0

ipactqk2 jpactual 30.73 0.069 15.87 1 100 0

ipactmaxw2 jpactual 30.73 0.069 15.87 1 100 0

201

Table LXXXIII. VERTICES = 40, EDGELOAD = 0.3 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 5.96 172.85 0.882 5.96 5 100 0

ikorman jsucadja 172.52 0.882 5.96 5 100 0

ipkorman jkorman 148.46 0.856 5.96 5 100 0

ipactual jpactual 132.45 0.784 5.96 6 100 0

ipreventla jpreventla 140.32 0.826 5.96 6 100 0

iprevent2a jprevent2a 133.53 0.818 5.96 6 100 0

iprevent3a jprevent3a 134.39 0.827 5.96 6 100 0

iprevent4a jprevent4a 124.97 0.751 5.96 5 100 0

iconnecta jconnecta 162.78 0.800 5.96 7 100 0

ikorqk2 jkorman 156.05 0.871 5.96 4 100 0

ikorw2 jkorman 153.38 0.889 5.96 4 100 0

ikorw21e jkorman 157.20 0.830 5.96 4 100 0

ikormaxw2 jkorman 156.65 0.889 5.96 4 100 0

ikormaxw21e jkorman 161.26 0.837 5.96 4 100 0

ikorqk23 jkorman 126.72 0.828 5.96 4 100 0

ikorw23 jkorman 125.50 0.865 5.96 5 100 0

ipactqk2 jpactual 126.65 0.790 5.96 5 100 0

ipactmaxw2 jpactual 128.80 0.786 5.96 5 100 0

202

Table LXXXIV. VERTICES = 40, EDGELOAD = 0.5 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0 -

ap
1-

ap

ikorman jkorman 8.23 809.70 1.456 8.23 22 100 0

ikorman jsucadja 804.02 1.477 8.23 24 100 0

ipkorman jkorman 795.17 1.627 8.23 27 100 0

ipactual jpactual 564.77 1.533 8.23 24 100 0

ipreventla j prevent la 700.98 2.108 8.23 28 100 0

iprevent2a jprevent2a 646.85 1.755 8.23 27 100 0

iprevent3a jprevent3a 649.86 1.876 8.23 27 100 0

iprevent4a jprevent4a 600.05 1.623 8.23 26 100 0

iconnecta jconnecta 920.15 1.702 8.23 38 100 0

ikorqk2 jkorman 697.71 1.465 8.23 18 100 0

ikorw2 jkorman 693.52 1.432 8.23 18 100 0

ikorw21e jkorman 701.82 1.455 8.23 17 100 0

ikormaxw2 jkorman 719.68 1.403 8.23 18 100 0

ikormaxw21e jkorman 723.60 1.437 8.23 18 100 0

ikorqk23 jkorman 549.69 1.458 8.23 24 100 0

ikorw23 jkorman 562.62 1.419 8.23 30 100 0

ipactqk2 jpactual 541.32 1.551 8.23 21 100 0

ipactmaxw2 jpactual 542.22 1.548 8.23 20 to o 0

203

Table LXXXV. VERTICES = 40, EDGELOAD = 0.7 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 11.88 575.70 0.819 11.88 17 100 0

ikorman jsucadja 581.97 0.809 11.88 18 100 0

ipkorman jkorman 546.78 0.888 11.88 20 100 0

ipactual jpactual 366.46 0.906 11.88 16 100 0

ipreventla jprevent la 435.31 0.868 11.88 19 100 0

iprevent2a jprevent2a 394.58 0.807 11.88 18 100 0

iprevent3a jprevent3a 383.48 0.797 11.88 17 100 0

iprevent4a jprevent4a 398.99 0.846 11.88 19 100 0

iconnecta jconnecta 551.03 1.082 11.88 24 100 0

ikorqk2 jkorman 485.78 0.822 11.88 13 100 0

ikorw'2 jkorman 477.00 0.809 11.88 13 100 0

ikorw21e jkorman 452.62 0,784 11.88 11 100 0

ikormaxw2 jkorman 503.17 0.891 11.88 14 100 0

ikormaxw21e jkorman 471.21 0.825 11.88 12 100 0

ikorqk23 jkorman 400.75 0.929 11.88 29 100 0

ikorw23 jkorman 394.14 0.932 11.88 35 100 0

ipactqk2 jpactual 336.00 0.944 11.88 14 100 0

ipactmaxw2 jpactual 337.41 0.961 11.88 13 100 0

204

Table LXXXVI. VERTICES = 40, EDGELOAD = 0.9 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv ncv exact
color

moves var
cof.

