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ABSTRACT

The graph coloring problem, which is to color the vertices of a simple undirected
graph with the minimum number of colors such that no adjacent vertices are assigned
the same color, arises in a variety of scheduling problems. This dissertation focuses
attention on vertex sequential coloring. Two basic approaches, backtracking and
branch-and-bound, serve as a foundation for the developed algorithms. The various
algorithms have been programmed and applied to random graphs. This dissertation
will present several variatons of the Korman algorithm, Korw2, Pactual, and
Pactmaxw?2, which produce exact colorings quicker than the Korman algorithm in the
average for some classes of graphs. In addition to exact algorithms, we also look at

some heuristic algorithms, limit, epsilon, and branch-and-bound.
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. INTRODUCTION

The graph coloring problem (GCP), which is to color the vertices of a simple
undirected graph with the minimum number of colors such that no adjacent vertices
are assigned the same color, arises in a variety of problems of optimal partitioning of
mutually exclusive events or objects. For instance, the timetable scheduling problem
is to find the schedule of persons such that no two persons are using the same hardware
tool in the same period of time, and all jobs are executed with the minimum process
time. Christofides employed graph coloring to solve the resource allocation problem
CC/t75], and Elion and Christofides used it to solve the loading problem
CE£C71]. The partitioning of mutually exclusive objects is usually embodied through
a graph in such a way that each object is represented by a node, and every pair of
exclusive objects is connected by an edge. Thus, optimal solutions to such problems

can be found by applying a graph coloring algorithm to the corresponding graph.

Even though the GCP has received considerable attention because of its various
applications, there is no known algorithm which will optimally color every graph in a
polynomial time function in the number of vertices of the given graph. Moreover, the
GCP has been shown to be NIP-complete [ AHIA] QG/79] ;that is, it seems unlikely
that any such algorithm can be found. Therefore, it is necessary to seek a heuristic
algorithm with a polynomial time bound. For some NIP-complete problems such as
the bin packing problem, there is a nlogn heuristic algorithm obtaining the solution
within a small multiple of the optimal solution (actually solution < 1.7 * (optimal
solution) + 2) [/fS78]. Unfortunately, many known heuristic algorithms have
extremely bad worst case behavior [70743: the ratio A(G)/x(G), where A(G) denotes
the number of colors used by algorithm A to color a graph G and x(G) denotes the
minimal number of colors with which G can be colored, can be shown to grow linearly

with the number of vertices in G. Furthermore, Garey and Johnson showed that even



finding an efficient algorithm which colors every graph G in r **(G) + d colors,

where r<2, remains a NIP-complete problem

Johnson showed that many popular heuristic algorithms will color a graph by
using the number of colors which is linear to the order of the graph, but how often does
the worst cases appear? Grimmett and McDiarmid showed that the vertex-color
sequential algorithm, VS, (refer to chapter 3) has the property, for almost all graphs
G,, VS(Gn/x(G,)<2+ £ asn -»o00 \ GM15~\. Therefore, we know that the
average behavior of some heuristic algorithms such as the vertex-color sequential
algorithm is much better than their worst behavior. McDiarmid [Mc79] showed that
all variations of the vertex-color sequential algorithm have the aforementioned
property. These variations act as follows: whenever a new color is introduced, a
checking and recoloring procedure is called in order to find a color, which has already
been used, for the current vertex. This procedure then recolors some of the previously
colored vertices. The goal is to find a fast and accurate algorithm that includes the

checking and recoloring technique.

The chrome-degree of vertex v is the number of colors used so far on vertices
adjacent to v. The Korman algorithm without backtracking (refer to chapter 6)
sequentially picks the vertex with the highest chrome-degree and colors it. Manvel
proposed that the Korman algorithm without backtracking is superior to the
vertex-color sequential algorithm and the vertex-color sequential algorithm with
pre-ordering by the largest-first principle [Afa8l]. In terms of running speed,
Korman presented experimental results showing that the Korman algorithm is also
superior to the vertex-color sequential algorithm and the LF vertex-color sequential
algorithm in the backtracking scheme [Ko79]. This dissertation will present several
variations of the vertex-color sequential algorithm which perform better than the

Korman algorithm in the mean for some graphs. These algorithms, Korw, Pactual, and



Pactmaxw?2, will be described in chapter 6. In addition to exact algorithms, we will
look at some variations of the Korman algorithm, limit, epsilon, and branch-and-bound,

which produce heuristic colorings.

Chapter 2 introduces basic graph-theoretic terms and graph coloring related

terms. It also presents some well-known properties on graph colorability.

Chapter 3 reviews four different exact approaches: 0-1 integer programming,
dichotomous search, dynamic programming, and implicit enumeration, three different
heuristic algorithms: a vertex-color sequential algorithm, a color-vertex sequential
algorithm, and a vertex-vertex pair scanning; and finally three basic applications: a

loading problem, timetable scheduling and resource allocation.

In chapter 4, two distinct programming schemes, backtracking and
branch-and-bound, serve as a foundation for the developed algorithms. The profiles

for both programming schemes are presented.

Chapter 5 describes some implementation notes on data structures, memory

swapping, and a random number generator.

Chapter 6 proposes a number of next-uncolored-vertex selection (nucv-selection)
functions and next-color-vertex selection (ncv-selection) functions, which are the heart
of the developed algorithms. The experimental results of the backtracking scheme with
various combinations of nucv-selection and ncv-selection functions are also included.
Finally two heuristic algorithms which are based on the backtracking scheme are

presented.

Chapter 7 introduces the procedure of constructing a preference function of the
branch-and-bound scheme. The computational results of various algorithms are

included.



Chapter 8 deals with conclusions and further research directions.



Il. PRELIMINARIES

A. GRAPH THEORETIC TERMS

A graph G = (V, E) is a finite set of vertices V, together with a set of undirected
or directed edges E. An undirected graph is a graph with undirected edges, and a
directed graph is a graph with directed edges. The elements of E are unordered
(ordered) pairs of vertices. The number of vertices in a graph is called the order of the

graph, denoted by |V/|.

For the edge e = <x, y>, vertex x is called its initial endpoint, and vertex y is
called its terminal endpoint. Of course, there is no difference between initial endpoint
and terminal endpoint in an undirected graph. A loop is an edge whose initial endpoint

and terminal endpoint are the same.

An undirected graph (or multigraph) is called a simple graph ifit has (1) no loops;
(2) no more than one edge joining any two vertices.
Example 2.1. In Figure 1-1,V = {a, b, c}, E = {<Db,a>, <c,a> }
In Figure 1-2, V = {a, b, ¢}, E = {<a, a>, <a, b>, <a, c>, <a,c>}. <a,a> is
a loop, and there are two edges between a and c. In this case, E is a multiset. In

Figure 1-3,V = {a, b, c}, E = {<a b>, <a c>}

Hereafter we refer to an undirected graph as a graph. Two edges are called
adjacent if they have at least one endpoint in common. The degree of the vertex v is
the number of edges with v as endpoint. The degree of v is denoted by dafy). Note that

each loop is counted twice. A graph is k-regular if each vertex has the same degree k.

A graph K, = (V, E) is said to be complete if every pair of distinct vertices has
an associated edge and |V| = n. A graph is k-partite if its vertices can be partitioned

into k subsets such that no two vertices in the same subset are adjacent. For k = 2,
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(1) directed graph (2) undirected graph  (3) simple graph

of order 3 of order 3 of order 3

Figure 1L Example of graphs
such graphs are called bipartite. A nullgraph is a graph with no edges. An empty graph

is a graph which has no vertices and no edge.

A path is a sequence of vertices such that every pair of consecutive vertices is an
edge. A path is simple if all vertices on the path are distinct with exception that the
initial endpoint and the terminal endpoint may be the same. The length of a path is
the number of edges along the path. A cycle is a simple path that connects a vertex

to itself.

A connected graph is a graph that contains a path for every pair of distinct
vertices. A graph is cyclic if it contains at least one cycle. A connected acyclic graph
is sometimes called a tree. A cycle graph of order n, denoted by C,, is a connected

graph whose edges form a cycle of length n.



A subgraph of G = (V, E) is a graph G' = (V', E") such that (1) V' is a subset
of V; and (2) E' consists of edges <X, y> in E such that x as well asy are in V. G’
is an induced subgraph of G if G' contains all edges in E such that both endpoints of

the edge are in V.

G G

Figure 2. A graph and its subgraphs

Example 2.2. In Figure 2, both G' and G" are subgraphs of G. G' is an induced
subgraph of G. However, G is not an induced subgraph of G because it does not

contain the edge <b, c> .

B. GRAPH COLORING TERMS

An assignment of color to each vertex of a graph G such that no adjacent vertices

have been assigned the same color is called a coloring of G. We refer to this coloring



as a complete coloring, in contrast to a partial coloring, which is an assignment of colors

to part of the vertices of G.

f is a k-coloring function ofa graph G = (V, E) iffis an onto function from V to
the set {1,2,..., k} such that f(v) = j ifand only if vertex v is colored with colorj. G
is said to be k-colorable if G has a k-coloring function. The minimum k for which G

is k-colorable is called the chromatic number of G and is denoted by *(G).

An independent set of a graph G = (V, E) is a subset of V, no two vertices of
which are adjacent. An independent set is a maximal independent set, denoted by MIS,
if it is not a proper subset of an independent set. In graph coloring, each subset of
vertices of the same color is called a color class. From the definition of the independent
set, a color class is an independent set. The independence number of G, denoted a(G),

is the number of vertices of the largest MIS in G.

In contrast, a completely connected set of a graph G = (V, E) is a subset of V,
every two vertices of which are adjacent. A maximal completely connected set is called
a clique. It is seen that a complete graph is a clique of itself. We know that a MIS
ofa graph G is a clique of G, its complement graph, and vice versa. The clique number

of G, denoted w(G), is the number of vertices of the largest clique in G.

Example 2.3 In Figure 3G = (V,E),V = {ab, cd, e),
E = {<a, b>,<a, c>, <a d>, <a,e>, <c, e> }. We can define a 3-coloring
function f as follow:

f(a) = I, f(b) = 2, f(c) = 2,

f(d) = 2, fe) - 3
We say G is k-colorable for all k> 3.

The following sets are all completely connected sets of G:

{a}, (), (c), {d}, {e},



d

Figure 3. Example of a graph
{a, b}, {a c} {a d}, {a e}, {c eX

{a ¢, e}
(a, b}, {a d}, and {a c, €} are clique. co(G) = 3.

P is the class of problems solvable by deterministic Turing machines which
operate in polynomial time. WP is the class of problems solvable by non-deterministic
Turing machines which operate in polynomial time. A problem A is reducible to a
problem B if there is a polynomial-time bounded function f from A to B such that for
every instance X, f(x) e B if and only if xe A. A problem L is NP-complete if (1)
L e MP ;and (2) every problem in NP is reducible to L. A problem L is HP-hard if
every problem in WP is reducible to L. As we see all NP-complete problems are
fAP-hard but all NP-hard problems are not fAIP-complete. Garey and Johnson

offered a complete picture of NP-completeness in their publication [G/79X



Some examples of classes of problems that are in Wor NP are as follow:
Minimum Spanning Tree e P [A>56]
Given a connected graph G = (V, E), a cost function C on E, and an integer m.
Is there a spanning tree of G with cost m or less?
Shortest Path e P [Z2)/59]
Given a graph G = (V, E), a weight function on E, source and destination in V,
and an integer w. Is there a path between source and destination of G with
weight w or less?
Clique e NP-complete [/4/T74] [PS82]
Does an undirected graph have a clique of order k?
Satisfiability e NP-complete [C<?71] [AHId] [PS82]
Is a boolean expression satisfiable?
Colorability e NP-complete \ AHId]
Is an undirected graph k-colorable for k > 3?
Context-sensitive Recognition e hJP-hard [ Kal2|
Given a context-sensitive grammar C and a string s. Is s in the language
generated by C? Note that this problem is not known to be NP-complete because its

membership in NP is presently in doubt.

An exact algorithm can always produce an optimal solution. A heuristic algorithm
will sometimes find an optimal solution. In general, a heuristic algorithm is trying to

find a good solution within an acceptable amount of time.

C. ASYMPTOTIC NOTATION

Here we introduce two mathematical notations which will be used for the analysis

of the complexity.



Definition f(«) = 0(g(n)) if and only if there exist two positive integers ¢ and «0

such that 1fly?)| < c *|g(n)|, for all n> M

O-notation can be used to express the upper bound of the performance of an
algorithm. It ignores the constant term of the leading term (as g(n) in the definition).
However, sometimes we need a more precise description, which also takes into account
the constant term, of the algorithm's performance. A stronger mathematical notation

is given below.

fTrt
Definition f(«) = o(g(«)) if and only if lim----- ) -= 1

9(«)
Example 2.4 Let f(n) =n24n f(«)=CY) by picking c—2, and n0= 1,
but f(«) = o(n). Consider g()) = 2n2 gn)=0(n2 by picking c=2,
0= 1 However ¢g(«) ¥=o0(n3d since lim ~~y- —2. But g(n) = 0(n2.

D. RANDOM GRAPH

A random graph , GrRn), has n vertices. Its edges are independently chosen from

%n \1 possible edges by the probability function P(n), where 0< P(n) < 1L We include

the edge with probability P(n). It is seen that GMis a complete graph, and G,,0is a

null graph. Suppose that P(n) = Xis a constant. Xis called the edgeload of G,, The

number of edges of G,,,xis binomially Z:Ji;}t\ributed with parameters Xand !\VI), and thus
Vv

has mean 2L land variance 2(1 - 21 |

For programming, each potential edge is obtained by getting a uniformly
distributed pseudo random number between 0 and 1 from the pseudo random number
generator; if the obtained pseudo random number is less than the desirable edgeload,
the edge is included. The experimental results presented later are obtained by giving
the edgeload 2 and the total number of edges 2 J chosen randomly from the ~ »

possible edges.



E. BASIC PROPERTIES

For the clique G' of order m, since all vertices are adjacent, the chromatic number
of G' is m. It is seen that the clique number of a graph G is an lower bound of
y(G). However, this lower bound can be very poor. Consider the following
construction of Mycielski [My55] [SZ)83]. Initially, M, = M2= K2 and for k> 2,
constructing from Mk Suppose |Mk\ —m, VA(..., vmare the vertices of Mk Let
|[Mid| = 2m + 1 and have vertices v,, .. ,vm v', ..., vVm w1, The edge set of MKk,
consists of (1) all edges of Mk (2) all edges between /, and the neighbors of v,
i=1,..,mand (3) <wku V' >,/= 1,.. m Figure 4 shows the construction of A/3
from Xf2 and M4 from My In the sequence Mu M2 .., y(M.) = i but
oj(M) — 2. Therefore, the lower bound a{M) for y(M() can be very bad as i becomes

very large.
We now present some well-known theorems on graph colorability.

Theorem 2.1 If G is a graph of order n, then

XG < n+ 1 - a0G).

(See [5c73)).

Theorem 2.2 If G is a simple graph with n vertices and m edges, then

n2

X >

(See [5e73)).

Theorem 2.3 G = (V, E) is a simple graph, then

X(G) N 1 + max [daVv)}, for ve V.



Figure 4. Mycielski's graphs
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(See 041], 073]).

There are only two kinds of graphs for which Theorem 2.3 holds with equality
above: odd cycle graphs and complete graphs. This result is known as Brook's

Theorem

Theorem 2.4 Any planar graph is 4-colorable.
(See [AH1la], [AHIIf], [7/«77], 077]).

A map coloring is to find an assignment of a color to each region so that all
contiguous regions have different colors. For a map M in the plane we can construct
a dual graph G whose vertices are in one-to-one correspondence with the regions of
M and whose edges are in one-to-one correspondence with the border lines between
regions. Thus, the map coloring is equivalent to the planar graph coloring. The
conjecture, any planar graph is 4-colorable, had been a well-known unsolved problem
in mathematics for over a century. Kempe CATe79] is the first person known to have
attacked the 4-coloring conjecture. Although Kempe's work contained a flaw which
Heawood C//t?90U pointed out, it contained a valuable contribution which became the
basis of many later attempts to prove the conjecture. In 1972, Appel, Haken, and
Koch took three and a half years to develop the method based on Kempe's works to
solve the 4-coloring conjecture and another 6 months to verify the 4-color reducibihty

of nearly 1900 cases. The verification part was done by computer.

Theorem 2.5 The coloring problem is NP-complete.

(See [/17/74]).

Theorem 2.6 Consider the graph coloring of a graph G. If for some constant r
< 2 and constant d there exists a polynomial time bounded algorithm A such that
A(G) < r*x(G) + d, where A(G) denotes the number of colors when A is applied

to G, then there is a polynomial time bounded exact algorithm B.



(See [GJT6])).

Theorem 2.6 states that even finding an efficient near-optimal graph coloring

algorithm is as hard as discovering an efficient exact algorithm.
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Il. LITERATURE REVIEW

The graph coloring problem has received considerable attention for many years.
This chapter reviews exact as well as heuristic algorithms known earlier, and describes

a number of applications of the graph coloring problem.

A. EXACT ALGORITHMS

In this section we describe four classic approachs which are exact in the sense that

they guarantee the correct value of the chromatic number for any arbitrary graph.

1 0-1 Integer Programming Approach.

The GCP can be formulated as a number of 0-1 integer programming problems
[C/i75] based on different kinds of variables. Unfortunately, not every formulated 0-1
integer programming problem can be solved efficiently because of the huge size of both
variable set and constraints. Let us consider the following two models. Let the graph
G = (V, E) be of order n, be the adjacency matrix of G with all diagonal
elements set to zero, and [cV],.x, be a coloring matrix of G such that

cu if vertex v, is assigned colorj ;

1
0 otherwise,

where ¢ is an upper bound of *(G). The GCP can be rewritten as

dn
Minimize z=X £w,Cy (3.1
v H
subject to
£c</=1 foral/=1,.,n (3.2)
= n
* + < 33
n*Gg+ n (3.3)

forall /= 1,...,n andj —1,..., q.
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In the object function (3.1), w) is a weight of the color j; the weight satisfies
wyM> n * w;. Constraint (3.2) ensures that any vertex can be colored with one and only
one color. Condition (3.3) simulates the requirement, every pair of adjacent vertices
cannot have the same color. If vertex v, is colored with colorj, then the first term is
n. Thus the second term must be zero; if ak= 1 then cj= 0. In other words, any
adjacent vertex v, is not colored with color j, the second term of (3.3) can go up to
deg(Vj), which is less than n. So the condition (3.3) is satisfied. Note that if x and y
are both adjacent to V. and also adjacent to each other, condition (3.3) of v, can not
avoid coloring x and y with the same color. However, conditon (3.3) of x (or y) can

prevent x and y from being assigned the same color.

Alternatively, let M,, M2 ..., M, be all the MIS's of G and define the inclusion
matrix [wQqm) such that

mo if vertex v, eMy ;

=1
=0 otherwise.
We also define the cost variable c; associated with My such that

g

1 if Myincludes acolor class of the optimal coloring;
0 otherwise.

We have the following 0-1 integer programming problem which is equivalent to the
GCP:
Minimize z= )i(iC>
subject to
\i/lm)(y> 1 forall/=1,.., n
Note that the ineun;Iities mean the over-coloring possibility. If the over-coloring

occurs, we arbitrarily pick one from the feasible color set.

The former programming model has nq variables in the coloring matrix and n+ nq
constraints; the latter has np+ p variables (including matrix plus cost variables) and n

constraints. Both models require pre-processing work. The upper bound of the first



model can be computed by a heuristic coloring algorithm or simply set to |V|, and the
MIS enumeration of the second one can be solved approximately by an efficient
algorithm proposed by Bron and Kerbosch [5A73]. In terms of the complexity, the

latter model is much better than the former.

Example 3.1 Consider Figure 3 again. Let M, = {a}, M2= {b, c, d}, and
M3= {b, d, €} be all MIS's of G.
The inclusion matrix is as follow:

My M1 m2 m3

a 1

b 1 1
c 1

d 1 1
e 1

The Os in the inclusion matrix are represented by blanks. The GCP is to find the
minimum number of columns which cover all rows. The optimal solution is

g= 1c2= 1 and c3= 1 where b and d are over-colored.

2. Dichotomous Search Approach.

This method was proposed by Zykov in 1952 [Zy52]. The basic idea of this
approach is to reduce a graph to a complete graph by continuously applying the
following basic step to any pair of non-adjacent vertices of the corresponding reduced
graph. For these two vertices, there are only two choices; one is to color them with the
same color; another is to color them with distinct colors. In the Zykov-tree, if we
represent the pre-work graph as the father node, the two choices mentioned earlier are
two branches, and the corresponding reduced graphs are sons of the father node. The
method terminates whenever all leaves of the Zykov-tree become complete. Therefore

the chromatic number of the graph is the minimum of chromatic numbers of leaves.



Before describing Zykov's algorithm, we introduce two terms from Zykov.

Definition Let G = (V, E) be a graph with non-adjacent vertices x and y. G/xy
= (V', E) is ajoin of G by adding the edge <x,y>. Thatis, V' = V;, E' =

EU{<xy>}

Definition Let G = (V, E) be a graph with non-adjacent vertices x and y. G:xy
= (V', E") is a contraction of G by identifying x and y. That is,
Vi= v —{y}
E= {<uv>|u=Fy v#y and <uv> e E} U

{<ux>|<uy> e E}.

Theorem 31 If x and y are non-adjacent vertices in G, then
X(G) = min{*(G/xy), *(G:xy)}.

Proof. For a proof of this theorem, see [2?r77].

Theorem 3.1 can be applied to a graph recursively such that
y(G) =min {IG,|, |G2|, .., |G},

where each G, is an irreducible (complete) graph; that is, G, is a leaf of the Zykov-tree.

We now present Zykov's algorithm in Figure 5. We can easily improve Zykov's
algorithm by the branch-and-bound method. If there exists an irreducible subgraph
K in the Zykov-tree, any reducible subgraph H in the Zykov-tree containing a clique
of order y(K) need not be reduced further. Unfortunately, this kind of
branch-and-bound approach is not effective because the clique finding problem is also
NP-complete [(7779]. A depth-first search with a branch-and-bound heuristic
algorithm was proposed by Corned and Graham in 1973 [CG 73], which, instead of
looking for an a-clique, found an a-cluster, a highly dense graph of order a, in

0(n3 time.
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Procedure Reduce(H: graph)
begin
if H is complete then return
else begin
choose any two nonadjacent vertices X, y in H;
construct H:xy and H/xy;
Reduce(H:xy);
Reducc(H/xy);
end
end; (* Reduce *)

Program Zykov tree of G
begin
Reduce(G);

end.

Figure 5. Zykov's Algorithm.

Example 3.2 Figure 6 shows the Zykov-tree of graph GQ where G, = GUbd,

G2 = Gi/bc, G3 = G,:bc, and G4 = GOQObd.

3. Dynamic Programming Approach.

As we mentioned earlier, a color class is an independent set. The dynamic
programming approach employs the following property of MIS: for every A-coloring
of a graph G there exists an /*-coloring of G, where p < k, and the family of color
classes of the /~-coloring contains at least one MIS. Christofides first published this
method in 1971 [C/i71J. So we would like to introduce the following theorem

CC/i71] in advance.

Theorem 3.2 Any graph G = (V, E) can be optimally colored by first coloring a

MIS M, of G, next coloring a MIS M2of Gv_M and so on until all vertices are colored.



Figure 6. Example of Zykov-tree

21
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Before going through Christofides's algorithm, we would like to define the

maximal r-chromatic subset Mr and a recurrence relation.

Definition A maximal r-chromatic subset of G = (V, E) is a maximal subset of V

which can be colored with r colors but not with fewer.

Two facts can be inferred from the defmition above: (1) any MIS of G is a

maximal 1-chromatic subset of G; and (2) G is a x(G)-chromatic subset of itself.

Let denote a family of maximal k-chromatic subsets of G, and Mi be the i-th
element of K*. Then XA is the union of T;, where

T, = {Mi US|Sis a MIS of GV M}, fori= 1,. |K*|.

input G = (v, E)
output K is the chromatic number of G
begin
k:= 1;
compute a family of MIS's of G; C5/T73]
if order of = 1 then STOP
else loop
T:=0;
for each M in  do
for each m1s mM' of GV Mdo
if M UM' = V then
begin K:= K+ 1; STOP end
else begin
T:= TU{MU M'};
maximize T such that every element in T is maximal,

Figure 7. Christofides's Algorithm.



Example 3.3 Illustrate Christofides's algorithm by Figure 3.

K, = {{a}, {b.c d} {b d e}}

T, = {{a} U{b, ¢, d}, {a} U{b, d, e}}.

T2= {{b, c, d} U{a}, {b,c, d} U{e}}.
Since {b, c, d} U{a} is a subset of {a} U{b, c, d}, we get rid of {b, ¢, d} U {a}.

T3= {{b, d, e} U{a}, {b d, & U{c}}
Remove {b, d, e} U{a} because it has already appeared in TV The same situation
happens on {b, d, e} U{c} since it is in T2

K2= {{a} U{b, ¢, d}, {a} U{b, d, e} {b, c, d} U{e}}.

T, = {{a} U{b, ¢, d} U{eld.

k = 3, STOP.

Christofides's algorithm is a breadth-first search implementation of theorem 3.2;
it wastes computation time and space because it traverses one step on all possible paths
before going one more step further. One improvement of Christofides's algorithm is
that the computation of MIS of a subgraph of G can be done by the fact that each
MIS of a subgraph of G must be a subset of a MIS of G Thus, the
MIS-finding C5A73] can be done only once. In 1974, Wang proposed a
depth-first search implementation on the search tree which is much smaller than the

search tree implied in Christofides's algorithm.

4. Implicit Enumeration Approach.

The implicit enumeration approach is another tree search method for solving the
GCP; it is sometimes named the backtracking sequential method. There are two basic
steps to this approach:

(1) Pre-ordering of vertices of G;
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(2) Forward movement, the coloring procedure, which traverses the search tree
vertex by vertex according to the pre-ordering sequence of vertices by assigning
the smallest color of the feasible color set of the current uncolored vertex, and

updates, if necessary, the upper bound q of the chromatic number.

The recursive procedure coloring constructs the frame of the search tree vertex
by vertex until it reaches the following conditions: either every color of the feasible
color set of the current vertex has been used, or no uncolored vertex is left. In the
former case we backtrack to the previous vertex; in the latter case a better upper bound
of the chromatic number of G is found. If we get a better upper bound q of *(G), we
update g and backtrack to the previous vertex. This approach terminates whenever

we backtrack to the beginning vertex of the pre-ordering sequence of vertices of G.

One more question we have not mentioned is how to determine the feasible color
set such that there is no redundant coloring. Let us take a look at the following

theorem first.

Definition If a coloring of G can be derived from another coloring of G by
permuting colors without changing the associated color classes. We say this coloring

is redundant.

