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Tenth International Specialty Conference on Cold-formed Steel Structures
St. Louis, Missouri, U.S.A., October 23-24, 1990

A NODEL FOR THE BEHAVIOR OF THIN- VALLED FLEXURAL MEMBERS
UNDER CONCENTRATED LOADS

by Monique Bakker (1), Teoman Pekdz (2), and Jan Stark (3).

SUMNARY

This paper presents a mechanism approach for analyzing the web crippling
behavior of thin-walled members subjected to the combined action of a
concentrated load and a bending moment. This approach also applies to the
determination of redistribution of bending moments in continuous multi- span
members due to web crippling.

The approach is based on yield line analysis of failure mechanisms. To
investigate the web crippling failure mechanisms, a series of web crippling
tests on cold-formed hat sections was performed. It was found that the corner
radius largely influences the type of mechanism that takes place.

INTRODUCTION

Thin-walled steel members are frequently used as structural elements in
buildings. Vhen such a member is subjected to a concentrated load or reaction
it may fail by web crippling. In 1985 the existing (Interior One Flange) web
crippling prediction formulas were compared with test results reported in
literature (see Fig. 1) and it was found that these formulas gave inconsistent
and sometimes unsafe results £Bakker and Pekdz, 1985). Furthermore, all these
formulas were based on curve-fitting of test results. 0f course each equation
correlated with the test results it was based on. The correlation is much
vorse for test results from other sources. The present research was prompted
by the lack of a general analytical model that can explain the significance of
principal parameters. The primary object of the research was to develop a
theoreticl model to describe the web crippling behavior. This model should
then be used to develop more reliable design gor-ulas.

CURRENT APPROACH

In practice web crippling may occur for different loading conditions in
different types of members. %n this paper only Interior One glange loading
conditions will be considered. For this condition the force is applied through
one flange and resisted by shear forces in the web (see Fig. 3). This
situation occurs at the interior supports of continuous, multi- span members,
or at a concentrated load applied somewhere in the middle of a span.
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The current design formulas (AISI Specification 1986, ECCS 1986) for IOF
veb crippling of sections having single, unreinforced webs have the following
general format:

Ry = C-ay-t2-C(sw/t)-C(le/t)-c(r/t)-c(ﬂw)-C(ay),
where C(i) are nondimensional factors accounting for the influence of the web
slenderness ratio, bearing length ratio, inside corner radius ratio, angle of
web inclination, and yield capacity of the steel respectively (see Fig. 2).
These web cripplin§ prediction formulas predict the ultimate limit load of a
member whose span ength is so short that the influence of the bending moment
on the web crippling failure is thought to be negligibly small. For members
vith a larger span, the influence of the bending moment on the web crippling

capacity is taken into account by means of an interaction formula in the form:
a-l/kd +ﬂ-l/ld <1,

where R is the applied concentrated load or reaction, M is the bending moment
acting at the place where the concentrated load is applied to the member, ld
is the design value for the bending moment capacity, and a and f§ are
empirically determined coefficients.

In continuous, multi- span members, a web crippling deformation at the
interior support results in a permanent rotation, which contributes to a
redistribution of bending moments. This phenomenon was described by von Unger
%1973), Reinsch §1983), Bryan and Leach (1984) and Tsai and Crisinel (1986).

o predict the ultimate capacity of continuous members, the load-deformation
behavior of the member at the interior support is determined from small scale
tests, similar to combined web crippling-bending tests (see Fig.3).

10F loading IOF loading - - ~
OO T, b -
t 3 } T’a_fs's—:’r'%;‘“
e~ — a A
%::::::::ff

Figure 3. Interior One Flanﬁe loading condition and small scale tests
simulating the behavior of the interior support of a continuous
multi- span member
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THEORY

Analysis of load-deformation behavior

The theoretical model is developed assuming that the behavior of a loaded
steel structure can be described approximately by using two different material
models: a model of ideal linear-elastic material behavior for the first phase
of loading, and a model of ideal rigid-plastic material behavior for the final
or post-collapse phase of loading.

To clarify this, the load-deiormation behavior of a loaded structure is
considered (see Fig. 4). As long as the load and deformations are srall, the
steel will behave elastically. The load-deformation behavior of the structure,
calculated assuming linear-elastic material behavior, can be represented by an
elastic loading curve in the load-deformation diagram. With increasing load
the steel will start to yield locally. The areas in which yielding occurs will
expand until a mechanism develops. After the formation of a mechanism, the
load-deformation behavior can be analyzed by applying rigid-plastic theory to
the (yield line) mechanism, and be represented by a plastic curve in the
load-deformation diagram. This curve can be either a loading or an unloading
curve, dependini on the type of mechanism.