best
color

time
(sec)

0-
ap

1-
ap

ikorman jkorman 19.20 72.87 0.630 19.20 2 100 0

ikorman jsucadja 73.62 0.619 19.20 2 100 0

ipkorman jkorman 56.49 0.541 19.20 3 100 0

ipactual jpactual 52.17 0.415 19.20 3 100 0

ipreventla jpreventla 55.13 0.489 19.20 3 100 0

iprevent2a jprevent2a 52.20 0.455 19.20 3 100 0

iprevent3a jprevent3a 54.94 0.534 19.20 3 100 0

iprevent4a jprevent4a 61.25 0.557 19.20 4 100 0

iconnecta jconnecta 75.18 1.642 19.21 4 99 1

ikorqk2 jkorman 56.61 0.477 19.20 1 100 0

ikonv2 jkorman 56.73 0.471 19.20 1 100 0

ikorw21e jkorman 61.57 0.633 19.20 1 100 0

ikormaxw2 jkorman 56.44 0.472 19.20 1 100 0

ikormaxw21e jkorman 61.43 0.636 19.20 1 100 0

ikorqk23 jkorman 51.42 0.415 19.20 5 100 0

ikorw23 jkorman 50.14 0.377 19.20 6 100 0

ipactqk2 jpactual 51.46 0.428 19.20 3 100 0

ipactmaxw2 jpactual 51.46 0.428 19.20 3 100 0

205

VIII. CONCLUSIONS

A . S U M M A R Y

The graph coloring problem (GCP) is a classic graph related problem. In

addition, it is NP-complete. There are many well-known algorithms for the GCP.

We distinguish a good graph coloring algorithm by two parameters, the number of

forward moves and the running time, which are obtained by running the algorithms

on a sequence of random graphs. From all the algorithms we have tried, we have

found two variations on Korman which seem to be beneficial especially for finding

exact colorings. We have not tested these algorithms on graphs of order more than

56. Thus, although one might suspect that similar conclusions will hold for larger

graphs, we do not know this. The evidence is entirely experimental. No asymptotic

results have been proved to show that the trend established on graphs of up to 56

vertices will continue. Although we have looked at some heuristic algorithms, our

results are mainly in exact colorings. From the observation of experimental results,

we draw the following conclusions.

(1) The Korman algorithm which has been the de facto standard for many years

is a simple and efficient algorithm. For small graphs, whose order is smaller than 40,

the Korman algorithm with backtracking finds the chromatic number reasonably

quickly.

(2) The Pactual algorithm substantially cuts the number of forward moves, but

the additional computational time is, however, also significant. For graphs of order

36, 40, 44, 48, 52, and 56 on edgeload = 0.3, Pactual saves 25% - 42% forward moves

over Korman. For graphs o f order 36, 40, 44, 48, 52, and 56 on edgeload = 0.5,

Pactual saves 36% - 59% forw ard m o v es over K orm an. For graphs o f order 32, 36,

40 44 48, 52, and 56 on ed ge load = 0.7, Pactual saves 29% - 63% forward moves over

206

K o rm an . F o r g rap h s o f o rder 36, 40, 44, 48, 52, and 56 on edgeload = 0.9, Pactual

saves 23% - 52% forw ard m oves over K orm an . H ow ever, P ac tu a l is slow er th an

K o rm a n excep t th a t n = 52 on edgeload = 0.7 (saving 35%), and n = 56 on cdgeload

= 0 .5 , 0.7, a n d 0.9 (sav ing 10% - 24%). O ne m ight conjecture th a t for large graphs,

th e c o m p ariso n w ould be sim ilar to g raphs o f order 56. How ever, th is is n o t certain .

(3) The effect o f adding th e 2-1 sw apping to the K orm an a lgorithm or any o f its

v a ria tio n is significantly beneficial, especially when edgeload = 0.5 and 0.7. For

g rap h s o f o rd er 48, 52, a n d 56 on cdgcload = 0.3, K orw 2 is 10% to 18% faste r th an

K o rm an . F o r g raphs o f o rder 40, 44, 48, 52, and 56 on edgeload = 0.5, Korw2 is 12%

to 20% faster th an K orm an. F o r graphs o f order 40, 44, 48, 52, an d 56 on edgeload

