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Tenth International Specialty Conference on Cold·formed Steel Structures 
SL Louis, Missouri, U.S.A., October 23-24, 1990 

A SIMPLE SEMI-ANALYTICAL, SEMI-NUMERICAL APPROACH TO 

THIN-WALLED STRUCTURES STABILITY PROBLEMS 

James Rhodes' and P W Khong2 

A simple and efficient methodology has been developed to predict the elastic buckling 
behaviour of thin-walled structures. In the analysis, the cross section is treated as a 
system of connected plate and the buckling behaviour of each individual plate component 
is described. Utilizing the variational method based upon the principle of minimum 
potential energy, the stiffness of each plate component is then assembled based upon the 
methodology of matrix structural analysis. Unlike the Finite Element Method (FEM) 
and the Finite Strip Method (FSM), the proposed model is independent upon the mesh 
subdivision and intelligent use of experience. Although only one term solution for the 
trigonometric function is used as the deflection form in the longitudinal direction, it 
provides upper bound solutions that were found to be in reasonably good agreement with 
the existing published solutions. 

Notation 

b 
k 
k, 
I 
m 
t 
u,v,w 
ro(x,y) 
x,y,z 
Ai 
A 
D 
E 
N 
UB 
UBI 
UBa 

V 
WB 

Width of elemental strip 
Buckling coefficient of structure 
Buckling coefficient of the 1st plate component 
Length of structure 
Number of half-waves in longitudinal direction 
Strip, plate thickness 
Displacewents in x, y and z direction 
out-nf-plane displacement at co-ordinate (x,y) 
Cartesian coordinate 
Cross-sectional area of strip 
Cross-sectional area of structure 
Flexural rigidity, (D=Et'/(12(1-v'))) 

Young's Modulus or modulus of elasticity 
Total number of strips/plate components of the structure 
Strain energy due to bending 
In-plane strain energy in bending 
Out-of-plane strain energy in bending 
Change in potential energy of a system 
Work dune due to external loading 
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Work done by in-plane bending 
Work done by out-of-plane bending 
Poisson's ratio of isotropic material, taken as 0.3 unless otherwise stated 
Angular displacements in y direction 
Direct stress in the x, y and z direction 

aCT Critical compressive stress 
A. Eigenvalue 

. a Compression eccentricity factor 
{B} displacement parameters vector 
[K] assembled stiffness matrix 
[S] assembled stability matrix 
Primes denote differentiation with respect to x 

a2v(x,y) " 
~=v 

Symbols that not listed here are defined throughout the text or figure where they first 
appear. 

Introduction 

Advancements in computer technology in recent years have promoted the evolution of 

structural analysis through numerical methods. However, in some cases, semi-numerical, 

semi-analytical approaches have been used as a substitute for the numerical method with 

the objective of saving in computing cost and input data preparation. 

For prismatic structural members, the FSM as suggested by Cheung [1,2] results in 

significantly reduced matrix size compared to the ordinary FEM. In his analysis, a 

Fourier series/polynomial series solution algorithm was presented. Unlike the finite 

element method, the finite strip method only discretises the structure in the transverse 

direction. Thus, the effort of discretising the model is relatively much less in FSM to 

achieve comparable accuracy to the FEM. 

Although the FSM algorithm of plate bending problem has been the subject of substantial 

research interest as demonstrated by a number of papers that have appeared in the 

literature over the past two decades, most of the FSM workers use the cubic finite strip 

for the~ analysis since the algebraic complexity of the method increases drastically as 

higher order terms are introduced. On the other hand, the applications of the conventional 

higher order analysis are often restricted to structures with constant thickness or material 

properties. 
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In the present analysis, the q-oss section of structure is treated asa system of connected 

plate components. Each plate component is modelled by a single elemental strip for 

which it's characters and behaviour are described by a fifth degree polynomial shape 

function in the transverse direction and trigonometric (one term) displacement function 

in the longitudinal direction. The use of the high accuracy higher order shape functions 

in the transverse direction, permits accurate results using only a single strip for each plate 

component of the structure. Thus, the proposed model dramatically increases the 

accuracy of the analysis and minimises the input data preparation during modelling. 