Example 34 Let G = (V, E), V = {v,,\2Vv3 V4 v5}. Define a coloring f of G as

follow:

fK>=10, f(v)=0,

fiXHI, f(v)= 1

flv,) = 2
If g is another coloring function of G such that

g(v,)=I, g(v3=1,

9(v3=0, g(v4=0,



Input a graph G of order n;
Output

q : integer; (* number of colors required *)

Procedure coloring (k: I..n+ 1);
var
J: integer;
begin
if K = n+ lthen update q
else begin
compute the feasible set o f v*;
if K = n then begin
i 0

repeat

IH +1;
until j in feasible(v*) ;
color v* with j;
coloring(k+ 1);
end else begin
i«-1;
repeat
if j In feasible(vA then begin
color v* with color j;
coloring(k+ 1);

end;
j«-j +
untjll ] . q;
end
end

end; (* coloring *)
begin (* main *)
let v,, V2 ..., v, be a sequence of vertices of G according to a
rearrangement of vertices;
g «- upper bound of *(G);

coloring(l);
end. (* main *)

Figure 8. Implicit Enumeration Approach.
g(v9 = 2
Then g is redundant because g can be derived from f by interchanging color 0 and 1
However, if we assigned v2with color 2 in the coloring g, g would be not redundant
because the family of color classes of g, {{v3 v4}, {v,}, {v2 Vv5}}, is different from that
off, {{v.vd, {3v4, {5}

25
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Theorem 3.3 Let v,,..., v, , be a/*-coloring. If no redundant coloring is to be
generated, then the assigned color of v, can not be greater thanp + 1

Proof. This theorem is proved by induction,
I = 1 there is only one color for v,
Assume that there is no redundant coloring for v,,..., v._j. For ap-coloring C of
V, .., V., if the extended coloring C' of v,,..., v,_,, v(is also p-coloring, C' is not
redundant since C is not redundant. Ifv, must be assigned a new color, we know that
v, should be colored by color p + 1 Otherwise C'(v,) > p + 1is redundant because of
the interchangeability between C'(v,) and p+ 1 Therefore, v, can not be colored with

color greater thanp+ 1 Q.E.D.

Suppose v,, V2 ..., v,, have already been colored with p colors. Then every
feasible colorj of v, must satisfy the following conditions:

@ j<p+ I

(2)j has not been assigned to any colored adjacent vertex ofv, ;

(3) j<q —1, where gis an upper bound of *(G).

Brown [_Brl2] is the first person who used the implicit enumeration algorithm to
solve the GCP. It is obvious that if we construct a cliqgue C of G, then each vertex of
C can Dbe colored by only one possible color. Therefore, we can terminate Brown's
algorithm when backtracking to the clique because the upper part of the search tree is
linear. Brown's algorithm can be improved from the forwjnove procedure, the
backjnove procedure, or both. The forw_move and the back _move are shown in
Figure 9. The forwjnove procedure can be improved by using either the dynamic
reordering of the uncolored vertices or a look-ahead procedure [5r72]. On
the other hand, Christofides CCA75] advanced the backjnove procedure and
unintentionally ended up with a heuristic algorithm. In 1979, Brelaz \ Brl9~\ made two

errors in his Randall-Brown's modified algorithm and also arrived at a heuristic
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algorithm. The correct version of the Brelaz's algorithm was given by Peemoller

\ Pe83].

A very complete reference to the implicit enumeration approach of the GCP was

given by Kubale and Jackowski [AU85].

Example 3.4 An illustration of Brown s algorithm is given in Figure 3. For the
preordering, the largest-first preordering will arrange the vertices in non-increasing
degree.

With largest-first preordering:

a, C, e, b, dis the coloring sequence of vertices.

The first pass:

C@) = 1, C(c)

2,C(e) = 3,C(b) = 2, C(d) = 2

upper bound g = 3
Backtrack to vertex c. Since F[c] = < the algorithm immediately backtracks
again to vertex a, and STOP.
With arbitrary ordering: a, b, ¢, d, e.
the first pass:
C@) = 1, C(b) = 2,C(c) = 2,C(d) = 2,C(e) = 3.
upper bound q = 3.
Backtrack to d. F~d] = 4>after we remove the feasible color 3 (Since q = 3 now);

we move back to c. Again F[c] = 0 after we update the feasible color set, and

FCb] = $originally. We reach the top vertex a, and then STOP.

B. HEURISTIC ALGORITHMS

Before taking the coloring action, most graph coloring algorithms in existence
determine both the vertex (or vertices) to be colored and the color to be utilized. That

is, the execution order of choosing the next uncolored vertex and the next color can



Input a graph G of order n;
Output
g : integer; (* number of colors required *)
the coloring function;
Global Variable
k: 1. n+ 1(*index of the current processing vertex *)
Local Variable
quit: boolean

Procedure forw_move
begin
compute the feasible set of v*;
if feasible(v*) = 4>then
return;
else begin
color v* with the smallest feasible color;
if K= n then begin
K«-n+ 1
return;
end else forw move;
end
end; (* forw move *)

Procedure back Mmove
begin
if K= n+ 1lthen begin
find the smallest index, r, such that vrwas colored with color g;
k<-r—1
end else K<-k —1;
return;
end; (* back_move *)

begin (* main *)
let i, V2 ..., v, be a sequence of vertices of G according to
non-increasing degree;
q *- upper bound of *(G);
k<- 1
quit <- false;
repeat
forwmove;
if K= n+ 1 then
update both q and the coloring function;
backmove;
if K= 1then quit <- true ;
until quit;
end. (* main *)

Figure 9. Brown's Algorithm.
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change an algorithm from one to another. Consequently, this section will cover three
methods of selection of alternatives: (1) vertex-color sequential algorithm, (2)

color-vertex sequential algorithm, and (3) vertex-vertex pair scanning.

1 Vertex-color Sequential Algorithm.

Let v,, V2 ..., v, be an ordering of vertices of a graph G. The vertex-color
sequential algorithm colors the first vertex v, with color 1, and then it makes use of the
basic procedure recursively as follow:

If v,, ..., Vi have been colored, then v, is assigned the smallest possible
color not occurring on adjacent vertices of v,. v, is colored with the new
color if all existing colors do not fit for v.
The algorithm terminates whenever there is no uncolored vertex. The efficiency of the
algorithm is mainly based on the ordering of vertices. It is evident that there is at least
one optimal ordering of vertices. However, we have not found any algorithm which

selects the optimal ordering from n\ possible orderings in polynomial time bound.

There are a number of algorithms in this category. We are going to review some
well-known algorithms here. One of the first versions of the vertex-color sequential
algorithms was proposed by Welsh and Powell [1F.P673, who arranged the vertices
according to non-increasing degree. Such an algorithm is called the largest-first
sequential algorithm (LFS). The total number of colors used by the LFS will not

exceed max{min{i, deg(v,)+ 1}}

In contrast to the LFS, another algorithm named smallest-last sequential
algorithm (SLS) was proposed by Matula, Marble, and Isaacson [MM72]. The
smallest-last ordering is found according to:

1 v, is the vertex of the smallest degree of G;
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2. Vv, is the vertex having the smallest degree of the induced subgraph

G V-(v,+i,—v,>

Lemma The number of colors used in the smallest-last sequential algorithm are
bounded by 1+ max{ min{ degw(v,)}}, where H, is a subgraph of G induced by
{vivat.., V,}

Proof. From the procedure of sequential algorithm, there is at least one feasible
color between land 1+ degH(v,) for every vertex v,. That is, C(v,)™ 1+ degH(v,),
where C is a coloring function of G. By the definition of SLS, degH(v,) =

min {degH(v,)}. So C(v,)< 1+ min {degHi(v,)}, Therefore, y(G) < max {C(v,)J

- AN+ ®  {de8H(WI = 1+ max {nun {degH(v,)}}. Q.E.D.
Theorem 3.4 y(G) < 1+ mgx {nun {deg"v)}}.

Proof. It can be easily derived from the Lemma above because the family of

Hu ..., H,= G is only a subset of the power set of G. Q.E.D.

The upper bound of theorem 3.4 is called Szekeres- Wilf bound [SJF68]. It is
evident that degH(v) < degGQv). Thus, we have a better upper bound of the chromatic

number while using SLS.

Brelaz [/?r79] presented a dynamic way of ordering vertices, called Dsatur
algorithm (DLF). The DLF ordering is determined as follow:
1 \j is the largest degree of G.

2. v, is adjacent to the maximum number of distinct colors.

DLF successively colors the vertices in a DLF ordering with the smallest possible
color, we obviously color a clique of v, first. Thus we obtain a lower bound, the order
of a clique, of the chromatic number. The clique found by the DLF may not be

maximal. We may obtain a maximal clique by taking advantage of the interchange
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method proposed by Matula et al [AfA/72]. Note that the DLF is an exact algorithm

for bipartite graphs.

The interchange method is a way of attempting to repack the existing colors by
recoloring a subgraph of the partially colored graph whenever a new color is
introduced. Suppose v,,..., vf, have already been colored in k colors. An
(a,b)-colored subgraph of V= {v,,...,v_} is the induced subgraph of vertices, V'
= {veV| C(v)=aor C(v)= b}. An (ab)-component is a component of
(a,6)-colored subgraph. Suppose that v, has a feasible color m,m<,k, then C(v,) = m
and go to the next uncolored vertex. On the other hand, if the only feasible color for
v, is k+ 1, we consider every pair (a,b), 1<a<b<k. If there exist an (a,6)-colored
subgraph such that in every (a,6)-component the vertices which are adjacent to v, are
of at most one color, then we recolor every adjacent vertex of v, having the existing
color a with color b and yield a feasible color a for v( Otherwise, v, is colored with the

new color k+ 1

The combination of SLS and interchange method will color any planar graph in

five or fewer colors [AfA/72].

2. Color-vertex Sequential Algorithm.

The color-vertex sequential algorithm is as follow:
k=1
2. Initially we place the first uncolored vertex into the color set C*;
3. All uncolored vertices are examined in order; any vertex which is not
adjacent to any vertex of C*is added to C*;
4. If there is no uncolored vertex, then STOP ; otherwise, k = k + 1, and

goto step 2
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Peck and Williams [PW66~\ arranged the vertices by non-increasing order of
degree, and performed the color-vertex sequential coloring. A few years later, Williams
[ Wi69] modified the Peck-Williams algorithm by pre-ordering the vertices; he made

use of d" instead of d, where d is the degree. dmcomes from the following recursive

relation:
d? = dego(v.);
d* :>J§ ayd*-[) where [a,y] is the adjacency matrix.
William also mentioned that if IV| —n, then m = is generally sufficient.

The following algorithm is called Approximately Maximum Independent Set
(AMIS) [ Jo74~\ which is a heuristic algorithm for determining the MIS. Figure 10
shows the sketch of AMIS. In Figure 10, P is the prohibited set of vertices of each
MIS finding; H is the subgraph of G induced by all uncolored vertices. Every member
v of MIS is the vertex with the minimum degree in the current subgraph

H\Mp* Of course, P has to be updated after we select and color vertex v.

begin
H:= G;
k:= 0
while H is not null do begin
k:- k+1;
p:=0;
while P + V(H) do begin

find vertex v of minimum degree in HMVH»p ;
C(v) := k\
P:= PU(v) Uadj(v) ;
end ;
H := subgraph of H induced by uncolored vertices;
end ;
end ;

Figure 10. Approximately Maximum Independent Set
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All the other heuristic algorithms in this section are capable of producing a worst
case G having colors proportional to *(G) *n, wheren = |G|. However, AMIS

will color any graph G with n vertices in O(EQ/T)y(G) or fewer colors \_Jol4).

Leighton \_Lel9] presented the Recursive-Largest-First algorithm (RLF), which
makes use of the LFS strategy in the AMIS algorithm. Let U be the set of uncolored
vertices which are not adjacent to any colored vertex, and W be the set of uncolored
vertices which are adjacent to at least one color vertex. For each MIS, RLF chooses
the vertex having maximal degree in H as the first element of MIS, and then selects
another member v of MIS by the rule: (1) |adjHv)nW| is maximal; and (2)

|adjHv) fl U | is minimal if (1) is tied.

begin
H:= G;
k:= 0
while H is not null do begin
k.= k+ 1
find ve V(H) such that degHv) is maximal,
C(v) := k;

construct U and W,

while U <>do begin
find v e U such that |adjHv) n W| is maximal;
(tie is, if possible, broken by |adjHv) n U| is minimal)
C(v):= k;

update U and W,

end;

H := subgraph of H induced by W,

end

end;

Figure 11. Leighton's Algorithm
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The RLF algorithm can color sparse graphs with the chromatic number near to
iH i in0(]V|, time. Such graph, happen very often in practice, appiication such

as timetable scheduling.

3. Vertex-vertex pair scanning.

The vertex-vertex pair scanning will inspect all pairs of vertices. It is evident that
this class of algorithms has a time-consuming step while selecting a candidate on the

basis of analysis of all pairs of vertices.

Wood's algorithm ZWo6S™ arranges the order of pairs of nonadjacent vertices
by the number of connection vertices, which are adjacent to both nonadjacent vertices.
Figure 12 shows the frame of Wood's algorithm. Wood made use of the fact that an
vertex of degree less than the number of colors can always be colored with one of the

existing colors.

The heart of Wood's algorithm is quite sophisticated because there are many
comparisons before the next move of the selecting pair of nonadjacent vertices. A
method which simplified the next move of the selected pair of nonadjacent vertices by
the operation, contraction, in Zykov's algorithm and dynamically chooses the pair with

the largest number of connection vertices was proposed by Dutton and Brigham

[2)581].



construct the queue L of pairs of nonadjacent vertices by
non-increasing order of the number of vertices which are
adjacent to both vertices of the indicated pair;
p := 0; /* number of colors for the current partial coloring */
repeat
take pair (x,y) from the head of L;
delete (x,y) from L;
case I: both x and y are colored
go into next pair;
case 2: exactly one vertex of x, y is colored. Assume X is uncolored,
andy e C,, where C, is the i-th color class,
if (deg(x) ™ p) and (adj(x) fl C, = Hthen
C,= CU{*};
case 3. neither x nor vy is colored
if (deg(x) * p) or (deg(y) > p) then
if there exists the smallest index i<,p such that both x and y
can be colored with i then
C, := C, U{x,y} /* otherwise go into next pair */
else begin
p:=p+\;
C, = oy}
end;
until (L is empty) or (no uncolored vertices left);
if uncolored vertices left then
do the sequential coloring for all uncolored vertices;
end ;

Figure 12. Wood's Algorithm.

begin
while there is a pair of nonadjacent vertices do
begin
select the pair of nonadjacent vertices (x,y ) with the largest
number of connection vertices;
identify x andy;
end;
| existing vertices | is an upper bound of the chromatic number;
end;

Figure 13. Dutton-Brigham's Algorithm.
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C. APPLICATIONS

This section indicates a number of applications that are most often encountered.

1 Loading Problem.

We are given a set of objects. Assuming that part of the objects can't be packed
together because of some reason such as chemical contamination. The loading problem
[ECT7I] CC/i75) is to find the minimum number of boxes to accommodate the
objects. Let each object be a vertex of a graph, and two objects are joined by an edge
if they can't be placed in the same box. Supposing that the capacity requirement of
two objects is additive. That is, two objects of size Oxand 02can by packed with a box
of capacity 0, + 02 There are several cases which take account of both the size of the

objects and the capacity of boxes.

Case 1 Object of same size and boxes of infinite capacity.

This is the standard coloring problem where each box corresponds to a color.

Case 2. Objects of same size 0 and boxes of same finite capacity B.
. : g . .
This is saying that no more than — objects can be put together in the same box. That
D
is, we add one more constraint that no more — vertices can be assigned to the same

color to the fundamental constraint that no adjacent vertices can be colored with the

same color.

Case 3. Objects of different size and boxes of the same finite capacity.
Case 3 of the loading problem is similiar to the knapsack problem in which every two

objects can be put together. Algorithms of this kind are highly similar to those of case
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Case 4. Objects of different size and boxes of different capacity.
This is the most general case. All 4 cases are NP-complete and computationally

equivalent.

2. Timetable Scheduling.

Given a set of jobs which are to be accomplished by a set of people with some
hardware tools. Assume that the company has one of each kind of hardware tool, and
every job has the same process time. The timetable scheduling problem is to
find a schedule such that all jobs can be executed with the minimum process time.
Each job is denoted by a vertex of a graph; every two jobs are adjacent if they have to
be performed by either the same person or the same hardware tool. Every period of

the timetable is equivalent to a color of the graph coloring.

3. Resource Allocation.

We submit n jobs to a computer which owns m resources. Let us suppose that
each job can be executed in a fixed time slot with a subset of the m available resources.
Each job is represented by a vertex of a graph; the edge of two vertices is introduced
if the associated jobs require a common resource which can't be allocated at the same
time. The greatest resource utilization CC/i75] can be achieved by the optimal

coloring of the vertices of the graph.
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IV. VARIATIONS ON THE IMPLICIT ENUMERATION APPROACH

A. BACKGROUND

I. Terminology of Trees.

A tree is a connected acyclic graph. Vertices of a tree are called nodes, one of
which is named the root of that tree. The edges of a tree are called branches. A
spanning tree of a graph G is a tree of G having all vertices of G. After the root is
removed, the remainder of the tree is partitioned into a family of disjoint sets, where
each of these family is called a subtree of the root. Within each disjoint set, the node
y which is connected to the root x is called a son of x. Meanwhile, x is called the father
ofy. A node with no son is called a leaf. Sons of the same father are said to be
siblings. The number of sons of a node v is called the degree of v. The degree of a tree
is the maximum degree of the nodes in the tree. The level of a node is recursively
defined as follows: the root is initially at level O; if a node is at level a, then its sons are
at level (a + 1). The depth ofa node v in a tree is the absolute difference between the
level of v and the level of the root. The height of a node v in a tree is recursively
defined as follow: the height of a leaf is initially O; the height ofv = 1+ max {height

ofv,| for every sonv, ofv }

Example 4-1 In Figure 14, node a is a root of TS, node b as well as node c are
sons ofnode a. Nodes d, g, h, i, and j are leaves of TS. Nodes g and h are the siblings
of node i because they have the same father node e.

Depth(a) = 0;

depth(b) = 1 depth(c) =1

depth(d) = 2; depth(e)

1
N

depth(f) = 2;

1
w

depth(g) = 3; depth(h) depth(i) = 3; depth(j) = 3.



Height(a) = 3;
height(b) = 2
height(e) = L
height(d) = 0;
height(j) = 0.

Degree(a) = 2;
degree(e) = 3;
degree(i) - O;

Degree of TS is 3.

Figure 14. Example of tree TS

height(c) = 2
height(0 = 1,

height(g) = O; height(h) = 0;

degree(b) = 2;  degree(c) = 1
degree(f) = 1L degree(g) = O;

degree(j) = O.

height(i) =

degree(d) =

degree(h) =

39



2. Tree Search Techniques.

For constructing a search tree, we have to visit all the nodes of the search tree
systematically. Depth-first search and breadth-first search

are two common ways to accomplish this work.

a. Depth-first Search (DFS).

For a connected graph G, we start at a vertex vO, mark it as having been visited,
and then visit an unmarked vertex v* which is adjacent to vQ Next we visit an
unmarked vertex v2 which is adjacent to v,. We continue to penetrate the graph G
until a vertex vm, which has no unmarked adjacent vertex, is met. At this time, we
backtrack from vmto its previous adjacent vertex vm,, and then apply the same

process to vm,. After backtracking to vOagain, we terminate the algorithm.

Procedure DFS(w)
begin
mark(w);
for each vertex v in adj(w) do
if v has not been marked then
DFS(v);
end;

In constructing a search tree, we start at the root of the search tree, and then
penetrate the tree via branches until a leaf is met. At that time we backtrack to the
father of that leaf and do the same penetration work. Finally, we terminate the tree

traversing when the root of the search tree is reached again.

Example 4-2 In Figure 14, we apply the DFS on TS by starting at the root a.
Assume that we visit sons of a father from left to right. Then we can visit the nodes

in the order a, b, d e, g, h, i, c, f, and j.
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b. Breadth-first Search (BFS).

For a connected graph G, we start at a vertex vO, mark it as having been visited,
and then visit all unmarked vertices which are adjacent to vO in an order such as
vQL V@ ..., v0©Q Next we visit all unmarked adjacent vertices of v@ such as
v(h, von, - , vaim, all unmarked adjacent vertices of v@®such as v@, v@ ..., v®,2 ..., and
all unmarked adjacent vertices of vinsuch as voi, v0n2 ..., viridin We continue this
process until there is no unmarked vertex. In other words, BFS recursively explores a
pending vertex (marked node not yet explored) v and all sons of v by initially starting

from a vertex vOof a graph.

Procedure BFS(w)
Var
Q: queue of pending vertices;
begin
mark(w);
empty Q;
add w to Q;
repeat
get the first pending vertex x from Q;
for each vertex v in adj(x) do
if v has not been marked then begin
mark(v);
add v to Q;
end;

until Q Is empty;

In constructing a search tree, we start at the root v0 of the search tree and then
visit all the sons of vOsuch as vQ, v*,..., vn Next we visit all the sons of vQ, all the
sons of v~,..., and all the sons of vim The procedure, BFS, is called level by level until

there is no pending node.
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Example 4-3 In Figure 14, BFS is applied on TS by starting from the root a.
Assume we visit the sons of a father from left to right. Then we traverse the nodes of

TS in the order a, b, ¢, d, e, f, g, h, i, and j.

So far, we describe DFS and BFS in a connected graph. How can we apply DFS
and BFS to a graph? Taking a closer look at the algorithms of DFS and BFS, we
discover that these algorithms terminate whenever a maximal connected subgraph of
a graph is found. Thus, the DFS (or BFS) of a graph is carried out by repeatedly

calling DFS (or BFS) from a new unmarked starting vertex.

B. BACKTRACKING

For many problems which we have encountered so far, there is a certain
deterministic approach, which takes a certain amount of computational work, for
obtaining a solution. For some combinatorial problems, however, there is no such
approach. In this case, we may start on one attempt at a solution. If discovering that
the solution cannot be achieved under the direction of the first attempt after an amount
of work, we have to make an adjustment on the first attempt and start over with a
second attempt. To solve this kind of problem, we must search through afinite set of
possible solutions. Since we do not know the positive principle of searching direction
which leads to a solution, this nondeterministic approach is usually very slow for a
large-scale problem. For example, the 4-queens problem, placing 4 queens on a 4x4
chessboard such that no queens can attack another queen (i.e. no queens on the same
row, column, or diagonal), there are 16 possible positions for 4 queens. The brute-force
approach will evaluate possible configurations one by one until a solution is
found. However, if we do a clever organization of the finite set of the possible
solutions, most of the configurations will not be visited in searching. One way to

achieve this job is to employ the backtracking technique.
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Backtracking[ HS78"_Hu&2] is a technique of organizing a search tree on a finite
set of possible solutions such that at one time a subset of possible solutions can be
eliminated from further consideration. To solve problems with backtracking, we have
to solve the following problems: (1) How to systematically search the finite set of
possible solutions? (2) How to set the bounding functions to eliminate a subset of
possible solutions from further consideration? For the searching part of backtracking,
one first represents the finite set of possible solution as a tree and then traverses the
generated tree by DFS. Usually the finite set of possible solutions is expressed as a
n-tuple vector (x, X2 ..., X,), where each x, is chosen from a possible component set.
For example, in the 4-queens problem, we represent each possible configuration as a
4-tuple vector (x,, X2 x3 xj, where component X, indicates the position of the chess
queen on the i-th row. The possible component set of x is {1,2, 3,4}. Before
introducing the enumeration of (x,, X2 ... ,X,,), we define the lexicographical ordering.
A vector (X,, X2 ... , X,) is lexicographically smaller than (yIfy2 ... ,y,,) ifand only if there
exists I, 1<i<n, such that x <y, and x,=y) for all 1<j<i The search of
backtracking is done by lexicographically enumerating the vectors starting from the

lexicographically smallest vector.

The bounding functions can be the explicit constraints (except the constraints
deciding the finite set of possible solutions), the implicit constraints, or both. Some
problems may not have the implicit constraints; for example, the 4-queens problem,
1< x < 4 form the set of possible solutions, and those conditions that two queens are
neither on the same column nor on the same diagonal are the explicit constraints.
There are no implicit constraints in the 4-queens problem. However, in optimization
problems such as minimum optimization, which is to find the global minimum among
all possible solutions, the current lower bound of the possible solutions is an implicit

constraint. The search tree built by a backtracking algorithm is called a backtrack-tree.



Leaves of the backtrack-tree are either solutions of the problem or dead nodes which

are found by the bounding functions.

Input: a n-tuple vector (x,, X2 ..., X,,) representation of a problem
output: all possible solutions of the problem

Global Variable
k: the current component of the n-tuple vector;

CIBF: the current implicit bounding functions;

Procedure backtrack(k)
begin
compute the feasible set F* of xAusing bounding functions;
for each x in F* do
if CIBF(X) = true then begin
X <-X;
if K = N then begin
save the path from the root to this leaf;
update, if necessary, CIBF;
end else backtrack(k+ 1);
end;
end;

begin (* main *)
initialize CIBF;
backtrack(l);

end.

Figure 15. General Backtracking Algorithm
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Example 4-4 The tree representation of the feasible set (called the tree of4-queens
in this example), is shown in Figure 16, and the backtrack-tree of the 4-queens problem
are shown in Figure 17. The nodes are labeled by the ordering of tree traversing in the
tree of4-queens. The branches are labeled by possible values of the x/s assigning from
the root to it; for example, the node 23 represents that x, = 2, x2= 1, x3= 4, and
x« = 3 There are 24 (4!) possible configurations, which are described as leaves in the
tree of 4-queens. In the backtrack-tree of 4-queens, the picture shows the steps that
the backtracking technique goes through as it tries to find a solution. The star beside
a node indicates that further consideration of the subtree rooted at that node can be
disregarded. The backtrack-tree, which has 16 nodes, has already cut 15 nodes from

the tree of 4-queens as the first solution is found.

C. BRANCH-AND-BOUND

The branch-and-bound method CT/*S78]JCLW/66][M/70] is another powerful
alternative to do the exhaustive enumeration on a search tree. In contrast to the
backtracking which is a DFS-like method, the branch-and-bound is a BFS-like strategy
which generates all sons of the current node before visiting another node. The search
tree of the branch-and-bound is called the BNB-tree Each node of the BNB-tree
represents a class of possible solutions to the problem. All nodes but the solution
nodes of the BNB-tree are called pending nodes, and the union of all pending nodes is
the set of all possible solutions. The algorithm begins by assigning the formal
representation of the original problem to the root of the BNB-tree. The job of
branching is to replace a pending node v by all sons ofv. That is, branching will divide
a subproblem into a class of subsubproblems. The algorithm stops when it is not
possible to do any further branching. The branch-and-bound requires a buffer for
temporarily buffering the pending nodes. Basically there are two strategies to

implement the buffer: One is FIFO (first in first out); another is LIFO (last in first out).



Input: root node of the BNB-tree
Output: solutions

Program branch-and-bound
Var
buffer: sequence of pending nodes of BNB-tree;
begin
empty buffer;
add root node of BNB-tree to buffer;
while buffer is not empty do begin
get node x from buffer;
for each son X' of X do begin
if X' IS a possible solution then begin
save X' ;
update the bounding functions;
end;
add x' to buffer;
end;
end;
end.

