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Tenth International Specialty Conference on Cold-formed Steel Structures 
St. Louis, Missouri, U.S.A., October 23-24, 1990 

EFFECTIVE WIDTH IN ELASTIC POST-BUCKLING OF THIN FLANGES 

by Robert W. Dannemann 

1) INTRODUCTION 

The effective width (EW) concept is a classical resource for representing 
local buckling effects on stiffened flat steel flanges. There has been a 
great deal of testing and investigations on this matter and in the last 
decade also unstiffened flanges and webs of beams were included in this 
technique by the codes. 

The most important contribution to the adoption of this method was Prof. 
George Winter's proposal (1) included by AISI in their Specification of 
Light Gage Structural Members of·1946. 

As known, the EW concept is based on Von Karman's proposition of 1932 where 
the uneven stress distribution of buckled flanges were replaced by evenly 
stressed fictitous strips along corners of the flanges. This structural 
artifice has shown excellent results in design practice of metal structures. 
A great number of tests in different countries confirms the accuracy of this 
method mainly in plates buckling in the inelastic range, but from time to 
time some discrepancies have been detected and published for flanges 
buckling elastically. 

In this paper the author presents, based on tests performed on thin 
trapezoidal sheets, a complementary criteria for EW, when flanges buckle in 
the elastic range. This method compares well with the observed behavior and 
ultimate strength of test specimens. The author's suggestion is that for 
inelastic buckling the AISI and correlated design codes are valid but when 
sheets are very slender and they buckle elastically a modified EW criteria 
be applied. This proposed method not only shows excellent correlation with 
tests, but also facilitates a rational agreement between stiffened and 
unstiffened flange behavior when plates are very thin, fulfilling physical 
requirements not accomplished by the classical EW method, as it will be 
demonstrated in the paper. 

2) DESCRIPTION OF TESTS 

During 1988/89 the author had the opportunity to monitor a test program of 
trapezoidal sheets, for the purpose of issuing allowable load tables for an 
important roofing sheet industry. Over 70 sheets were submitted to 
destructive bending tests according to the test layout shown on Fig. 1a. To 
avoid the flattening of sheets during loading, transversal steel strips were 
fastened to the upper flanges, as shown on Fig. lb. 

1. Civil Engineer, Consultant, Santiago, Chile, Eng. Manager PUGA MUJICA 
Assor. SA 
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In this paper only a limited number of specimens of the sheets shown on Fig. 
2 will be analyzed, because these sheets show the most important differences 
between calculated and tested ultimate strength. 

The value Pua is the ultimate load calculated according to the 1986 AISI 
Specification, and Put is the measured test ultimate load. Only the thinner 
sheets of 0.55 mm (BWG 24) and 0.40 mm (BWG 27) thickness are reported here 
because thicker sheets showed good agreement with code values. Values Pua 
and Put are listed on Table 1. The theoretical value of Pua was calculated 
by the following expression: 

Pua 8 . Se . Fy 
L 

(I) 

Where Se is the effective section modulus of the sheet when the extreme 
fiber is compressed to Fy, calculated following the 1986 AISI Specification. 

The values of Table 1 show differences in the order of 45% for the BWG 27 
and 27% for the BWG 24 sheets, demonstrating that the calculated values are 
on the unconservative side. This result was considered as not satisfactory 
and it was decided to investigate this rather high level of discrepancy 
between theoretical and tested values. 

3) BEHAVIOR OF ELASTICALLY BUCKLED FLANGES 

During testing, the trapezoidal sheets buckled in the compression flange and 
compression portion of the web typical of a bending member; however, several 
observations can be made regarding the member's behavior. 

At the load corresponding to the theoretical critical buckling stress for 
the flange, instantly a set of very regular .shaped bulbs and depressions 
appeared in the flange and web. This buckling appeared in the center 
portion of the test specimen between both load applications, as shown on 
Fig. 3. It was remarkable that the web deformations extended over the 
entire depth, not over a partial web depth, as is described by current 
codes. When the sheets were unloaded, the local deformations disappeared 
immediately with no remainder of deformations, thus confirming the elastic 
buckling behavior. 

For all test specimens, when the ultimate load was reached, it was observed 
that the sheets collapsed locally, folding in a very uniform way, as shown 
by Fig. 4. This suggests that a defined failure mechanism was acting, which 
followed definable rules that produce the same collapse mode. The failure 
mechanism was not sudden thus giving the impression that a local yielding 
process was acting. Actually, the author found the failure pattern to be 
similar to the failure patterns shown in Refs. 14 and 16. 