(a) (b) (c) 

Fig.l (a) Finite Element Model (b) Finite Strip Model (c) Proposed 

Model 

Strain Enere,v 

When subject to arbitrary external loads, the behaviour of each plate component can be 

analysed in terms of in-plane bending and out-of-plane bending effects. The knowledge 

of plate behaviour is thus essential. Utilizing the Love-Kichhoff assumption, the strain 

energy of a thin plate due to out-of-plane bending can be expressed as 

(1) 

Employing the energy approach based upon the Rayleigh-Ritz method, an assumed 

displacement function is chosen to satisfy the kinematic boundary conditions which 

involve rotations and nanslations in the transverse direction. In the present analysis, the 

displacement field is approximated by a fifth degree polynomial function which contains 
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a finite number of independent coefficients. In the longitudinal direction, a single term 

trigonometric function is a.ssumed since the boundary conditions are known or 

pre-determined. 

ro(x,Y) = [w(1-lOrt3 + 15rt - 6115) + bOI(11- 6113 + 8114 - 3115) 

+O.5b 2KI(112 - 3113 + 3114 -115)+ W(lOrt 3 -15114 + 6115) 

+b02(-4113 + 7114 - 3115) + 0.5b 2K2(113 - 2114 +115)] X 

In which X = sin(m1Ull) 

11 = Ylb 

x 

z 

Fig.2 Displacement Configuration 

(2) 

Substituting the assumed displacement function into Eqn.(l) and differentiating with 

respect to the unknown displacement coefficients, the minimized strain energy of a plate 

component can be expressed as 

P u w 

P 21 P 22 sym bOI 

auBO Db P 31 P 32 P 33 W 
-- b02 aWi} ) 14 P 41 P 42 P 43 P 44 

PSI P S2 P S3 P S4 P ss b2KI 

P 61 P 62 P 63 P 64 P 65 P 6 b2 

(3) 



where 181 
Pn ="33/,+24012+40/, 

311 . 
P2, = 33i' + 120/2+6/,-14/, 

50 
P31 =331,-24012-40/, 

151 
P., =-3301,+ 12012+6/, 

281 1 
PSI = 3960/ , +612 +"31, 

181 1 
POl = 396O/ ,-612-i' 

104 384' 32 
P22 = 495/'+5/2+51, 

P32=-P41 

133 216 2 
P., =-990/ , +5/2 +51, 

23 22 7 
P" = 1320/ , +5/2 +15/ , 

13 8 2 
P 62 = 990/'-5/2 +15/ , 

12 = f' (X)2 dx 
o 

1,= f'[(X,)2.- V(X'l-V(X ·X")} dx 
o 
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181 
P" ="33/, +24012+40/, 

P43 =-P21 

PS3 =P61 

P63 =PS1 

P64 =-PS2 

1 6 2 
P,,= 6601, +5/2 +"45/, 

1 1 1 
P" = 79i' +5/2 +"45/ , 

P66 =PSS 

Matrix [P] is symmetric and represents the stiffness of a plate component due to 

out-of-plane bending. 

The in-plane destabilizing effects of the basic stress system is derived as in [3,4] using 

elementary beam theory. For thin-walled open section under some arbitrary external 

loading system as shown in Fig.3, the assumption made is that the membrane stress 

system vary linearly across each strip component due to bending. 
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Fig.3 Stress System Due To In-Plane Bending 

Treating each plate component as a single beam element, the longitudinal stress of ith 

plate can be expressed as 

(4) 

In which v (x, y) = v . X is the in-plane displacement, v" is the in-plane curvature and S j 

is the average longitudinal stress. 

Since the transverse and shear stress can be disregarded in the beam theory and the 

in-plane displacements considered are due solely to in-plane bending, the resultant end 

load on any section must be zero. 