The actual load-deformation curve of the structure, indicated by a dotted
line in Fig. 4, will start to deviate from the elastic loading curve at first

yield, and will coincide with the plastic curve only after the formation of a
mechanism.

load
T elastic (loading) curve

1. Elastic limit load
(first yield)
2. Plastic limit load

) mechanism)
plastic (unloading) curve 3. Ultimate limit load
—_—— (maximum load)

— deformation
Figure 4. Load-deformation behavior

Strength

In the analysis of structures it is useful to distinsuish between response
functions and resistance functions. A response function describes the behavior
of the structure subjected to loading, whereas a resistance function describes



303

the strength of the structure. A resistance function can be determined from a
response function by defining a limit state, that is a just acceptable state
of the structure, beyond which the structure is believed to be unable to
perform its function (to carry loads), or service (to provide an acceptable
environment).

In the behavior of the structure as described above different limit loads
(stre?gths), corresponding to different limit states can be recognized, for
example: )

1. the elastic limit load, corresponding to the state of first yield;

2. the plastic limit load, corresponding to the formation of a plastic
mechanism;

3. the ultimate limit load, corresponding to the maximum load carrying
capacity of the structure;

In developing strength prediction formulas, and in comparing test results with

these prediction formulas, it is important to realize what strength definition
is used. :

Generalized yield line theory

The plastic curve of a structure can be analyzed by using a generalized
yield line theory (Bakker, 1989). In yield line analysis the structure to be
analyzed is thought to consist of rigid plane elements joined by yield lines.
A11 (plastic) de%ormation is postulated to occur in the yield lines.
Generalized yield line theory was developed from classical yield line theory,
an upper bound limit analysis technique for the analysis of concrete slabs
loaded by forces perpendicular to the plate. In classical yield line theory in
the yield lines only bending moments are active. In generalized yield line
theory also normal forces and in-plane shear forces can be active.

Classical yield line theory is an upper bound limit analysis technique. An
arbitrary mechanism will result in an upper bound of the limit load of the
(undeformed) structure. The decisive mechanism can be determined by minimizing
the limit load of the structure. Generalized yield line theory is not used to
determine the limit load of the undeformed structure, but to analyze the
complete load-deformation behavior of the structure. An arbitrary mechanism
vill not result in an upper bound for the load-deformation behavior of the
structure. It results in an upper bound for the limit load of the structure
vith the deformation state as specified, but this deformation state may never
be attained in the actual mechanism. '

In generalized yield line theory it is not simple to determine the
decisive mechanism. The form of the mechanism may be governed by the elastic
behavior of the structure. Murray (1987) for instance showed that in box
columns the form of the (local) yield line mechanism depends on the place of
first yield in the column. In practice the occurring yield line pattern will
often have to be determined from observations in tests. The first step in
yield line analysis is then to check whether the load deformation behavior of
the structure can be determined from the observed yield line pattern. The
second step is to predict the observed yield line pattern.

It can be concluded that generalized yield line analysis is a complex and
rather intuitive method for analyzing the load-deformation behavior of a
structure. From trial and error it has to be determined whether an assumed
(simplified) mechanism leads to reasonable results.
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TEST PROGRAN

To study the web crippling load-deformation behavior and the occurring
yield line patterns it was found necessary to carry out new tests. For most
veb crippling and combined bending-web crippling tests described in literature
only the ultimate limit loads were registered, while for the development of
the model also information on the deformations was needed. A total of 70 tests
vas performed on hat sections formed by press braking. In these tests,besides
all the parameters occurring in the current web crippling prediction formulas,
the width of the top flange and the span length were varied. In this paper
emphasis will be given to the method used to interpret the test results.
Detailed test results can be found in the test report (Bakker, 1990).

To analyze the load-deformation behavior it has to be decided what
deformations should be considered. For describing the web crippling behavior
the web crippling deformation e, the deflection %, and the rotation y at the
end supports were found to be relevant parameters (see Fig. 5).

1. load bearing plate
2. reaction bearing plate

Figure 5. Deformation parameters for analyzing web crippling behavior.