= 0 .7 , K orw 2 is 10% to 16% faster th an K orm an. It seems th a t Korw2 will n o t run

fa s te r th an K o rm an for graphs o f order less th an 52 on 90% edgeload. F o r g rap h s o f

o rd e r 36, 44, 48, 52, an d 56 on edgeload = 0.3, Pactm axw 2 is 14% to 33% faste r th an

P ac tu a l. F o r g raphs o f order 36, 40, 44, 48, 52, and 56 on edgeload = 0.5, Pactm axw 2

is 10% to 25% faster th an Pactual. F or g raphs o f order 36, 40, 44, 48, 52, an d 56 on

ed g e lo ad = 0.7, Pactm axw 2 is 12% to 25% faster th an Pactual. F or g raphs o f order

44, 48, 52, and 56 on edgeload = 0.9, Pactm axw 2 is 13% to 25% faste r th an P actual.

S w apping app ears to be beneficial in th e m ean except perhaps on som e g raphs

o f sm all order. Pactual only begins to be beneficial in term s o f ru n n in g tim e on g raphs

o f o rd er ap p rox im ate ly 56. H ow ever, P ac tua l and sw apping to g ether, P actm axw 2,

a p p e a r to be exceptionally beneficial for g raphs o f o rder 56. A lth o u g h we do n o t know

th is fo r certain , we suspect th a t for g raphs o f higher order, these varia tions on K orm an

will p ro v e to be a t least as beneficial as on g rap h s o f o rder 56.

(4) The lo o k -ahead p rocedure , w hich elim inates from fu rth e r co n sid e ra tio n a

b lock vertex (refer to ch ap te r 6) and rem oves b lock colors (refer to ch ap te r 6) from the

207

feasib le co lo r set, significantly im proved runn ing tim e and the nu m b er o f forw ard

m oves.

(5) U n d e r n o n -b ack track in g , the P actual a lgorithm w ith 2-1 sw apping colors a

g ra p h w ith few er colors th an the K orm an algorithm . Pactm axw 2 uses the nu m b er o f

h eu ris tic co lo rs w hich is ab o u t 0.13 - 0.38 colors closer to the chrom atic n u m b er th an

K o rm an except n = 28 on edgeload = 0.9, n = 32 on edgeload = 0.5 and 0.9, n =

36 o n edgeload = 0.3, an d n = 40 on edgeload = 0.9, a b o u t 0.02 - 0.09 co lo rs closer

th a n K o rm an . F o r g rap h s o f o rder 56 on edgeload = 0.5, 0.7, an d 0.9, Pactm axw 2 is

b e tte r th a n K o rm an by th e am o u n t o f the difference in runn ing tim e which is larger

th a n the a m o u n t o f the difference in running tim e betw een K orw 2 and K orm an.

P ac tm ax w 2 w ith o u t back track ing appears to be the best heuristic a lgo rithm am o n g the

v a ria tio n s o f th e vertex-co lor sequential a lgorithm which we have p rogram m ed.

(6) In co m paring b ran ch -an d -b o u n d as any exact a lgorithm w ith back track in g ,

b ran c h -a n d -b o u n d is m uch slower due to the necessity o f saving partia lly co lored

g rap h s , and is n o t recom m ended.

(7) A m o n g the heuristic a lgorithm , we have considered lim it, ep s ilo n , and

branch-and-bound. Limit is a probab ilistic algorithm which narro w s the average

n u m b e r o f b ran ch es from a node to a real num ber betw een 1 and 2. Epsilon n a rrow s

th e n u m b er o f b ran ch es o f a node by setting a th resho ld on the scores o f each b ranch .

B ra n c h -a n d -b o u n d uses a preference function and a preset buffer size to p rune the

search tree in a b read th first search. It appears th a t the Pactual a lg o rith m with 2-1

swapping is a lso beneficial for heuristic coloring of large graphs. W e h av e n o t

compared these heunstic algorithms sufficiently with other heuristic algorithms to yield

an y defin itive conclusion.

208

B. F U R T H E R R E S E A R C H T O P IC S

(l) C o m p a re th e 4 exact a lgorithm s, K orm an , K orw 2, P ac tua l, and Pactm axw 2,

o n g ra p h s o f o rd e r m o re th a n 56. T his will requ ire a considerab le am o u n t o f co m p u te r

tim e.

(2) T he n ew color, in the feasible co lo r set, is alw ays the last choice in our

d ev e lo p ed ncv -se lec tio n functions. H ow ever, th is kind o f a rran g em en t m ay need m ore

b a c k w a rd m o v es a n d fo rw ard m oves fo r som e graph. Is there a ncv-selection function

w h ich h an d les th e new co lo r b e tte r th an we did?