Figure 18. General Branch-and-bound Algorithm

Example 4-5 Figure 19 shows FIFO BNB-tree and LIFO BNB-tree, where the

labels of nodes represent the ordering of the tree traversing.

In the general branch-and-bound algorithm, the selection rule for the next
pending node is in a blind sense. This kind of selection rules does not choose a node,
which has a good chance to reach the solution quickly, according to the degree of
preference. One way to speed up the branch-and-bound technique is to find a nice
preferencefunction, and then the selection of the next node from the buffer is totally
based on the preference function. We will discuss an intelligent branch-and-bound

algorithm on the GCP in the later section.



Figure 19. Examples of BNB-tree
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Input:
root node of the BNB-tree;
preference function P;
Output: solution nodes

Program intelligent_branch_and_bound
Var
buffer: sequence of pending nodes of BNB-tree;
begin
empty buffer;
add root node of BNB-tree to buffer;
while buffer is not empty do begin
get node x with greatest degree of preference P(x) from buffer;
for each son X' of X do begin
if x* 1S a possible solution then begin
save X' ;
update the bounding functions;
end;
add x' to buffer;
end;
end;
end.

Figure 20. Intelligent Branch-and-bound Algorithm

D. PROGRAMMING FRAME OF BACKTRACKING ON THE GCP

The graph-coloring system we designed is based on Brown's algorithm which was
mentioned in chapter 3. Before describing the graph coloring system, we introduce
several terms. In a graph, the vertices which have been labeled by a suitable color are
called colored vertices In contrast to the colored vertices, we name the vertices which
are going to be colored uncolored vertices. Therefore, the vertices of a graph are
divided into two parts: colored vertices and uncolored vertices. A pool of the colored
vertices of a graph is called the core of a graph. A pool of the uncolored vertices is
called the periphery of a graph. For a vertex v of a graph, the number of neighbors

of v in the core is called the chrome-degree of v; and the number of neighbors in
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periphery is called the white-degree of v. Two key operations in the graph-coloring
system are newcolor and mergecolor. In the graph-coloring system, we always put core
ahead of periphery. The ordering of core is as follows: colorl, -color2,

..., color|corc|. The jobs of both newcolor and mergecolor are listed in Figure 21.

Procedure newcolor(i, j)
begin
exchange vertices i and j;
for each vertex v in (adj(i) Uadj(j)) do
update both white-degree(v) and chrome-degree(v);
end;

Procedure mergecolor(i, j)
begin
merge uncolored vertex i into colored vertex j;
move the last vertex w of the periphery to the position of vertex i
for each vertex v in (adj(i) Uadj(j) Uadj(w)) do
update both white-degree(v) and chrome-degree(v);
shrink the periphery by discarding the last vertex;

Figure 21. Procedures newcolor and mergecolor

The process of the graph coloring system can conveniently be presented as a
cyclic process.  Within an unit step, both next-uncolored-vertex (nucv) and
next-color-vertex (ncv) are chosen according to a nucv-selection function and a
ncv-selection function, and then either newcolor (nucv, ncv) or mergecolor (nucv, ncv) is
performed. The coloring process stops as soon as the periphery becomes empty. We
will discuss several nucv-selection functions as well as ncv-selection functions in a later
chapter. Note that nucv is executed first, and then a feasible color ncv for nucv is

chosen in the graph-coloring system.
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In the backtrack algorithm on the GCP shown below, the root of backtrack-tree
is the original graph G. The nodes ofbacktrack-tree represent the subgraphs of G after
performing either the newcolor operation or the mergecolor operation. Every branch
denotes a pair of (nucv, ncv) corresponding to the father node. The bounding function
q is initially set to the upper bound of *(G). We update q whenever a better coloring
path in backtrack-tree is found. Procedure nodejo_process indicates the proper node
of the coloring path in backtrack-tree. Along the coloring path in backtrack-tree,
nodejo_process advances one branch at a time and also backtracks branch by branch
except the first backtracking movement of a path of complete coloring. Variable
subgrCO .. n] represents the nodes on a possible path of complete coloring (from the

root to a leaf).

Input @ graph G of order n

Output
g: integer; (* *(G) *»

Global Variable
subgr[0 .. n]: nodes on the current path of coloration;
k: the index of the current processing node of the path of coloration;
nucv e subgr[0 .. n]: the uncolored vertex which is to be colored next;
ncv e subgrCO .. n]: best color for vertex nucv;
quit: boolean;

Program backtrack_on_GCP
begin
k <---2; /* initialization */
g «- upper bound of x(G);
quit«- false;
repeat
forward;
backward;
until quit;
end.

Figure 22. Backtracking scheme on the GCP



Procedure node_to_process(m)
begin
ifm = k + 1then begin
copy subgrCk] to subgr[k+ 1] ; (* move to subgr[k+ 1] *)
k«-k+ 1;
end else if m < k then begin
move back to subgr[m] ;
k<-m;
end else begin
writeln(*check m-value');
halt;
end;
end;

Figure 23. Procedure node_to_process in backtracking and branch-and-bound

Procedure forward
begin
if K = —2 then begin (* place a graph into the root *)
subgr[03 <- graph G;
k<-0;
end else begin
node_to_process(k+ 1);
if ncv is a new color then
newcolor(nucv, ncv)
else mergecolor(nucv, ncv);
if periphery is empty then begin
update q;
return;
end;
end;
choose nucv according to nucv-selection function;
choose ncv according to ncv-selection function;
if Nncv < q then forward;

Figure 24. Procedure forward in backtracking



Procedure backward
begin

If k = 0 then quit <- true

else if k - n then begin
find the smallest index r such that subgr[r].ncv = q ;
node_to_process(r - 1);

end else node_to_process(k - 1);

update ncv;

if there is no feasible color for nucv then
backward;

Figure 25. Procedure backward in backtracking

Basically the backtracking algorithm on the GCP is an exact algorithm. It is
usually difficult to color a graph of order over 50 using the backtracking algorithm.
We will present various nucv-selection functions as well as ncv-selection functions in

chapter 6.

E. PROGRAMMING FRAME OF BRANCH-AND-BOUND ON THE GCP

Basically our branch-and-bound implementation is a modification of the
intelligent branch-and bound method. Instead of visiting all possible nodes which are
in the same level of the search tree, we use DFS to find all pending nodes (those which
can be partially colored with m+ 1 colors) of all m-partially colored nodes. Starting
from the O-partially colored node of a given graph, we search all 1-partially colored
pending nodes by DFS. Then we find all 2-partially colored pending nodes from each
of 1-partially colored pending nodes in a sequence in accordance with the degree of
preference. We continue this process. The coloring process stops as soon as the leaf

of a complete coloring appears.
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In the branch-and-bound algorithm on the GCP shown below, we use the sorted
list outbuf, which treats the degree of preference as the priority, to buffer all pending
nodes which are partially colored with m colors and the priority queue inbufto buffer
all pending nodes which are partially colored with m+- 1 colors. Subgr [0 .. n] is the
working space for running DFS on the root subgr [0]. Variable kis the index of the
current node of the working space subgr[0 .. n], We initially place the given graph
G into the outbuf, and then recursively do the process cycle: For every node v with the
highest priority in outbuf, finding all pending nodes, which call the newcolor procedure
in the previous movement, of the subtree with the root v in DFS, and placing them into
the priority queue inbuf according to the degree of preference. After finishing each
process cycle, we copy all nodes of inbuf to outbuf in the non-increasing order of
priority of nodes. Procedure savestatus inserts the pending node into inbufwith respect
to the computed degree of preference. Procedure getnextstate is to get a new node with

the highest priority from outbuf.

There are four problems to be solved in the branch-and-bound algorithm on the
GCP: (1) How to find a good (heuristic) preference function? (2) How to handle a huge
set of pending nodes whose size grows in an exponential way corresponding to the
order of a given graph? (3) What kind of data structure is suitable for inbufand outbuf
in order to speed up the in-out actions of nodes of inbufand outbuf? (4) How to find
good (heuristic) nucv-selection as well as ncv-selection function? Since the GCP is
NIP-complete, we suspect there is no perfect (exact) preference function. However,
we will propose a preference function construction in chapter 7. In practice, we limit
the number of pending nodes stored in the buffers. That is, the branch-and-bound
algorithm on the GCP becomes a heuristic GCP algorithm. We choose the data
structure, heapsort, to implement inbuf and outbuf because heapsort is an 0(« log n)

comparison sort. The detail description of heapsort will be in chapter 5. The
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nucv-selection functions as well as the ncv-selection functions are the same functions

mentioned in the backtracking algorithm on the GCP.

Input a graph G of order n

Output
g. integer; (* *(G) *)

Global Variable
inbuf, outbuf: sequence of pending nodes which have the same core size;
subgr[0 .. n]: working space;
k: the index of the current processing node of the current working subtree;
nucv e subgr[[0 .. n]: the uncolored vertex which is to be colored next;
ncv e subgr[0 .. n]: best color for vertex nucv;
quit: boolean;

Program branch_and_bound_on_GCP
begin
k<-1
empty inbuf;
empty outbuf;
place graph G into outbuf;
quit <- false;
repeat
forward;
if not quit then backward;
until quit;
end.

Figure 26. Branch-and-bound scheme on the GCP

Procedure getnextstate
begin

if outbuf is empty then begin
outbuf <- inbuf; (* maintain the same ordering *)
empty inbuf;

end;

subgr[0] «- the first element of outbuf;

delete the first element of outbuf;

k<-0;

end;

Figure 27. Procedure getnextstate in branch-and-bound



Procedure Savestatus
begin
compute the degree of preference of subgr[k] ;
place subgr[k3 as well as its degree of preference into the suitable

position of inbufw.r.t. the degree of preference;
end;

Figure 28. Procedure savestatus in branch-and-bound

Procedure forward
begin
if K = —1then getnextstate
end else begin
node_to_process(k + 1);
if Ncv is a new color then begin
newcolor(nucv, ncv)
savestatus;
return
end else mergecolor(nucv, ncv);
if periphery is empty then begin
quit <- true;
return;
end;
end;
choose nucv according to nucv-selection function;

choose ncv according to ncv-selection function;
forward;

Figure 29. Procedure forward in branch-and-bound
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Procedure backward

begin
if K= 0 then k<—-1
else begin
node_to_process(k - 1),
update ncv;
if there is no feasible color for nucv then
backward;
end;

Figure 30. Procedure backward in branch-and-bound
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V. IMPLEMENTATION NOTES

In order to compare the time efficiency of various algorithms on the same
experimental ground, all algorithms were coded in Turbo Pascal 4.0 from Borland

International and run on an 16 MHz IBM PS2-80.

A. GRAPHS REPRESENTATIONS

There are two common ways to represent a graph. One is the adjacency matrix;
another is the adjacency list. An adjacency matrix for the graph G = (V, E) of order
nis an n x n matrix [a”]” such that

av = 1 if<v,\j>eE;
= 0 otherwise.
Because G is a simple undirected graph, ae= aj, and a,=0. In the adjacency list

representation of a graph, each vertex has an associated list of its adjacent vertices.

Example 5-1 Figure 31 shows the adjacency matrix and the adjacency list of a

graph G.

The adjacency matrix representation is convenient for the graph algorithms which
frequently check whether certain edges exist because the time for deciding the existence
of an edge is fixed and independent of |V| and |E|. The initialization of the
adjacency matrix requires 0 (|V |9 time even if a graph has edges with the property,
|[E| [V|2 In our experiment, we select the adjacency matrix representation because
of (1) the fixed time for deciding the existence of an edge (this operation occurs very
often), and (2) the space efficiency (the rows of an adjacency matrix are represented

by bit vectors which are implemented by the set type in Turbo Pascal).



adjacency matrix of G

2 1 0 1 0 1

3 1 1 0 0 1

4 1 0 0 0 0

5 0 1 1 0 0

adjacency list of G
> 2 > 3 4 X
> 1 o> 3 X
TN >it > B X

Bm
mdtp WM

o B w N e

header

Figure 31. Representations of a graph



In addition to the adjacency matrix, additional information

represent the current status of the coloring ofnodes in the search tree.

type for a node in the search tree is shown as follows:

vertex
vritxset
vrtxmat
vrtxarr

adj
chrome-degree
white-degree
feasible
feastop
rsmpt
nucv
ncv
fclr
clr
vrx

end;

0..|V|] —1;

set of vertex;

array [vertex] of vrtxset;
array [vertex] of bytes;
graphtype = record

j D vrtxmat;

D vrtxarr;

D vrtxarr;

rarray L —1 «1V |] of integer;
sinteger;

:integer;

s integer;

s integer;

s integer;

s integer;

s integer;
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is required to

The basic data

Initially we assume that there is a one-to-one mapping between the set V and the

integer sequence 0 ..| V| — 1. Eleven fields are assigned to the graphtype.

adj is an adjacency matrix in set form,

chrome-degree is the number of adjacent colored vertices.

white-degree

is the number of adjacent uncolored vertices,

feasible is a sorted list containing all feasible colors which have not been
assigned to ncv yet.

feastop is the index of the head of thesorted listfeasible,

rsmpt is the lowest index of a nodewhichperforms the procedure
newcolor to the current highest color,

nucv is an uncolored vertex of the highest degree of preference,

ncv is a feasible color, which has the highest degree of preference,
for nucv.

fclr is the first vertex of core,

clr is the last vertex of core.
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VItx is the last vertex of periphery.

It requires O( | V[ time to formalize a graph to the root of the search tree.

B. MEMORY SWAPPING

As we declared in the backtracking and branch-and-bound programming frame,
subgr[i], 0™ i< n, isin graphtype shown in the previous section. The memory space
for a graphtype grows in 0(|V ]2. Consequently, the declaration of subgr[0 .. n]
requires 0( | V|3 space reserved from the main memory. However, the working space
is limited. So the memory swapping is required for running the graphs of huge size.

In the obvious sense, the memory swapping will slow dowm the problem solving time.

In the memory swapping, we keep (1 + physlimit) nodes in the main memory.
The content of k always locates between 0 and physlimit in a circular list form; that is,
k = k mod (physlimit + 1). The inmemory[0 .. physlimit] are used to bookkeep
whether subgr[0 physlimit] are in the main memory.

1 if subgr[i] is in the main memory;

inmemory[i]

0 otherwise.

For the forward movement, if inmemory[ next-node] = false, where next-node =
((k+ 1) mod (phylimit-h 1)), then we process subgr[next-node] in the main memory.
Otherwise we push subgr[next-node] to stackfl, which hold the overflow nodes in
LIFO, and process subgr[next-node]. For the backward movement, if
inmemory|[prior-node] = true, where prior-node = ((k —1) mod (physlimit + 1)), ,
we process subgr[prior-node] in the main memory. Otherwise we pop
subgr[prior~node] from stackfl , set inmemory[prior-node] = true, and process
subgr[prior-node]. Figures 32-34 show how the memory swapping is placed into the

backtracking algorithm on the GCP.



Global Constant
physlimit

Global Variable
inmemory: array CO .. physlimit] of boolean;
subgr: array [0 .. physlimit] of graphtype;
stackfl: file of graphtype;
k: 0 .. physlimit;

Initialization (* main *)
rewrite(stackfl);
inmemory[0]«- true;
for i := 1to physlimit do

inmemory[i] <- fasle;

Figure 32. Memory swapping in the backtracking scheme
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Procedure node_to_process(m)
var
fp: integer; (* file pointer of stackfl *)
begin
ifm = K+ 1then begin
if kK = physlimit then m<-0 ;
if inmemory [m] then
write(stackfl, aCm])
else inmemoryCm] <- true ;
a[m] « aCk];
K «- m;
end else if m = k — 1 then begin
inmemoryCKk] «- false;
if K = 0 then k <- physlimit else K m ;
if not inmemoryCKk] then begin
fp «- filepos(stackfl);
fp<-fp- 1
seek(stackfl, fp);
read(stackfl, aCk]) ;
seek(stackfl, fp);
inmemoryCKk] <- true;
end;
end else begin
writeln(‘check m-value');
halt;

end;

Figure 33. Procedure node to process of memory swapping

C. HEAPSORT

In the frame of the branch-and-bound algorithm on the GCP mentioned in
chapter 4, we employ heapsort to implement the priority queue inbufand the sorted list
outbuf. First we build a heap in inbuf and then transform the nodes in the heap to the

sorted list outbuf



65

Procedure backward
var
fp: integer;
begin
fp «- filepos(stackfl);
if (k = 0) and (fp = 0) then quit <- true
else if periphery is empty then begin
repeat
inmemoryCKk] <- false;
Ifk = o then k <- physlimit

(_Elsek«- k- 1; .
if not inmemoryck] then begin
fp«-fp- 1;

seek(stackfl, fp);
read(stackfl, afk]) ;
seek(stackfl, fp);
inmemoryCK] <- true;
end;
until aCk].ncv = q ;
node_to_process(k — 1);
update ncv;
if there is no feasible color for ncv then
backward;
end

end,;

Figure 34. Procedure backward of memory swapping

Before describing the heapsort in the branch-and-bound algorithm, we would like
to introduce the general concept of heapsort. A tree is called a binary tree if each node
has at most two sons. The binary tree of depth 0 which has exactly 20# — 1 nodes is
called a full binary tree. In order to describe a full binary tree by a sequential
representation, we start from the root on level 0, then go to those on level 1, and so
on. Nodes on each level are numbered from left to right. For example, Figure 35 is a
full binary tree. The complete tree of order N can be denoted by the sequential
representation of a full binary tree from 1to N. It is seen that the leaves ofa complete
tree occur on at most two adjacent levels. A heap is a complete binary tree with the

property, the value of each node is greater than or equal to that of its sons. A heap
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having n nodes is denoted by an array H[l .. n] in which H [I] is the root and the
sons of HDD are at H[2iD and HC2i+ID- There are two basic operations in
heapsort. One is heapup which forms a bigger heap by inserting one additional node
into an already existing heap. Another is heapdown which forms a smaller heap by
taking the root away from an already existing heap. In Figure 36, procedure heapup(n)
compares the input data which is in HCnD (assuming H [1] .. H[n —1] have already
formed a heap) with its father, grandfather, greatgrandfather, etc. until it is less than
or equal to one of these values. In Figure 37, procedure heapdown(n) compares the
input data which is in the root H[ID of H having a heap from HC2] to HCnD with
its sons, grandsons, greatgrandsons, etc, until it is greater than or equal to one of these
values. While comparing the target item in the position of HDD with its sons,
H[2i] and HC2i+ ID, we move the greater value of H|~2i] and HC2i+ I] up if either

Ht2i] or HE2i+ |] is greater than the target item.

The heap is first built by repeatly calling the procedure heapup whenever a new
element is added. Second it exchanges the largest element with the last element of heap
(Le. exchange(H[I], H[n])), and then applies procedure heapdown(n — 1). We
continue this cycle of process until the size of the heap becomes I. The worst case time

complexity of heapsort is O(n log n).



Figure 35. Example of full tree

Procedure heapup(n)

begin
target H[n];
i n;
il «—i div 2 ;
while (ii > 0) and (target > HCii]) do
begin
H [i] «- H[ii3; (* move the father node down *)
i <-ii;
i *-i div 2;
end;

HCi] *- target;

Figure 36. Procedure heapup



Procedure heapdown(n)
begin
target«- H [I];
i1
li«-1%*2
if HCii+ 1D > HJj Q then li«-li+ 1 ;
while (1i<n) and (target < H[ii]) do

begin
H[i3 <- H[ii]; (* move the son node up *)
i <-ii;
n<-i*2
if H[ii+ 1] > HJ[ii] then li*-1ii+ 1;
end;

H[i] «- target;
end;

Figure 37. Procedure heapdown

(* sorting H[I], HCZ2],..., HCN] to an non-decreasing order *)
Procedure heapsort(N)
begin
for i := 1to N do (* build the heap *)
heapup(i);
for 1 := N downto 2 do
begin
exchange (H [I] , H[i]);
heapdown(i —1);

end;

Figure 38. Procedure heapsort

Example 5-2 Figures 39-42 shows how to sort the date (7, 12, 2, 15, 4, 8, 10) into

a non-decreasing order by heapsort algorithm.
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heapup(1)

heapup(2)

heapup(3)

heapup(4)

Figure 39. Part 1 of the example 5-2
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Figure 40. Part 2 of the example 5-2

heapup(5)

heapup(6)

heapup(7)
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heapdown(6)

heapdown(5)

heapdown(4)

Figure 41. Part 3 of the example 5-2
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heapdown(3)
heapdown(2)
7,6.1a 1115
©
N heapdown(l)
4, 7.8t 1ft 15

Thus, the sorting order is 2, 4, 7, 8, 10, 12, 15

Figure 42. Part 4 of the example 5-2
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In the branch-and-bound algorithm on the GCP, we use procedure heapup to
build the heap inbufand procedure heapdown (if necessary) to rebuild the new heap,
which replaces the root of the heap by the added data, whenever the limit size of the
heap is exceeded. Upon Outbufbeing empty, we repeatly do the transformation cycle
to transform the heap INbufinto the sorted list outbufin non-decreasing order. The
transformation cycle is as follows: place the root of heap into the tail o f outbuf, replace
the root by the last element of Inbuf, and call procedure heapdown to rebuild the heap

on new inbuf which removed the last element.

D. RANDOM NUMBER GENERATOR

A multiplicative congruential generator generates a sequence of integers within a
specific interval by the generating functions of the form f(x) = (a *x)mod M, where
aand M are two fixed integer parameters, a is called the multiplier of f(x). m is called
the modulus of f(x). The sequence x,, X2 x3, ... is generated via the iterative equation,

x+i = AX) =(a* x,) mod m fori = 1, 2,

x, is called the Seed chosen from 1 . M —1 before calling the iterative equation.
Because of the deterministic characteristic of the iterative equation, the seed will
guarantee to generate the €xact same sequence for each run. Therefore, instead of
storing a cycle of sequence, we only need to keep the seed in addition to the iterative
equation for a sequence of reproducing work. It is seen that every element of the
sequence X,, X2, X3, ... is within the interval 0 .. m — 1. In order to insure a period =
M —1, a prime M is require. Consequently, the period of the sequence xlIt x2, x3, ...
becomes 1 .. M—1. Usually a large prime modulus M = 23— 1 is used to make the
cycle of the sequence x,,x2 x3 ... larger [Le51][PA/88]. For a fixed modulus, in this
case M - 23— 1, a good multiplier requires the following three properties:

(1) f(x) = (a *x) mod Mis a full period generating function. That is, the

generated sequence X,, X2, ..., Xxm, is a permutation of 1 . m - 1;
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(2) The full period sequence X,, X2, ..., X*.., is pseudo random CFA/86] ;

(3) f(x) = (a *x) mod M can be implemented with 32-bit arithmetic.

The multiplier @ = IS ~ 16807 is suggested by Park and Miller [PA/88], The
generator f(x) = 16807x mod (23L- 1) has a full period, and can be implemented on
system having either 32-bit integer type or 32-bit (or larger) mantissa real type. The
randomness of the generated sequence of f(x) = 16807x mod (23l— 1) is acceptable
[PA/88] although it is not within the optimal range set by Fishman and Moore

[FM86].

The basic idea of 32-bit implementation of f(x) = 16807 * x mod (23— 1) is to
avoid the potential overflow associated with the term 16807 * x. Our implementation
is based on Schrage's method [5F87]. The theoretical details of Schrage's method are
presented as follows:

The generator f(x) = (a * x) mod m
First, decomposing m such that
m= a*q+ r where g = m diva, r = m moda, r<aq.

So f(x) (a *x) mod m

a*x —m(a*x)divm).

Subtracting and adding m(x div q)

f(x) a*x —m(xdivg) + m(x divg)- m((a*x)divm)

=a*x —(a*q + r)(xdivg) + m((x divqg)- ((@a* x)divm)).
Let E(x) = (x div qg) - ((a * x) div m)

f(x) =a*x-(a*qg + rXxdivg) + m(E(x))

a*x- (a*gXxdivg)- r(xdivg) + m(E(X))

a(x - q(x div qg)) - r(xdivg) + m(E(x))

a(x mod q) - r(x divg) + m(E(x)).

Let R(x) = x mod g, and Q(x) = x div Q.
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fix) =a(R(x))-r(Q(x)) + m(E(x».
Claim that for x in 1.. m - 1 the followings are true:
(1) 0~ a(R(x» A m=- 1,and 0~ r(Q(x))$ m - 1;
(2) la(R(x))-r(Q(x))Um-1;
(3) E(x) e {0, I}.
In (1), 0~ a(R(x))= a(x mod g) < a *q < m, sincer> 0 ;
0<r(Q(X)=r(xdivg) < rmdivg)=r*a<g*a< m.
In (2), adding 0 < a(R(x))* m —land —(m - 1) S - r(Q(x)) ~ 0.
In (3), j-= (x divg)+ r, where 0<r < 1;

amX = ((a * x) divm) + r2, where 0 < r2< 1.

Consider
X _ a*x
q m
_ X a* x
q a*q+r
a*qgq*x + r*x —a*q*x
q(a *q + r)
- r*x . r*x
q(a *q + 1) g*m
Since 0<r<gg,and 0 < x < m.
So r*x<q*m.
Thus
q m

Substituting by (x div q) + r, and
by ((a * x) divm) + r2
0< (xdivg) + r, —((a*x) divm) —r2< 1;
0< (xdivqg)- ((a* x) divm) + (r, — r3< 1
Since — 1< —(r, —r2 < 1,
- 1< (x div q) —((a * x) div m) < 2;

- 1< E(x) < 2.
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Since E(X) is an integer.

So E(x) e {0, 1}

In the equation f(x) = a(R(x)) —r(Q(x)) + m(E(x)), item (1) and item (2) prevent the
intermediate results from the potential overflow on 32-bit arithmetic. Item (3) says
that the computation on E(x) is not necessary.

fix) a(R(x)) - r(Q(Kx)) ifa(R(x)) - r(Q(x))>0;

a(R(x)) —r(Q(x)) = m  otherwise.
Figure 43 shows the Turbo Pascal implementation of f(x) = (16807 * x) mod (23—1)

based on Schrage's method.

Global var:
seed: integer;
function random: real; (* 0<random < 1%)
const
a = 16807,
m = 2147483647; (* 23- 1%
q = 127773; (* mdiva *)
r=283; (*mmoda *)
var
QXx, Rx, temp: integer;

begin
Qx := seed div q;
Rx := seed mod q;

temp := a * Rx —r * Qx;
if temp > 0 then
seed := temp
else seed := seed + m;
random := seed / m;
end:

figure 43. A multiplicative congruential generator
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VI. SELECTION FUNCTIONS

As we know from chapter 4 within the frame of either backtracking or
branch-and-bound, the next-uncolored-vertex selection (nucv-selection) function and
the next-color-vertex selection (ncv-selection) function are the crucial parts of these
algorithms. In this chapter, a number of nucv-selection functions are introduced, and
then some ncv-selection functions corresponding to a given nucv-selection function are
presented. Our algorithms use the nucv-selection function first. The naming scheme
of various nucv-selection ncv-selection functions is as follows:

(1) In the first character of a name, Y represents the class of nucv-selection

functions, and  represents the class of ncv-selection functions;

(2) In the last character of a name, 'a' indicates that a look-ahead procedure is

used.
Experimental results are shown in order to determine which algorithms have high
running speed, good solution quality, or preferable application area (small/large scale

graphs as well as dense/sparse graphs).

