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This paper proposes a domain decomposition method for the coupled stationary Navier-Stokes and Darcy equations with the
Beavers-Joseph-Saffman interface condition in order to improve the efficiency of the finite element method. The physical interface
conditions are directly utilized to construct the boundary conditions on the interface and then decouple the Navier-Stokes and
Darcy equations. Newton iteration will be used to deal with the nonlinear systems. Numerical results are presented to illustrate the
features of the proposed method.

1. Introduction

The Stokes-Darcy model has been extensively studied in the
recent years due to its wide range of applications in many
natural world problems and industrial settings, such as the
subsurface flow in karst aquifers, oil flow in vuggy porous
media, industrial filtrations, and the interaction between
surface and subsurface flows [1–8]. Since the problemdomain
naturally consists of two different physical subdomains,
several different numerical methods have been developed to
decouple the Stokes and Darcy equations [6, 9–26]. For other
works on the numerical methods and analysis of the Stokes-
Darcy model, we refer the readers to [27–45].

Recently the more physically valid Navier-Stokes-Darcy
model has attracted scientists’ attention, and several coupled
finite element methods have been studied for it [46–51]. On
the other hand, the advantages of the domain decomposi-
tion methods (DDMs) in parallel computation and natural
preconditioning have motivated the development of different
DDMs for solving the Stoke-Darcymodel [6, 10–18, 21, 22]. In
this paper, we will develop a domain decomposition method
for theNavier-Stokes-Darcymodel based onRobin boundary
conditions constructed from the interface conditions. This
physics-based DDM is different from the traditional ones in
the sense that they focus on decomposing different physical

domains by directly utilizing the given physical interface
conditions.

The rest of paper is organized as follows. In Section 2, we
introduce the Navier-Stokes-Darcy model with the Beavers-
Joseph-Saffman interface condition. In Section 3, we recall
the coupledweak formulation and the corresponding coupled
finite element method for the Navier-Stokes-Darcy model.
In Section 4, a parallel domain decomposition method and
its finite element discretization are proposed to decouple
the Navier-Stokes-Darcy system by using the Robin-type
boundary conditions constructed from the physical interface
conditions. Finally, in Section 5, we present a numerical
example to illustrate the features of the proposed method.

2. Stationary Navier-Stokes-Darcy Model

In this section we introduce the following coupled Navier-
Stokes-Darcy model on a bounded domain Ω = Ω

𝑚
∪ Ω
𝑐
⊂

R𝑑, (𝑑 = 2, 3); see Figure 1. In the porous media region Ω
𝑚
,

the flow is governed by the Darcy system

�⃗�
𝑚
= −K∇𝜙

𝑚
,

∇ ⋅ �⃗�
𝑚
= 𝑓
𝑚
.

(1)
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Figure 1: A sketch of the porous median domain Ω
𝑚
, fluid domain

Ω
𝑐
, and the interface Γ.

Here, �⃗�
𝑚
is the fluid discharge rate in the porous media, K is

the hydraulic conductivity tensor, 𝑓
𝑚
is a sink/source term,

and 𝜙
𝑚
is the hydraulic head defined as 𝑧 + (𝑝

𝑚
/𝜌𝑔), where

𝑝
𝑚
denotes the dynamic pressure, 𝑧 the height, 𝜌 the density,

and 𝑔 the gravitational acceleration. We will consider the
following second-order formulation, which eliminates �⃗�

𝑚
in

the Darcy system:

−∇ ⋅ (K∇𝜙
𝑚
) = 𝑓
𝑚
. (2)

In the fluid region Ω
𝑐
, the fluid flow is assumed to be

governed by the Navier-Stokes equations:

�⃗�
𝑐
⋅ ∇�⃗�
𝑐
− ∇ ⋅ T (�⃗�

𝑐
, 𝑝
𝑐
) = ⃗𝑓
𝑐
, (3)

∇ ⋅ �⃗�
𝑐
= 0, (4)

where �⃗�
𝑐
is the fluid velocity, 𝑝

𝑐
is the kinematic pressure,

⃗𝑓
𝑐
is the external body force, ] is the kinematic viscosity of

the fluid, T(�⃗�
𝑐
, 𝑝
𝑐
) = 2]D(�⃗�

𝑐
) − 𝑝
𝑐
I is the stress tensor, and

D(�⃗�
𝑐
) = (∇�⃗�

𝑐
+ ∇
𝑇

�⃗�
𝑐
)/2 is the deformation tensor.