From the above observations the following conclusions were driven: 
a) Two completely different phases exist in the structural response of the 

sheet, one before and another after reaching the critical buckling load 
of the flanges. 

b) The critical buckling load of the flanges defines a point of change in 
the physical behavior. 

c) Almost simultaneously, the flanges and webs buckled when the critical 
load was reached. The buckling was a snap through like action, where 
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circular bulbs and depressions appeared on their faces in a strictly 
regular and periodic pattern. Interaction and sympathetic action 
between flanges and webs becomes evident. 

d) The local buckling deformations were perfectly elastic. 
e) The failure of the sheets was produced by local folding of the flanges 

in a uniform collapse mechanism where the sheets were stressed 
longitudinally and transversally in bending and axially, plus possible 
local inelastic buckling. 

Based on these observations the author concluded that the failure of these 
sheets, when subjected to bending, should be represented by two strength 
components. The first component is the total section stressed to the 
critical buckling stress. An additional component is represented by the 
strength of the corners and their adjacent parts. Ultimate strength may be 
obtained by adding both components based on the principle of superposition. 

4) INVESTIGATION 

The investigation to determine the real physical behavior of elastically 
locally buckled flanges of corrugated sheets in bending started with a 
bibliographic search. In Refs. 6, and 10 the EW criteria are critically 
analyzed and in Refs. 2, 11, and 13 alternative methods are presented. In 
Ref. 8 webs were included in the method and Refs. 7, 9, and 15 report 
unconservative results in the use of the classical EW criteria when compared 
with tests. Data on corner failure mechanisms can be found in Refs. 14, and 
16, which probably will be useful in future studies for a better 
understanding of the collapse of the corners in elastically local buckled 
sheets. 

Based on the analysis of the results, and the observation of the tests, 
taking into consideration the available literature, the author investigated 
a number of different approaches to explain the unpredictable results of the 
tests. Finally the author adopted the method described in this paper as the 
best fit to the test results and physical behavior. 

5 ) PROPOSED METHOD 

The structural response of elastically buckled flanges may be represented by 
two strength components, as follows: 
a) An overall basic strength given by the classical critical buckling 

stress distributed evenly over the whole width of the compressed 
element. 

b) An additional strength concentrated in the corners and narrow strips 
adjacent to same corners, when stressed to an average ultimate stress 
higher than the critical stress, but less than the yield limit of the 
steel. 

In Fig. 5a, a flat stiffened element of width w is shown, and Fig. 5b shows 
the critical stress acting over the whole section. 

For stiffened flanges the critical stress is: 

K 112 E' 
(2) 
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For metric units (forces in KN and dimensions in cm) this expression 
becomes: 

fc 
(137.8) 2 K 

(W/t)2 

In this loading stage the flange strength QU (excluding the corners to 
facilitate analysis) is: 

QU = fc w t 

(3) 

(4) 

Surpassing this load the center of the plate, acting like a weak spring, 
because of its elastic buckling conformation, no longer will contribute to 
the strength and only narrow strips adjacent~to the corners may contribute 
to increase the strength of the flange. In Fig. 5c the real uneven stress 
distribution shown in dotted lines may be replaced by an evenly distributed 
ultimate stress Fp over two "real" effective widths B/2 adjacent to the 
corners, equalling the areas under the curves. This additional strength fiQ 
is: 

fiQ = (Fp - fc) B t (5) 

and the total strength QU of the flange will be: 

Qu = fc w t + (Fp - fc) B t (6) 

where B is the effective width, and Fp is the average ultimate stress in the 
corners. Both parameters should be defined to ca.lculate Qu. 

After selecting this method as the most representative for the elastic local 
buckling of flanges, the author found that Prof. L.C. Maugh and L.M. 
Legatski (2) already in 1946 made a similar proposal. Consequently credit 
has to be given to these authors and following their recommendation for the 
maximum stress Fp, the author adopted the value of the proportional limit as 
5/8 of corresponding yield limit. 

The definition of the effective width B will be given in following chapters. 

6 ) ULTIMATE COMPRESSION CAPACITY GRAPHS 

The graphical representation of the ultimate compression load of a flange as 
a function of the width/thickness ratio is useful to help visualize some 
important facts about the post buckling behavior of very thin plates. The 
ultimate compression capacity QU calculated by the 1986 AISI Specification 
is: 

Qu = b t Fy (7) 

where b is the EW of the flange. 