A. TERMS

Definition: In a partially colored graph G = (V, E), an uncolored vertex v is
called a prevention vertex of an uncolored vertex i on a colored vertex j if
(,)) 4E (v,i)eE, and (v, ) 4 E, and the set of the prevention vertices of i on j is

denoted by p-set(ij). Meanwhile, j is called afeasible color ofi.

Definition: In a partially colored graph G = (V, E), an uncolored vertex v is
called a peer vertex of an uncolored vertex i if (i, v)e E, and the chrome-degree of v
is equal to the chrome-degree of i. The set of the peer vertices of i is denoted by

peer-set(i).
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Definition: In a partial coloring graph G = (V, E), an uncolored vertex v is called
a connection vertex of an uncolored vertex i on a color vertex jif (i, HOffe, (v, i) € E,

and (v, j) e E, and the set of connection vertices ofi on j is denoted by C-Setfi, j).

Definition: In a partial coloring graph G = (V, E), a feasible color j of an
uncolored vertex i is called a block color ofi ifjis the only feasible color for an adjacent
uncolored vertex ofi. An uncolored vertex v is called a block vertex if there is only one

feasible color j for v, and j is a block color of v.

B. NEXT-UNCOLORED-VERTEX SELECTION FUNCTIONS

The nucv-selection function will choose the uncolored vertex NUCV of the highest

degree of preference from the periphery.

ikorman — selects the nucv with the smallest feasible color set size. Ties
are broken by choosing the vertex of greater degree. This selection strategy helps to
reduce the size of the search tree. This movement takes O(n) time; n is the order of

a graph.

ipkorman — selects the nucv with the smallest feasible color set size. If there is
more than one such vertex, it selects the one for which the cardinality of its peer-set is
maximal. Ties are broken by choosing the one i whose score,
S(i) = (JEweight(chrome-degree Of av), over all av in the adjacent set ofi), is maximal.
av
For a fixed base b, the weight function Wis defined as follow:

w(k) — ifb>o0;

=(k + 1)-* otherwise.
Ideally, the weight function is to select the nucv which is adjacent to a set of neighbors

having particularly high chrome-degree. Note that S(i) is the number of adjacent

neighbors ofi ifb = 0 or 1. This movement takes 0(nJ time.
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ipactual — selects the nucv with the smallest feasible color set size. Ties are
broken by choosing the one i whose score,

S(@i) = ()(Xweight(chrome-degree of pv), over all pv in p-set(i, j)), over all j in

the feasiblle (F:)(/)Ior set of i),

is maximal. This movement takes 0(n3 time.

ipreventla (with look-ahead) — selects the nucv with the smallest feasible color
set size. If there is more than one such vertex, it selects the one i for which the
cardinality of (peer-set(i) fl p-set(i, j)) , for every feasible color j of i, is maximal. Ties
are broken by choosing the one whose sum of the number of prevention vertices over
every feasible color is maximal. The look-ahead procedure is done by eliminating block

vertices from further consideration. This movement takes 0(n3 time.

iprevent2a (with look-ahead) — selects the nucv with the smallest feasible color
set size. If there is more than one such vertex, it selects the one i for which the
cardinality of (peer-set(i) (Lp-set(i, j)) , for every feasible color j of i, is maximal. Ties
are broken by choosing the one i whose score,
S(i) = (y (Vweight(chrome-degree of pv), over all pv in p-set(i, j)), over all j in
i

V]
the feasible color set of i),

is maximal. This movement takes 0(n3 time.

iprevent3a (with look-ahead) — selects the nucv with the smallest feasible color
set size. If there is more than one such vertex, it selects the one i for which the
cardinality of (peer-set(i) (Lp-set(i, j)) , for every feasible color j of i, is maximal. Ties
are broken by choosing the one i whose score,
S(@i) = (/ IXX"*hrome-degree of pv) * (white-degree of pv)), over all pv in
»

p-set(i, j)), over all j in the feasible color set of i),

is maximal. This movement takes 0(n3 time.
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iprevent4a (With look-ahead) — selects the nucv with the smallest feasible color
set size. Ifthere is more than one such vertex, it selects the one i whose score,
S(i) = (/. (XX(chrome-degree of pv) * (white-degree of pv)), over all pv in
p-set(i, j))l, over all j in the feasible color set of i),
is maximal. Ties are broken by choosing the one i for which the cardinality of

(peer-set(i) Dp-set(i, j)) , for every feasible color j of i, is maximal. This movement

takes 0(n3J time.

iconnecta (with look-ahead) — selects the nucv with the smallest feasible color set
size. If there is more than one such vertex, it selects the one i for which the cardinality
of (peer-set(i) n p-set(i, j)) , for every feasible color j of i, is maximal. Ties are broken
by choosing the one i whose score,

S(i) = (/i ,()Vf/l((chrome-degree of cv) 4 (white-degree of cv)), over all cv in

c-set(i, J)), over all j in the feasible color set of i),

is maximal. This movement takes 0(n3 time.

C. NEXT-COLORED-VERTEX SELECTION FUNCTIONS

The ncv-selection function will find the feasible color set for a vertex chosen by
a nucv-selection function, and then order colors in the feasible color set according to
a certain rule of preference. Note that in this section, we always let the new color be

the last choice.

jkorman CA7>79]— sorts the feasible color set of nucv according to the index of

the color, and assigns the smallest color to ncv. This movement takes O(n) time.

jkormana (with look-ahead) — is a look-ahead version of jkorman. The
look-ahead procedure is to prevent the block color of the nucv from being in the

feasible color set. This movement takes 0(n2 time.
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jsucadja (with look-ahead) — sorts the feasible color set according to the
following rules:

(a) min{white-degree of j}, where j is a feasible color.
If colors are left unsorted by (a), then apply rule (b):

(b) min{j}.

This movement takes 0(n2 time.

jpactual — sorts the feasible color set according to the following rules:
@) miin{(p£vweight(chrome-degree of pv), over all pv in p-set(nucv, j))},
where j is a feasible color.

If colors are left unsorted by (a), then apply rule (b):
(b) nun{white-degree ofj}.

Finally, if (a) and (b) do not distinguish between feasible colors, use (c):
(c) min{j}.

This movement takes 0(n2 time.

jpactuala (with look-ahead) — is a look-ahead version of the jpactual. This

movement takes 0(n2 time.

jpreventla (with look-ahead)— sorts the feasible color set according to the
following rules:

(@) min{ | peer-set(nucv) fl p-set(nucv, j) |}, where j is a feasible color.
If colors are left unsorted by (a), then apply rule (b):

(b) min{ | p-set(nucv, j) |}
Finally, if (a) and (b) do not distinguish between colors, use (c)

(c) min{j}.

This movement takes 0(n2 time.
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jprevent2a (with look-ahead)— sorts the feasible color set according to the
following rules:

(a) min{ | peer-set(nucv) fl p-set(nucv, j) |}, where j is a feasible color.
If colors are left unsorted by (a), then apply rule (b):

(b) rr=in{(%lweight(chrome-degree of pv), over all pv in p-set(nucv, j))},

where j is a feasible color.
Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{j).

This movement takes 0(nJ) time.

jprevent3a (with look-ahead)— sorts the feasible color set according to the
following rules:
(a) min{ | peer-set(nucv) fl p-set(nucv, j) |}, where j is a feasible color.
If colors are left unsorted by (a), then apply rule (b):
(b) rqin{SVZ((chrome-degree of pv) * (white-degree of pv)), over all pv in
p-set(nucv, j))}, where j is a feasible color.
Finally, if (a) and (b) do not distinguish between feasible colors, use (c):
(c) min{j}.

This movement takes 0(n2 time.

jpreventda (with look-ahead)— sorts the feasible color set according to the
following rules:
(@) n]in{(EVL((chrome-degree of pv) * (white-degree of pv)), over all pv in
p-set(nucv, j))}, where j is a feasible color.
If colors are left unsorted by (a), then apply rule (b):
(b) min{ | peer-set(nucv) fl p-set(nucv, j) |}
Finally, if (a) and (b) do not distinguish between feasible colors, use (c):

(c) min{]}.
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This movement takes 0(n2 time.

jconnecta (with look-ahead)--- sorts the feasible color set according to the
following rules:
(a) min{ | peer-set(nucv) fl p-set(nucv, j) |}, where j is a feasible color.
If colors are left unsorted by (a), then apply rule (b):
(b) n}in{(czv((chrome-degree of cv) + (white-degree of cv)), over all cv in
c-set(nucv, j))}, where j is a feasible color.
Finally, if (a) and (b) do not distinguish between feasible colors, use (c):
(c) min{j}.

This movement takes 0(n2 time.

D. WEIGHTED SCALE ON THE SCORE OF THE NEW COLOR

In the last section, the new color is always the last choice. However, this kind
of arrangement may require more backward and forward moves for some graph. In
this section we attempted to beat this problem in the average sense by employing a

weighted scale on the score of the new color.

In Tables XVII-XXIV, the score of the new color is equal to the score, which is
computed according to the formula in the rule (a) of algorithm jpactual or algorithm
jpreventda , with the factor of the given weight. The results in Tables XVII-XX
support the claim that the method putting weighted scale on the score of the new color

fails to significantly improve the performance of coloring in the global sense.

E. SWAPPING BETWEEN THE CORE AND THE PERIPHERY

With regard to the computational time, we find that the algorithm Korman is

simple but fast because of its linear time complexity for each forward movement. |he



algorithm Korman can be improved by swapping between the core and the periphery.
Let us assume that c,, c,..., ¢~ form the core, and vAH, V¥2..., v,, form the periphery.
If there exists a vertex vit among VAfL.., vm which is connected to all colors in the
core but ¢t the pair (c,, v,) is said to be 1-1 swappable. In this case, we move v, to the
core and cyto the periphery. If there exist two adjacent vertices va, va in the periphery
such that each of them adjacents to all colors in the core but cX the triple
@, v,,, vid is said to be 2-1 swappable. In this case, we move v, vato the core and
d to the periphery. It is evident that the 2-1 swapping will introduce a new color to
the core. Similarly, if there exist three mutually connected vertices v,,, vi2, and v,3in the
periphery such that each of them adjacent to all colors in the core but cf and c2 the
5-tuple (cW, g7, v(l, v,2 vi3 is said to be 3-2 swappable. In this case, we move v,, va,
vl3 the the core and cyl, c” to the periphery. The 3-2 swapping also adds a new color
to the core. The swapping method iterates the cycle: finding a swappable candidate
and performing (if necessary) the swapping process until there is no swappable
candidate. The vertex sequential coloring algorithm with swapping is as follows: (1) if
there is an vertex vwhich is adjacent to all existing color , color it with new color; (2)
else search for 2-1 swappable, do swapping if found; (3) else use the vertex sequential
coloring algorithm, the swapping method is done before a new forward movement.
The algorithms in this section differ only in the swapping method from the

corresponding algorithms mentioned in section B.

ikorgkZ — is the ikorman algorithm with the swapping method which searchs for
a 2-1 swappable candidate as early as possible and does the swapping process. This

movement takes 0(n3.

ikorpw2 — is the ikorman algorithm with the swapping method which searchs for

all 2-1 swappable triples (c;, v,,, va). If there is more than one candidate, it takes the
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2-1 swappable candidate whose value (white-degree”,) -+ white-degree(va)) is

maximal. This movement takes 0(n 3.

ikorw2 — is the ikorman algorithm with the swapping method which first searchs
for all 2-1 swappable triples (cxv,, va). If there is a candidate, it takes the 2-1
swappable  candidate  whose  value  (white-degree”,,)  + white-degree(va)

- white-degree(c,)) is maximal. This movement takes 0(nJ).

ikorw2p — is similar to ikorw2 except that all 2-1 swappable triples (c;, va, va) in
the first part of the swapping method satisfy the condition (white-degree(v,,)

4- white-degree(va) - white-degree(c,)) > O.

ikormaxw2 — is the ikorman algorithm with the following swapping method. The
swapping method searchs for all 2-1 swappable triples (cy, v,,, va). If there is a
candidate, it takes the 2-1 swappable candidate whose value max{white-degree(v,,),

white-degree(va)} is maximal. This movement takes 0(n3 time.

ikorw23 — is the ikorman algorithm with the swapping method. The swapping
method is as follows:

step I: search for all 2-1 swappable triples. If there is no candidate, go to step

step 2 take the candidate (c;, va,va) whose value (white-degree(v,,)
+ white-degree(va) —white-degree(cy)) is maximal, and perform the swapping process.
Goto step 1

step 3: search for all 3-2 swappable 5-tuples. If there is no candidate, then go to
step 5.

step 4. take the candidate (c,, p, V,, va, vO) whose value (white-degree(v,,)
+ white-degree(va) + white-degree(va) - white-degree(c;l) - white-degree(c?)) is

maximal, and perform the swapping process. Goto step 1
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step 5: begin the ikorman selection.

This movement takes 0(n4 time.

ikorgk23 — is similar to ikorw23 except that instead of searching for all possible
swapping triples in order to select the best one, it picks the swapping candidate as soon

as it appears.

ikonv2e (scale) — is analogous to ikorw?2 except that all 2-1 swappable condidates
(cy v,,, ;D must satisfy the following condition: wscore > threshold, where wscore =
white-degree(vfl)  + white-degree(vQQ - white-degree”), and threshold =
lower_bound(wscore) + (upper_bound(wscore) —lower_bound(wscore)) * scale. Note
that ikorw2e with scale = 0 is equivalent to ikorw2. This movement takes

0(n3 time. Default scale = 0.0.

ikorw21e (scale 1, scale2) — is the ikorman algorithm with the following swapping
method:

step I: search for all 2-1 swappable triples (cy, v,,, va) satisfying the condition:
wscore2 > threshold2, where wscore2 = white-degree(va) + white-degree(v,?d
—white-degree(Cy), and threshold?2 = lower_bound(wscore2) +
(upper_bound(wscore2) —lower_bound(wscore2)) * scale2. If there is no candidate,
go to step 3.

step 2: take the candidate with maximal score on wscore2, and perform the
swapping process. Goto step 1

step 3: search for all 1-1 swappable pairs (cy,v,) satisfying the condition:
wscore 1> threshold1, where wscorel = white-degree(v,)p - white-degree(c,), and
threshold 1 = lowerbound(wscorel) + (upper_bound(wscorel) -
lower_bound(wscorel)) * scalel. If there is no candidate, then go to step 5.

step 4. take the candidate with maximal score on wscorel, and perform the

swapping process. Goto step 1
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step 5: begin the ikorman selection.

Default scalel = 0.5, and scale2 = 0.0.

ikorwl2e (scale!, scale2) — instead of searching for 2-1 swappable candidate first
in the algorithm ikorw21e, the algorithm ikorwl2e search for 1-1 swappable candidate

first and then 2-1 swappable candidate.

ikorw2lec (scalel, scale2) — Algorithm ikorw2le always does 2-1 swapping first
and then 1-1 swapping (if there is no 2-1 swappable candidate). Another algorithm
ikorwl2e does the swapping method by giving 1-1 swapping a higher priority (than 2-1
swapping). In the global sense, ikorw2lec searchs for all 1-1 swappable pairs and 2-1
swappable triples.  Meanwhile, the score of each candidate is evaluated (see
ikorw2\e). The swapping process takes the candidate which has the maximal score

among 1-1 and 2-1 swappable candidates.

ikormaxw2le (scale) — is similar to ikorw2le except replacing step 1, 2 in

ikorw21le by the ikormaxw2 algorithm. Default scale = 0.5.

ipactqgk2 — is the ipactual algorithm with the swapping method which searchs for
a 2-1 swappable candidate as early as possible and perform the swapping process. This

movement takes 0(n3.

ipactmaxw2 — is the ipactual algorithm with the swapping method. The swapping
method searchs for all 2-1 swappable triples (c,, v,,, va). Ifthere is a candidate, it takes
the 2-1 swappable candidate with maximal score on max{white-degree(v,,),

white-degree(va)}. This movement takes 0(n3 time.
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F. HEURISTIC ALGORITHMS

Recall that the ncv-selection function keeps all feasible colors of nucv in a certain
order according to the user-defined preference. The heuristic algorithm can by done
by pruning some feasible colors of lower preference. From the experimental results, in
about 95% of all random graphs, using our algorithms, the number of branches of
every node in the backtrack-tree is either I or 2. We introduce two straightforwards

but effective pruning techniques.

1 Limit.

Assume that L,\<,L<2, branches of every node are expected to be left after
pruning, and b denotes the number of branches ofa node. The limit pruning technique
is as follow: If b = 1, then it does nothing; otherwise the second branch of lower

preference is chosen with probability LA.

2. Epsilon.

The epsilon prunning technique is to set a threshold for the user-defined
preference. Any branch with degree of preference less than threshold is eliminated.
Assume that the full range between the lower bound of potential degree of preference
and the upper bound of potential degree of preference is treated as one unit. The
threshold is defined to be the lower bound plus the product of eps, where 0 < eps < 1,

and the absolute difference between the upper bound and lower bound .
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G. COMPUTATIONAL RESULTS

The various coloring algorithms under the backtracking scheme (refer to chapter
4) were applied to an identical sequence of random graphs, and the results were
tabulated in order to compare their speed. The random graphs were generated utilizing
the pseudo random number generator according to two parameters, the order of a
random graph and the edgeload. The detailed description of the pseudo random
number generator has been discussed in chapter 5. The edgeload of a random graph
is the ratio of the number of actual edges to the number of potential edges. For each
constant order of a random graph, four different classes of random graphs were
produced with edgeloads: 0.3, 0.5, 0.7, and 0.9. For each order and edgeload, 100
random graphs were generated. Every figure in the tables is the mean of 100 graphs.
The "exact color" column is the chromatic number, the "first color" column is the
number of colors required for the first complete coloring of the backtrack tree, "moves”
column is the number of forward moves, "S.D." column is the standard deviation of
forward moves, and "var cof." column is the variance coefficient which is the ratio of

standard deviation to mean of forward moves.

Tables I-1V show that Pkorman algorithms with weight other than 0 and 1run
faster than Pkorman with weight O or 1 except the situation, vertices = 40 and
edgeload = 0.7. Tables V-VIII display that weight other than 0 and 1 in the Pactual
algorithm performs better in speed than weight = 0 or 1leven in the situation, edgeload
= 0.7. From Tables I-VIII, we know that finding the best weight other than 0 and 1
according to the computational time is not possible. However, we observe that weight

= 2 has a relatively good performance (especially for edgeload = 0.7).

There is no apparent relation between "first colors™ and "moves”. An algorithm
with fewer "first colors” may take more forward moves. Tables IX-XVI show that a

fixed nucv-selection function with various ncv-selection functions produce algorithms



with "moves™ which are within 0-7% of the mean for the corresponding set of forward
moves. On the other hand, a fixed ncv-selection function with various nucv-selection
functions generate widely different numbers of forward moves; for example, (ikorman,

jkorman) and (ipactual, jkorman).

Tables XXXVII-XLVI contain the computational results of a number of exact
coloring algorithms. The variance coefficient is the ratio of standard deviation to mean.
When observing the following algorithms: (ikorman, jkorman), (ikorman, jkormana),
(ipactual, jpactual) and (ipactual, jpactuala), we find that adding the look-ahead
procedure to the backtracking sequential algorithm vyields significant (9% - 15%)
improvement on the forward movement except the case, edgeload = 0.9. The linear
Korman selection is nearly the fastest algorithm (Pactual is shown to be faster than
Korman in Table XLIV). The Connecta algorithm is the slowest one. Most of the
other algorithms produce a significant cut on the forward movement. However, the
additional computation time for the search tree pruning is also significant. For
example, for the algorithm (ipkorman, jkorman), the additional computation time
required for the prior work of tree pruning is more than the time saved by tree pruning
over algorithm ikorman. The algorithm (ikorman, jsucadja) generates better "first

colors" than other algorithms.

Tables XVII-XX show that raising the preference of the new color increases both
the forward moves and the colors required for the first complete coloring except for
edgeload = 0.5, the Pactual algorithm with w = 0.6 has slightly fewer (about 1.5%)
forward moves. Similar situations occur both for edgeload = 0.5 and w = 0.4 in Table

XXI1 and for edgeload = 0.7 and w = 0.3 or 0.4 in Table XXIII.

Tables XXV-XXVIII show that ikorw2le and ikorw2lec are slightly better than

ikorwl2e , and the performance of ikorw21e is nearly similar to that of ikorw2lec.
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Tables XXIX-XXXII show that (1) the case, scale2 = QOO (full 2-1 swapping)
takes fewer forward moves than the case, scale2 = 0.0 and scalel = 0.5 (full 2-1
swapping plus full 1-1 swapping); (2) the case, scale2 = 1.0 and scalel = 0.5 (full 1-1
swapping), takes fewer forward moves than the case, scale2 = 1.0 (without 2-1
swapping); (3) the full 2-1 swapping takes fewer forward moves than the partial 2-1
swapping (scale2 # 0.0); it seems that the wider the range of 2-1 swapping is, the less
the forward moves are; (4) the full 1-1 swapping only behaves better than the Korman
algorithm in "moves” and "first color”; and (5) the full 2-1 swapping without 1-1

swapping takes fewer forward moves than other algorithms.

Tables XXXI-XXXVI show that (1) ikorw2 has slightly better performance
than either ikorpw2 or ikorw2p ; (2) adding 3-2 swapping process to either ikorgk2 or
ikorw?2 creates a significant improvement on the "moves” (about 19% for edgeload =
0.3, about 27% for edgeload = 0.5, about 21% for edgeload = 0.7, and about 10%
for edgeload = 0.9). Both ikorgk23 and ikorw23 , however, pay a significant overhead
in time (about 50% for edgeload = 0.3, about 108% for edgeload = 0.5, about 260%
for edgeload = 0.7, and about 450% for edgeload = 0.9); (3) the Korman algorithm
with 2-1 swapping or its variations take fewer forward moves than the Korman
algorithm and needs fewer "first color" except the case, edgeload = 0.9; (4) the Pactual
algorithm with 2-1 swapping has better performance in "moves” and "first color" than
the Pactual algorithm; and (5) the algorithms, (ipactgk2, jpactual) and (ipactmaxw2,

jpactual), need fewer "first color" than other algorithms.

Tables XXXVII-XL, XLI-XLII, XLIT-XLVI, and XLVII-XLVIII show that (1)
both ikorw2 and ikormaxw2 makes a substantial improvement on the forward moves
(about 25% better than Korman) and the computational time (about 10% better than

Korman for edgeload = 0.5 and 0.7); and (2) (ipactmaxw2, jpactual) behaves



92

exceptionally better (about 50%) than Korman on the forward moves and colors a

graph using fewer colors than Korman.

In Figures 44-59, Korman algorithm represents (ikorman, jkorman) algorithm,
Korwz2 algorithm represents (ikorw2, jkorman) algorithm, Pactual algorithm represents
(ipactual, jpactual) algorithm, and Pactmaxw?2 algorithm stands for (ipactmaxwz2,
jpactual) algorithm. Every continuous curve in Figures 44-60 is developed by (1)
computing the data points associating with |V | = 28, 32, 36, 40, 44, 48, 52, and 56;
and (2) using the cubic spline function to fit a curve to the data points. Figures 44-47
show that (1) Chrome represents the exact colors; (2) Pactmaxw?2 algorithm with
non-backtracking makes use of fewer heuristic colors than Korman, Korw2, and
Pactual for 100 identical random graphs; and (3) every curve is nearly linear. Figures
52-55 show that (1) Pactmaxw? takes fewer forward moves than Pactual, Pactual takes
fewer forward moves than Korw2, and Korw2 takes fewer forward moves than
Korman; (2) the conjecture, bigger graphs requires more forward moves to get the
chromatic number, is not always true; for example, |V| = 52 and 56 for edgeload =
0.3 and |V| = 40 and 44 for edgeload = 0.3; (3) all curves for edgeload = 0.5, 0.7,
and 0.9 are exponential, and they go up sharply after passing |[V| =44; and (4) for
edgeload = 0.5, 0.7 and 0.9, the gap between Pactmaxw2 and Korman becomes bigger
as the number of vertices becomes larger. Figures 56-59 have the same data points as
Figures 52-55, plotted on a logarithmic scale on the forward moves axis. Figures 48-51
show that (1) Korw2 is faster than Korman; (2) Pactmaxwz2 is faster than Pactual; and

(3) for edgeload = 0.3, 0.5, 0.7, and 0.9, all curves are exponential.

In Tables LI-LII display that (1) "mean™ column is the mean of differences of
running time between Korw2 and Korman; (2) "S.D." column is the standard deviation
of the differences of running time; (3) "better” column is the percentage of graphs in

which Korw2 is faster Korman; (4) "worse" column is the percentage of graphs in
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which Korw2 is slower than Korman; and (5) Korw?2 is faster than Korman on the
average. Tables LIII-LIV show that (1) Pactual is slower than Korman for most of
graphs except that n = 56 on edgeload = 0.5 and 0.7, and n = 52 on edgeload = 0.7.
Tables LV-LVI show that (1) for edgeload = 0.3, Pactmaxw?2 is slower than Korman
for most of graphs except n = 52 and 56; (2) for edgeload = 0.5 and 0.7, Pactmaxw?2
is faster than Korman for most of graphs except n = 28, 32, and 36; and (3) for
edgeload = 0.9, Pactmaxw?2 is slower than Korman for most of graphs. Tables
LVII-LVI11 show that Pactmaxw? is faster than Pactual on the average and for most

of graphs.

In Tables LIX-LXX, the equation, c-ap = ¢, means that g ofthe 100 graphs can
be colored with (¢ + chromatic number) colors by the limit pruning technique. The
jkorlm, jpaclm, and jpv4lm are the modified version ofjkorman, jpactual, and jprevent4a
respectively. In Tables LXVII-LXX, iprvda is a shorthand of ipreventda. The "heur.
color” column is the mean of the heuristic colors of 100 random graphs. Tables LIX
and LXII show that for edgeload =0.3 and edgeload = 0.9, the 0-ap decreases slowly
as the eps becomes smaller. On the other hand, for the limit pruning technique, the
0-ap may not decrease as the lim becomes smaller, such as lim = 16 and 1.7 and
edgeload = 0.9 in Table LXVI, because of using the probability for picking the second

branch of every node of the backtrack tree.

H. DISCUSSION

The weight function shown in pkorman is helpful for deciding the next uncolored
vertex in the average sense. A nucv-selection function with various ncv-selection
functions generate the number of forward moves which are within 7% of the mean of
its corresponding set. However, a ncv-selection with various nucv-selection functions

have widely different performances. We suspect that the reason is that, the



nucv-selection function is called first. The look-ahead procedure either in the
nucv-selection function or the ncv-selection function has a significant improvement on

the forward moves and the running time.