N 

2. SjAj=O 
i=1 

(5) 

And the in-plane bending strain energy of a system of plate components is given by 

(6) 

Employing the Rayleigh-Ritz method and minimising the last expression with respect 

to the displacement coefficients, the minimized strain energy of structure due to in-plane 

bending is 



dUB! N dUn 
-=L-

dVi n=l dVi 

= El1bi { i: [.4 
4 j=l 

i;l:.i 

= [E] {oJ 

= j-I N i+l 

A = L Ak + L Ak - L Ak 
k=l k=i+l k=j+l 

Potential Loss 
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(7) 

In deriving the stability matrix of external forces, it is assumed that each load is applied 

gradually until its critical value is reached and that each load-displacement relationship 

is linear. Considering a plate component of width dy loaded by crxtdy as shown, 

~Zy 
+ --- u 

Fig.4 Plate Subjected To Uniform End Compression 

The effective shortening in the x-direction can be approximated by 

(8) 
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For a series of connected plates, each with different compressive eccentricity factor 0., 

the applied stress of ith plate is given by 

where ~. = 1- 'i' (X. 
l j=l J 

In which (jo is the stress at the origin of 1 st plate. The work done by system of external 

loads that produce the deformation is finally expressed as 

W = (jot J(I3. _ o.iYi) (aw)2 dA 
2 • bi ax 

A, 

(9) 

Substituting Eqn.(2) into Eqn.(9) and differentiating with respect to the displacements 

coefficients, the minimized potential loss due to out-of-plane bending is 

QII W 

Q21 Q22 sym bel 

awBO (jotb Q31 Q32 Q33 W 
-- b82 15 a({O) ) 42 Q41 Q42 Q43 Q44 

Q51 Q52 Q53 Q54 Q55 b 21C1 

Q61 Q62 Q63 Q64 Q65 Q6 b 2 

(10) 

where 181 41 
Qu =ll~-ll(X 

181 420 
Q33=ll~-33(X 

311 289 
Q21=110~-330(X 

311 966 
Q"=-110~+ 495 (X 

50 25 
Q,. =1l~-1l(X 

181 21 
Q" = 1320 ~ - 280 (X 

151 107 
Q,. =-110~+ 165(X 

281 273 
Q,,= 1320~-1980(X 

281 21 
Q,. = 1320 ~ - 280 (X 

104 399 
Q" = 165 ~- 990(X 

181 41 
Q61 = 1320~- 660(X 

13 63 
QS4=-330~+3080(X 

104 5 
Q" ~ 165~-22(X 

23 21 
Q,,=-440~+ 660 (X 

151 239 
Q"=110~-330(X 

1 1 
Q,,= 220~- 528 (X 

399 399 
Q41 =-990~+ 1980 (X 

1 1 
Q" = 264 ~ - 528 (X 
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23 63 
Q" = 440~- 3080u 

13 5 
Q"=330P-264u 

The derivation of potential loss due to in-plane bending is similar to the out-of-plane 

bending but the in-plane defonnations are considered. 

= [H] {BJ (11) 

Transformation of Displacement Fields 

In the fonnation of the overall structural stiffness matrix, it is advantageous to write the 

element stiffness matrices in tenns of the in-plane displacements rather than the 

out-of-plane displacements. 

Considering an open section under some arbitrary extemalloading system, the connected 

edge, node P is assumed moving to a new coordinate P' as shown in the following figure, 

Fig.5 Displacement Configuration 

In which 'l'i = 'i>i - 'i>i -1' The new position represents the effect of the combination of 

both out-of-plane and in-plane bending imposed on the system. The assumption made 

here is that there is no axial strain in the local y-direction of each plate component. 

In Fig.5, from the geometry and trigonometry rules, the following relations of 

out-of-plane and in-plane displacement parameters arise. 
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(12) 

in-plane displacement vector {V} to be transformed to the new displacement vector 

{Vi-l ,bel' Vi ,bez , Vi + "b zlC"b zlC:J T 

Total Potential Energy 

Employing the Rayleigh-Ritz method, the potential energy is a minimum at equilibrium. 

This leads to the derivatives of the energy with respect to the new displacement parameters 

{Vi_I' Vi' Vi+! ,bel ,be:JT, which are 

au au a(w) au a(w) 
----=-------+-------a(Vi_l) a(W)a(Vi_l) a(w)a(Vi-\) 

au au a(w) au a(w) --=-----+------
a(Vi) a(w) a(Vi) a(w) a(vJ 

au au a(w) au a(w) 
---- = ------+-------
a(Vi+l) a(W)a(Vi+') a(W)a(Vi+') 

(l3) 

Substituting Eqn.(3) and the derivatives of Eqn.(12) into Eqn.(l3), the modified 

derivatives of the strain energy with respect to the new displacements fields are given 

by 

au. 
a({O},) = 

I Pllc/ 

'--

-Pl2 c l 

P" 

-PllCiTi 
+P13 C i T'i+l -P14 C i 

P21 T'i 
-P23 T'i+l P2• 

Ei+P¥'T'i P14T'i 
+P33 i+1 -P34 T'i+l 

-2P13 T'i T'i+ 
1 

P" 

sym. 