To simplify the analysis it will be assumed that the steel quality is 
constant (Fy = 30 KN/cm2 ). Later the influence of varying the yield limit 
will be shown by tracing a family of curves for different yield limits (Fig. 
8). 
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In Fig. 6a a stiffened flange of width w is shown, which will be compared 
with the same flange but split in the middle, thus resulting in two 
unstiffened flanges of width w/2 each (Fig. 6b). 

In Fig. 7 the ultimate compression capacity QU of these two cases are shown 
where: 

Curve ABC D represent QU for the stiffened flange 
Curve A E F G represent Qu for the double unstiffened flanges. 

These curves can be divided into three branches: the compact range, the 
inelastic buckling range and the elastic buckling range, as defined by the 
corresponding characteristic width/thickness ratios taken from the AISI 
Specification. For low wit ratios A<0.673, the flanges are compact. When 
the value of Eg. 8 exceeds 0.673, with k=4 for a stiffened, and k=0.43 for 
an unstiffened flange, the inelastic buckling range starts, which passes to 
elastic buckling when the condition expressed in Eg. 9 is reached: 

A 1.052 w /f:i.E-- = 0.673 
=~ t (8) 

( 137.8)2 K = Fp = (5/8) Fy (9) 
(w/t) 

The corresponding (w/t) lim and (w/t) crit values are marked on both curves 
of Fig. 7. 

Observing the curves it can be verified that both curves grow as the width 
to thickness ratio increases. When the wit ratio tends to infinity that 
means t/w approaches zero and the following limit values of Qu are attained: 

Stiffened flanges QU 50.28 Fy t 2 = 1,508 t 2 (10) 

Unstiffened flanges Qu 32.98 Fy t 2 = 989 t 2 ( 11) 

where QU is given in KN and t in cm 

These values show that according to the classical EW criteria, in the limit, 
when the flange width is infinitely wide, stiffened flanges would have 52% 
more capacity to resist compression than same flange split at the middle, 
forming a pair of unstiffened flanges. The analysis of these results 
deserve the following comments: 
a) It is physically improbable that when compressed flanges buckle in the 

elastic range, its overall strength may increase, because the quadratic 
reduction in the buckling strength cannot be compensated by the linear 
increase of the area, thus producing a constrained reduction in the 
overall strength as the width increased (for constant thickness). 

b) It is physically improbable that the stiffened flange of Fig. 7, when 
wit approaches infinity, will have more compression capacity than the 
double unstiffened flanges of the same width and area. It is obvious 
that when the width becomes very large, the critical stress contribution 
vanishes and the central part of the flange no longer contributes to the 
overall strength. 

Based on these two observations the following conclusions may be drawn: 
c) Necessarily both curves ABCD and AEFG must converge to a common strength 

value when wit becomes very large approximating infinity. They must 
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meet in definite value which is solely dependant on the corners 
strength. 

u) Curves ABCD and AEFG necessarily must have descending CD and FG 
branches. 

7 ) REAL EFFECTIVE WIDTH 

For the case of local elastic buckling the author defines a "real" ·EW 
designated with the letter B, which contrasts with the classical EW method, 
is a dimension of defined physical meaning. It does not come from empirical 
considerations and it is the measure of the integral of the overstressed 
areas of the corner strips provided a defined value Fp is established. For 
the case of elastic local buckling, it can be assumed that the contribution 
of the flats adjacent to the corners have an invariable width referred to 
the thickness of the plate, and independent of the stress level, provided 
that the critical buckling stress has been surpassed. This constant EW will 
be defined by the ratio B/t, independent of the width thickness ratio. 
Consequently when the width thickness ratio is very large, approximating 
infinity, the real effective width represents the ultimate strength of such 
flange with no buckling strength at all. 

Based on the above reasoning the "real" EW may be obtained from the 
classical expression of the effective width for unstiffened flanges (12), 
with k=0.43 

k 112 E 

The "real" EW is: 

B = 180 6 t ~ 180 t . Ny - Ny 

The same value is obtained from the expressions of the 1986 AISI 
Specification when k=0.43 and for t/w=O 

B/2 = P w = 1 - (0.22/\) ~ t 
\ t 

where value \ is calculated by Eq. 8 

With this value of B Eq. 6 may be rewritten as follows: 

Qu fc w t + «5/8) Fy - fc) ~ t 2 

Qu fc «w/t)-(180//FY» t 2 + 112.5 /FY t 2 

(12) 

( 13) 

(14) 

(15) 

(16) 

By representing Eq. 16 in Fig. 7 with Fy = 30 KN/cm2, two transition curves 
indicated as branches CD' and FG' result, where points D' and G' meet at 
infinity. 