Let Γ = Ω
𝑚
∩ Ω
𝑐
denote the interface between the fluid

and porous media regions. On the interface Γ, we impose the
following three interface conditions:

�⃗�
𝑐
⋅ �⃗�
𝑐
= −�⃗�
𝑚
⋅ ⃗𝑛
𝑚
, (5)

−�⃗�
𝑐
⋅ (T (�⃗�

𝑐
, 𝑝
𝑐
) ⋅ ⃗𝑛
𝑐
) = 𝑔 (𝜙

𝑚
− 𝑧) , (6)

− 𝜏
𝑗
⋅ (T (�⃗�

𝑐
, 𝑝
𝑐
) ⋅ ⃗𝑛
𝑐
) =

𝛼]√d
√trace (∏)

𝜏
𝑗
⋅ �⃗�
𝑐
, (7)

where ⃗𝑛
𝑐
and ⃗𝑛

𝑚
denote the unit outer normal to the fluid

and the porous media regions at the interface Γ, respectively,
𝜏
𝑗
(𝑗 = 1, . . . , 𝑑 − 1) denote mutually orthogonal unit

tangential vectors to the interface Γ, and∏ = K]/𝑔.The third
condition (7) is referred to as the Beavers-Joseph-Saffman
(BJS) interface condition [52–55].

In this paper, for simplification, we assume that the
hydraulic head 𝜙

𝑚
and the fluid velocity �⃗�

𝑐
satisfy the

homogeneousDirichlet boundary condition except on Γ, that
is, 𝜙
𝑚
= 0 on the boundary 𝜕Ω

𝑚
/Γ and �⃗�

𝑐
= 0 on the

boundary 𝜕Ω
𝑐
/Γ.

3. Coupled Weak Formulation and
Finite Element Method

In this section we will recall the coupled weak formulation
and the corresponding coupled finite element method for the
Navier-Stokes-Darcy model with Beavers-Joseph-Saffman
condition. Let (⋅, ⋅)

𝐷
denote the 𝐿2 inner product on the

domain 𝐷 (𝐷 = Ω
𝑐
or Ω
𝑚
) and let ⟨⋅, ⋅⟩ denote the 𝐿2 inner

product on the interface Γ or the duality pairing between
(𝐻
1/2

00
(Γ))
 and𝐻1/2

00
(Γ) [5]. Define the spaces

𝑋
𝑐
= {V⃗ ∈ [𝐻1 (Ω

𝑐
)]
𝑑

| V⃗ = 0 on
𝜕Ω
𝑐

Γ
} ,

𝑄
𝑐
= 𝐿
2

(Ω
𝑐
) ,

𝑋
𝑚
= {𝜓 ∈ 𝐻

1

(Ω
𝑚
) | 𝜓 = 0 on

𝜕Ω
𝑚

Γ
} ,

(8)

the bilinear forms

𝑎
𝑚
(𝜙
𝑚
, 𝜓) = (K∇𝜙

𝑚
, ∇𝜓)
Ω
𝑚

,

𝑎
𝑐
(�⃗�
𝑐
, V⃗) = 2](D (�⃗�

𝑐
) ,D (V⃗))

Ω
𝑐

,

𝑏
𝑐
(V⃗, 𝑞) = −(∇ ⋅ V⃗, 𝑞)

Ω
𝑐

,

(9)

and the projection onto the tangent space on Γ:

𝑃
𝜏
�⃗� =

𝑑−1

∑

𝑗=1

(�⃗� ⋅ 𝜏
𝑗
) 𝜏
𝑗
. (10)