-P13 Ci Ci+l -PIS Ci -Pl6e i 

P23 Ci+l P2 , P2 , 

-P33 T'i+l Ci+l PlsTi P 16 T'i 
+P13 T'iCi+l -P3S T'i+l -P36 T'i+l 

P43 Ci+l P" P" 

P33 C2 i+1 P3S Ci+l P36Ci+l 

Pss PSG 

P" 



= [K] {oJ. 

where Ci = cosec'l'i 

Ti = cot'l'i 
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{O} e = {Vi_bb6!, vi,b6z, Vi+bbzKbbzKJ T 

Ei is the element of [E) in Eqn.(7) 

(14) 

Similarly, the displacement vector of potential energy loss due to out-of-plane bending 

in Eqn.(lO) can be treated in the same way. After adding the potential energy loss due 

to in-plane bending from Eqn.(II), the potential energy loss due to edge loading of a 

plate component is given by 

I QuCjZ 
-QncjTj 

-Q!Zcj +Q!3cjTj+! -Q!4Cj -Q13CiCi+1 -Q!Scj -Q!6Cj 

Qz!Tj 
Qzz -QZ3T j+! Q24 QZ3Cj+1 Qzs QZ6 

H j+QI1TZj Q!4Tj -Q33T j+!Cj+! Q!sTj Q!6T j {Of, 

+Q33r j+1 -Q34Tj+1 +Q13T jcj+! -Q3ST j+! -Q36Ti+! 
-2Q!3TjTj+1 

Q44 Q43Cj+! Q4S Q46 

sym. 
Q33CZj+1 Q3SCj+1 Q36Cj+! 

Qss QS6 

L...-
Q66 

[S]{O} e (15) 

In which Hjis the element of [H] matrix derived from Eqn.(11) that is due to the effect 

of in-plane bending stresses. These can be directly added on the Vi displacement 

parameters of the stability matrix. 

Eqns.( 14) and (15) establish the stiffness matrix and stability matrix respectively for each 

plate component. By analogy, with the element stiffness and stability matrices, the 
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relationship between external loads on the strncture and displacement of joints of the 

strncture is known as strnctural stiffness matrix. For buckling, the characteristic 

eigenvalue problem is fonned as follows. 

[K] {O} -A,[S] {O} =0 (16) 

Where [K] is the assembled stiffness matrix, [S] is the assembled stability matrix and A, 

is the characteristic eigenvalue or critical load factor. Generally, the transcendental 

equation has an infinite number of roots. To represent the stability criterion, the smallest 

root is the critical load factor at which the strncture passes from Its stable position to a 

defonned configuration. 

The assembly algorithm is of fundamental importance in the present analysis and is 

shown graphically in Fig.6. 

1 1 1 1 1 1 1 V, 
11111 11 19., 
1 1 ! !! 22 1 1 22 V, 
11111221122 19., 
1 1 II a a 333 1 1 2233 V, 

223a333 223319., 
2 2 3 a a 3 3 2 2 3 3 V3 

33333 3319., 
33333 33 V. 

11111 11 K, 
1 1 1 1 1 11K, 

22222 22 K, 
22222 22 K, 

33333 33 K, 
33333 33 K, 

Fig.6 Overall Matrix Assembling 

The above figure shows the method of three plate components' stiffness matrices 

assembling to fonn a strnctural matrix. The size of matrix of this proposed model is 

4N+ 3 and is the mathematical expression of compatibilities at the joints of strncture. The 

curvatures at the interface between neighbouring plate component are discontinuous. 

The discontinuous curvatures remove the constraints on the displacements and decrease 

the stiffness with respect to the finite number of coordinates used to describe the displaced 

configurations of the strncture. Hence, energy increases when such constraints are 

removed and converges to a more accurate solutions. 
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In utilising edge curvatures as the element of the displacement vector, it may be thought 

that continuity at the boundaries with regard to curvature of adjacent plates must be 

satisfied for a mathematically admissible solution.· However this is not the case as there 

is no requirement that curvature continuity be ensured. Indeed, curvature is related to 

the equilibrium conditions at the edges of plate component and equilibrium need not be 

enforced. If strict attention is paid to the equilibrium boundary conditions with regards 

to curvature, then significantly increased labour is required and the only result of this 

increased labour is that the solution produced is a higher upper bound (i.e. less accurate) 

than if the curvatures are allow~d to vary so as to find the overall minimum of potential 

energy. 