The test setup for the (Interior One Flange loading) tests is shown in
Fig. 7. The measurement of the deformations is shown in Fig. 8. The deflection
f vas not measured directly but determined from the measured displacement of

the load bearing plate with respect to the reaction bearing plates:
f=6_-ce. -
T

INTERPRETATION OF TEST RESULTS

In the interpretation of the test results it was assumed that web crippling
results in the formation of a kind of plastic hinge, as shown in Fig. 6.

LytLib Lyt
F - —\\plasfic hinge
L lle
JULTCTTRN, AAAEAETALY

| SO 1
B35 (Lg-Lyp)/2 1L|i,l (Ls-Lyp)2 ;7 ouoH ~ Ry 7l

.

o
L

' F
e yield line in flange
M
[]]]]] undeformed part of member MC M.)

Figure 6. Idealized plastic hinge
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1. test specimen

2. load bearing plate

3. reaction bearing plate
4. load cell

5. hydraulic jack

Figure 7. Test setup

. frame
. angle glued to member
measuring bar
displacement indicator
3 measuring e
10. displacement indicator
measuring g
7 11. displacement indicator
8 measuring Jr

Ooo-~3Jm
. .

Figure 8. Measurement of deformations
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Plastic deflection and rotation

In a web cripplinﬁ or combined web crippling-bending test there are three
different phenomena which may cause nonlinear load-deflection behavior:

1. partial plastification of the tension flange,

2. local buckling of web and flange elements,

3. web crippling.

In this paper the deflection caused by web crippling is called plastic
deflection because it is caused by a kind of plastic hinge.

In the performed tests the plastic deflection was determined as the nonlinear
component of the deflection (see Fig. 9). Calculations showed that for all
test specimens yielding first occurred in the compression flange, so that
plastification of the tension flange did not contribute to the nonlinear
deflection. Local buckling of flange and web elements did occur, but the
resulting nonlinear deflections were calculated to be negligible small
compared to the measured nonlinear deflections.

Analogous to the plastic deflection, the plastic rotation was determined
as the nonlinear component of the measured rotations. The plastic rotation is
important in the determination of redistribution of bending moments in
continuous, multi- span members.

F F
Fy 1 Fy
4 oty | Y Ppl=0-9¢,
Fpl 1 =f-keF Pl =,-kfF

},arcfan k¢ \ rctan k,

+—t +—t + —>
fe fpl el 9l

|

Figure 9. Determination of plastic deflection and rotation

Plastic limit load and ultimate limit load

Earlier in this paper the ultimate limit load was defined as the maximum
load carrying capacity of the member, the plastic limit load as the load
corresponding to the formation of a mechanism. In the tested hat sections a
web crippling mechanism resulted in a plastic deflection of the member. It was
therefore decided to define the plastic limit load as the load initiating a
plastic deflection of the member (see Fig. 9).
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Determining the yield line pattern

In the idealized hinge as shown in Fig. 6 both yield lines are assumed in
the top flange and in the bottom flange of the member. The position of these
yield lines can be determined (approximately) from the tests results.

Assnmin§ that the plastic rotation is concentrated in two yield lines in
the bottom flange the distance between these two yield lines can be calculated
from the relation between the plastic deflection and the plastic rotation
(corresponding to the same web crippling deformation e):

Lyb(e) =L -2-fb1(e)/ sin ¢p1(e)

In the tests it was found that the distance between the yield lines in the
bottom flange did not change with increasing web crippling deformation.
Therefore it was concluded that the yield lines in the bottom flange are
stationary yield lines. So far no simple rule to predict the distance between
these yield lines has been found.

Considering the plastic hinge in more detail, for every web cripplin
deformation the distance between the yield lines in the top flange can also be
calculated from purely geometrical considerations. This calculation is based
on the following assumptions:

- the length of the top and bottom flan§e do not change

- the bending deformations of the top flange and the bottom flange are
concentrated in yield lines

- the inner yield lines in the top flange coincide with the edges of the load
bearing plate.

In most tests it was found that this distance changed with increasing (web

crippling) deformation gsee for instance Fig. 14C). This means that the outer

yield lines in the top flange are moving yield lines.

OBSERVED MECHANISMS

In the test two different mechanisms were observed, a yield arc mechanism
occurring in members with a small corner radius, and a rolling mechanism
occurring in members with a large corner radius. These mechanism were
described in literature before, but the possibility to analyze them with
generalized yield line theory was not recognized.