The equations of these curves are, introducing the value Fy 
Eq. 16 

stiffened flanges QU ( 137.8)2 4 (~- 32 9) t 2 + 616 t 2 
(w/t) . t . 

30 KN/cm2 into 

(17) 
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Un stiffened flanges Qu = (~~;t-.8r 0.43 (w - 32.9)t 2 + 616 t 2 (18) 

In these expressions, when t/w becomes zero the first term vanishes and only 
the second term stays, in this case Q=616 t 2 which is the strength of the 
corners alone. For one unstiffened flange alone the Eq. 18 converts to: 

Qu = e!;t-.8r 0.43 (w/2t - 16.45) t 2 + 313 t> (19) 

It is convenient to represent curves for different steels. In Fig. 8 the 
compression capacity curves for three different steels are shown, allowing 
the visualization of the effects of the steel yield limit on the post 
buckling ultimate loads as a function of wit. Figure 8 shows the increasing 
capacity of flanges in the inelastic range, the decreasing values for 
elastic locally buckled plates, and finally, the characteristic value when 
t/w=O that is to say, when widths becomes extremely wide. Again, it is 
remarkable that in the inelastic range, the classical EW method furnishes 
correct results. On the contrary in the elastic range of local buckling 
these curves show significant differences with the classical EW method. 

8) MODIFIED EW CRITERIA 

The classical empirical criteria for EW assumes that the effective width b 
depends on a coefficient C defined by Winter (1), and adopted later with 
slight modifications by AISI and other codes. The term C is a linear 
function of the so called normalized slenderness t/w /Eff 

This value was orginally based on a randomly distributed set of tests 
results. The equation for Cis: 

C = 1.9 (1 - 0.415 ~ ~ ) (20) 

In Fig. 9 this equation is represented by the full line where for the ratio 
t/w=O (infinite width of flange), the C value reaches its highest value 
C=1.9. By inverting the independent variable as shown in Fig. 10, the 
representation of C is improved. The postbuckling range is better 
represented than in Fig. 9 where, for the higher width/thickness ratios, 
only a very narrow space of the graphical representation is available. 

In both Figs. 9 and 10 the parameter C appears as an increasing continuous 
function of the width/thickness ratio. But actually the passage from 
inelastic to elastic local buckling represents a physical discontinuity, 
which does not show on these curves. The same as in column buckling, the 
transition from the inelastic to elastic buckling is marked by a break in 
the physical phenomena and in its theoretical and graphical representation. 
The same must happen in plate buckling. Based on the above reasoning such a 
break point in the graphical representation of C may be found by calculating 
the value of B in the limit when t/w=O applying Eq. 13 

B = C t If- = 180 t (21) 
Fy Ny 

Solving Eq. 20, the value C becomes 1.247, instead of 1.9, assumed in the 
current EW method. Observe that this limit value of C is independent of the 
steel quality. If it is assumed that in the inelastic range the actual 
value is correct, it is reasonable to trace a line XB as shown on Fig. 9 as 
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a first approximation of a modified value of C in the elastic buckling 
range. By introducing this modified C value, it will be possible to apply 
actual codes without changing the general method established for computing 
the EW of compressed flanges. 

9) MODIFIED EW CRITERIA APPLIED TO BENDING 

The modified criteria for the postbuckling strength of thin plates described 
above may be extended to the bending of corrugated sheets, as those used in 
the tests described in this paper. 

When dealing with flanges and webs of trapezoidal sheets of width/thickness 
ratios higher than 50 or 60, and after observing the behavior of the tests, 
especially the web buckling of these sheets with its center of gravity near 
to the lower flanges, it was concluded that in the elastic range the web 
buckling extended on the whole width of the webs and not partially as it is 
deducted from EW criteria of the actual codes. The observed buckles in webs 
(bulbs and depressions) extend over the" whole width, from corner to corner, 
and in accordance with this observation, when reaching the elastic critical 
stress level in the webs it is assumed that the entire web buckles. In this 
case partial buckling of the web is improbable because the deformation of 
the compressed part of the web may extend to the slightly tensioned lower 
edge. Consequently for the bending of the trapezoidal sheets of Fig. 2 with 
very wide lower flanges, in comparison to the upper ones, the "real" EW 
strips B/2 were assumed to be acting in the upper flanges and on the whole 
webs as shown in Fig. 11. In the case of the yield limit of 30 KN/cm 2 the 
value of B/2 will be 16.45t defining the "real" effective section as the one 
shown in Fig. 11. Based on this reduced section, the effective section Se' 
may be easily determined. The effective ultimate bending moment Mup, will 
be: 

where 

Mup = S fc + ((5/B) Fy - fc) Se' 