With these notations, the weak formulation of the cou-
pledNavier-Stokes-Darcymodel with BJS interface condition
is given as follows [46–51]: find (�⃗�

𝑐
, 𝑝
𝑐
, 𝜙
𝑚
) ∈ 𝑋

𝑐
× 𝑄
𝑐
× 𝑋
𝑚

such that

(�⃗�
𝑐
⋅ ∇�⃗�
𝑐
, V⃗)
Ω
𝑐

+ 𝑎
𝑐
(�⃗�
𝑐
, V⃗) + 𝑏

𝑐
(V⃗, 𝑝
𝑐
)

− 𝑏
𝑐
(�⃗�
𝑐
, 𝑞) + 𝑎

𝑚
(𝜙
𝑚
, 𝜓)

+ ⟨𝑔𝜙
𝑚
, V⃗ ⋅ ⃗𝑛
𝑐
⟩ − ⟨�⃗�

𝑐
⋅ ⃗𝑛
𝑐
, 𝜓⟩

+
𝛼]√d

√trace (∏)
⟨𝑃
𝜏
�⃗�
𝑐
, 𝑃
𝜏
V⃗⟩

= (𝑓
𝑚
, 𝜓)
Ω
𝑚

+ ( ⃗𝑓
𝑐
, V⃗)
Ω
𝑐

+ ⟨𝑔𝑧, V⃗ ⋅ ⃗𝑛
𝑐
⟩ , ∀ (V⃗, 𝑞, 𝜓) ∈ 𝑋

𝑐
× 𝑄
𝑐
× 𝑋
𝑚
.

(11)

Assume that we have in hand regular subdivisions of Ω
𝑚

and Ω
𝑐
into finite elements with mesh size ℎ. Then one can

define finite element spaces 𝑋
𝑚ℎ

⊂ 𝑋
𝑚
, 𝑋
𝑐ℎ
⊂ 𝑋
𝑐
and
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𝑄
𝑐ℎ
⊂ 𝑄
𝑐
. We assume that 𝑋

𝑐ℎ
and 𝑄

𝑐ℎ
satisfy the inf-sup

condition [56, 57]

inf
0 ̸= 𝑞
ℎ
∈𝑄
𝑐ℎ

sup
0 ̸= V⃗
ℎ
∈𝑋
𝑐ℎ

𝑏
𝑐
(V⃗
ℎ
, 𝑞
ℎ
)

V⃗ℎ
1

𝑞ℎ
0

> 𝛾, (12)

where 𝛾 > 0 is a constant independent of ℎ. This condition
is needed in order to ensure that the spatial discretizations of
the Navier-Stokes equations used here are stable. See [56, 57]
for more details of finite element spaces 𝑋

𝑚ℎ
, 𝑋
𝑐ℎ
, and 𝑄

𝑐ℎ

that satisfy (12).One example is theTaylor-Hood element pair
that we use in the numerical experiments; for that pair, 𝑋

𝑐ℎ

consists of continuous piecewise quadratic polynomials and
𝑄
𝑐ℎ
consists of continuous piecewise linear polynomials.
Then a coupled finite element method with Newton

iteration for the coupled Navier-Stokes-Darcy model is given
as follows [46]: find (�⃗�

𝑐,ℎ
, 𝑝
𝑐,ℎ
, 𝜙
𝑚,ℎ
) ∈ 𝑋
𝑐ℎ
×𝑄
𝑐ℎ
×𝑋
𝑚ℎ

in the
following procedure.

(1) The initial value �⃗�0
𝑐,ℎ

is chosen.

