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Tenth International Specialty Conference on Cold-formed Steel Structures
St. Louis, Missouri, U.S.A., October 23-24, 1990

A SIMPLE SEMI-ANALYTICAL, SEMI-NUMERICAL APPROACH TO
THIN-WALLED STRUCTURES STABILITY PROBLEMS

James Rhodes’ and P W Khong?

Abstract

A simple and efficient methodology has been developed to predict the elastic buckling
behaviour of thin-walled structures. In the analysis, the cross section is treated as a
system of connected plate and the buckling behaviour of each individual plate component
is described. Utilizing the variational method based upon the principle of minimum
potential energy, the stiffness of each plate component is then assembled based upon the
methodology of matrix structural analysis. Unlike the Finite Element Method (FEM)
and the Finite Strip Method (FSM), the proposed model is independent upon the mesh
subdivision and intelligent use of experience. Although only one term solution for the
trigonometric function is used as the deflection form in the longitudinal direction, it
provides upper bound solutions that were found to be in reasonably good agreement with
the existing published solutions.

Notation
b Width of elemental strip
k Buckling coefficient of structure
k, Buckling coefficient of the 1, plate component
I Length of structure
m Number of half-waves in longitudinal direction
t Strip, plate thickness
uyv,w Displacetaents in x, y and z direction
o(x,y) out-of-plane displacement at co-ordinate (x.,y)
X,Y,Z Cartesian coordinate
A; Cross-sectional area of strip
A Cross-sectional area of structure
D Flexural rigidity, @=Ef«12a-v))
E Young’s Modulus or modulus of elasticity
N Total number of strips/plate components of the structure
U Strain energy due to bending
Ug; In-plane strain energy in bending
Ugo Out-of-plane strain energy in bending
Change in potential energy of a system
W; Work done due to external loading
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Wi Work done by in-plane bending
Wso Work done by out-of-plane bending
v Poisson’s ratio of isotropic material, taken as 0.3 unless otherwise stated
0,,6, Angular displacements in y direction
0,,0,,0, Direct stress in the x, y and z direction
c,, Critical compressive stress
A Eigenvalue
o Compression eccentricity factor
{3} displacement parameters vector
K] assembled stiffness matrix
[S] assembled stability matrix
Primes denote differentiation with respect to x
2,
d’v (x; y)_ v
ox

Symbols that not listed here are defined throughout the text or figure where they first
appear.

Introduction

Advancements in computer technology in recent years have promoted the evolution of
structural analysis through numerical methods. However, in some cases, semi-numerical,
semi-analytical approaches have been used as a substitute for the numerical method with

the objective of saving in computing cost and input data preparation.

For prismatic structural members, the FSM as suggested by Cheung [1,2] results in
significantly reduced matrix size compared to the ordinary FEM. In his analysis, a
Fourier series/polynomial series solution algorithm was presented. Unlike the finite
element method, the finite strip method only discretises the structure in the transverse
direction. Thus, the effort of discrétising the model is relatively much less in FSM to

achieve comparable accuracy to the FEM.

Although the FSM algorithm of plate bending problem has been the subject of substantial
research interest as demonstrated by a number of papers that have appeared in the
literature over the past two decades, most of the FSM workers use the cubic finite strip
for their analysis since the algebraic complexity of the method increases drastically as
higher order terms are introduced. On the other hand, the applications of the conventional
higher order analysis are often restricted to structures with constant thickness or material

properties.
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In the present analysis, the cross section of structure is treated as a system of connected
plate components. Each plate component is modelled by a single elemental strip for
which it’s characters and behaviour are described by a fifth degree polynomial shape
function in the transverse direction and trigonometric (one term) displacement function
in the longitudinal direction. The use of the high accuracy higher order shape functions
in the transverse direction, permits accurate results using only a single strip for each plate
component of the structure. Thus, the proposed model dramatically increases the

accuracy of the analysis and minimises the input data preparation during modelling.

A A

()

Fig.l (a) Finite Element Model (b) Finite Strip Model (c) Proposed
Model

Strain Energy

‘When subject to arbitrary external loads, the behaviour of each plate component can be
analysed in terms of in-plane bending and out-of-plane bending effects. The knowledge
of plate behaviour is thus essential. Utilizing the Love-Kichhoff assumption, the strain

energy of a thin plate due to out-of-plane bending can be expressed as

) O (£
f{[ 7| +2 )(xay}"axzayz

M

Employing the energy approach based upon the Rayleigh-Ritz method, an assumed
displacement function is chosen to satisfy the kinematic boundary conditions which
involve rotations and translations in the transverse direction. In the present analysis, the

displacement field is approximated by a fifth degree polynomial function which contains
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a finite number of independent coefficients. In the longitudinal direction, a single term
trigonometric function is assumed since the boundary conditions are known or

pre-determined.
o(x,y) =[w(l - 10n*+151n* - 6n°) + b6, (1 — 61’ + 8n* — 31"
+0.5b%,(* = 3n° + 30" =)+ W(10n° - 151* + 6n%)
+50,(~4n° +71* - 3% + 0562 ,m° - 2n* +1°)] X
@