From the worst case analysis, the Korman algorithm is O(n), the Pkorman
algorithm is 0(nJ), and Pactual, Preventla, Prevent2a, Prevent3a, Preventd4a, and
Connecta are 0(n3. However, from experimental results, the Pkorman algorithm is
inferior to algorithms, in 0(nJ time complexity, except Connecta in the average sense.
The variations of the Korman algorithm, Pactual, Preventla, Prevent2a, Prevent3a,
and Prevent4a, prune the backtrack tree effectively. However, the computational time

for choosing a good forward movement is also significant.

Although the 3-2 swapping method makes fewer forward moves, its overhead for
searching for a 3-2 swapping candidate is significant ( especially for dense graphs). The
Korman algorithm with either 2-1 swapping or 2-1 swapping plus 1-1 swapping is
superior to the Korman algorithm on the forward moves and the running time. The
Pactual algorithm with 2-1 swapping is superior to the Korman algorithm on the
forward moves and the running time. The Pactual algorithm with 2-1 swapping
generates the smallest "first color" among Korman's algorithm and the algorithms
which have been developed. That is, it is a good heuristic algorithm of the vertex-color

sequential without backtracking type.

In Figure 52, all curves go down between |V| = 52 and 56. We suspect that it

is only a local action. From the global sense, the curves are still exponential.

In our algorithms, the top two feasible colors, of higher degree of preference, of a
nucv chosen by using the nucv-selection function almost always (within 95% up to 52
vertices) yield an optimal coloring. Two heuristic algorithms, limit and epsilon , based

on the above fact are presented.
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Table I. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight  exact  moves first  time
color color (sec)
ikorman  jkorman - 5.96 18386  6.40 2
ipkorman  jkorman 0 15377 621 3
ipkorman  jkorman 1 15377 621 3
ipkorman  jkorman 2 14743  6.23 3
ipkorman  jkorman 3 14897 6.24 3
ipkorman  jkorman 4 14362 6.25 3
ipkorman  jkorman 5 144.77 6.24 3
ipkorman  jkorman 6 14379  6.25 3
ipkorman  jkorman 7 14398  6.25 3
ipkorman  jkorman 8 14394  6.25 3
ipkorman  jkorman 9 14390 6.25 3
ipkorman  jkorman -1 153.71 6.22 3
ipkorman  jkorman -2 14358 6.24 3
ipkorman  jkorman -3 14359  6.24 3
ipkorman  jkorman -4 14424  6.26 3
ipkorman  jkorman -5 14418  6.26 3
ipkorman  jkorman -6 14383  6.25 3
ipkorman  jkorman -7 14388  6.25 3
ipkorman  jkorman -8 14395 6.25 3

ipkorman  jkorman -9 143.93 6.25 3
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Table II. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight  exact  moves first  time
color color (sec)
ikorman  jkorman - 8.23 1108.45 9.44 15
ipkorman  jkorman 0 120946  9.36 24
ipkorman  jkorman 1 1209.46  9.36 24
ipkorman  jkorman 2 1076.45 942 21
ipkorman  jkorman 3 1026.46 9.40 20
ipkorman  jkorman 4 1012.69  9.35 20
ipkorman  jkorman 5 1007.52  9.34 20
ipkorman  jkorman 6 1007.25  9.34 20
ipkorman  jkorman 7 1007.21  9.33 20
ipkorman  jkorman 8 1008.18  9.34 20
ipkorman  jkorman 9 100841  9.34 20
ipkorman  jkorman -1 1163.14  9.46 23
ipkorman  jkorman -2 1094.72  9.44 22
ipkorman  jkorman -3 1036.52  9.42 20
ipkorman  jkorman -4 101694  9.37 20
ipkorman  jkorman 5 101865  9.38 20
ipkorman  jkorman -6 101991  9.39 20
ipkorman  jkorman -7 1006.79  9.35 20
ipkorman  jkorman -8 1003.70  9.33 20

ipkorman  jkorman 9 1006.82  9.33 20
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Table III. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight  exact  moves first  time
color color (sec)

ikorman  jkorman 11.88 83355 1314 n

ipkorman  jkorman 0 979.34 1311 20
ipkorman  jkorman 1 979.34 1311 20
ipkorman  jkorman 2 880.44 13.22 18
ipkorman  jkorman 3 1009.44  13.22 20
ipkorman  jkorman 4 0981.67 13.28 19
ipkorman  jkorman 5 961.39 13.23 19
ipkorman  jkorman 6 967.88 13.24 19
ipkorman  jkorman 7 970.87 13.23 19
ipkorman  jkorman 8 971.03 13.23 19
ipkorman  jkorman 9 97287 1324 19
ipkorman  jkorman -1 092328 1321 19
ipkorman  jkorman -2 884.06 13.20 18
ipkorman  jkorman -3 963.17 1321 19
ipkorman  jkorman -4 0981.06 13.22 20
ipkorman  jkorman 5 899.73  13.20 18
ipkorman  jkorman -6 965.37 1321 19
ipkorman  jkorman -7 984.18 1321 20
ipkorman  jkorman -8 1031.85 13.22 20

ipkorman  jkorman 9 963.04 1323 19



Table IV. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pkorman algorithm with different weights on the weight function

nucv ncv weight  exact  moves first  time
color color (sec)

19.20 7883 1953 1

ikorman jkorman

ipkorman  jkorman 0 64.03 19.59 3
ipkorman  jkorman 1 64.03 19.59 3
ipkorman  jkorman 2 62.88 19.62 3
ipkorman  jkorman 3 62.46 19.61 3
ipkorman  jkorman 4 6345 19.66 3
ipkorman  jkorman 5 63.54 19.67 3
ipkorman  jkorman 6 63.83 19.65 3
ipkorman  jkorman 7 61.76 1961 3
ipkorman  jkorman 8 64.01 1967 3
ipkorman  jkorman 9 62.99 19.66 3
ipkorman  jkorman -1 63.05 19.58 3
ipkorman  jkorman -2 62.72  19.60 3
ipkorman  jkorman -3 63.34 19.59 3
ipkorman  jkorman -4 62.05 19.59 3
ipkorman  jkorman 5 62.10 19.56 3
ipkorman  jkorman -6 62.83 19.61 3
ipkorman  jkorman -7 63.32 19.62 3
ipkorman  jkorman -8 62.40 19.62 3

ipkorman  jkorman -9 62.96 19.60 3



Table V.

nucv

ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual

ipactual

VERTICES =

Pactual algorithm with different weights on the weight function

ncv

jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual

jpactual

weight

40, EDGELOAD

exact
color

5.96

moves

161.40

161.40

129.22

121.38

118.35

11941

122.67

123.52

123.68

124.26

140.24

124.53

120.08

120.40

120.88

124.03

123.73

124.88

12511

N

0.3 (backtracking scheme).

first
color

6.33
6.33
6.25
6.22
6.16
6.14
6.14
6.14
6.11
6.12
6.24
6.23
6.22
6.18
6.18
6.17
6.12
6.13

6.12

time
(sec)

4

4



Table VI.

nucv

ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual

ipactual

VERTICES =

Pactual algorithm with different weights on the weight function

ncv

jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual

jpactual

weight

40, EDGELOAD

exact
color

8.23

moves

851.32

851.32

702.96

639.00

650.68

740.20

735.63

741.08

745.38

745.66

768.78

780.65

729.55

765.62

696.12

698.95

722.55

738.51

735.30

100

0.5 (backtracking scheme).

first
color

9.52
9.52
9.35
9.34
9.33
9.30
9.29
9.29
9.27
9.26
9.38
9.39
9.33
9.32
9.36
9.38
9.39
9.34

931

time
(sec)

20
20

16

17
17
17
17

17

17

16
16
17
17

17
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Table VII. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Pactual algorithm with different weights on the weight function

nucv ncv weight  exact  moves first  time
color color (sec)
ipactual jpactual 0 1188 690.55 1329 17
ipactual jpactual I 690.55 13.29 17
ipactual jpactual 2 479.94  13.08 12
ipactual jpactual 3 533.84 1316 13
ipactual jpactual 4 620.75 13.20 14
ipactual jpactual 5 610.39 1324 14
ipactual jpactual 6 619.17 13.26 14
ipactual jpactual 7 613.84 1325 14
ipactual jpactual 8 613.99 13.23 14
ipactual jpactual 9 614.17 13.23 14
ipactual jpactual -1 669.09 13.24 16
ipactual jpactual -2 644.43 13.19 16
ipactual jpactual -3 580.39 13.14 14
ipactual jpactual -4 538.26  13.15 13
ipactual jpactual -5 53143 13.07 13
ipactual jpactual -6 530.50 13.07 13
ipactual jpactual -7 567.34 13.09 14
ipactual jpactual -8 629.25 13.16 15

ipactual jpactual -9 590.23 1322 14
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Table VIII. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pactual algorithm with different weights on the weight function

nucv ncv weight exact moves first  time
color color (sec)
ipactual jpactual 0 19.20 73.42 19.54 3
ipactual jpactual 1 73.42 19.54 3
ipactual jpactual 2 60.31 19.50 2
ipactual jpactual 3 56.21 19.50 2
ipactual jpactual 4 58.12 19.50 2
ipactual jpactual 5 58.17 19.49 2
ipactual jpactual 6 58.51 19.52 2
ipactual jpactual 7 58.37 19.52 2
ipactual jpactual 8 58.18 19.50 2
ipactual jpactual 9 58.71 19.51 2
ipactual jpactual -1 59.90 19.46 3
ipactual jpactual -2 60.84 19.47 3
ipactual jpactual -3 60.12 19.47 3
ipactual jpactual -4 60.81 19.51 3
ipactual jpactual -5 61.13 19.53 3
ipactual jpactual -6 60.03 19.48 3
ipactual jpactual -7 60.32 19.54 3
ipactual jpactual -8 60.45 19.52 3

ipactual jpactual -9 61.34 19.52 3
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Table IX. VERTICES = 40, EDGELOAD = 03, WEIGHT - 2
(backtracking scheme), ikorman selection function with different
kinds of ncv-selection functions

nucv ncv edge exact moves S.D. var  first  time
load color cof. color (sec)

ikorman  jkorman 0.3 5.96 183.86 157.38 0.86 6.40 2

ikorman  jpactual 181.55 15650 0.86  6.32 2
ikorman  jkormana 166.33 137.89 0.83 6.40 2
ikorman  jsucadja 167.55 14041 0.84 648 2
ikorman  jpactuala 164.21 13712 0.84 6.32 2
ikorman  jpreventla 164.71 13819 084 6.32 2
ikorman  jprevent2a 164.37 13856 0.84 6.32 2
ikorman  jprevent3a 164.10 13834 0.84  6.29 2
ikorman  jprevent4a 163.16 13771 0.84 6.28 2
ikorman  jconnecta 164.38 13857 0.84 631 3

*** S.D. column is the standard deviation of the forward moves.



Table X.

nucv

ikorman
ikorman
ikorman
ikorman
ikorman
ikorman
ikorman
ikorman
ikorman

ikorman

VERTICES = 40, EDGELOAD =

(backtracking scheme),

kinds of ncv-selection functions

ncv

jkorman
jpactual
jkormana
jsucadja
jpactuala
jpreventla
jprevent2a
jprevent3a
jpreventda

jconnecta

edge exact moves
load color

0.5 8.23 1108.45
1046.49
957.15
961.71
904.46
925.96
919.41
921.82
926.41

960.32

S.D.

1355.63

1324.86

1157.19

1148.28

1133.29

1150.04

1143.75

1150.43

1161.72

1157.19

0.5,

var
cof.

1.22
1.27
1.21
1.19
1.25
1.24
1.24
1.25
1.25

1.21

*** S D. column is the standard deviation of the forward moves.

WEIGHT

first
color

9.44

9.36

9.44

9.59

9.36

9.38

9.38

9.37

9.41

9.42

time
(sec)

15
15
14
15
14
14
14
14
14

16

14

2

ikorman selection function with different
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Table XI. VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme), ikorman selection function with different
kinds of ncv-selection functions

nucv ncv edge exact moves S.D. var  first time
load color cof. color (sec)

ikorman  jkorman 0.7 1188 833.55 736.86 0.88 1314 n
ikorman  jpactual 751.28 669.39 0.89 13.03 n
ikorman  jkormana 714.82 62046 0.87 1314 n
ikorman  jsucadja 724.93 603.87 0.83 13.37 n
ikorman  jpactuala 647.18 566.28 0.88 13.03 10
ikorman  jpreventla 690.41 61446 0.89 1313 n
ikorman  jprevent2a 687.09 610.14 0.89 1311 n
ikorman  jprevent3a 686.94 609.32 0.89 13.12 n
ikorman  jpreventda 690.55 616.66 0.89 13.09 n
ikorman  jconnecta 709.08 622,57 0.88 13.19 12

*** S.D. column is the standard deviation of the forward moves.
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Table XII. VERTICES = 40, EDGELOAD = 09, WEIGHT = 2
(backtracking scheme), ikorman selection function with different
kinds of ncv-selection functions

nucv ncv edge exact moves S.D. var first time
load color cof. color (sec)

ikorman jkorman 0.9 19.20 78.83 67.79 0.86 19.53 1
ikorman jpactual 73.99 50.39 0.68 19.49 1
ikorman jkormana 72.84 4691 0.64 19.53 1
ikorman jsucadja 74.31 45.40 0.61 19.64 1
ikorman jpactuala 69.98 43.46 0.62 19.49 1
ikorman jpreventla 71.77 45,72 0.64 19.50 1
ikorman jprevent2a 71.86 45.70 0.64 19.50 1
ikorman jprevent3a 71.74 45.70 0.64 19.50 1
ikorman jpreventda 71.75 45.70 0.64 19.49 1
ikorman jconnecta 72.92 45.79 0.63 19.56 1

*** S.D. column is the standard deviation of the forward moves.
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Table XI11. VERTICES = 40, EDGELOAD = 03, WEIGHT = 2
(backtracking scheme), ipactual selection function with different
kinds of ncv-selection function

nucv ncv edge exact moves S.D. var  first  time
load color cof. color  (sec)

ipactual jkorman 0.3 5.96 130.05 10248 0.79 6.27 3
ipactual jpactual 129.22 101.18 0.78 6.25 3
ipactual jkormana 118.43 89.65 0.76  6.27 3
ipactual jsucadja 119.37 89.77 0.75  6.33 3
ipactual jpactuala 117.68 8838 0.75 6.25 3
ipactual jpreventla 117.87 88.87 0.75 6.25 3
ipactual jprevent2a 117.74 89.01 0.76 6.24 3
ipactual jprevent3a 117.27 88.66 0.76 6.23 3
ipactual jpreventda 117.16 87.40 0.75 6.25 3
ipactual  jconnecta 116.45 88.62 0.76  6.20 3

*** S.D. column is the standard deviation of the forward moves.



Table XIV. VERTICES = 40, EDGELOAD = 05, WEIGHT = 2
(backtracking scheme), ipactual selection function with different
kinds of ncv-selection function

nucv ncv edge exact moves S.D. var  first time
load color cof. color (sec)

ipactual jkorman 0.5 8.23 716.25 100991 141 9.43 16

ipactual jpactual 70296 101297 144 935 16
ipactual jkormana 619.31 858.36 139 943 16
ipactual jsucadja 600.25 84755 141 959 15
ipactual jpactuala 607.75 860.57 142 935 16
ipactual jpreventla 601.10 867.39 144 932 15
ipactual jprevent2a 612.43 866.59 142  9.32 16
ipactual jprevent3a 593.17 861.28 145 931 15
ipactual jpreventda 590.71 85535 145 935 15
ipactual  jconnecta 602.85 863.88 143  9.36 16

*** S D. column is the standard deviation of the forward moves.



Table XV.

nucv

ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual

ipactual

VERTICES = 40,
(backtracking scheme),

ncv edge exact
load color

jkorman 0.7 1188
jpactual

jkormana

jsucadja

jpactuala

jpreventla

jprevent2a

jprevent3a

jprevent4a

jconnecta

EDGELOAD =
ipactual selection function with different
kinds of ncv-selection function

moves

502.67

479.94

430.99

400.01

411.81

411.23

411.48

411.96

420.41

416.75

S.D.

603.20

571.13

499.09

445.82

472.76

488.54

488.43

488.58

499.87

453.84

0.7,

var
cof.

1.20
119
116
109
115
119
119
119
119

109

** S.D. column is the standard deviation of the forward moves.

WEIGHT

first
color

13.09
13.08
13.09
13.16
13.08
13.07
13.07
13.08
13.08

13.10

time
(sec)

E B B B BE B B B KB K

109

2
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Table XVI. VERTICES = 40, EDGELOAD = 09, WEIGHT = 2
(backtracking scheme), ipactual selection function with different
kinds of ncv-selection function

nucv ncv edge exact moves S.D. var  first time
load color cof. color (sec)

ipactual jkorman 0.9 19.20 61.11 38.25 0.63 19.52 2
ipactual jpactual 60.31 38.54 0.64 19.50 2
ipactual jkormana 58.56 33.73 0.58 19.52 2
ipactual jsucadja 58.40 27.10 0.46 19.66 2
ipactual jpactuala 57.85 34.02 0.59 19.50 2
ipactual jpreventla 58.13 34.24 0.59 19.50 2
ipactual jprevent2a 58.13 34.24 0.59 19.50 2
ipactual jprevent3a 58.28 34.15 0.59  19.51 2
ipactual jpreventda 58.38 33.63 0.58 19.51 2
ipactual jconnecta 57.94 33.55 0.58 19.52 3

** S D. column is the standard deviation of the forward moves.



Table XVII.

nucv

ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual

ipactual

VERTICES

ncv

jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual

jpactual

edge
load

0.3

40,

weight
new clr

10
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

EDGELOAD =
(backtracking scheme). Pactual algorithm with different weights on
the new color

exact
color

5.96

*** Weight column is the weight of new color.

moves

129.22

146.93

154.63

173.59

216.70

266.22

369.05

481.35

569.62

614.23

03, WEIGHT

first
color

6.25
7.62
7.92
8.57
10.09
11.96
16.46
21.75
26.37

28.69

time
(sec)

20
26

29

2



Table XVIII.

nucv

ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual

ipactual

VERTICES
(backtracking scheme).

the new color

ncv

jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual

jpactual

edge
load

0.5

40,

weight
new clr

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

EDGELOAD =
Pactual algorithm with different weights on

exact
color

8.23

*** Weight column is the weight of new color.

moves

702.96

709.88

720.14

723.36

692.23

720.82

769.12

770.46

883.05

970.60

0.5, WEIGHT

first
color

9.35

9.94

9.98

10.22

10.70

11.53

14.10

17.87

23.29

28.43

time
(sec)

18
18
18
18
17
18
20
21
27

32

112

2



Table XIX.

nucv

ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual

ipactual

VERTICES
(backtracking scheme).

the new color

ncv

jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual
jpactual

jpactual

edge
load

0.7

40,

weight
new clr

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

EDGELOAD =
Pactual algorithm with different weights on

exact
color

11.88

*** Weight column is the weight of new color.

moves

479.94

481.33

488.99

488.46

507.22

488.89

518.58

540.24

605.18

677.58

0.7,  WEIGHT

first
color

13.08

13.24

13.24

13.30

13.47

13.60

14.70

16.45

20.17

25.66

time
(sec)

12
12
13
13
13
13
13
14
16

19

13

2
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Table XX. VERTICES = 40, EDGELOAD = 09, WEIGHT = 2
(backtracking scheme). Pactual algorithm with different weights on
the new color

nucv ncv edge  weight exact moves first  time

load newclr color color (sec)
ipactual jpactual 0.9 10 19.20 60.31 19.50 3
ipactual jpactual 0.9 61.09 19.64 3
ipactual jpactual 0.8 61.44 19.65 3
ipactual jpactual 0.7 6141 19.68 3
ipactual jpactual 0.6 61.92 19.69 3
ipactual jpactual 0.5 62.00 19.67 3
ipactual jpactual 0.4 63.68 19.94 3
ipactual jpactual 0.3 65.48 20.31 3
ipactual jpactual 0.2 7846 21.35 3
ipactual jpactual 0.1 113.08 23.80 4

*** Weight column is the weight of new color.



Table XXI.

nucv

ipreventda
ipreventda
ipreventda
ipreventda
ipreventda
ipreventda
ipreventda
ipreventda
ipreventda

ipreventda

VERTICES
(backtracking scheme).

on the new color

ncv

jpreventda
jpreventda
jpreventda
jprevent4a
jpreventda
jpreventda
jpreventda
jpreventda
jpreventda

jpreventda

edge
load

0.3

40,

weight
new clr

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

EDGELOAD =
Prevent4a algorithm with different weights

exact
color

5.96

*** Weight column is the weight of new color.

moves

111.01

130.50

144.58

166.02

218.58

284.87

399.04

523.99

585.56

613.53

0.3,

first
color

6.26
7.58
8.12
9.02
11.03
13.66
18.86
24.42
28.21

29.35

WEIGHT

time
(sec)

10
16
24
29

31

2
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*** Weight column is the weight of new color.

Table XXIlI. VERTICES = 40, EDGELOAD = 05,  WEIGHT = 2
(backtracking scheme). Preventda algorithm with different weights
on the new color

nucv ncv edge  weight exact moves first  time
load newclr color color (sec)

iprevent4a jpreventda 10 631.19 9.35 17
ipreventda jpreventda 0.9 632.28  9.83 17
ipreventda jpreventda 0.8 634.82  9.95 17
ipreventda jpreventda 0.7 647.29 1043 18
ipreventda jpreventda 0.6 637.85 1111 17
ipreventda jpreventda 0.5 633.77 1261 17
ipreventda jpreventda 0.4 615.32 16.37 18
ipreventda jpreventda 0.3 787.18 21.65 25
ipreventda jpreventda 0.2 856.56 27.87 31
ipreventda jpreventda 0.1 1088.01 31.19 39



ns

*** Weight column is the weight of new color.

Table XXIII. VERTICES = 40, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme). Preventda algorithm with different weight
on the new color

nucv ncv edge  weight exact moves first  time
load newclr color color (sec)

ipreventda jpreventda 0.7 10 1188 53247 1331 15

ipreventda jpreventda 0.9 539.40 1345 15

ipreventda jpreventda 0.8 533.69 1344 15

ipreventda jpreventda 0.7 553.00 13.65 15

ipreventda jpreventda 0.6 563.75 13.94 15

ipreventda jpreventda 05 566.49 14.40 16

ipreventda jpreventda 04 520.16  15.49 14

ipreventda jpreventda 0.3 485.32 18.08 14

ipreventda jpreventda 0.2 639.00 23.24 19

ipreventda jpreventda 0.1 769.65 29.56 24
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*** Weight column is the weight of new color.

Table XXIV. VERTICES = 40, EDGELOAD = 09, WEIGHT = 2
(backtracking scheme). Preventda algorithm with different weight
on the new color

nucv ncv edge  weight exact moves first  time
load newclr color color (sec)
ipreventda jpreventda 10 59.34 1952
iprevent4a jpreventda 0.9 60.49 1961
ipreventda jpreventda 0.8 60.73  19.59
ipreventda jprcventda 0.7 61.12 19.62
ipreventd4a jpreventda 0.6 61.35 19.65
ipreventda jpreventda 0.5 6149 19.68
ipreventda jpreventda 0.4 64.63 20.00
ipreventda jpreventda 0.3 7349 20.53
ipreventda jpreventda 0.2 85.35 2192
ipreventda jpreventda 0.1 14330 25.57



119

Table XXV. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Korw2le, Korw2lec, and Korwl2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale scale exact moves  first  time

2 1 color color  (sec)

ikorw2le  jkorman 0.0 0.5 5.96 14466 641 2
ikorw2le jkorman 00 07 14304  6.35 2
ikorw2le  jkorman 0,0 0.9 143.01 6.35 2
ikorw2le jkorman 0.5 0.5 18197 6.39 3
ikorw2le  jkorman 05 07 183,51 6.41 3
ikorw2le  jkorman 0.5 0.9 18351 6.41 3
ikorww2lec jkorman 0.0 0.5 14484 641 2
ikorw2lec jkorman 0.0 0.7 14304 6.35 2
ikorw2lec jkorman 0.0 09 143.01 6.35 2
ikorw2lec jkorman 05 05 18197  6.39 3
ikorw2lec jkorman 05 07 183.51 6.41 3
ikorw2lec jkorman 05 09 18351 641 3
ikorwl2e  jkorman 00 05 14997  6.39 2
ikorwl2e  jkorman 0.0 07 143.06  6.35 2
ikorwl2e  jkorman 00 09 14301 635 2
ikorwl2e  jkorman 0.5 0.5 18204 6.39 2
ikorwl2e  jkorman 0.5 0.7 183.53 6.41 3

ikorwl2e  jkorman 05 09 183,51 6.41 3
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Table XXVI. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Korw2le, Korw2lec, and Korwl2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale scale exact moves first time
2 1 color color  (sec)

ikorw2le  jkorman 0.0 0.5 8.23 853,51 9.36 13

ikorw2le  jkorman 00 07 81745 937 13
ikorw2le  jkorman 00 09 816.79  9.37 13
ikorw2le  jkorman 05 05 1026.26  9.36 16
ikorww2le  jkorman 0.5 0.7 995.00 940 16
ikorw2le jkorman 0.5 0.9 993.98 9.40 16
ikorw2lec jkorman 0.0 05 853.06 9.36 13
ikorw2lec jkorman 00 07 817.46  9.37 13
ikorw2lec jkorman 0.0 0.9 816.79  9.37 13
ikorw2lec jkorman 05 05 102626  9.36 16
ikorw2lec jkorman 0.5 0.7 995.00 940 16
ikorww2lec jkorman 0.5 0.9 993.98 9.40 16
ikorwl2e  jkorman 0.0 0.5 926.76  9.36 13
ikorwl2e  jkorman 00 07 82432  9.38 13
ikorwl2e  jkorman 0.0 0.9 816.84  9.37 13
ikorwl2e  jkorman 0.5 0.5 1053.01 9.36

ikorwl2e  jkorman 0.5 0.7 1000.76 9.40 16

ikorwl2e  jkorman 0.5 0.9 994.00 940 16
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Table XXVII. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Korw2le, Korw2lec, and Korwl2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale scale exact moves first time
2 1 color color  (sec)

ikorw2le jkorman 0.0 05 1188 633.70 12.98 10

ikorw2le jkorman 0.0 0.7 621.53 13.08 10
ikorw2le jkorman 00 09 623.22 1311 10
ikorw21le  jkorman 0.5 0.5 707.15 13.00
ikorw2le jkorman 0.5 0.7 668.12 1303
ikorw2le jkorman 0.5 0.9 665.84 13.04
ikorw2lec jkorman 0.0 0.5 633.67 12.98 10
ikorw2lec jkorman 00 07 621.44 1308 10
ikorw2lec jkorman 0.0 0.9 623.22 1311 10
ikorw2lec jkorman 0.5 0.5 707.15 13.00
ikorw2lec jkorman 0.5 0.7 668.12 13.03
ikorw2lec jkorman 0.5 0.9 665.84 13.04
ikorwl2e  jkorman 0.0 0.5 70441 1300 10
ikorwl2e  jkorman 00 07 638.76  13.08 n
ikorwl2e  jkorman 0.0 0.9 62353 1311 n
ikorwl2e  jkorman 0.5 0.5 77556 1294 n
ikorwl2e  jkorman 0.5 0.7 686.16  13.03 n
ikorw!2e  jkorman 05 0.9 666.17 13.04 il
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Table XXVIIl. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Korw2le, Korw2lec, and Korwi2e with the parameter scale2 set to
0.0 and 0.5 and parameter scalel set to 0.5, 0.7, and 0.9

nucv ncv scale scale exact moves  first  time
2 1 color color  (sec)
ikorw2le  jkorman 0.0 05 19.20 61.87 19.60 1
ikorw2le jkorman 0.0 0.7 59.29  19.56 1
ikorw2le  jkorman 0.0 0.9 58,52  19.56 I
ikorw2le jkorman 0.5 0.5 62.28 19.60 1
ikorw2le  jkorman 05 07 59.36 1955 1
ikorw2le jkorman 05 09 58.54  19.55 1
ikorww21cc jkorman 0.0 0.5 61.87 19.60 1
ikorw2lec jkorman 0.0 0.7 59.29  19.56 1
ikorw2lec jkorman 00 09 58.52 19.56 1
ikorw2lec jkorman 0.5 0.5 62.28 19.60 1
ikorw2lec jkorman 0.5 0.7 59.36 1955 1
ikorw2lec jkorman 05 09 58,54 1955 1
ikorwl2e  jkorman 00 05 64.40 1961 1
ikorwl2e  jkorman 0.0 0.7 60.24 19.56 1
ikorwl2e  jkorman 0.0 0.9 58.77  19.56 1
ikorwl2e  jkorman 05 05 64.79 1961 1
ikorwl2e  jkorman 0.5 0.7 60.30 19.55 1

ikorw!2e  jkorman 0.5 0.9 58.79 1955 1



Table XXIX.

nucv

ikorw2e
ikorw2le
ikorw2e
ikorw2le
ikorw2e

ikorw21le

ikorw2e
ikorw2le
ikorw2e
ikorwr2le
ikorw2e

ikorw21le

VERTICES

ncv

jkorman
jkorman
jkorman
jkorman
jkorman

jkorman

jkorman
jkorman
jkorman
jkorman
jkorman

jkorman

scale

2

0.0

0.0

0.5

0.5

10

10

0.0

0.0

0.5

0.5

10

10

= 40, EDGELOAD

scale

1

0.5

0.5

0.5

0.5

0.5

0.5

edge

load

0.3

0.5

exact
color

5.96

8.23

123

= 0.3 AND 0.5 (backtracking
scheme). Korw2e and Korw21le with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0.5

moves

143.01

144.66

183.51

181.97

183.86

182.04

816.79

853.51

993.98

1026.26

1108.45

1065.36

var
cof.