(2) For𝑚 = 0, 1, 2, . . . ,𝑀, solve

(�⃗�
𝑚+1

𝑐,ℎ
⋅ ∇�⃗�
𝑚

𝑐,ℎ
, V⃗
ℎ
)
Ω
𝑐

+ (�⃗�
𝑚

𝑐,ℎ
⋅ ∇�⃗�
𝑚+1

𝑐,ℎ
, V⃗
ℎ
)
Ω
𝑐

+ 𝑎
𝑐
(�⃗�
𝑚+1

𝑐,ℎ
, V⃗
ℎ
) + 𝑏
𝑐
(V⃗
ℎ
, 𝑝
𝑚+1

𝑐,ℎ
)

− 𝑏
𝑐
(�⃗�
𝑚+1

𝑐,ℎ
, 𝑞
ℎ
) + 𝑎
𝑚
(𝜙
𝑚+1

𝑚,ℎ
, 𝜓
ℎ
)

+ ⟨𝑔𝜙
𝑚+1

𝑚,ℎ
, V⃗
ℎ
⋅ ⃗𝑛
𝑐
⟩ − ⟨�⃗�

𝑚+1

𝑐,ℎ
⋅ ⃗𝑛
𝑐
, 𝜓
ℎ
⟩

+
𝛼]√d

√trace (∏)
⟨𝑃
𝜏
�⃗�
𝑚+1

𝑐,ℎ
, 𝑃
𝜏
V⃗
ℎ
⟩

= (�⃗�
𝑚

𝑐,ℎ
⋅ ∇�⃗�
𝑚

𝑐,ℎ
, V⃗
ℎ
)
Ω
𝑐

+ (𝑓
𝑚
, 𝜓
ℎ
)
Ω
𝑚

+ ( ⃗𝑓
𝑐
, V⃗
ℎ
)
Ω
𝑐

+ ⟨𝑔𝑧, V⃗
ℎ
⋅ ⃗𝑛
𝑐
⟩ ,

∀ (V⃗
ℎ
, 𝑞
ℎ
, 𝜓
ℎ
) ∈ 𝑋
𝑐ℎ
× 𝑄
𝑐ℎ
× 𝑋
𝑚ℎ
.

(13)

(3) Set �⃗�
𝑐,ℎ
= �⃗�
𝑚+1

𝑐,ℎ
, 𝑝
𝑐,ℎ
= �⃗�
𝑚+1

𝑐,ℎ
, and 𝜙

𝑚,ℎ
= 𝜙
𝑀+1

𝑚,ℎ
.

4. Physics-Based Domain
Decomposition Method

The coupled finite element method may end up with a
huge algebraic system, which combines all parts from the
Navier-Stokes equations, Darcy equation, and interface con-
ditions together into one sparse matrix. Hence it is often
impractical to directly apply this method to large-scale real
world applications. In order to develop a more efficient
numerical method in this section, we will directly utilize the
three physical interface conditions to construct a physics-
based parallel domain decomposition method to decouple
the Navier-Stokes and Darcy equations.

Let us first consider the following Robin condition for
the Darcy system: for a given constant 𝛾

𝑝
> 0 and a given

function 𝜂
𝑝
defined on Γ,

𝛾
𝑝
K∇𝜙
𝑚
⋅ ⃗𝑛
𝑚
+ 𝑔𝜙
𝑚
= 𝜂
𝑝
, on Γ. (14)

Then, the corresponding weak formulation for the Darcy part
is given by the following: for 𝜂

𝑝
∈ 𝐿
2

(Γ), find 𝜙
𝑚
∈ 𝑋
𝑚
such

that

𝑎
𝑚
(𝜙
𝑚
, 𝜓) + ⟨

𝑔𝜙
𝑚

𝛾
𝑝

, 𝜓⟩

= (𝑓
𝑚
, 𝜓)
Ω
𝑚

+ ⟨

𝜂
𝑝

𝛾
𝑝

, 𝜓⟩ , ∀𝜓 ∈ 𝑋
𝑚
.