In which X =sin(mmnx/l)

n=yl/b

Fig.2 Displacement Configuration

Substituting the assumed displacement function into Eqn.(1) and differentiating with
respect to the unknown displacement coefficients, the minimized strain energy of a plate

component can be expressed as

FPu 1 w
P, P, sym b6,
aUBO _Q P3l P32 P33 P W q
{8 14|P, Py Py P, b8,
Py Py, Py Ps Py szl
Pa Py Pg  Pgy  Pes P b’

(€)



where

Matrix [P] is symmetric and represents the stiffness of a plate component due to
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out-of-plane bending.

The in-plane destabilizing effects of the basic stress system is derived as in [3,4] using
elementary beam theory. For thin-walled open section under some arbitrary external

loading system as shown in Fig.3, the assumption made is that the membrane stress

181
33
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Py =Pg

Py =Py

P,=P,,
Py=—Pg,

Py =—Ps,

2
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Pu=t66"1*54" 35

1,

I,+ll,+ —1I,

1
Pes= 792
Pgg=Ps;s

5

system vary linearly across each strip component due to bending.
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Fig.3 Stress System Due To In-Plane Bending

Treating each plate component as a single beam element, the longitudinal stress of ith

plate can be expressed as

v, y)

S;=§,~+Ey‘. 22
x

=S;+Ev"y, @

In whichv(x,y)=v - X is the in—p]ane displacement, v" is the in-plane curvature and S;
is the average longitudinal stress.

Since the transverse and shear stress can be disregarded in the beam theory and the
in-plane displacements considered are due solely to in-plane bending, the resultant end

load on any section must be zero.
N
Y SA;, =0 o)

And the in-plane bending strain energy of a system of plate components is given by

N 1 S? )
Un=23 )% ©
14
Employing the Rayleigh-Ritz method and minimising the last expression with respect
to the displacement coefficients, the minimized strain energy of structure due to in-plane
bending is
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dvi A dv,

Elp; ~[= (Xi—fL)(A‘j—A_j)] [ 2 (A‘i—A,»)Z]
=——4 {]§1 A-— A ij,'"" A—gbiti—T vibi

J#i

=[E] {3} ™

where _ ¥ i-1
A=by, A= X b, A= X by
k=i+1 k=1

= j-1 i+1
A=Y a4+ S A~ % 4
k=1 k=i+1 k=j+1
Potential Loss

In deriving the stability matrix of external forces, it is assumed that each load is applied
gradually until its critical value is reached and that each load-displacement relationship

is linear. Considering a plate component of width dy loaded by G,¢dy as shown,

Fig.4 Plate Subjected To Uniform End Compression

The effective shortening in the x-direction can be approximated by

J’du [an = ®
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For a series of connected plates, each with different compressive eccentricity factor o,

the applied stress of ith plate is given by

Yi
C;= GO[B;' — o b_.]

where ,_,_%§
p=1-Ze

In which o, is the stress at the origin of /st plate. The work done by system of external

loads that produce the deformation is finally expressed as

_ Ot o;y; \(ow \
= ) [B.- "—EJ (—B_x—) dA ©

Substituting Eqn.(2) into Eqn.(9) and differentiating with respect to the displacements

coefficients, the minimized potential loss due to out-of-plane bending is

[0 1[»

On On sym be,
OWgo Gith| Qs Qs O ' w |
AN 42|00 Qn O Ou bo,[ 15

On 0n 0 Qs Qs |[|P™

[Qq Q0 Qs Qi Qe Qe 67

(10)
where Qﬁ%ﬁ-—%a Qn=% _%a
Q21=ii_(l)ﬁ'%a Qu'—‘-%ﬁ‘*%a
o=~y 005250~ 756"
Qu=_'i%p+%a Q63=1—238§155‘%a
Q51=%B‘%0‘ Qu='ll%§' ‘%g%a
0u=15259~ 65" 0u=~335P+ 5085
Qu=%2_‘;p'25_2“ Qa=_%ﬁ+%a
3z=%p"§§_z°‘ Q55=ﬁﬁ‘51§0‘

399 399 1, 1
Cu="550P+1580% Qos=363P 525
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8. 6 1., 21
22=726P 3080 Qus=236P 7920

13 5
Ca=335P 264

L= JI(X’)zdx
0

The derivation of potential loss due to in-plane bending is similar to the out-of-plane

bending but the in-plane deformations are considered.

oW, o
‘f = Gotb(B _E) Isv,.