(3) T h e w eigh t fu n c tio n m entioned in ipkorm an in ch ap te r 6 is helpful in selecting

th e n u cv w h ich is ad jacen t to a ne ighbor having a particu larly high chrom e-degree.

W h ile observ in g the experim ental resu lts o f various bases, we only know it is helpful

in th e s itu a tio n , w eight ^ 0 or 1. W e w onder if there are certa in w eights th a t are

ex cep tio n a lly help fu l in im proving perform ance.

(4) In th e selection functions (nucv-selection plus ncv-selection function), we use

th re e p a ra m e te rs , the set o f ad jacen t vertices, the chrom e-degree, and the w hite-degree,

to decide th e n u cv and th e ncv. Is there an exceptionally good selection function w hose

co m p lex ity is c lose to th a t o f the K orm an algorithm using those th ree p a ram ete rs or

a n e x tra p a ram ete r?

(5) In th e b ran ch -an d -b o u n d schem e, is there a good preference function which

o b ta in s a co lo rin g close to the ch rom atic n u m b er using a small nu m b er o f buffers?

(6) C o m p a re the heuristic a lgo rithm s, lim it, epsilon, and branch-and-bound , w ith

o th e r k n o w n heu ris tic a lg o rith m s and a tte m p t to find o p tim al values on the p a ram ete rs

o f lim it, epsilon , an d branch-and-bound. T est w hether heuristic a lg o rith m s given here

w ith o p tim al p a ra m e te r a re p referab le to o th e r heuristic a lgo rithm s on large g rap h s.

209

REFERENCES

[,4 /7 7 4] A h o , A . V., J. E. H opcroft, and J . D. U llm an (1974). The D esign and
A n a lysis o f C om puter A lgorithm s, Addison-W eslcy Publishing Co. Inc.,
R eading, M assachusetts.

_ A H l la f \ A p p e l, K. and H aken, W. (1977). "Every p lan a r m ap is four-co lorab le part
I: discharging." Illinois J. o f M athem atics 21, 3, pp. 429-490.

[A H l l f] A p pel, K., H aken , W., and K och, J. (1977). "Every p lanar m ap is
fo u r-co lo rab le part II: reducibility." Illinois J. o f M a them atics 2 1 ,3 , pp.
491-567.

[z I / / 8 3]

[> 7 3]

[5 e 7 7]

[5 F 8 7]

[5 /5 7 3]

[Br41]

[5 r 7 2]

[5 r 7 7]

[5 r 7 9]

[C /? 7 l]

[C A 7 5]

[C G ’7 3]

[C o 7 1]

A h o , A. V., J. E. H opcroft and J. D. U llm an (1983). D ata S tru c tu res and
A lg o rith m s, A ddison-W esley Publishing, Co. Inc.

Berge, C. (1973). G raphs and H ypergraphs, N o rth -H o lland Publishing,
A m sterdam .

B ernhart, F. R. (1977). "A digest o f the four color theorem ." J. Graph
T h eo ry 1, pp . 207-225.

B ratley , P., Fox, B. L„ and Schrage, E. L. (1987). A G uide to S im ula tion ,
S e c o n d E dition , Springer-V erlag, New York.

B ron, C. and J. K erbosch (1973). "Finding all cliques o f an undirected
g raph ." C om m , o f A C M 16, pp. 575-577.

B rooks, R. L. (1941). "On colouring the nodes o f a netw ork." Proc.
C am bridge Phil. Soc. 37, pp. 194-197.

row n , J. R. (1972). "C hrom atic scheduling and the chrom atic num ber
prob lem ." M an a g em en t Science 19, pp. 456-463.

rualdi R A. (1977)- In troductory C om binatorics, Elsevier Science
publishing Co. Inc., New York.

relaz, D. (1979). "New m ethods to color the vertices o f a graph." C om m ,
o f A C M 22, pp. 251-256.

hristofides, N . (1971). "An algorithm for the chrom atic num ber o f a
g raph ." T he C om puter J . 14, pp. 38-39.

hristofides, N. (1975). Graph T heory, Academic Press, London.

omeil D. G. and Graham, B. (1973). "An algorithm for deterrmning the
chromatic number of a graph." S I A M J. C om put. 2, pp. 311-318.

nnk S A G971). "The com plexity o f theorem proving procedures. Proc.
3 rd A n n u a l A C M S ym p o siu m on T heory o f C om puting , pp. 151-158.