(15)

Second, we can propose the following two Robin-type
conditions for the Navier-Stokes equations: for a given
constant 𝛾

𝑓
> 0 and given functions 𝜂

𝑓
and ⃗𝜂

𝑓𝜏
defined on

Γ,

⃗𝑛
𝑐
⋅ (T (̂⃗𝑢

𝑐
, 𝑝
𝑐
) ⋅ ⃗𝑛
𝑐
) + 𝛾
𝑓

̂⃗𝑢
𝑐
⋅ ⃗𝑛
𝑐
= 𝜂
𝑓
, on Γ,

−𝑃
𝜏
(T (̂⃗𝑢
𝑐
, 𝑝
𝑐
) ⋅ ⃗𝑛
𝑐
) =

𝛼]√d
√trace (∏)

𝑃
𝜏

̂⃗𝑢
𝑐
, on Γ.

(16)

Then, the corresponding weak formulation for the
Navier-Stokes equation is given by the following: for 𝜂

𝑓
∈

𝐿
2

(Γ), find (̂⃗𝑢
𝑐
, 𝑝
𝑐
) ∈ 𝑋
𝑐
× 𝑄
𝑐
such that

(̂⃗𝑢
𝑐
⋅ ∇̂⃗𝑢
𝑐
, V⃗)
Ω
𝑐

+ 𝑎
𝑐
(̂⃗𝑢
𝑐
, V⃗) + 𝑏

𝑐
(V⃗, 𝑝
𝑐
)

− 𝑏
𝑐
(̂⃗𝑢
𝑐
, 𝑞) + 𝛾

𝑓
⟨̂⃗𝑢
𝑐
⋅ ⃗𝑛
𝑐
, V⃗ ⋅ �⃗�
𝑐
⟩

+
𝛼]√d

√trace (∏)
⟨𝑃
𝜏

̂⃗𝑢
𝑐
, 𝑃
𝜏
V⃗⟩

= ( ⃗𝑓
𝑐
, V⃗)
Ω
𝑐

+ ⟨𝜂
𝑓
, V⃗ ⋅ ⃗𝑛
𝑐
⟩ , ∀ (V⃗, 𝑞) ∈ 𝑋

𝑐
× 𝑄
𝑐
.

(17)

Our next step is to show that, for appropriate choices of
𝛾
𝑓
, 𝛾p, 𝜂𝑓, and 𝜂𝑝, the solutions of the coupled system (11) are

equivalent to the solutions of the decoupled equations (15)
and (17), and hence we may solve the latter system instead
of the former.

Lemma 1. Let (𝜙
𝑚
, �⃗�
𝑐
, 𝑝
𝑐
) be the solution of the coupled

Navier-Stokes-Darcy system (11) and let (𝜙
𝑚
, ̂⃗𝑢
𝑐
, 𝑝
𝑐
) be the

solution of the decoupled Navier-Stokes and Darcy equations
(15) and (17) with Robin boundary conditions at the interface.
Then, (𝜙

𝑚
, ̂⃗𝑢
𝑐
, 𝑝
𝑐
) = (𝜙

𝑚
, �⃗�
𝑐
, 𝑝
𝑐
) if and only if 𝛾

𝑓
, 𝛾
𝑝
, 𝜂
𝑓
, ⃗𝜂
𝑓𝜏
,

and 𝜂
𝑝
satisfy the following compatibility conditions:

𝜂
𝑝
= 𝛾
𝑝

̂⃗𝑢
𝑐
⋅ ⃗𝑛
𝑐
+ 𝑔𝜙
𝑚
, (18)

𝜂
𝑓
= 𝛾
𝑓

̂⃗𝑢
𝑐
⋅ ⃗𝑛
𝑐
− 𝑔𝜙
𝑚
+ 𝑔𝑧. (19)
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Figure 2: Convergence for the velocity of the free flow (a) and the hydraulic head of the porous medium flow (b) versus the iteration counter
𝑚 for the parallel DDM with BJS interface condition.

Table 1: Errors of the finite element method for the steady Navier-Stokes-Darcy model with BJS interface condition.