S = total section modulus (No discounts). 
Se' = "real" effective section modulus (based on Fig. 11) 
Both values are included in Table 2 

In Table 2 the ultimate effective loads Pup, were calculated by the 
following expression: 

Pup B~ 
L 

(22) 

(23) 

In Table 2 the value Pup is compared with the test values Put, and as it can 
be observed, very good agreement exists between tested and calculated values 
applying the proposed method. 

It will be useful to mention that this method is not very sensitive to the 
adoption of either the maximum ultimate average stress Fp, or the "real" 
value of B/2. These differences only affect the corner strength, and not 
the basic strength which depends on the critical stress of buckling which is 
well defined when border conditions of the plates are known. 

10) CONCLUSIONS 
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A rather simple method for post buckling strength evaluation of flange 
elastic buckling has been presented. This method is based on bending test 
results and studies on thin standard trapezoidal sheets. This method allows 
the calculation of the post buckling strength of flanges and webs by using 
physically measurable values instead of empirical parameters. These values 
are: the theoretical critical buckling stress f of the plate according to 
its border conditions, a constant so called "rear" effective width B which 
varies slightly with the steel quality and a reduced maximum ultimate 
average stress Fp for the corner region (Less than yield limit). 

The proposed method may be applicable for beams and columns, having 
stiffened or unstiffened flanges as well as webs. It may be used in 
combination with building codes, where this method only will be applicable 
for local buckling in the elastic range. For inelastic buckling building 
codes are totally valid. 

This method can also be extended to partially stiffened flanges, but this 
will surpass the scope of this paper, and may deserve future publications. 

Discussions and the critical review of this paper by the profession and 
future investigations will be welcome. 
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APPENDIX II - NOTATIONS 

b effective width 
B "real" effective width 
C effective width coefficient 
E elasticity limit 
f stress 
fc critical buckling stress 
Fp proportional limit 
Fy yield strength 
K buckling coefficient 
L span 
Mup ultimate bending moment 
Pua ultimate load calculated by AISI criteria 
Pup ultimate load proposed in this paper 
Put ultimate load obtained by tests 
QU ultimate flange strength excluded corners 
S total section modulus 
Se effective section modulus as established by AISI 
Se' "real" effective modulus proposed in this paper 
t sheet thickness 
w flange width 
fiQ additional strength of corners strips 
A slenderness factor (AISI 1986) 
~ Poisson modulus = 0.3 
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a) 

L 

b) 

Fig 1 Test Set .. up 

253(10") 34 1.34") 

1100 (43.3 H) 

Fi~ 2 Sheet Section 
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Fig 3 Flange buckling 

Fig 4 Flange failure 
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Fig 5 Stresses in flanges 

w 

Fig 6 Stiffened and splitted 
flanges 
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Fig 11 IIReal" Effective Section 

TABLE 1 

t Fy L Se PUa Nil Put Put PUa 
rom KNcm m cm/m KN KN Average PtiF" 

O.lto 3lt.89 4.00 1.7'5 122'.0 B7 88.0 
Btj 79.0 

84.0 1.lt52 C1 tj5.0 

0.55 45.97 2.30, 2.70 431.7 A15 345.0 
342.0 A16 .:\.:59.0 1.262' 

0.55 36.02 2.30 2.85 357.0 A19 269.0 
A20 2,)0.0 279.5 1.277 

TABLE 2' 

t Fy L S Se' Pup N!1 Put Put ~~¥ mm KNcm m cm/m cm/m KN KN Average 

0*40 3lt .. 89 4.00 2.732 1.307 87.0 B7 88.0 
B~ 79.0 
(;1 /j5.0 84.0 1.036 

0.55 45.97 2.30 3.672 2.072 314.0 Al; 345.0 
A16 jj9.0 342.0 0.918 

0.55 36.02 2.30 3.672 2.274 272.0 A19 269.0 
A20 290.0 279.5 0.973 




	Effective Width in Elastic Post-buckling of Thin Flanges
	Recommended Citation

	Effective width in elastic post-buckling of thin flanges