210

[Z > /59]

[£ ’C 7 1]

[£M 86]

[G J 7 6]

[G 7 7 9]

[G M 7 5]

[_Hal7~\

l H e 9 0]

[/ / S 7 8]

[t f u 8 2]

[7 o 7 4]

[A u 7 2]

[A Y 7 9]

[A785]

[£>581]

[A7>79]

D u tto n , R. D . and Brigham , R. C. (1981). "A new g raph co louring
a lg o rith m ." C om puter J. 24, pp . 85-86.

D ijk s tra , E. W . (1959). "A n o te on two problem s in connexion w ith
g rap h s." N u m erisch e M a th em a tik I, pp. 269-271.

E ilon , S. an d C hristofides, N. (1971). "The loading problem ." M a n a g em en t
S c ien ce 17, pp. 259-268.

F ish m an , G . S. and M oore, L. R. (1986). "An exhaustive analysis o f
m ultip licative congruential random num ber generato rs with m odulus
231-1." S I A M J. Sci. S ta t. C om put. 7, 1, pp. 24-45.

G arey , M . R. and Jo h n so n , D. S. (1976). "The com plexity o f n ear-op tim al
g rap h coloring." J . o f A C M 23, 1, pp. 43-49.

G a rey , M. R. and Jo hnson , D. S. (1979). C om puters and In tractab ility : A
G uide to the Theory o f N P -com ple teness, W. H. Freem an and C om pany ,
N ew Y ork.

G rim m ett, G . R. and M cD iarm id, C. J. H. (1975). "On colouring ran d o m
g raphs." M a th . Proc. C om b. Phil. Soc. 77, pp. 313-324.

H ak en , W. (1977). "An a ttem p t to understand the four co lo r problem ." J.
G raph T heory 1, pp. 193-206.

H eaw ood , P. J . (1890). "M ap-co lour theorem s." Q uarterly J. o f M a th .
O x fo r d Ser. 24, pp. 322-338.

H o ro w itz , E. and Sahni, S. (1978). F undam enta ls o f C om pu ter A lg o rith m s
C o m p u ter Science Press, Jnc.

H u , T. C. (1982). C om binatoria l A lg o rith m s A ddison-W esley Publish ing
C o ., Inc.

Jo h n so n , D. S. (1974) "W orst case behavior o f g raph co loring a lgorithm s."
P roc. 5 -th S - E C o n f C om binatorics. G raph T heory a n d C om pu ting , pp.
513-527.

K arp R M . (1972) "R educibility am ong co m b inato ria l p rob lem s." in
C o m p lex ity o f C om puter C om puta tions, eds. R. E. M iller and J. W.
T h a tch er, P lenum Press, N ew Y ork , pp. 85-103.

K em pe, A. B. (1879) "On the geographical p roblem s o f th e form colours."
A m e r . J. M a ths. 2, pp. 193-200.

K ubale , M. and Jackow ski, B. (1985). "A generalized im plicit en u m era tio n
a lg o rith m fo r g rap h coloring." C om m , o f A C M 28, pp. 412-418.

K o rm an S M . (1979). "The g raph-co lou ring problem ." in C o m b in a to ria l
Optimization, eds, N . C hristofides, A. M ingozzi, P. T o th , and C. Sandi,
W iley, N ew Y ork, pp. 211-235.

211

[£r56]

LLeSlI

[L e 7 9]

[/ J l '6 6]

[A / a S l]

[M c 7 9]

[A //7 0]

[A /A /7 2]

C.V/v55]

[> 8 3]

[P A / 8 8]

[? 5 8 2]

[/W 66]

[A>F73]

[S Z)8 3]

[S ^ 6 8]

K ruskal, J. B. Jr. (1956). "On the shortest spanning subtree o f a g raph and
th e trave ling salesm an problem ." Proc. A m er. M ath . Soc. 7, pp. 48-50.

L ehm er, D . H . (1951). "M athem atical m ethods in large-scale com puting
units." A n n u . C om put. Lab. H arvard Univ. 26, pp. 141-146.

L eigh ton , F. T. (1979). "A graph coloring algorithm for large scheduling
p rob lem s." J. Res. N a t. Bur. S tandards 84, 6 pp. 489-506.

Law ler, E. L. and W ood, D. E. (1966). "B ranch-and-bound m ethods: a
survey." O pera tions Research. 14, pp. 699-719.

M anvel, B. (1981). "Coloring large graphs." C ongressus N um erantium . 33,
pp . 197-204.