ℎ ‖�⃗�
ℎ
− �⃗�‖
0

‖�⃗�
ℎ
− �⃗�‖
1

‖𝑝
ℎ
− 𝑝‖
0

‖𝜙
ℎ
− 𝜙‖
0

|𝜙
ℎ
− 𝜙|
1

1/8 1.367 × 10
−3

6.147 × 10
−2

8.002 × 10
−3

6.940 × 10
−4

2.452 × 10
−2

1/16 1.687 × 10
−4

1.577 × 10
−2

8.559 × 10
−4

8.687 × 10
−5

6.187 × 10
−3

1/32 2.086 × 10
−5

3.978 × 10
−3

9.506 × 10
−5

1.089 × 10
−5

1.553 × 10
−3

1/64 2.594 × 10
−6

9.974 × 10
−4

1.121 × 10
−5

1.363 × 10
−6

3.890 × 10
−4

1/128 3.235 × 10
−7

2.496 × 10
−4

1.363 × 10
−6

1.705 × 10
−7

9.733 × 10
−5

Proof. Adding (15) and (17) together, we obtain the following:
given 𝜂

𝑝
, 𝜂
𝑓
∈ 𝐿
2

(Γ), find (𝜙
𝑚
, �̂�
𝑓
, 𝑝
𝑐
) ∈ 𝑋m × 𝑋𝑐 × 𝑄𝑐 such

that

(̂⃗𝑢
𝑐
⋅ ∇̂⃗𝑢
𝑐
, V⃗)
Ω
𝑐

+ 𝑎
𝑐
(̂⃗𝑢
𝑐
, V⃗) + 𝑏

𝑐
(V⃗, 𝑝
𝑐
)

− 𝑏
𝑐
(̂⃗𝑢
𝑐
, 𝑞) + 𝑎

𝑚
(𝜙
𝑚
, 𝜓) + 𝛾

𝑓
⟨̂⃗𝑢
𝑐
⋅ ⃗𝑛
𝑐
, V⃗ ⋅ ⃗𝑛
𝑐
⟩

+ ⟨
𝑔𝜙
𝑚

𝛾
𝑝

, 𝜓⟩ +
𝛼]√d

√trace (∏)
⟨𝑃
𝜏

̂⃗𝑢
𝑐
, 𝑃
𝜏
V⃗⟩

= (𝑓
𝑚
, 𝜓)
Ω
𝑚

+ ( ⃗𝑓
𝑐
, V⃗)
Ω
𝑐

+ ⟨𝜂
𝑓
, V⃗ ⋅ ⃗𝑛
𝑐
⟩

+ ⟨

𝜂
𝑝

𝛾
𝑝

, 𝜓⟩ , ∀ (V⃗, 𝑞, 𝜓) ∈ 𝑋
𝑚
× 𝑋
𝑐
× 𝑄
𝑐
.

(20)

For the necessity of the lemma, we pick 𝜓 = 0 and V⃗ such
that 𝑃

𝜏
V⃗ = 0 in (11) and (20); then by subtracting (20) from

(11), we get

⟨𝜂
𝑓
− 𝛾
𝑓
V⃗
𝑓
⋅ ⃗𝑛
𝑐
+ 𝑔𝜙
𝑚
− 𝑔𝑧, V⃗ ⋅ ⃗𝑛

𝑐
⟩ = 0,

∀V⃗ ∈ 𝑋
𝑐

with 𝑃
𝜏
V⃗ = 0,

(21)

which implies (19). The necessity of (18) can be derived in a
similar fashion.

As for the sufficiency of the lemma, by substituting
the compatibility conditions (18)-(19), we easily see that
(𝜙
𝑚
, ̂⃗𝑢
𝑐
, 𝑝
𝑐
) solves the coupled Navier-Stokes-Darcy system

(11), which completes the proof.

Nowwe use the decoupled weak formulation constructed
above to propose a physics-based parallel domain decompo-
sition method with Newton iteration as follows.
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Figure 3: Convergence for the pressure of the free flow (a) and 𝜂
𝑓
(b) versus the iteration counter𝑚 for the parallel DDM with BJS interface

condition.

(1) Initial values 𝜂0
𝑝
and 𝜂0

𝑓
are guessed. They may be

taken to be zero.