0.822
0.766
0.852
0.837
0.856

0.839

1378
1412
1,233
1.255
1.223

1.264

first
color

6.35
6.41
6.41
6.39
6.40

6.39

9.37
9.36
9.40
9.36
9.44

9.36

time
(sec)

16
16

16



Table XXX.

nucv

ikorw2e
ikorw21e
ikorw2e
ikorw2le
ikorw2e

ikorw21e

ikorw2e
ikorw2le
ikorw2e
ikorw21e
ikorw2e

ikorw21le

VERTICES

ncv

jkorman
jkorman
jkorman
jkorman
jkorman

jkorman

jkorman
jkorman
jkorman
jkorman
jkorman

jkorman

scale
2

0.0

0.0

0.5

0.5

10

10

0.0

0.0

0.5

0.5

10

10

= 40, EDGELOAD

scale
1

05

0.5

0.5

0.5

0.5

0.5

edge exact

load

0.5

0.5

color

11.88

19.20

124

= 0.7 AND 0.9 (backtracking
scheme). Korw2e and Korw2le with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0,5

moves

623.14

633.70

665.77

707.15

833.55

716.81

58.47

61.87

58.47

62.28

78.83

77.30

var
cof.

1.107

1.077

1.149

1113

0.884

0.754

0.523

0.518

0.528

0.533

0.707

0.634

first
color

1311

12.98

13.04

13.00

13.14

13.03

19.56

19.60

19.55

19.60

19.53

19.48

time
(sec)

10
10

10



Table XXXI.

nucv

ikorw2e
ikorw21e
ikorw2e
ikorw21e
ikorw2e

ikorw21e

ikorw2e
ikorw2le
ikorw2e
ikorw21e
ikorw2e

ikor\v21e

VERTICES

ncv

jkorman
jkorman
jkorman
jkorman
jkorman

jkorman

jkorman
jkorman
jkorman
jkorman
jkorman

jkorman

scale
2

0.0
0.0
0.5
0.5
10

10

0.0
0.0
0.5
0.5
10

10

= 44, EDGELOAD

scale
1

0.5

0.5

0.5

0.5

0.5

0.5

edge exact

load

0.3

0.5

color

6.00

8.92

125

= 0.3 AND 05 (backtracking
scheme). Korw2e and Korw2le with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0.5

moves

139.26

141.95

181.66

158.60

181.73

158.67

975.65

986.64

1240.22

1277.36

1408.74

1331.66

var
cof.

0.982
0.998
1121
1.067
1.122

1.067

0.742
0.748
0.822
0.787
0.845

0.796

first
color

6.75
6.72
6.75
6.72
6.74

6.72

10.02

9.91
10.00
10.01
10.07

10.01

time
(sec)

2

2

14

14

20

20



Table XXXII.

nucv

ikorw2e
ikorw2le
ikorw2e
ikorw2le
ikorw2e

ikorw21e

ikorw2e
ikorw2le
ikonv2e
ikorw2le
ikornw2e

ikorw21le

ncv

jkorman
jkorman
jkorman
jkorman
jkorman

jkorman

jkorman
jkorman
jkorman
jkorman
jkorman

jkorman

VERTICES

scale

2

0.0

0.0

0.5

0.5

10

10

0.0

0.0

0.5

0.5

10

10

= 44, EDGELOAD

scale

1

0.5

0.5

0.5

0.5

0.5

0.5

edge

load

0.5

0.5

exact
color

11.88

19.20

126

= 0.7 AND 0.9 (backtracking
scheme). Korw2e and Korw2le with the parameter scale2 set to 0.0,
0.5, and 1.0 and parameter scalel set to 0.5

moves

623.14

633.70

665.77

707.15

833.55

716.81

58.47

61.87

58.47

62.28

78.83

77.30

var
cof.

1.107
1.077
1.149
1113
0.884

0.754

0.523
0.518
0.528
0.533
0.707

0.634

first
color

1311
12.98
13.04
13.00
13.14

13.03

19.56
19.60
19.55
19.60
19.53

19.48

time
(sec)



Table XXXIIIl. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv
ikorman jkorman
ikorgk2 jkorman
ikorpw2 jkorman
ikorw2 jkorman
ikorw2p jkorman
ikorw2le jkorman

ikormaxw2  jkorman

ikormaxw2le jkorman

ikorgk23 jkorman
ikorw23 jkorman
ipactqk2 jkorman
ipactgk?2 jpactual

ipactmaxw?2 jkorman
ipactmaxw?2 jpactual

ipactual jpactuala

exact
color

5.96

moves

183.86
143.31
145.09
143.01
152.14
144.66
14519
147.96
116.93
11541
115.25
111.03
114.38
112.80

117.68

S.D.

157.38

116.37

120.28

117.55

128.25

110.81

120.94

114.23

87.70

91.40

87.36

87.71

86.81

87.31

88.38

var
cof.

0.86

0.81

0.83

0.82

0.84

0.77

0.83

0.77

0.75

0.79

0.76

0.79

0.76

0.77

0.75

*** S D. column is the standard deviation of the forward moves.

first
color

6.40
6.36
6.36
6.35
6.36
6.41
6.36
6.42
6.36
6.34
6.22
6.15
6.24
6.18

6.25

time
(sec)

127
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Table XXXIV. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact moves S.D. var first  time
color cof. color  (sec)

ikorman jkorman 8.23 110845  1355.63 122 944 15
ikorgk2 jkorman 836.46  1137.59 136 945 12
ikorpw?2 jkorman 81258 111892 138 942 12
ikorw2 jkorman 816.79 112554 138 937 12
ikorw2p jkorman 828.04  1146.01 138 9.35 12
ikorw2le jkorman 85351  1205.16 141 9.36 13
ikormaxw2  jkorman 755.45 929.96 123 9.42 n
ikormaxw2le jkorman 785.61 974.16 124 937 12
ikorgk23 jkorman 612.04 870.32 142 939 23
ikorw23 jkorman 593.44 854.55 144 941 27
ipactgk?2 jkorman 595.80 824.59 138 936 14
ipactgk2 jpactual 598.23 830.34 1.39 9.19 15
ipactmaxw2  jkorman 577.88 816.54 141 938 13
ipactmaxw2  jpactual 580.28 824.00 142 921 14
ipactual jpactuala 607.75 860.57 142 935 16

*** G.D. column is the standard deviation of the forward moves.



Table XXXV.  VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact moves S.D. var first time
color cof. color  (sec)

ikorman jkorman 11.88 833.55 736.86 088 1314 n

ikorgk2 jkorman 579.78 613.99 106 1308 9
ikorpw2 jkorman 666.11 750.04 113 1311 10
ikorw2 jkorman 623.14 689.82 111 1311 10
ikorw2p jkorman 623.52 690.86 11 131 10
ikorw21e jkorman 633.70 682.49 108 1298 10
ikormaxw2  jkorman 621.53 679.95 109 1309 10
ikormaxw2le jkorman 611.86 622.87 102 1298 9
ikorgk23 jkorman 470.74 496.16 106 1295 3
ikorw23 jkorman 479.32 554.09 116 1297 38
ipactgk2 jkorman 397.00 452.58 114 1299 10
ipactgk2 jpactual 381.62 441.15 116 1289 10
ipactmaxw2 jkorman 381.16 434.14 114 1301 9
ipactmaxw2  jpactual 366.49 424.40 116 1289 9
ipactual jpactuala 411.81 472.76 115 13.08 12

** S D. column is the standard deviation of the forward moves.



Table XXXVI. VERTICES =

nucv ncv

ikorman jkorman
ikorgk?2 jkorman
ikorpw?2 jkorman
ikorw2 jkorman
ikorw2p jkorman
ikorw21e jkorman

ikormaxw2  jkorman
ikormaxw2le jkorman
ikorgk23 jkorman
ikorw23 jkorman
ipactgk2 jkorman
ipactqk?2 jpactual
ipactmaxw2 jkorman
ipactmaxw2  jpactual

ipactual jpactuala

exact
color

19.20

40, EDGELOAD =

moves

78.83

57.79

58.96

58.47

58.47

61.87

58.10

61.47

52.96

51.90

54.59

53.65

54.59

53.65

57.85

S.D.

67.79
29.88
30.66
30.58
30.58
32.05
30.68
3215
23.57
21.49
2981
28.86
29.81
28.86

34.02

130

0.9 (backtracking scheme).
variations of Korman with swapping and Pactual with swapping
Default: scalel = 0.5, scale2 = 0.0.

var
cof.

0.86

0.52

0.52

0.52

0.52

0.52

0.53

0.52

0.45

041

0.55

0.54

0.55

0.54

0.59

*** S.D. column is the standard deviation of the forward moves.

first
color

19.53
19.55
19.56
19.56
19.56
19.60
1954
19.58
19.55
19.55
19.46
19.44
19.46
19.44

19.50

time
(sec)



Table XXXVII. VERTICES = 40, EDGELOAD = 03, WEIGHT = 2
(backtracking scheme), variations of Korman without swapping

nucv ncv exact moves S.D. var first time
color cof. color  (sec)

ikorman jkorman 5.96 183.86 157.38 0.86 6.40 2

ikorman jkormana 166.33 137.89 0.83 6.40 2
ikorman jsucadja 167.55 14041 084 648 2
ipkorman jkorman 147.43 128.56 087 623 3
ipactual jpactual 129.22 101.18 0.78 6.25 3
ipactual jpactuala 117.68 88.38 0.75 6.25 3
ipreventla  jpreventla 121.79 9171 0.75 6.16 3
iprevent2a  jprevent2a 114.15 82.64 072 6.14 3
iprevent3a  jprevent3a 116.60 89.20 0.77 6.20 3
ipreventda  jpreventda 111.01 76.71 0.69 6.26 3
iconnecta jconnecta 150.41 120.18 0.80 6.28 4

*** S.D. column is the standard deviation of the forward moves.



Table XXXVIIl. VERTICES = 40, EDGELOAD = 05, WEIGHT = 2
(backtracking scheme), variations of Korman without swapping

nucv ncv exact moves S.D. var first  time
color cof. color  (sec)

ikorman jkorman 823 110845  1355.63 122 944 15
ikorman jkormana 957.15  1157.19 121 9.44 14
ikorman jsucadja 961.71 1148.28 119 9.59 15
ipkorman jkorman 1076.45 181597 169 942 21
ipactual jpactual 70296  1012.97 144 935 16
ipactual jpactuala 607.75 860.57 142 9.35 16
ipreventla  jpreventla 765.27  1435.65 188 933 17
iprevent2a  jprevent2a 656.13  1076.71 164 9.36 15
iprevent3a  jprevent3a 700.80  1140.20 1.63 9.36 16
ipreventda  jpreventda 631.19 883.03 140 935 15
iconnecta jconnecta 1051.76 ~ 1880.55 179 9.42 29

** S.D. column is the standard deviation of the forward moves.



Table XXXIX. VERTICES = 40, EDGELOAD = 0.7, WEIGHT =

nucv

ikorman
ikorman
ikorman
ipkorman
ipactual
ipactual
ipreventla
iprevent2a
iprevent3a
iprevent4a

iconnecta

(backtracking scheme), variations of Korman without swapping

ncv exact moves S.D. var first  time
color cof. color  (sec)

jkorman 11.88 833.55 736.86 0.88 1314 n
jkormana 714.82 620.46 087 1314 n
jsucadja 724.93 603.87 0.83 1337 n
jkorman 880.44 967.60 110 1322 18
jpactual 479.94 571.13 119 13.08 12
jpactuala 411.81 472.76 115 13.08 n
jpreventla 545.57 598.49 110 13.09 12
jprevent2a 528.60 565.07 107 1316 13
jprevent3a 529.34 601.33 114 1305 13
jprevent4a 532.47 530.34 100 1331 13
jconnecta 847.48 1125.45 133 1312 23

*** S D. column is the standard deviation of the forward moves.
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Table XL.

nucv

ikorman
ikorman
ikorman
ipkorman
ipactual
ipactual
ipreventla
iprevent2a
iprevent3a
ipreventda

iconnecta

VERTICES =

ncv exact
color

jkorman 19.20
jkormana

jsucadja

jkorman

jpactual

jpactuala
jpreventla
jprevent2a
jprevent3a
jprevent4a

jconnecta

40, EDGELOAD
(backtracking scheme), variations of Korman without swapping

moves

78.83

72.84

74.31

62.88

60.31

57.85

58.08

56.18

56.04

59.34

79.64

S.D.

67.79

46.91

45.40

103.88

38.54

34.02

33.22

31.29

32.90

27.83

121.05

09, WEIGHT

var
cof.

0.86

0.64

0.61

165

0.64

0.59

0.57

0.56

0.59

0.47

152

*** S D. column is the standard deviation of the forward moves.

first
color

19.53
19.53
19.64
19.62
19.50
19.50
19.55
1951
19.48
19.52

19.59

time
(sec)

2



Table XLlI. VERTICES = 44, EDGELOAD = 0.3 AND 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman with swapping and
Pactual with swapping

nucv ncv edge exact moves S.D. var  first  time
load color cof. color (sec)

ikorman jkorman 03 6.00 181.73 20390 112 6.74 2

ikorw2 jkorman 139.26 136.75 098 6.75 2
ikorw2le jkorman 141.95 14167 100 6.72 2
ikormaxw2  jkorman 140.25 13843 099 6.74 2
ikormaxw2le jkorman 145.42 14193 098 6.72 2
ipactmaxw?2 jpactual 104.76 69.25 0.66  6.57 2

ikorman jkorman 0.5 892 140874  1190.39 0.85 10.07 17

ikorw2 jkorman 975.65 72393 0.74 10.02 14
ikorw21e jkorman 986.64 738.01 0.75 9.91 14
ikormaxw2  jkorman 981.87 72757 074  9.97 15
ikormaxw2le jkorman 1009.88 740.24 0.73 9.88 15
ipactmaxw2 jpactual 656.32 539.50 0.82 9.69 16

*** S.D. column is the standard deviation of the forward moves.



1%

Table XLII. VERTICES = 44, EDGELOAD = 0.7 AND 0.9, WEIGHT = 2
(backtracking scheme), variations of Korman with swapping and
Pactual with swapping

nucv ncv edge exact moves S.D. var  first time
load color cof. color (sec)

ikorman jkorman 07 1272 213382 252858 119 1418 27

ikorw2 jkorman 1565.48 168289 108 1425 23
ikorw21e jkorman 1496.65  1731.62 116 14.07 23
ikormaxw2  jkorman 160568 167954 105 1429 25
ikormaxw2le jkorman 153577 173849 113 1409 23
ipactmaxw2 jpactual 1018.76 140793 138 1399 26

ikorman jkorman 09 2052 172.54 22447 130 21.03 2

ikorw?2 jkorman 14341 273.63 191 21.02 2
ikorw21e jkorman 135.12 22768 169 2091 2
ikormaxw2  jkorman 128.55 204.27 159 21.02 2
ikormaxw21e jkorman 121.85 17315 142 20.90 2
ipactmaxw?2 jpactual 99.34 13500 136 20.85 3

*** S D. column is the standard deviation of the forward moves.



Table XLIII.

nucv

ikorman
ikorman
ikorman
ipkorman
ipactual
ipactual
ipreventla
iprevent2a
iprevent3a
iprevent4a
ikorgk2
ikorw2
ikorw21le

ikormaxw?2

ikormaxw2le

ipactgk2

ipactmaxw2

VERTICES

48, EDGELOAD
(backtracking scheme), variations of Korman and Pactual

Default: scalel = 0.5, scale2 = 0.0.

ncv

jkorman
jkormana
jsucadja
jkorman
jpactual
jpactuala
jpreventla
jprevent2a
jprevent3a
jprevent4a
jkorman
jkorman
jkorman
jkorman
jkorman
jpactual

jpactual

moves

888.34

792.46

816.78

760.85

599.01

532.76

611.68

606.67

567.97

57221

793.20

735.36

759.51

769.72

791.74

517.88

500.69

SD.

1430.23
1256.84
1184.33
1292.68
909.30
785.82
1071.66
1000.40
942.83
790.79
1460.28
1261.88
1269.90
1290.82
1292.12
775.78

747.03

var
cof.

161

159

145

170

152

148

175

165

1.66

138

184

172

167

168

163

150

149

*** s D. column is the standard deviation of the forward moves.

0.3, WEIGHT

first
color

7.20

7.20

7.22

7.01

7.02

7.02

7.01

7.01

7.03

7.06

7.17

7.15

7.12

7.16

7.10

6.99

6.98

time
(sec)

10

1

14
14
14
14
14
14
14

10

10

10

137
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Table XLIV. VERTICES = 48, EDGELOAD = 05, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact moves S.D. var first  time
color cof. color  (sec)

ikorman jkorman 9.09 6297.14  7606.95 121 1052 8L
ikorman jkormana 541361  6517.99 120 10.52 83
ikorman jsucadja 5459.40  6655.01 122 10.72 88
ipkorman jkorman 6160.09  9671.34 157 1067 123
ipactual jpactual 3150.71  3708.39 118 1051 78
ipactual jpactuala 271587  3185.72 117 1051 5
ipreventla  jpreventla 3884.14  4711.46 121 10.62 92
iprevent2a  jprevent2a 3701.90  4534.83 123 10.60 2
iprevent3a  jprevent3a 3604.15  4847.58 135 1052 89
iprevent4a  jpreventda 275797  3251.65 118 1061 72
ikorgk2 jkorman 5474.47  7910.61 145 10.70 8L
ikorw2 jkorman 4738.64  6046.50 128 1061 70
ikorw21e jkorman 4720.14  6060.66 128 1055 73
ikormaxw2  jkorman 443230  5473.89 124 1058 66
ikormaxw2le jkorman 4422.06  5403.76 122 1055 69
ipactqk2 jpactual 2859.02  4151.30 145 1033 7
ipactmaxw?2  jpactual 2586.49  2974.46 115 1034 68

*** S.D. column is the standard deviation of the forward moves.



Table XLV. VERTICES = 48, EDGELOAD = 0.7, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv exact moves S.D. var first  time
color cof. color  (sec)
ikorman jkorman 1336  9399.03  14248.93 152 151 126
ikorman jkormana 7995.03  12064.50 151 1511 125
ikorman jsucadja 7964.36  11850.97 149 1530 132
ipkorman jkorman 8845.18  13435.83 152 1511 182
ipactual jpactual 5030.90  7938.76 158 15.03 126
ipactual jpactuala 427490  6685.94 156 1503 119
ipreventla  jpreventla 5499.27  9354.26 170 1519 131
iprevent2a  jprevent2a 470843  6827.22 145 1512 117
iprevent3a  jprevent3a 511455  8945.35 175 1504 128
ipreventda  jpreventda 4849.15  8287.20 171 1524 128
ikorgk2 jkorman 6527.48 10502.72 161 1517 103
ikorw2 jkorman 6990.07  15000.69 215 1513 112
ikorw21e jkorman 7084.65 15579.15 220 1504 116
ikormaxw2  jkorman 6642.25 10873.36 164 1514 106
ikormaxw21le jkorman 6605.28 11248.79 170 1505 109
ipactqk2 jpactual 3993.22 731159 183 1483 111
ipactmaxw?2 jpactual 402301  7337.97 182 1480 111

** S D. column is the standard deviation of the forward moves.



Table XLVI.

nucv

ikorman
ikorman
ikorman
ipkorman
ipactual
ipactual
ipreventla
iprevent2a
iprevent3a
iprevent4da
ikorgk?2
ikorw?2
ikorw2le

ikormaxw?2

ikormaxw?2le

ipactgk2

ipactmaxwz2

VERTICES = 48, EDGELOAD = 0.9, WEIGHT -
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

ncv exact moves S.D. var first  time
color cof. color  (sec)

jkorman 21.85 42855  1021.66 238 2261 5
jkormana 375.73 877.33 234 2261 5
jsucadja 385.89 878.29 228 22.76 6
jkorman 687.64  3109.51 452 2264 13
jpactual 271.59 747.42 275 2251 8
jpactuala 240.66 637.99 265 2251 8
jpreventla 279.22 758.36 272 2260 8
jprevent2a 437.66 1896.82 433 2258 n
jprcvent3a 342.05 1492.36 436 2248 9
jpreventda 253.45 389.30 154 2268 9
jkorman 313.63 684.65 218 2258 5
jkorman 309.98 686.30 221 2259 5
jkorman 286.24 545.29 191 2254 5}
jkorman 303.76 683.46 225 2259 5
jkorman 277.28 535.43 193 2254 5
jpactual 211.88 5271 247 22.39 7
jpactual 21157 52237 247 2239 7

*** S.D. column is the standard deviation of the forward moves.

140
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Table XLVII. VERTICES = 52, EDGELOAD = 0.3 AND 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

nucv ncv edge exact moves S.D. var  first  time
load color cof. color (sec)

ikorman jkorman 03 678 319680 363156 114 743 52

ikorw2 jkorman 2581.08 298122 116 7.0 45
ikormaxw2  jkorman 2535.05 284940 112 746 44
ikormaxw2le jkorman 2593.06 293534 113 749 46
ipactmaxw?2 jpactual 1582.63  1834.27 116  7.27 48

ikorman jkorman 0.5 9093 15096.79 1568556 104 1129 260

ikorw?2 jkorman 11365.67 12408.66 109 1117 216
ikormaxw2  jkorman 11458.22 1242071 108 1114 218
ikormaxw2le jkorman 1185598 1305343 110 1114 226
ipactmaxw?2  jpactual 7580.97 827842 109 1114 238

** S D. column is the standard deviation of the fonvard moves.



Table XLVIIl.  VERTICES = 52, EDGELOAD -

0.7 AND 0.9, WEIGHT

(backtracking scheme), variations of Korman and Pactual

Default: scalel = 0.5, scale2 = 0.0.

nucv ncv
ikorman jkorman
ikorw2 jkorman

ikormaxw2  jkorman
ikormaxw2le jkorman

ipactmaxw2 jpactual

ikorman jkorman
ikorw2 jkorman
ikormaxw2  jkorman

ikormaxw2le jkorman

ipactmaxw?2 jpactual

** S D. column is the standard deviation of the forward moves.

edge exact

load

0.7

0.9

color

14.07

23.10

moves

30856.41

19604.14

20455.95

19131.89

9030.25

691.42

498.50

517.23

458.22

316.38

S.D.

35268.88

21411.50

23769.81

22269.52

10673.76

1028.83

1158.39

1164.28

727.65

398.96

var
cof.

114
110
116
116

118

149
2.32
2.25
159

1.26

first
color

16.09
16.12
16.10
15.86

15.82

24.20
24.14
24.11
23.96

23.89

142

time
(sec)

536
392
407
371

201

2



Table XL1X.
nucv ncv
ikorman jkorman
ikorw2 jkorman
ipactual jpactual

ipactmaxw?2 jpactual

ikorman jkorman
ikorw?2 jkorman
ipactual jpactual

ipactmaxw2 jpactual

** S.D. column is the standard deviation of the forward moves.

VERTICES =

edge
load

0.3

0.5

56, EDGELOAD -

exact moves
color

7.00 2283.26
1736.23
1426.96

1187.76

10.03 40819.83
32495.33
16859.05

14917.26

143

0.3 AND 0.5, WEIGHT = 2
(backtracking scheme), variations of Korman and Pactual
Default: scalel = 0.5, scale2 = 0.0.

S.D.

2282.69

1719.78

1420.42

1114.47

61973.11
58278.02
23336.84

20858.73

var
cof.

1.00
0.99
1.00

0.94

152
179
138
140

first
color

7.92
7.84
7.77

7.70

11.98
11.86
11.77

11.69

time
(sec)

4
34
50

41

728

644

401



Table L. VERTICES -

(backtracking scheme), variations of Korman and Pactual

Default: scalel = 0.5, scale2 = 0.0.

nucv ncv
ikorman jkorman
ikorw?2 jkorman
ipactual jpactual

ipactmaxw2 jpactual

ikorman jkorman
ikorw2 jkorman
ipactual jpactual

ipactmaxw2 jpactual

*** S D. column is the standard deviation of the forward moves.

edge exact moves
load color

0.7 1486 100592.26
67298.88
50482.88

35781.40

09 2447 319490
2209.50
1528.46

1145.27

S.D.

138854.67
76181.61
67243.74

38021.55

9295.03
6524.20
4353.31

2976.75

var
cof.