M cD iarm id , C. (1979). "C olouring random graphs badly." in Graph Theory
a n d C om bina torics, cd. R. J . W ilson, Pitm an Research N o tes in
M a th em atic s 34, P itm an, London, pp, 76-86,

M itten , L. (1970). "B ranch-and-bound m ethods: general form ulation and
p roperties ." O perations Research, 18, pp 24-34.

M atu la , D. W ., M arble, G ., and Isaacson, J. D. (1972). "G raph coloring
a lgorithm ." in G raph Theory and Com puting, ed. Read, R. C., A cadem ic
Press, N ew Y ork, pp. 109-122.

M vcielski, J. (1955). " S u r le coloriage des graphes." Colloq. M ath . 3, pp.
' 161-162.

Peem oller J (1983) "A correction to Brelaz's m odification o f Brown s
co loring algorithm ." C om m , o f A C M 26, pp. 595-597.

-a rk , S. K. an d M iller, K. W. (1988). " R a n d o m num ber generators: good
ones a re h ard to find." C om m , o f A C M 31, 10 pp. 1192-1201.

-a p a d im itn o u , C. H. and Stc,glitz, K. (1982). C om binatoria l O p iM za tio n ;
A lg o r ith m s a n d C om plexity . Prentice-H all, Inc., Englewood Cliffs, New

Jersey.

:>eck J. E. L. and W illiams, M. R. (1966). "E xam ination Scheduling."
A lg o rith m 286, C om m , o f A C M 9, 6, pp. 433-434.

Loschke S I. and F u rtad o , A. L - (1973). "An algorithm for ob tain ing the
ch ro m atic nu m b er and an optim al coloring o f a graph, in form ation
P rocessing L e tte rs 2, pp- 34-38.

Jvsio M M D eo N., and Kowalik, J. S. (1983). D iscrete O ptim iza tion
A l g o M m i w ith P ascal Program s. Prentice Hall, Inc., I.nglcw ood ChlTS,

N ew Jersey.

izekeres, G . and Wilf, H . S. (1968) "An inequality for the chrom attc
n u m b er o f g raph." J C om bina toria l 4 , pp. 1-3.

212

[WalA]

[Wi 69]

[IC0 6 8]

[WP61]

l Z y S 2 \

W an g , C. C. (1974). "A n algorithm for the chrom atic nu m b er o f a graph."
J. o f A C M 21, pp. 385-391.

W illiam s, M. R. (1969). "The colouring o f very large g raphs." Proceedings
of the Calgary International Conf. on Combinatorial structures and their
A p p lic a tio n held a t the U niversity o f C algary, C anada, pp. 477-478.

W o o d , D . C. (1968). "A technique for colouring a graph applicab le to large
scale tim etab lin g problem s." C om puter J. 12, pp. 317-319.

W elsh , D. J. A . and Powell, M. B. (1967). "An u p p er bound for the
c h ro m a tic n u m b er o f a graph and its application to tim etabling
p ro b lem s." Comput. J. 10, pp. 85-86.

Z y k o v , A. A . (1952). "On some properties o f linear com plexes." A m er.
M a th . S o c . T ran sla tio n 79, pp. 163-188.

213

V IT A

S h i-Je n L in w as b o rn o n O c to b e r 23, 1955 in H sinchu , Taiw an. H e received his

p r im a ry a n d se c o n d a ry e d u c a tio n in H sinchu .

H e rece iv ed his u n d e rg ra d u a te ed u catio n a t N a tional Taiw an N orm al U niversity

in T a ip e i, T a iw an . W h ile C o m p letin g his Bachelor's degree, he w orked as a

m a th e m a tic s te a c h e r fo r P e i-In J u n io r H igh School in H sinchu.

F ro m A u g u s t , 1982 to Ju ly , 1984 he w as a g raduate student in C om puter Science

a t th e U n iv e rs ity o f M isso u ri-R o lla in R olla, M issouri. He was aw arded the M aster

o f S c ien ce d eg ree in C o m p u te r Science in Ju ly , 1984.

S ince J a n u a ry , 1985 he has been a g raduate student a t the University o f

M is so u r i-R o lla , p u rsu in g th e P h .D . degree in C om p u ter Science.

H e h a s b e e n m arr ie d to T an Li since Jan u ary , 1987. They have one daugh ter,

I-S h en Lin.

	Graph coloring algorithms on random graphs
	Recommended Citation

	tmp.1632250091.pdf.H7T1W