(2) For 𝑘 = 0, 1, 2, . . ., independently solve the Darcy
andNavier-Stokes equations constructed above.More
precisely, 𝜙𝑘

𝑚
∈ 𝑋
𝑚
is computed from

𝑎
𝑚
(𝜙
𝑘

𝑚
, 𝜓) + ⟨

𝑔𝜙
𝑘

𝑚

𝛾
𝑝

, 𝜓⟩ = ⟨

𝜂
𝑘

𝑝

𝛾
𝑝

, 𝜓⟩ + (𝑓
𝑚
, 𝜓)
Ω
𝑚

,

∀𝜓 ∈ 𝑋
𝑚
,

(22)

and �⃗�𝑘
𝑐
∈ 𝑋
𝑐
and 𝑝𝑘

𝑐
∈ 𝑄
𝑐
are computed from the

following Newton iteration.

(i) Initial value �⃗�𝑘,0
𝑐

is chosen for the Newton
iteration. For instance, it may be taken to be
�⃗�
0,0

𝑐
= 0 and �⃗�𝑘,0

𝑐
= �⃗�
𝑘−1

𝑐
for 𝑘 = 1, 2, . . ..

(ii) For𝑚 = 0, 1, 2, . . . ,𝑀, solve

(�⃗�
𝑘,𝑚+1

𝑐
⋅ ∇�⃗�
𝑘,𝑚

𝑐
, V⃗)
Ω
𝑐

+ (�⃗�
𝑘,𝑚

𝑐
⋅ ∇�⃗�
𝑘,𝑚+1

𝑐
, V⃗)
Ω
𝑐

+ 𝑎
𝑐
(�⃗�
𝑘,𝑚+1

𝑐
, V⃗) + 𝑏

𝑐
(V⃗, 𝑝𝑘,𝑚+1
𝑐

)

− 𝑏
𝑐
(�⃗�
𝑘,𝑚+1

𝑐
, 𝑞) + 𝛾

𝑓
⟨�⃗�
𝑘,𝑚+1

𝑐
⋅ ⃗𝑛
𝑐
, V⃗ ⋅ ⃗𝑛
𝑐
⟩

+
𝛼]√d

√trace (∏)
⟨𝑃
𝜏
�⃗�
𝑘,𝑚+1

𝑐
, 𝑃
𝜏
V⃗⟩

= (�⃗�
𝑘,𝑚

𝑐
⋅ ∇�⃗�
𝑘,𝑚

𝑐
, V⃗)
Ω
𝑐

+ ⟨𝜂
𝑘

𝑓
, V⃗ ⋅ ⃗𝑛
𝑐
⟩ + ( ⃗𝑓

𝑐
, V⃗)
Ω
𝑐

,

∀ (V⃗, 𝑞, 𝜓) ∈ 𝑋
𝑐
× 𝑄
𝑐
× 𝑋
𝑚
.

(23)

(iii) Set �⃗�𝑘
𝑐
= �⃗�
𝑘,𝑀+1

𝑐
and 𝑝𝑘

𝑐
= 𝑝
𝑘,𝑀+1

𝑐
.

(3) 𝜂𝑘+1
𝑝

and 𝜂𝑘+1
𝑓

are updated in the following manner:

𝜂
𝑘+1

𝑓
=

𝛾
𝑓

𝛾
𝑝

𝜂
𝑘

𝑝
− (1 +

𝛾
𝑓

𝛾
𝑝

)𝑔𝜙
𝑘

𝑚
+ 𝑔𝑧,

𝜂
𝑘+1

𝑝
= −𝜂
𝑘

𝑓
+ (𝛾
𝑓
+ 𝛾
𝑝
) �⃗�
𝑘

𝑐
⋅ ⃗𝑛
𝑐
+ 𝑔𝑧.

(24)

Then the corresponding domain decomposition finite ele-
ment method is proposed as follows.

(1) Initial values 𝜂0
𝑝,ℎ

and 𝜂0
𝑓,ℎ

are guessed. They may be
taken to be zero.