138

113

133

1.06

291
2.95
2.85

2.60

first
color

16.96
16.88
17.05

16.82

25.70
25.72
25.59

25.49

144

56, EDGELOAD = 0.7 AND 0.9, WEIGHT = 2

time
(sec)

1864
1448
1663

1251

ol

37
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Table LI. COMPARISON KORW2 WITH KORMAN IN RUNNING TIME
(backtracking scheme).

edgeload = 0.3

N=28 n=32 nN=36 o= ©° n=4 o~ 8 n=5 n=56

mean -0.01 0.03 -0.02 *037 *031 -1.03  *-7.24 *-7.44

S.D. 0.10 0.46 0.97 0.84 156 1052 1845 10.14

better 1% 5% 22% 34% 21% 51% 84% 88%

worse 0% 5% 13% 4% 8% 29% 9% 11%
edgeload = 0.5

n=28 n=32 n=3 n=40 n=4 n=48 n=52 n=5

mean *-0.12 011 *097 *269 *367 *1155 *4429 -83.70
S.D. 0.38 0.72 2.82 10.87 681 4988 5582 737.34
better 14% 22% 45% 65% 75% 71% 92% 2%

worse 2% 13% 8% 17% 17% 26% 7% 27%

1 Mean and standard deviation of difference in running time.
2. Percentage of trials in which Korw? is better (worse) than Korman.

3. mean is significant at 0.05 level.
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Table LII. COMPARISON KORW2 WITH KORMAN IN RUNNING TIME
(backtracking scheme).

edgeload = 0.7

o8 n=32 n=36 n=40 n=44 n=48 n=52 n=56

mean *013 *025 *0.82 -169 =379 -15.22 *-143.84 *-415.76
S.D. 0.46 0.81 2.32 950 1566 11141 326.92 1547.02
better 14% 24% 53% 65% 61% 63% 74% 75%

worse 3% 6% 18% 23% 30% 34% 24% 24%

edgeload = 0.9

=B n=3 n=36 n=40 n=4 n=48 = Q N=56

mean 0.01 -0.04 *011 -0.02 001 *076 *205 *-9.85

S.D. 0.10 0.24 0.47 0.64 2.22 3.67 940  33.97
better 0% 5% 15% 17% 25% 36% 67% 67%
worse 1% 1% 5% 17% 14% 14% 13% 17%

1 Mean and standard deviation of difference in running time.
2. Percentage of trials in which Korw2 is better (worse) than Korman.

3. mean is significant at 0.05 level.



TIME (backtracking scheme).

Table LIII.

n= 28
mean *0.63
S.D. 0.49
better 0%
worse 63%

n= 28
mean *0.66
S.D. 1.08
better 2%
worse 59%

n= 32

*0.90

0.56

1%

84%

*0.70

1.40

8%

55%

edgeload = 0.3
n=36 o= n=44
*0.84 *1.03 *1.05
1.82 157 1.86
9% 8% 9%
59% 66% 7%

edgeload = 0.5
n=36 n=40 n=44
0.36 1.79 *2.71
3.35 16.99 11.66
23% 37% 34%
57% 55% 61%

COMPARISON PACTUAL WITH KORMAN

o=8

*3.94

17.72

29%

65%

-3.05

83.13

39%

59%

1 Mean and standard deviation of difference in running time.

2. Percentage of trials in which Pactual is better (worse) than Korman.

3. mean is significant at 0.05 level.
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IN RUNNING
n=5 n=56
419 *8.51
37.79 20.20
34% 24%
60% 72%
n=52 n=56
13.23 *-179.61
159.17 829.88
47% 60%
52% 40%



Table LIV. COMPARISON PACTUAL WITH KORMAN IN RUNNING
TIME (backtracking scheme).
edgeload = 0.7
n=28 n=32 n=36 n=40 o= n=48 n=52 n=56
mean *0.67 *063 *1.14 0.30 319 -0.26 *-190.23 -201.08
S.D. 0.53 113 3.69 1250 2514 8818 561.78 2140.45
better 1% 6% 20% 48% 37% 45% 62% 68%
worse 66% 60% 57% 43% 58% 55% 37% 32%
edgeload = 0.9
n=28 O+ n=36 n=40 (= n=48 n=5 n=56
mean *099 *094  *167 *154 *196  *230  *2.87 -8.87
S.D. 0.10 0.24 0.59 0.73 141 4.99 1444 46.16
better 0% 0% 0% 0% 3% 15% 17% 42%
worse 99% 94% 94% 93% 89% 81% 79% 55%

1 Mean and standard deviation of difference in running time.

2. Percentage Of trials in which Pactual is better (worse) than Korman.

3. mean is significant at 0.05 level.

148



149

Table LV. COMPARISON PACTMAXW?2 WITH KORMAN IN RUNNING
TIME (backtracking scheme).

cdgeload = 0.3

mean *041  *080  *050 *059  *0.55 1.82 -4.18 -0.60
S.D. 0.49 0.49 14 134 206 1653  36.58 18.62
better 0% 1% 13% 13% 15% 34% 51% 51%

worse 41% 78% 50% 53% 67% 56% 44% 43%

edgeload = 0.5

o= %8 nNn=32 n=36 n=40 n=4 n=48 n=52 n=56

mean *045  *0.48 -0.27 -0.63 -1.10  -13.09 -22.09 *-236.86
S.D. 0.86 131 3.26 14.99 10.00 80.34 11287 897.88
better 3% 9% 29% 46% 49% 51% 61% 62%

worse 42% 49% 46% 43% 43% 48% 39% 37%

1 Mean and standard deviation of difference in running time.
2. Percentage of trials in which Pactmaxw? is better (worse) than Korman.

3. mean is significant at 0.05 level.
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Table LVI. COMPARISON PACTMAXW2 WITH KORMAN IN RUNNING
TIME (backtracking scheme).

edgeload = 0.7

nN=28 n=32 n=36 om=P o=z2 n=48 n=52 n=56

mean *0.59  *0.37 0.16 -1.78 -1.27  -1557 *-244.69 *-613.09
S.D. 0.53 106 3.19 982 2664 8486 546.24 224521
better 1% 8% 30% 56% 51% 58% 70% 72%

Worse 59% 43% 40% 35% 46% 41% 29% 27%

edgeload = 0.9

n=28 n=32 n=3 n=40 n=4 n=48 n=52 n=256

mean *099 *094 *140 *137 *138  *146 0.26 *-16.69
S.D. 0.10 0.24 0.77 0.68 144 435 1076 7243
better 0% 0% 2% 0% 6% 17% 27% 45%

worse 99% 94% 87% 90% 85% 79% 70% 49%

1 Mean and standard deviation of difference in running time.
2. Percentage of trials in which Pactmaxw? is better (worse) than Korman.

3. mean is significant at 0.05 level.
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Table LVII. COMPARISON PACTMAXW2 WITH PACTUAL IN RUNNING
TIME (backtracking scheme).

edgeload = 0.3

n=28 n=32 n=36 n=40 n=4 n=48 n=52 n=56

mean *022 *010 *034 *044 *050 *212 *837 *911
S.D. 0.44 041 0.71 0.74 133 6.29 1729 1350
better 23% 9% 31% 44% 37% 55% 91% 92%

worse 1% 1% 4% 4% 6% 15% 4% 7%

edgeload = 0.5

n=28 nN=32 n=36 o=©° n=4 n=48 n=5 n=56

mean *021 *022 *063 *242 *381 *10.04 *3532 -57.25
S.D. 0.48 0.46 133 5.77 488 3353 8948 356.59
better 19% 20% 52% 66% 82% 83% 87% 70%

worse 0% 0% 11% 13% 10% 14% 13% 30%

1 Mean and standard deviation of difference in running time.
2. Percentage of trials in which Pactmaxw? is better (worse) than Pactual.

3. mean is significant at 0.05 level.



Table LVIII. COMPARISON PACTMAXW2 WITH PACTUAL IN RUNNING
TIME (backtracking scheme).

edgeload = 0.7

n=28 n=32 n=36 n=40 n=4 gog-g n=52 n=5

mean *0.08 *026 *098 *208 *446 *-1531 *-54.46 *-412.01

S.D. 0.27 0.60 1.46 4.68 1378  60.16 83.31 138141
better 8% 26% 57% 69% 82% 82% 83% 83%
worse 0% 4% 6% 7% 8% 16% 16% 17%

edgeload = 0.9

N=28 n=32 n=3% omP omx N=48 n=52 n=5

mean 000 000 *027 *017 *058 *084 *261 *7.82
S.D. 000 000 045 038 118 357 1270 29.93
better 0% 0% 27% 1%  54%  38%  43% 7%
worse 0% 0% 0% 0% 5% 8% 9%  12%

1 Mean and standard deviation of difference in running time.
2. Percentage of trials in which Pactmaxwz2 is better (worse) than Pactual.

3. "*' mean is significant at 0.05 level.



edgeload = 0.3

Figure 44. heuristic colors for edgeload = 0.3
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Figure 45. heuristic colors for edgeload = 0.5
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edgeload = 0.7

Figure 46. heuristic colors for edgeload = 0.7



Figure 47.
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edgeload = 0.3

Figure 48. running time for edgcload = 0.3
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Figure 49.
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time (sec

edgeload = 0.7

Figure 50. running time for edgeload = 0.7
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Figure 51. running time for cdgcload = 0.9
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Figure 52. forward moves for cdgcload = 0.3
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forward moves

edgeload = 0.5

Figure 53. forward moves for edgeload = 0.5
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Figure 54. forward moves for edgeload = 0.7



edgeload = 0.9

Korman

vertices

Figure 55. forward moves for edgeload = 0.9
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Figure 56. forward moves on log scale for edgeload = 0.3
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forward moves (log scale

edgeload = 0.5

Figure 57. forward moves on log scale for edgeload = 0.5



forward moves (log scale
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Figure 58. forward moves on log scale for cdgcload = 0.7
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Figure 59. forward moves on log scale for cdgcload = 0.9
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Table LIX.

nucv

ikorman
ikorman
ikorman
ikorman
ikorman
ikorman
ikorman
ikorman
ikorman
ikorman

ikorman

*** Color column oflimit technique is not exact.

VERTICES

parameter lim

ncv

jkorman
jkorlm
jkorlm
jkorlm
jkorlm
jkorlm
jkorlm
jkorlm
jkorlm
jkorlm

jkorlm

lim

19

18

17

16

15

14

13

12

11

= 40, EDGELOAD =

color

5.96
5.96
5.97
5.98
5.98
5.99
5.99
5.99
6.03
6.13

6.18

moves

183.86

181.20

147.21

132.28

122.84

95.73

87.64

75.55

67.18

59.89

52.14

first
color

6.40

6.40

170

0.3 (backtracking scheme).
Korman algorithm with limit technique on different values of

time
(sec)

2

2

ap

100

9

97
97
97

93

78

ap

17

ap

ap



Table LX.

nucv

ikorman
ikorman
ikorman
ikorman
ikorman
ikorman
ikorman
ikorman
ikorman
ikorman

ikorman

*** Color column of limit technique is not exact.

VERTICES

Korman algorithm with limit technique on different values of
parameter lim

ncv

jkorman
jkorlm
jkorlm
jkorlm
jkorlm
jkorlm
jkorlm
jkorlm
jkorlm
jkorlm

jkorlm

lim

20

19

18

17

16

15

14

13

12

11

= 40, EDGELOAD -

color

8.23

8.26

8.30

8.44

8.54

8.62

8.71

8.81

8.88

9.04

9.18

moves

1108.45
953.68
792.51
532.98
432.29
309.19
228.64
174.89
115.05

87.12

58.24

first  time
color (sec)

9.44 15
944 13

n

0-
ap

97

® &5 8 2 83 3

N
o1

R

1-
ap

2
ap

16

3
ap

171

0.5 (backtracking scheme).
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Table LXI. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Korman algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first time O 1 2 3
color (sec) ap ap ap ap

1188 83355 1314 11 - - - -

ikorman  jkorman

ikorman  jkorlm 20 1188 78493 1314 1 100 0 O O
ikorman  jkorlm 19 1192 63027 9 % 4 0 O
ikorman  jkorlm 18 1199 52174 7 8 1 0 O
ikorman  jkorlm 17 1201 43321 6 8 13 0 O
ikorman  jkorlm 16 1217 33170 4 71 29 0 O
ikorman  jkorlm 15 1225 260.83 3 64 3B 1 0
ikorman  jkorlm 14 1237 178.60 2 4 43 3 0
ikorman  jkorlm 13 1253 12664 2 3B 59 3 0
ikorman  jkorlm 12 1269 85.02 1 28 &4 7 1
ikorman  jkorlm 11 1299 55.16 1 16 60 2 3

*** Color column of limit technique is not exact.
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Table LXII. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Korman algorithm with Ilimit technique on different values of
parameter lim

nucv ncv lim color moves first time O 1 2o 3
color (sec) ap ap ap ap

ikorman  jkorman 19.20 78.83 1953 1 - - - -

ikorman jkorlm 20 1920 78.73 1953 1 100 0 0 O
ikorman  jkorlm 19 1921 75.59 1 9 1 0 O
ikorman  jkorIm 18 1924 7131 1 9% 4 0 O
ikorman  jkorlm 17 1925 68.74 1 % 5 0 O
ikorman  jkorlm 16 19.26 64.80 1 94 6 0 O
ikorman  jkorlm 15 1930 61.23 1 9% 10 0 O
ikorman  jkorlm 14 1931 57.23 1 8 11 0 O
ikorman  jkorlm 13 19.36 51.44 1 &8 1 0 0
ikorman  jkorlm 12 1945 47.16 1 . 25 0 0
ikorman  jkorlm 11 1944 44.17 o 77 22 1 0

*** Color column of limit technique is not exact.



Table LXIII.

nucv

ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual

ipactual

*** Color column of limit technique is not exact.

VERTICES

parameter lim

ncv

jpactual
jpacim
jpacim
jpacim
jpacim
jpacim
jpacim
jpacim
jpaclim
jpacim

jpacim

lim

20

19

18

17

16

15

14

13

12

11

40, EDGELOAD -

color

5.96

5.96

5.97

5.98

5.98

5.99

5.99

5.99

6.03

6.13
6.18

moves

129.22
126.79
114.18
103.84
93.32
84.16
74.82
69.41
61.13
54.34

48.24

first
color

6.25

6.25

174

0.3 (backtracking scheme).
Pactual algorithm with limit technique on different values of

time
(sec)

3

3

0-
ap

100
100
99
99
97
9%
98
9%
93

1-
ap

2
ap

3
ap



Table LXIV.

nucv

ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual
ipactual

ipactual

*** Color column oflimit technique is not exact.

VERTICES

parameter lim

ncv

jpactual
jpacim
jpaclm
jpacim
jpacim
jpacim
jpaclim
jpacim
jpacim
jpacim

jpacim

lim

19

18

17

16

15

14

13

12

11

175

= 40, EDGELOAD = 0.5 (backtracking scheme).
Pactual algorithm with limit technique on different values of

color

8.23
8.24
8.30
8.43
8.49
8.51
8.66
8.77
8.83
8.95
9.16

moves

702.96
594.18
478.19
396.20
327.42
230.38
188.70
127.46
105.58

72.74

55.33

first  time
color (sec)

93 16
935 14

un

0
ap

93
80
74

72

46
41

30

1-
ap

2-
ap

14

3
ap
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Table LXV. VERTICES = 40, EDGELOAD = 0.7 {backtracking scheme).
Pactual algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first time 0- 1- 2- 3-
color (sec) ap ap ap ap

ipactual jpactual - 11.88 479.94 13.08 12 - - - -
ipactual jpaclm 2.0 11.88 438.69 13.08 11 100 0 0 0
ipactual jpacim 1.9 11.92 367.54 9 96 4 0 0
ipactual jpaclm 1.8 11.95 312.41 8 93 7 0 0
ipactual jpaclm 1.7 12.03 309.02 8 85 15 0 0
ipactual jpacim 1.6 12.06 222.93 6 82 18 0 0
ipactual jpaclm 15 12.17 181.35 5 71 29 0 0
ipactual jpacim 14 12.20 150.44 4 68 32 0 0
ipactual jpacim 1.3 12.51 110.41 3 41 55 4 0
ipactual jpacim 1.2 12.60 76.59 2 A7 54 9 0
ipactual jpacim 11 12.82 56.79 2 24 58 18 0

*** Color column of limit technique is not exact.



177

Table LXVI. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pactual algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves first time O 1~ 2- 3
color (sec) ap ap ap ap

ipactual jpactual - 19.20 60.31  19.50 2 - - -

ipactual  jpaclm 20 1920 6073 1950 2 100 0 0 O
ipactual jpacim 19 1922 59.17 2 98 2 0 O
ipactual jpacim 18 1923 59.17 2 97 3 0 O
ipactual  jpaclm 17 1925 55.91 2 % 5 0 O
ipactual jpaclm 16 1922 54.84 2 @8 2 0 O
ipactual  jpaclm 15 1924 51.88 2 % 4 0 O
ipactual jpacim 14 1928 50.43 2 92 8 0 O
ipactual jpacim 13 1930 47.97 2 9 10 0 0
ipactual  jpaclm 12 1940 44.11 2 8 20 0 O
ipactual  jpacim 11 1942 4308 2 8 2 0 0

*** Color column of limit technique is not exact.
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Table LXVII.  VERTICES = 40, EDGELOAD = 03 (backtracking scheme).
Preventda algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves  first time O0- 1 2= 3
color (sec) ap ap ap ap

ipreventda jpreventda - 596 11101 6.26 3 - - - -

iprvda  jpvAlm 20 59 10975 626 3 100 0 0 O

iprvda jpv4im 19 596 99.82 3 100 0 0 O
iprvda jpv4lm 18 597 89.77 2 9 1 0 0
iprvda jpv4lm 17 5.98 84.61 2 98 2 0 O
iprvda jpv4im 16 599 75.20 2 97 3 0 O
iprvda jpv4im 15 600 6678 2 % 4 0 0
iprvda jpv4lm 14 601 63.33 2 % 5 0 O
iprvda jovalm 13 6.00 58.00 2 97 2 1 0
iprvda jpv4lm 12 6.06 5191 1 9 10 0 O
iprvda jpvd4im 11 613 47.08 1 8 17 0 0

*** Color column of limit technique is not exact.
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Table LXVIII. VERTICES = 40, EDGELOAD = 05 (backtracking scheme).
Preventda algorithm with limit technique on different values of
parameter lim

nucv ncv lim color moves  first time O 1 2o 3
color (sec) ap ap ap ap

ipreventda jpreventda - 823 63119 935 15 - - - -
iprvda jpvd4im 20 825 52016 935 3 98 2 0 O
iprvda jpv4lm 19 833 39795 0 9 0 0 0
iprvda jpv4lm 18 835 32081 8 8 12 0 O
iprvda jpv4lm 17 848  291.73 7 7 2 0 0
iprvda jpv4lm 16 85  219.60 6 68 3 1 0
iprvda jpv4lm 15 865  166.53 4 58 42 0 O
iprvda jpvaim 14 878 12059 3 47 5 2 0
iprvda jpvaim 13 887 10086 3 38 60 2 0
iprvda jpvalm 12 890 7763 2 B 67 0 0
iprvda jpv4lm 11 909 54.67 2 26 62 12 O

*** Color column oflimit technique is not exact.



Table LXIX.

nucv

ipreventda
iprvda
iprvda
iprvda
iprvda
iprvda
iprvda
iprvda
iprvda
iprvda

iprvda

*** Color column of limit technique is not exact.

VERTICES

ncv

jpreventda

jpv4lm
jpv4lm
jpv4lm
jpv4lm
jpv4lm
jpv4lm
jpv4lm
jpv4lm
jpv4lm

jpv4lm

lim

2.0

1.9

1.8

1.7

1.6

1.5

1.4

13

1.2

11
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= 40, EDGELOAD = 0.7 (backtracking scheme).
Preventda algorithm with limit technique on different values of
parameter lim

color

11.88

11.89

11.95

11.98

12.04

12.18

12.26

12.44

12.61

12.79

12.99

moves

532.47

497.11

452.62

351.54

314.78

234.28

175.92

140.39

101.48

78.17

58.44

first  time
color (sec)

13.31 13
13.31 12

1

ap

99

93

90

84

70

67

50

36

29

18

ap

10

16

30

28

45

56

53

56

ap

16

23

ap



Table LXX.

nucv

iprevent4da
iprvda
iprvda
iprvda
iprvda
iprvda
iprvda
iprvda
iprvda
iprvda

iprvda

*** Color column of limit technique is not exact.

VERTICES

parameter lim

ncv

jpreventda

jpv4lm
jpv4lm
jpv4lm
jpv4lm
jpv4lm
jpv4lm
jpv4lm
jpv4lm
jpv4lm

jpv4lm

lim

2.0

1.9

1.8

1.7

1.6

15

1.4

1.3

1.2

11
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= 40, EDGELOAD = 0.9 (backtracking scheme).
Prevent4a algorithm with limit technique on different values of

color

19.20

19.20

19.22

19.21

19.24

19.28

19.28

19.38

19.41

19.39

19.47

moves

59.34

59.34

59.37

57.50

54.53

51.74

51.67

47.70

47.32

44.82

42.30

first  time
color (sec)

19.52 3

19.52 3

ap

100

98

99

96

92

92

82

79

82

73

ap

18

21

17

27

ap

ap
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Table LXXI. VERTICES = 40, EDGELOAD = 0.3 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge eps heur. moves first time  O- - 2-  3-

load color color (see) ap ap ap ap
ipactual jpaenh 0.3 1.0 596  129.22 6.25 3 100 0 0 0
ipactual jpaenh 0.9 5.96 129.22 3 100 0 0 0
ipactual jpaenh 0.8 5.96 128.53 3 100 0 0 0
ipactual jpaenh 0.7 596 124.20 3 100 0 0 0
ipactual jpaenh 0.6 597 11541 3 99 1 0 0
ipactual jpaenh 0.5 5.97 101.95 3 99 1 0 0
ipactual jpaenh 0.4 5.97 83.55 2 99 1 0 0
ipactual jpaenh 0.3 5.98 74.70 2 98 2 0 0
ipactual jpaenh 0.2 5.98 59.61 2 98 2 0 0

ipactual jpaenh 0.1 6.07 49.91 1 89 11 0 0



Table LXXI1.
nucv ncv
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh

ipactual

jpaenh

VERTICES

edge
load

0.5

eps

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

40, EDGELOAD =

heur.
color

8.23

8.23

8.25

8.30

8.48

8.65

8.84

9.00

9.09

9.21

moves

702.96

702.15

672.20

522.32

366.15

209.67

129.26

90.25

64.18

51.05

first
color

9.35

183

0.5 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

time
(sec)

17
17
17

13

100

100

98

93

75

58

44

31

27

19

25

42

51

61

60

64

13

17



Table LXXIII.
nucv ncv
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh
ipactual jpaenh

VERTICES

edge
load

0.7

eps

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1%

40, EDGELOAD = 0.7 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

heur.
color

11.88

11.89

11.96

12.15

12.41

12.66

12.80

12.85

12.91

12.99

moves

479.94

445.24

331.52

179.18

98.31

72.39

58.85

55.61

51.31

45.10

first  time
color (sec)

13.08 12

1

ap

100

99

92

74

50

37

30

26

22

19

ap

25

47

50

50

53

55

53

ap

1

18

19

21

26

ap
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Table LXXIV. VERTICES = 40, EDGELOAD = 0.9 (backtracking scheme).
Pactual algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge eps heur. moves first time  0- - 2- 3
load color color (sec) ap ap ap ap
ipactual jpaenh 09 10 19.20 60.31  19.50 2 100 0 0 0
ipactual jpaenh 0.9 19.22 54.27 2 98 2 0 0
ipactual jpaenh 0.8 19.34 46.84 2 86 14 0 0
ipactual jpaenh 0.7 19.41 43.80 2 79 21 0 0
ipactual jpaenh 0.6 19.44 42.65 2 76 24 0 0
ipactual jpaenh 0.5 19.44 42.53 2 76 24 0 0
ipactual jpaenh 0.4 19.44 42.53 2 76 24 0 0
ipactual jpaenh 0.3 19.44 42.49 2 76 24 0 0
ipactual jpaenh 0.2 19.44 42.20 2 76 24 0 0

ipactual jpaenh 0.1 19.45 41.39 2 75 25 0 0



Table LXXV.
nucv ncv
iprvda jpvédnh
iprvda jpvé4nh
iprvda jpvénh
iprvda jpvé4nh
iprvda jpvédnh
iprvda jpvé4nh
iprvda jpvanh
iprvda jpvanh
iprvda jpvénh

iprvda

jpv4nh

VERTICES

edge
load

0.3

eps

10

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

186

40, EDGELOAD = 0.3 (backtracking scheme).
Preventda algorithm with epsilon technique on different values of
parameter eps

heur.
color

5.96
5.96
5.96
5.97
5.97
5.97
5.97
5.97
5.98

6.11

moves

111.01
110.79
110.31
106.78
102.69
91.41
78.08
66.79
57.24

47.45

first  time
color (sec)

6.26 3

ap

100

100

100

99

99

99

99

95

85

ap

15

ap

ap
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Table LXXVI. VERTICES = 40, EDGELOAD = 0.5 (backtracking scheme).
Preventda algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge eps heur. moves first time  O- - 2-  3-
load color color (sec) ap ap ap ap

iprvda jpv4nh 0.5 1.0 8.23 631.19 9.35 17 100 0 0 0

iprvda jpv4nh 0.9 8.23 626.65 17 100 0 0 0
iprvda jpv4nh 0.8 8.23 612.64 16 100 0 0 0
iprvda jpv4nh 0.7 8.24 567.95 15 99 1 0 0
iprvda jpv4nh 0.6 8.32 449.68 12 91 9 0 0
iprvda jpv4nh 0.5 8.59 216.44 6 64 36 0 0
iprvda ipv4nh 0.4 8.79  120.09 3 47 50 3 0
iprvda jpvénh 0.3 8.96 74.37 2 33 61 6 0
iprvda jpvénh 0.2 9.06 61.59 2 29 59 12 0

iprvda jpvé4nh 0.1 9.20 50.51 2 23 57 20 0



188

Table LXXVII. VERTICES = 40, EDGELOAD = 0.7 (backtracking scheme).
Preventda algorithm with epsilon technique on different values of
parameter eps

nucv ncv edge eps heur. moves first time O- 1- 2- 3-
load color color (sec) ap ap ap ap

iprvda jpv4nh 0.7 1.0 11.88 532.47 13.31 14 100 0 0 0

iprvda jpvédnh 0.9 11.88 522.30 14 100 0 0 0
iprvda jpv4nh 0.8 11.90 468.44 13 98 2 0 0
iprvda jpvé4nh 0.7 12.06 264.80 7 82 18 0 0
iprvda jpvanh 0.6 12.43 113.66 3 50 45 5 0
iprvda jpvé4nh 0.5 12.86 70.81 2 28 48 22 2
iprvda jpvé4nh 0.4 13.04 55.16 2 20 48 28 4
iprvda jpv4nh 0.3 13.12 51.59 2 18 44 34 4
iprvda jipv4nh 0.2 13.16 49.19 2 18 42 34 6

iprvda jpv4nh 0.1 13.24 44.83 Z 16 39 38 7



Table LXXVIII. VERTICES

nucv

iprvda
iprvda
iprvda
iprvda
iprvda
iprvda
iprvda
iprvda
iprvda

iprvda

ncv

jpv4nh
jpvéanh
jpvéanh
jpv4nh
jpvéanh
jpv4nh
jpvénh
jpvénh
jpvénh

jpvédnh

parameter eps

edge
load

0.9

eps

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

40, EDGELOAD =

heur.
color

19.20

19.22

19.37

19.43

19.47

19.47

19.47

19.47

19.47

19.49

moves

59.34

55.35

44.62

42.28

41.24

41.24

41.24

41.24

41.20

40.66

first
color

19.52

189

0.9 (backtracking scheme).
Preventda algorithm with epsilon technique on different values of

time
(sec)

3

ap

100

98

83

77

74

74

74

74

74

72

ap

17

23

25

25

25

25

25

27

ap

ap
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VII. ABRANCH-AND-BOUND PREFERENCE FUNCTION

Combining a pair of nucv-selection and ncv-selection functions mentioned in
chapter 6 with the branch-and-bound scheme mentioned in chapter 4 forms a heuristic
algorithm. How can we build a branch-and-bound preference function? From Figure
60, we find that the "exact color" is nearly a linear function of the number of vertices.
Thus, we construct a preference function, every datum of which is the mean of the
exact colors of a sequence of random graphs are stored in tabular form, and then use
the linear interploation to find the value of the preference function on a given graph.
In this chapter, we describe a branch-and-bound preference function, and present

computational results under the branch-and-bound scheme.