=[H] {8} an

Transformation of Displacement Fi

In the formation of the overall structural stiffness matrix, it is advantageous to write the
element stiffness matrices in terms of the in-plane displacements rather than the

out-of-plane displacements.

Considering an open section under some arbitrary external loading system, the connected

edge, node P is assumed moving to a new coordinate P’ as shown in the following figure,

Fig.5 Displacement Configuration

In which y; = ¢;—¢;_,. The new position represents the effect of the combination of

both out-of-plane and in-plane bending imposed on the system. The assumption made

here is that there is no axial strain in the local y-direction of each plate component.

In Fig.5, from the geometry and trigonometry rules, the following relations of

out-of-plane and in-plane displacement parameters arise.
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w; = vcoty; —v;_,cosecy,

W= v, cosecy;,, —v;coty;,, 12

which enable the out-of-plane displacement vector {w,b0,,W,b0,,b%,,b%}" and
in-plane displacement vector {v} to be transformed to the new displacement vector
Vi-1,b0,,9;,08,,v;.,1, b7k, b7}

Total Potential Ener,

Employing the Rayleigh-Ritz method, the potential energy is a minimum at equilibrium.
This leads to the derivatives of the energy withrespectto the new displacement parameters
{V;-1,V;,Vi41,b0,,b8} 7, which are

U = dU ow) + dU (W)
9;_1) OW)oW;-y) O(W)a(v;_,)

U _ U dw), U IW)
W) ow)aWw,) W)W,

9U __9U dw) A dU o)
0Vis1) OW)OWis1) O(W)I(isn)

(13)

Substituting Eqn.(3) and the derivatives of Eqn.(12) into Eqn.(13), the modified
derivatives of the strain energy with respect to the new displacements fields are given

by

=P, Ty

Pyc;’ | -Prc | +Pye; T | -Puc; | -Piciei, | -Pises | -Pie;
Py Ty
P, =Py Ty Py, Pp3Ciyy Pys P
A, Ei+Paszi Py T | =PasTinCin | PisTy | PieTy {8},
)~ TPy T i1y | =PayTiy | tP1TiCiny [ =PaysTin| —P3eTiny
‘ -2P);T;T;,
1
Py, Py3Ci0 Pys Pye
sym.
Pyciiy, P35Ciyy | PagCin
Pss Pse
Pgs
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= [K]1{3}, (14)

where  ¢;=cosecVy;

T; = coty;

{s}c = {vi-17bel:vi:b927vi+1’b2Kl7b2K2}T

E, is the element of [E] in Eqn.(7)
Similarly, the displacement vector of potential energy loss due to out-of-plane bending
in Eqn.(10) can be treated in the same way. After adding the potential energy loss due
to in-plane bending from Eqn.(11), the potential energy loss due to edge loading of a

plate component is given by

) -0,¢T;
0 | -Ouei | Q6T | -Ouei | -Cuscicin | -Cisti | -Gt
OuT,
O -0xT Ou 0xCint Oys Oy
W _ H+QT% | QuT; | -QuTiiCis | QusTi | QueT: @,
a3 03T |-Q3uTia | +01TiCus | -QssTiui | -QissTinn
-20,,T T,
Ou QisCiy Qis Ous
sym. X
03 03561 | Q36Cin
Oss Oss
L Oes
= [S1{3}. (15)

In which H;is the element of [H] matrix derived from Eqn.(11) that is due to the effect
of in-plane bending stresses. These can be directly added on the v; displacement
parameters of the stability matrix.

Eqns.(14) and (15) establish the stiffness matrix and stability matrix respectively foreach

plate component. By analogy, with the element stiffness and stability matrices, the
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relationship between external loads on the structure and displacement of joints of the
structure is known as structural stiffness matrix. For buckling, the characteristic

eigenvalue problem is formed as follows.
[K] {8} —AISI{&} =0 (16)

‘Where [K] is the assembled stiffness matrix, [S] is the assembled stability matrix and A
is the characteristic eigenvalue or critical load factor. Generally, the transcendental
equation has an infinite number of roots. Torepresent the stability criterion, the smallest

root is the critical load factor at which the structure passes from its stable position to a

deformed configuration.

The assembly algorithm is of fundamental importance in the present analysis and is

shown graphically in Fig.6.