In Figs. 10, 11, 12 and 13 the deformations of the member for the rolling
and yield arc mechanism are shown. In Fig. 14 typical graphs for both
mechanisms are given. In Fig. 14A is a load-web cripplin§ diagram, and in
Fig. 14 B a load-plastic rotation diagram is given. The load F corresponds to
a bending moment: N = 1/4-F-(Ls— le). Fig. 14B can therefore also be

interpreted as a moment-plastic rotation diagram, as used to determine the
redistribution of bending moments in continuous multi- span members. In

Fig. 14C the web crippling deformation is shown as a function of the plastic
rotation, and in Fiﬁ' 14D it is shown how the distance between the yield lines
in the top flange changes with increasing web crippling deformation. It is
believed that together these graphs give a good description of the web
crippling behavior. From Fig. 14B one might conclude that for large plastic -
rotations the behavior of tEe rolling ang yield arc mechanisms is identical.
From the other graphs it can be seen however, that the deformation modes of
these two mechanism are quite different.
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T
e—-
F—_
T—

o stationary yield line o moving yield line

Figure 10. Veb crippling deformation in rolling mechanism

R10 F=2.55kN
e =2.50mm

- e ———— s L

R10 F=3.55kN
, E=6.55mm

R10 F=3.55kN

€ =10.05mm

R10 F=3.0kN
e

=14.25mm

Figure 11. Deformation mode in rolling mechanism (test R10, see Fig. 14)
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Lol
VLT ]

e stationary yield line

Figure 12. Veb crippling deformation in yield arc mechanism

R1 F=52KkN

€ =0.50mm

Figure 13. Deformation mode in yield arc mechanism (test R1, see Fig 14)
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Rolling mechanism

In the rolling mechanism (first described by Reinsch, 1983) the web
crippling deformation is caused by a rolling process, in which the corner
radius ’rolls down’ through the web.(see Fig. 10). The rolling mechanism may
be modeled by two moving yield lines: the first moving yield line bends the
plate into a curvature and the second yield line straightens the plate again.
As a result of the rolling process the contact point between the member and
the load bearing plate moves to the edges of the load bearing plate.

The start of the rolling process seemed to coincide with a bend in the
load- web crippling deformation curve gsee Figs. 14A and 14B) and the
initiation of the plastic deflection of the member. After the initiation of
the plastic deflection the load steadily increased up to the ultimate limit
load (attained for rather large web crippling deformations}, and then slowly
dropped. The distance between the yield lines in the top flange was found to
decrease for increasing web crippling deformations (see Fig. 14C).

Yield arc mechanism

In the yield arc mechanism (first described by Rockey, Elgaaly and Bagchi,
1972) the web crippling deformation is caused by a yield arc %a curved yield
line) in the web underneath the load bearing plate (see Fig. 154). The
development of the yield arc corresponded to the attainment of the ultimate
load (at relatively small web crippling deformations) and the initiation of a
plastic deflection. After the attainment of the ultimate limit load the load
suddenly dropped. The distance between the yield lines in the top flange was
found to increase with increasing web crippling deformations (see Fig. 14C).

For large web crippling deformations, when the web underneath the load
bearing plate almost contacted the load bearing plate (see Fig. 12) the
deformation process began to resemble that of the rolling mechanism. This
explains why for large deformations the deformation patterns of the yield arc
and the rollin§ mechanism look very similar.

Curved yield lines are a familiar phenomenon in thin-walled steel members
(see for instance the the flip-disc mechanism described by Murray and Khoo,
1981), and can be analyzed with generalized yield line methods.

E
!

)

~—— -

|
{ |
; 1
! |
! |
| |
| |
L ]
i i

Figure 15A. Yie%d arc in cold-formed  Figure 15B. Yield arc in plate girder
member
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DISCUSSION
Parameters determining the failure mechanism

In the tests the occurrence of either the rolling mechanism or the yield
arc mechanism seemed to be governed by the corner radius. This may be made
plausible by regarding the corner radius as a parameter influencing the
eccentricity of the load application to the web.

In rectangular hollow sections joints too, different mechanisms are
encountered for different eccentricities, the eccentricity in this case being
defined as the chord width to branch width ratio. Kato and Nishiyama (1984)
for example, showed that in a T-joint of rectangular tubes three different
failure mechanism in the chord member may occur, a web crippling failure for
small eccentricities, a chord flange failure for large eccentricities and a
combined web crippling-chord flange -failure mechanism for medium
eccentricities (see Fig. 16).