This is one of the relatively few occasions in which neglect of boundary conditions not 

only leads to a substantial reduction in labour, but also improves the accuracy of solution 

and also generalises the approach to deal with discontinuous thickness structures without 

any additional requirements. 

Examples 

Of greatest practical significance, the direct assembly of the matrix solution permits 

structures of non-constant thickness and material properties to be modelled. The accuracy 

and versatility of this algorithm are demonstrated in Table 1 and Fig.7 to Fig.tO in 

comparison to those of known analytical results. 

Aspect Ratio 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Bulson [5] 27.040 8.410 5.138 4.202 4.000 4.134 4.470 
Present 27.040 8.410 5.138 4.203 4.001 4.135 4.471 

Analysis 

Table 1 Buckling coefficient of axially loaded plate with all edges 

simply support 
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I>J ~ 

"' ___ -'t1'-___ --' $l 
306mm 

Pavlovic [6] 
0+. FSM 

0.7 0.9 

I/b1 

1.1 1.3 

Fig.? Buckling Of Uniformly Compressed Angle Column 

t1ll2",0.6 

4 

0.2 0.4 0.6 

b2lb1 

, I hOI I 

\~/~ 
b1,t1 

L-~I b2 '12 
\ 

-- Exact Analysis 
¢ FSM 

0.8 

Fig.8 Elastic Buckling Solution Of Channel/Z-section 

1.5 
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From these results, the predicted buckling solutions using the present analysis are in good 

agreement with the published solutions. Some discrepancies were apparent due to errors 

during the digitized tracing procedure. 

Beside saving in machine computing time, the present methodology makes modelling 

versatile and thus any thin-walled structures can be modelled with much less effort 

compared to finite element method and lower order finite strip analysis. After extensive 

experience, the authors have found that the advantages of the proposed model a outweighs 

the disadvantages. 

The formulation using numericaVsemi-numerical approach enables complex geometry 

and boundary conditions to be simulated by a mathematical model. In Fig.9, an 

asymmetry compound lip element is modelled with various boundary conditions along 

plate component. The elastic buckling solution for each of these conditions is represented 

in terms of the plate buckling coefficient. 

28 ,----------------------------------------------, 

26 

24 

22 

20 

18 

16 

~ 14 

12 

10 

4 10 

11b1 

b1=100 

b1/t=100 
m=1 

12 

::oJ 15 
15 

:oJ 

14 16 18 20 

Fig.9 Buckling of Axially Compressed Compound Lip with Various 

Boundary Conditions Along Unloaded Plate Edge 
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Analytical approaches to the elastic buckling solutions of a stiffened channel section are 

tedious and are generally restricted to a specified geometric configuration. Using the 

present algorithm, the instability studies of the geometry of an intermediate stiffener of 

three channel sections are given in Fig. 10. In the figure, the effects of three types of 

stiffener cross section are studied; rectangular, triangular and trapezoidal. 

000 

4---b1"'10~ 

700 A. ~ 10 10 b2=35 

7 7 
000 10 

B. PJ §' 500 
E 10 E 
! c. Pn ~ 400 10 4 

J!: 
"' ~ t=1mm 

(j 300 

200 

100 

10 12 14 16 18 

I/b1 

Fig.IO Buckling Stresses for Compressed Channels with Intermediate 

Stiffener 

Conclusions 

The proposed methodology is based upon an energy formulation which combines the 

modelling versatility of the contemporary finite strip approach in conjunction with the 

Rayleigh-Ritz method. However, it does not rely on small mesh subdivision and 

intelligent use of experience for accuracy. In general, it is found that the quintic shape 

function is capable of representing the true buckling deformations accurately across the 

structural cross section. Although a single term solution for the trigonometric function 

is used in the longitudinal direction, the approximation provides upper bound solutions 

that were found to be in good agreement with the existing published solutions. 
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