A. CONSTRUCTION OF A PREFERENCE FUNCTION

For a c-partially colored graph G' = (V', E'), the preferencefunction P(n, c, m),
wheren = |V'[,and m = |E '|-———-—- - , is defined to be the difference between
the expected-colors of G' and c. The expected-colors of G' is the mean value of a
sequence of chromatic numbers of random graphs having the following properties:
each of them has |V'I vertices, a completely connected subgraph G" of order c, and
|£>j _ c(c~ "~ edges in addition to those that arc in G". The larger the value of the
preference function is, the less the degree of preference is. In order to compute the
value P(n, ¢, m), we interpolate linearly along each parameter of the preference
function P, whose data are stored in tabular form. We are going to describe the
construction of the preference function by two steps. First we portray how to create

the reference table of the preference function. Second we depict how to interpolate the

reference table for a partially colored graph.
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There are three parameters for the preference function P. While considering the
first parameter, the number of vertices, we start at 0 and increase it by vertex-increment
each time. Because every exact algorithm we developed takes 0(2|v']) amount of time
to get the chromatic number, we limit the number of vertices in order to obtain the
reference table within a reasonable amount of computational time. For a given
number of vertices, n, mentioned above, the order of any possible completely
connected subgraph is between 0 and n. When taking a closer look, we discover that
the case, ¢ = 0, only occurs at the beginning movement in the search tree, and the case,
¢ = 1, can be converted to another case, ¢ = 2, by making a minor adjustment. Also
P(n, n, m) is always equal to 0. Thus, we divide the interval [2 . n- I] into
core-shares subintervals. For a given number of vertices, n, and a given order, c, of a

completely connected subgraph, the number of edges except those that are in the given

completely connected subgraph is within the interval [0 .
~ N For any case, m < ¢, p(n, ¢, m) = 0 because no new color
2
will be introduced during the remaining part of coloring. Also p(n, ¢,
v(v-1) c(c-1) ) = n —c because the original graph is a complete graph of order
v(v 1) cic 1 .
n. Consequently, we divide the interval [c - 1. 2 —1 2 ] into

edge-shares subintervals. That is, there are usually (edge-shares + 1) data entries in
the reference table for both a graph of fixed order and a completely connected

subgraph of fixed order of the given graph, and (core-shares + 1) * (edge-shares +

v(v —1)

1) data entries for a graph of fixed order. If edge-shares > (—--—----—--
c"cZJJ'_ c), all integers within [¢c —1. — —- - 1— —r-—--] are taken.
In like manner, all integers in [2 .. n- |] are taken for a specific number of vertices

n if core-shares > n- 3. For each entry, (n, c, m), of the reference table, r random
graphs, which have properties: each of tlw ' *sn vertices, a completely connected
subgraph of order ¢, and m edges besides those that are in the given completely

connected subgraph, are generated, any exact algorithm can be used to obtain the
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chromatic numbers of the sequence of random graphs, the expected-colors is then
found, and finally the difference between the computed expected-colors and c is placed
into the content of this entry. For some entries, the number of all possible graphs
having the same properties may be less than r. In this case, we compute the

expected-colors by using all possible graphs.

Before describing the interpolation at a partially colored graph, we introduce two
terms. For a c-partially colored graph of order n, the coredensity is defined to be the
ratio ofc to n, and the edgedensity is the ratio of the number ofedges except those that
are in the core to —2 ———————2—. The procedure of interpolation is (1) to
formalize the given partially coloring graph into the form (n, ¢, m), where n is the
number of vertices, ¢ is the number of colors having been used so far, and m is the
number of edges except those that are in the core, (2) to interpolate in the vertex
direction, (3) to interpolate (if necessary) in the core direction, and (4) to interpolate
(if necessary) in the edge direction. We assume that procedures (2)-(4) always try to
keep every two graphs, which are either within an interpolation or between two
consecutive interpolations, in the same (or closer) coredensity and edgedensity. Figures
61-63 show' that (1) function I-interpolaiion is a linear interpolation function which is
to interpolate at the target, whose value is between the lower neighbor lownb and the
higher neighbor highnb ; (2) function edge-interpolation interpolates linearly along the
edge coordinate if n is a given datum in the vertex coordinate, and c is also a given
datum with respect to n in the core coordinate; (3) function core-interpolation
interpolates linearly along the core coordinate if n is a given datum in the vertex
coordinate- (4) function vertex-interpolation does linear interpolation along the vertex
coordinate if n is not a given datum; and (5) function preference-degree triggers ofT the
interpolations, and returns the degree of preference of a graph. For example, P(4, 1,

= 3_ 1= 2 because any graph having 5 edges of order 4 is 3-colorable; P(4, 2, 2)



= 2.2 —2 = 0.2 because there are 10 possible graphs, and the mean of all chromatic

numbers is 2.2.

/* linear interpolation at targer, whose value is between lownb
and highnb */
function Il-interpolation(

lownb, I* lower neighbor */
lowval, I* score value of lower neighbor */
highnb, /* higher neighbor */
highval, I* score value of higher neighbor *j

target: integer): real;

begin
return (lowval * (highnb - target) + highval * (target - lownb))

/ (highnb - lownb)
end;

function edge-interpolation(n, c: integer, edensity. real), real,
I* n is a given datum in the vertex coordinate, and c is also a given

datum w. r. t. n in the core coordinate. */

var
em: integer; /* estimated edges */

begin
cm *- edensity * (n(n - 1)- c(c- 1)/2;
if em is a given datum in the edge coordinate w. r. t. (n, c)
then return P(n, c, em)

else begin
Among the data points in the edge coordinate w. r. t. (n, ¢),

find m, which is the closest lower neighbor to cm and
m2 which is the closest upper neighbor to em;
return I-interpolation(m(, P(n, ¢, m,), m2 P(n, ¢, m2, em),
end
end;

Figure 61. part | of the preference function



function core-interpolation(n: integer; edensity, edensity: real): real;
/* n is a given data in the vertex coordinate */
var

ec: integer; /* estimated size of core */

begin
ec «- n * edensity;

if ec is a given datum in the core coordinate w. r. t. n
then return edge-interpolation(n, ec, edensity)
else begin
Among the given datum points in the core coordinate w. r. t. n,
find ¢, which is the closest lower neighbor to ec and
c2which is the closest upper neighbor to ec;
return l-interpolation(c,, cdgc-interpolation(n, c,, edensity), c2

edge-interpolation(n, c2 edensity), ec);
end

end;

function vertex-interpolation(n: integer; edensity, edensity: real): real;

begin
if n is a given datum in the vertex coordinate

then return corc-interpolation(n, edensity, edensity)
else begin

Among the given data points in the vertex coordinate

find n, which is the closest lower neighbor to n and n2which
is the closest upper neighbor to n;

return I-interpolation(n,, core-interpolation( n,, edensity, edensity),
n2core-interpolation( n2 edensity, edensity), n);
end

end;
Figure 62. part 2 of the preference function

B. COMPUTATIONAL RESULTS

While building the reference table of entry form (n, ¢, m), we let the

vertex-increment = 4, core-shares = 8 between 2 and n - 1, edge-shares = 10 between

_ _ffc ~ 12. and 100 random graphs are generated in order to
c- land--—-- [----m-mm- 2

194



function preference-degree(n, ¢, m: integer): real;

/* n: number of vertices,
c: number of vertices in core,
m: number of edges except those that are in core. */
var

edensity, edensity: real; /* coredensity and edgedensity */

begin

edensity <- c/n;

edensity«- (2 *m) / (n(n - 1)- c(c- 1));

return vertex-intcrpolation(n, edensity, edensity);
end

Figure 63. part 3 of the preference function

calculate the expected-colors. In order to build the reference table in a reasonable

amount of time, we compute the given data entries up to 52 vertices. We assume inbuf

can hold pending nodes up to 128.

Given a graph, we initially convert it to a O-partially coloring node (refer to
chapter 4) and place it into outbuf. The coloring process is to repeatly make use of the
following cycle: using DFS to find all m-partially colored nodes, which arc sorted by
the preference degrees, in outbuf placing them into inbufaccording to corresponding
values of calling preference-degree function with ¢ = m, and transforming the heapsort

tree, INDUf to the sorted list, outbuf. The coloring process stops as soon as the leaf of

a complete coloring appears.

In Tables LXXIX-LXXXVI, the "best color" column presents the number of
colors required for a complete coloring of various selection functions under the
branch-and-bound scheme. A minor modification on the 2-1 swapping and 3-2

swapping has been done as follow: for each swapping method, instead of doing the
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swapping cycle until there is no swapping candidate, we do the swapping cycle no more

than once.

Tables LXXIX-LXXXVI show that (1) the Korman algorithm with either 2-1
swapping or 2-1 swapping plus 1-1 swapping is superior to the Korman algorithm; and
(2) the Pactual algorithm w'ith 2-1 swapping is superior to the Pactual algorithm;
moreover, it is slightly better than Korman algorithm except for v = 40 and edgeload

- 0.9.

C. DISCUSSION

The precision of this heuristic algorithm is determined by the size of buffer,
inbuf, for holding pending nodes of the same number of partial colors (refer to chapter
4). The preference function proposed in this chapter is based on the data which are

obtained from the mean of chromatic numbers, using an exact algorithm, of 100

random graphs.

From the experimental results, a selection function within the branch-and-bound
scheme takes fewer forward moves but more running time (over 50%) than the same
selection function within the backtracking scheme. The look-ahead procedure does
nothing in the branch-and-bound scheme because the branch-and-bound scheme stops
running upon finishing a complete coloring. The swapping cycle, finding a candidate
and doing swapping, of a swapping method will be done once for each forward move.
In the branch-and-bound scheme as w'e have previously shown for the backtracking

scheme, the Korman algorithm with swapping is superior to the Korman algorithm.



197

Table LXX1X. VERTICES = 30, EDGELOAD = 0.3 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv

ikorman
ikorman
ipkorman
ipactual
ipreventla
iprevent2a
iprevent3a
ipreventda
iconnecta
ikorgk2
ikorw?2
ikorw21e
ikormaxw2
ikormaxw2le
ikorgk23
ikorw23
ipactgk?2

ipactmaxw?

ncv

jkorman
jsucadja
jkorman
jpactual
jpreventla
jprevent2a
jprevent3a
jpreventda
jconnecta
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jpactual

jpactual

exact
color

5.02

moves

38.81
38.96
37.51
35.39
37.05
36.60
36.19
35.33
36.97
37.72
37.09
38.34
37.44
38.67
36.30
35.90
35.23

35.24

var
cof.

0.303
0.337
0.315
0.257
0.345
0.316
0.243
0.236
0.240
0.279
0.281
0.281
0.281
0.281
0.245
0.246
0.237

0.227

best
color

5.02
5.02
5.02
5.02
5.02
5.02
5.02
5.02
5.02
5.02
5.02
5.02
5.02
5.02
5.02
5.02
5.02

5.02

time
(sec)

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

100



Table LXXX.

nucv

ikorman
ikorman
ipkorman
ipactual
ipreventla
iprevent2a
ipreventSa
ipreventda
iconnecta
ikorgk2
ikorw2
ikorw21e
ikormaxw2
ikormaxw2le
ikorgk23
ikorw23
ipactgk?2

ipactmaxw2
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VERTICES = 30, EDGELOAD = 0.5 (branch-and-bound scheme),
variations of Korman with and without swapping

ncv

jkorman
jsucadja
jkorman
jpactual
jpreventla
jprevent2a
jprevent3a
jpreventda
jconnecta
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jpactual

jpactual

exact
color

7.02

moves

78.92
80.21
76.39
69.39
71.96
75.68
66.93
62.93
77.08
72.50
75.39
76.67
70.43
74.29
70.25
65.16
70.75

7091

var
cof.

0.920
0.916
0.876
0.967
0.950
0.997
0.918
1016
0.810
1150
1.207
1160
1155
1149
1335
1.209
1.085

1.087

best
color

7.02
7.02
7.02
7.02
7.02
7.02
7.02
7.02
7.02
7.02
7.02
7.02
7.02
7.02
7.02
7.02
7.02

7.02

time
(sec)

2

0-
ap

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

100

1-
ap



Table LXXXI.

nucv

ikorman
ikorman
ipkorman
ipactual
ipreventla
iprevent2a
iprevent3a
ipreventda
iconnecta
ikorgk?2
ikorw?2
ikorw21e
ikormaxw?2
ikormaxw?21e
ikorgk23
ikorw23
ipactqk2

ipactmaxw?2
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VERTICES = 30, EDGELOAD = 0.7 (branch-and-bound scheme),
variations of Korman with and without swapping

ncv

jkorman
jsucadja
jkorman
jpactual
jpreventla
jprevent2a
jprevent3a
jpreventda
jconnecta
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jpactual

jpactual

exact
color

10.00

moves

7391
76.50
7342
60.78
68.72
62.85
63.92
62.06
84.48
65.36
63.46
65.31
64.53
66.32
57.73
55.98
57.05

57.03

var
cof.

0.603
0.599
0.631
0.686
0.734
0.637
0.655
0.603
0.861
0.623
0.585
0.570
0.625
0.608
0.556
0.509
0.644

0.645

best
color

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

10.00

time
(sec)

2

2

0-
ap

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

100

1-
ap



Table LXXXILI.

nucv

ikorman
ikorman
ipkorman
ipactual
ipreventla
iprevent2a
iprevent3a
ipreventda
iconnecta
ikorgk2
ikorw2
ikorw2le
ikormaxw2
ikormaxw21e
ikorgk23
ikorw23
ipactgk2

ipactmaxw?2

variations of Korman with and without swapping

ncv

jkorman
jsucadja
jkorman
jpactual
jpreventla
jprevent2a
jprevent3a
jpreventda
jconnecta
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jpactual

jpactual

exact
color

15.87

moves

31.88

32.37

30.92

30.63

30.69

30.60

30.58

3172

30.65

3151

3151

3241

3151

3242

31.09

31.00

30.73

30.73

var
cof.

0.163
0.179
0.124
0.095
0.100
0.098
0.090
0.154
0.093
0.112
0.112
0.083
0.112
0.083
0.052
0.050
0.069

0.069

best
color

15.87
15.87
15.87
15.87
15.87
15.87
15.87
15.87
15.87
15.87
15.87
15.87
15.87
15.87
15.87
15.87
15.87

15.87

time
(sec)

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

100

V)

VERTICES = 30, EDGELOAD = 0.9 (branch-and-bound scheme),
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Table LXXXIII. VERTICES = 40, EDGELOAD = 0.3 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv

ikorman
ikorman
ipkorman
ipactual
ipreventla
iprevent2a
iprevent3a
iprevent4a
iconnecta
ikorgk2
ikorw2
ikorw2le
ikormaxw2
ikormaxw2le
ikorgk23
ikorw23
ipactgk2

ipactmaxw2

ncv

jkorman
jsucadja
jkorman
jpactual
jpreventla
jprevent2a
jprevent3a
jpreventda
jconnecta
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jpactual

jpactual

exact
color

5.96

moves

172.85

172.52

148.46

132.45

140.32

133,53

134.39

124.97

162.78

156.05

153.38

157.20

156.65

161.26

126.72

125.50

126.65

128.80

var
cof.

0.882
0.882
0.856
0.784
0.826
0.818
0.827
0.751
0.800
0.871
0.889
0.830
0.889
0.837
0.828
0.865
0.790

0.786

best
color

5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.96
5.96

5.96

time
(sec)

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

100
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Table LXXXIV. VERTICES = 40, EDGELOAD = 0.5 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv

ikorman
ikorman
ipkorman
ipactual
ipreventla
iprevent2a
iprevent3a
iprevent4a
iconnecta
ikorgk2
ikorw2
ikorw2le
ikormaxw2
ikormaxw2le
ikorgk23
ikorw23
ipactgk2

ipactmaxw2

ncv

jkorman
jsucadja
jkorman
jpactual
jpreventla
jprevent2a
jprevent3a
jpreventda
jconnecta
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jpactual

jpactual

exact
color

8.23

moves

809.70

804.02

795.17

564.77

700.98

646.85

649.86

600.05

920.15

697.71

693.52

701.82

719.68

723.60

549.69

562.62

541.32

542.22

var
cof.

1456
1477
1627
1533
2.108
1755
1.876
1623
1702
1465
1432
1455
1403
1437
1458
1419
1551

1548

best
color

8.23
8.23
8.23
8.23
8.23
8.23
8.23
8.23
8.23
8.23
8.23
8.23
8.23
8.23
8.23
8.23
8.23

8.23

time
(sec)

2
24
27
24
28
27
27

26

7

24

20

0-

ap

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

too

1-

ap
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Table LXXXV. VERTICES = 40, EDGELOAD = 0.7 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv

ikorman
ikorman
ipkorman
ipactual
ipreventla
iprevent2a
iprevent3a
ipreventda
iconnecta
ikorgk2
ikorw'2
ikorw2le
ikormaxw?2
ikormaxw21e
ikorgk23
ikorw23
ipactgk2

ipactmaxw2

ncv

jkorman
jsucadja
jkorman
jpactual
jpreventla
jprevent2a
jprevent3a
jpreventda
jconnecta
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jpactual

jpactual

exact
color

11.88

moves

575.70

581.97

546.78

366.46

43531

394.58

383.48

398.99

551.03

485.78

477.00

452.62

503.17

47121

400.75

394.14

336.00

33741

var
cof.

0.819
0.809
0.888
0.906
0.868
0.807
0.797
0.846
1.082
0.822
0.809
0,784
0.891
0.825
0.929
0.932
0.944

0.961

best
color

11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88

11.88

time
(sec)

14

o
ap

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

100

1-
ap
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Table LXXXVI. VERTICES = 40, EDGELOAD = 0.9 (branch-and-bound scheme),
variations of Korman with and without swapping

nucv

ikorman
ikorman
ipkorman
ipactual
ipreventla
iprevent2a
iprevent3a
ipreventda
iconnecta
ikorgk2
ikonv2
ikorw2le
ikormaxw2
ikormaxw21e
ikorgk23
ikorw23
ipactgk?2

ipactmaxwz2

ncv

jkorman
jsucadja
jkorman
jpactual
jpreventla
jprevent2a
jprevent3a
jpreventda
jconnecta
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jkorman
jpactual

jpactual

exact
color

19.20

moves

72.87

73.62

56.49

52.17

55.13

52.20

54.94

61.25

75.18

56.61

56.73

61.57

56.44

61.43

51.42

50.14

51.46

51.46

var
cof.

0.630

0.619

0.541

0.415

0.489

0.455

0.534

0.557

1642

0.477

0471

0.633

0.472

0.636

0.415

0.377

0.428

0.428

best
color

19.20

19.20

19.20

19.20

19.20

19.20

19.20

19.20

1921

19.20

19.20

19.20

19.20

19.20

19.20

19.20

19.20

19.20

time
(sec)

100

100

100

100

100

100

100

100

100
100
100
100
100
100
100
100

100
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VIII. CONCLUSIONS

A. SUMMARY

The graph coloring problem (GCP) is a classic graph related problem. In
addition, it is NP-complete. There are many well-known algorithms for the GCP.
We distinguish a good graph coloring algorithm by two parameters, the number of
forward moves and the running time, which are obtained by running the algorithms
on a sequence of random graphs. From all the algorithms we have tried, we have
found two variations on Korman which seem to be beneficial especially for finding
exact colorings. We have not tested these algorithms on graphs of order more than
56. Thus, although one might suspect that similar conclusions will hold for larger
graphs, we do not know this. The evidence is entirely experimental. No asymptotic
results have been proved to show that the trend established on graphs of up to 56
vertices will continue. Although we have looked at some heuristic algorithms, our

results are mainly in exact colorings. From the observation of experimental results,

we draw the following conclusions.

(1) The Korman algorithm which has been the de facto standard for many years
is a simple and efficient algorithm. For small graphs, whose order is smaller than 40,

the Korman algorithm with backtracking finds the chromatic number reasonably
quickly.

(2) The Pactual algorithm substantially cuts the number of forward moves, but
the additional computational time is, however, also significant. For graphs of order
36, 40, 44, 48, 52, and 56 on edgeload = 0.3, Pactual saves 25% - 42% forward moves
over Korman. For graphs of order 36, 40, 44, 48, 52, and 56 on edgeload = 0.5,
Pactual saves 36% - 59% forward moves over Korman. For graphs of order 32, 36,

40 44 48, 52, and 56 on edgeload = 0.7, Pactual saves 29% - 63% forward moves over
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Korman. For graphs of order 36, 40, 44, 48, 52, and 56 on edgeload = 0.9, Pactual
saves 23% - 52% forward moves over Korman. However, Pactual is slower than
Korman except that n = 52 on edgeload = 0.7 (saving 35%), and n = 56 on cdgeload
= 0.5, 0.7, and 0.9 (saving 10% - 24%). One might conjecture that for large graphs,

the comparison would be similar to graphs of order 56. However, this is not certain.

(3) The effect of adding the 2-1 swapping to the Korman algorithm or any of its
variation is significantly beneficial, especially when edgeload = 0.5 and 0.7. For
graphs of order 48, 52, and 56 on cdgcload = 0.3, Korw2 is 10% to 18% faster than
Korman. For graphs of order 40, 44, 48, 52, and 56 on edgeload = 0.5, Korw2 is 12%
to 20% faster than Korman. For graphs of order 40, 44, 48, 52, and 56 on edgeload
= 0.7, Korw2 is 10% to 16% faster than Korman. It seems that Korw?2 will not run
faster than Korman for graphs of order less than 52 on 90% edgeload. For graphs of
order 36, 44, 48, 52, and 56 on edgeload = 0.3, Pactmaxw?2 is 14% to 33% faster than
Pactual. For graphs of order 36, 40, 44, 48, 52, and 56 on edgeload = 0.5, Pactmaxw2
is 10% to 25% faster than Pactual. For graphs of order 36, 40, 44, 48, 52, and 56 on
edgeload = 0.7, Pactmaxw?2 is 12% to 25% faster than Pactual. For graphs of order

44, 48, 52, and 56 on edgeload = 0.9, Pactmaxw?2 is 13% to 25% faster than Pactual.

Swapping appears to be beneficial in the mean except perhaps on some graphs
of small order. Pactual only begins to be beneficial in terms of running time on graphs
of order approximately 56. However, Pactual and swapping together, Pactmaxw?2,
appear to be exceptionally beneficial for graphs of order 56. Although we do not know

this for certain, we suspect that for graphs of higher order, these variations on Korman

will prove to be at least as beneficial as on graphs of order 56.

(4) The look-ahead procedure, which eliminates from further consideration a

block vertex (refer to chapter 6) and removes block colors (refer to chapter 6) from the
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feasible color set, significantly improved running time and the number of forward

moves.

(5) Under non-backtracking, the Pactual algorithm with 2-1 swapping colors a
graph with fewer colors than the Korman algorithm. Pactmaxw2 uses the number of
heuristic colors which is about 0.13 - 0.38 colors closer to the chromatic number than
Korman except n = 28 on edgeload = 0.9, n = 32 on edgeload = 0.5 and 0.9, n =
36 on edgeload = 0.3, and n = 40 on edgeload = 0.9, about 0.02 - 0.09 colors closer
than Korman. For graphs of order 56 on edgeload = 0.5, 0.7, and 0.9, Pactmaxw?2 is
better than Korman by the amount of the difference in running time which is larger
than the amount of the difference in running time between Korw2 and Korman.

Pactmaxw?2 without backtracking appears to be the best heuristic algorithm among the

variations of the vertex-color sequential algorithm which we have programmed.

(6) In comparing branch-and-bound as any exact algorithm with backtracking,

branch-and-bound is much slower due to the necessity of saving partially colored

graphs, and is not recommended.

(7) Among the heuristic algorithm, we have considered Ilimit, epsilon, and
branch-and-bound. Limit is a probabilistic algorithm which narrows the average
number of branches from a node to a real number between 1and 2. Epsilon narrows
the number of branches ofa node by setting a threshold on the scores of each branch.
Branch-and-bound uses a preference function and a preset buffer size to prune the
search tree in a breadth first search. It appears that the Pactual algorithm with 2-1
swapping is also beneficial for heuristic coloring of large graphs. Wwe have not

compared these heunstic algorithms sufficiently with other heuristic algorithms to yield

any definitive conclusion.
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B. FURTHER RESEARCH TOPICS

) Compare the 4 exact algorithms, Korman, Korw2, Pactual, and Pactmaxw2,
on graphs of order more than 56. This will require a considerable amount ofcomputer

time.

(2) The new color, in the feasible color set, is always the last choice in our
developed ncv-selection functions. However, this kind of arrangement may need more
backward moves and forward moves for some graph. Is there a ncv-selection function

which handles the new color better than we did?

(3) The weight function mentioned in ipkorman in chapter 6 is helpful in selecting
the nucv which is adjacent to a neighbor having a particularly high chrome-degree.
W hile observing the experimental results of various bases, we only know it is helpful

in the situation, weight ~ 0 or 1. We wonder if there are certain weights that are

exceptionally helpful in improving performance.

(4) In the selection functions (nucv-selection plus ncv-selection function), we use
three parameters, the set of adjacent vertices, the chrome-degree, and the white-degree,
to decide the nucv and the ncv. Is there an exceptionally good selection function whose

complexity is close to that of the Korman algorithm using those three parameters or

an extra parameter?

(5) In the branch-and-bound scheme, is there a good preference function which

obtains a coloring close to the chromatic number using a small number of buffers?

(6) Compare the heuristic algorithms, limit, epsilon, and branch-and-bound, with
other known heuristic algorithms and attempt to find optimal values on the parameters
of limit, epsilon, and branch-and-bound. Test whether heuristic algorithms given here

with optimal parameter are preferable to other heuristic algorithms on large graphs.
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