In plate girders subjected to concentrated loads, where the eccentricity
of the load application to the web is very small, yield arc mechanisms similar
to those in cold-formed members are observed (Rockey, 1977). In plate girders
the width of the yield arc is larger than the length of the load bearing
plate, due to the larger stiffness of the flange %see.Fig. 15B).

Santaputra, Parks and Yu (1989) also distinguished two different types of
failure mechanisms in their tests, an overstressing failure and a web buckling
failure. It is believed that these mechanisms are identical to the rolling
mechanism and the yield arc mechanism respectively. They derived different
sempirical) veb cripplin% prediction formulas for these two mechanisms, but

idhno§ comment explicitly on the parameters determining the failure
mechanism.

Influence of bending moment

To explain the influence of the bending moment a simplified yield line
analysis is given. In yield line analysis the load corresponding to a specific
deformation state of a mechanism can be determined by equating the internal
rate of energy dissipation in the yield lines to the rate of external work by
the applied %orcbs. In the web crippling mechanism the rate of external work
is given by (see Fig. 6):

Ae = F.e + .'ypl’

vwhere € and y , are the web crippling rate and rotation rate, and N is the

bending moment acting at the place where the load is applied on the member.

As exp%ained before, there is a relation between the web crippling deformation
e and the plastic rotation, depending on the distances between the yield lines
in the top and bottom flange §see for instance Fig. 140}. Assuming that this
relation is described by tﬁe unction 1 = g(e), the plastic rotation rate

can be calgulaged from the plastic rotation as:
i 5‘3 L
7p1 =G "¢
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The internal rate of emergy dissipation Ai in the yield lines also depends on

the web crippling deformation e. Assuming that A; = h(e)-é and equating A to
A, the load on the member can be calculated as:

B(e) = h(e) - ¥-%(8)

In this formula for the load on the member three influences of the bending
moment can be recognized:

1. The direct influence of M on the external work: l-&pl,

2. The direct influence of M on the internal energy dissipation h(eg.é: the
stresses caused by the bending moment result in a reduction of the
plastic moment acting in the yield lines, and hence in a reduced energy
dissipation in the yield lines,

3. The indirect influence of N on the external and internal work, that is,
the influence of M on the form of the yield line pattern. This influence
can be regarded as a kind of second order effect.

The analysis of the combined web crippling and bending behavior would be
greatly simplified if the second order effect could be neglected, that is, if
the form of the yield line pattern (and hence the function g(e)) were
independent of the bending moment. The models by Reinsch (1983) and Tsai
(1987) are based on this assumption. In the tests this assumption was not
confirmed: for a larger span length (larger bending moment) the same web
crippling deformation resulted in a larger plastic rotation.

CONCLUSIONS

1. Hat-sections subjected to a concentrated load may fail by either a rolling
mechanism or a yield arc mechanism. Vhat type of mechanism occurs is
determined primarily by the bending radius.

2. Attempts to analyze the rolling and yield arc mechanism with generalized
yield line theory are currently carried out. The results of the analysis
will be used to develop more reliable web crippling prediction formulas.
This will probably result in different formulas for the two mechanisms,
and different formulas accounting for the influence of the bending moment
(as was done by Santaputra, Parks and Yu, 1989).

3. In cold-formed steel members the plastic rotation is an important factor
influencing the combined bending web- crippling behavior. In the web
crippling model the load for every web crippling deformation can only be
predicted accurately, if also the plastic rotation can be predicted
accurately. The web crippling model can therefore also be used to
detgrmine the redistribution of bending moments in continuous, multi-span
members.

4. The current web crippling formulas predict the ultimate limit load.
Another approach worth considering would be to predict the plastic limit
load (as for instance is done in the chord flange failure of rectangular
hollow sections).
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APPENDTX IT. NOTATION

b, width of bottom flange L distance between yield lines

b,  width of top flange in top flange
e veb crippling deformation | | bending moment
f deflection s, height of web
fpl plastic deflection r inside corner radius
¥ force t thickness of plate
L, length of load bearing plate d,  angle of web inclination
Ls span length ) rotation
Lyb distance between yield lines #p1 plastic rotation
in bottom flange v yield stress-
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