S
JPQEFQEPEFgEY
NN POPIPS — —
NP PIP — —
PGPy
—h

NN NN
NN NN

WWRRW NN
W WK NN
WWwWwww
WWWWw
WWWwWww
WWWWW

=

P

—_—
—_—
—_—

—y

NN ——
WWNN == WWRRB PN — —

PN — =
wwrpn

N
N

wwpN
ww
ww
ww
ww
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Fig.6 Overall Matrix Assembling

The above figure shows the method of three plate components’ stiffness matrices
assembling to form a structural matrix. The size of matrix of this proposed model is
4N+3 and is the mathematical expression of compatibilities at the joints of structure. The
curvatures at the interface between neighbouring plate component are discontinuous.
The discontinuous curvatures remove the constraints on the displacements and decrease
the stiffness with respect to the finite number of coordinates used to describe the displaced
configurations of the structure. Hence, energy increases when such constraints are

removed and converges to a more accurate solutions.
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In utilising edge curvatures as the element of the displacement vector, it may be thought
that continuity at the boundaries with regard to curvature of adjacent plates must be
satisfied for a mathematically admissible solution.. However this is not the case as there
is no requirement that curvature cbntinuity be ensured. Indeed, curvature is related to
the equilibrium conditions at the edges of plate component and equilibrium need not be
enforced. If strict attention is paid to the equilibrium boundary conditions with regards
to curvature, then significantly increased labour is required and the only result of this
increased labour is that the solution produced is a higher upper bound (i.e. less accurate)
than if the curvatures are allowed to vary so as to find the overall minimum of potential

energy.

This is one of the relatively few occasions in which neglect of boundary conditions not
only leads to a substantial reduction in labour, but also improves the accuracy of solution
and also generalises the approach to deal with discontinuous thickness structures without

any additional requirements.

Examples

Of greatest practical significance, the direct assembly of the matrix solution permits
structures of non-constant thickness and material properties to be modelled. The accuracy
and versatility of this algorithm are demonstrated in Table 1 and Fig.7 to Fig.10 in

comparison to those of known analytical results.

Aspect Ratio 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Bulson [5] 27.040 8.410 5.138 4.202 4.000 4.134 4.470
Present 27.040 8.410 5.138 4.203 4.001 4.135 4.471
Analysis

Table 1 Buckling coefficient of axially loaded plate with all edges
simply support
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6.8 -
6.6 -
6.4 -
6.2

58 -
56 -
54
52 -

4.8
46 -
4.4 -
4.2

© t2t1=2.0
+ ©2t1=1.0
u 2t1=0.5

306mm

—  Pavlovic [6]
o+m FSM

0.7 0.9 14 13 1.5

b1

Buckling Of Uniformly Compressed Angle Column

1112=0.6

—— Exact Analysis

© FSM
3 -
N
1 4
0 T T T T — T T T
0.2 0.4 06 0.8 1
b2/bt
Fig.8 Elastic Buckling Solution Of Channel/Z-section



193

From these results, the predicted buckling solutions using the present analysis are in good
agreement with the published solutions. Some discrepancies were apparent due to errors

during the digitized tracing procedure.

Beside saving in machine computing time, the present methodology makes modelling
versatile and thus any thin-walled structures can be modelled with much less effort
compared to finite element method and lower order finite strip analysis. After extensive
experience, the authors have found that the advantages of the proposed model a outweighs

the disadvantages.

The formulation using numerical/semi-numerical approach enables complex geometry
and boundary conditions to be simulated by a mathematical model. In Fig.9, an
asymmetry compound lip element is modelled with various boundary conditions along
plate component. The elastic buckling solution foreach of these conditions is represented

in terms of the plate buckling coefficient.

b1=100

ki
>

o N A

1 Tt T T 1 1T 1T 1 1T T T T T T T T T 1
] 2 4 6 8 10 12 14 16 18 20

/b1

Fig.9 Buckling of Axially Compressed Compound Lip with Various
Boundary Conditions Along Unloaded Plate Edge
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Analytical approaches to the elastic buckling solutions of a stiffened channel section are
tedious and are generally restricted to a specified geometric configuration. Using the
present algorithm, the instability studies of the geometry of an intermediate stiffener of
three channel sections are given in Fig.10. In the figure, the effects of three types of

stiffener cross section are studied; rectangular, triangular and trapezoidal.

Critical Stress (N/mm*2)

/b1

Fig.10 Buckling Stresses for Compressed Channels with Intermediate
Stiffener

Conclusions

The proposed methodology is based upon an energy formulation which combines the
modelling versatility of the contemporary finite strip approach in conjunction with the
Rayleigh-Ritz method. However, it does not rely on small mesh subdivision and
intelligent use of experience for accuracy. In general, it is found that the quintic shape
function is capable of representing the true buckling deformations accurately across the
structural cross section. Although a single term solution for the trigonometric function
is used in the longitudinal direction, the approximation provides upper bound solutions

that were found to be in good agreement with the existing published solutions.
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