(2) For 𝑘 = 0, 1, 2, . . ., independently solve the Darcy and
Navier-Stokes equations with the Robin boundary
conditions on the interface, which are constructed
previously. More precisely, 𝜙𝑘

𝑚,ℎ
∈ 𝑋
𝑚ℎ

is computed
from

𝑎
𝑚
(𝜙
𝑘

𝑚,ℎ
, 𝜓
ℎ
) +⟨

𝑔𝜙
𝑘

𝑚,ℎ

𝛾
𝑝

, 𝜓
ℎ
⟩

= ⟨

𝜂
𝑘

𝑝,ℎ

𝛾
𝑝

, 𝜓
ℎ
⟩+ (𝑓

𝑚
, 𝜓
ℎ
)
Ω
𝑚

, ∀𝜓
ℎ
∈ 𝑋
𝑚ℎ
,

(25)
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Figure 4: Geometric convergence rate of the velocity of the free flow (a) and the hydraulic head of the porousmedium flow (b) for the parallel
DDM with BJS interface condition.

and �⃗�𝑘
𝑐,ℎ
∈ 𝑋
𝑐ℎ
and 𝑝𝑘

𝑐,ℎ
∈ 𝑄
𝑐ℎ
are computed from the

following Newton iteration.

(i) Initial value �⃗�𝑘,0
𝑐,ℎ

is chosen for the Newton
iteration. For instance, it may be taken to be
�⃗�
0,0

𝑐,ℎ
= 0 and �⃗�𝑘,0

𝑐,ℎ
= �⃗�
𝑘−1

𝑐,ℎ
for 𝑘 = 1, 2, . . ..

(ii) For𝑚 = 0, 1, 2, . . . ,𝑀, solve

(�⃗�
𝑘,𝑚+1

𝑐,ℎ
⋅ ∇�⃗�
𝑘,𝑚

𝑐,ℎ
, V⃗
ℎ
)
Ω
𝑐

+ (�⃗�
𝑘,𝑚

𝑐,ℎ
⋅ ∇�⃗�
𝑘,𝑚+1

𝑐,ℎ
, V⃗
ℎ
)
Ω
𝑐

+ 𝑎
𝑐
(�⃗�
𝑘,𝑚+1

𝑐,ℎ
, V⃗
ℎ
) + 𝑏
𝑐
(V⃗
ℎ
, 𝑝
𝑘,𝑚+1

𝑐
) − 𝑏
𝑐
(�⃗�
𝑘,𝑚+1

𝑐,ℎ
, 𝑞
ℎ
)

+ 𝛾
𝑓
⟨�⃗�
𝑘,𝑚+1

𝑐,ℎ
⋅ ⃗𝑛
𝑐
, V⃗
ℎ
⋅ ⃗𝑛
𝑐
⟩

+
𝛼]√d

√trace (∏)
⟨𝑃
𝜏
�⃗�
𝑘,𝑚+1

𝑐,ℎ
, 𝑃
𝜏
V⃗
ℎ
⟩

= (�⃗�
𝑘,𝑚

𝑐,ℎ
⋅ ∇�⃗�
𝑘,𝑚

𝑐,ℎ
, V⃗
ℎ
)
Ω
𝑐

+ ⟨𝜂
𝑘

𝑓,ℎ
, V⃗
ℎ
⋅ ⃗𝑛
𝑐
⟩ + ( ⃗𝑓

𝑐
, V⃗
ℎ
)
Ω
𝑐

,

∀ (V⃗
ℎ
, 𝑞
ℎ
, 𝜓
ℎ
) ∈ 𝑋
𝑐ℎ
× 𝑄
𝑐ℎ
× 𝑋
𝑚ℎ
.

(26)

(iii) Set �⃗�𝑘
𝑐,ℎ
= �⃗�
𝑘,𝑚+1

𝑐,ℎ
and 𝑝𝑘

𝑐,ℎ
= 𝑝
𝑘,𝑀+1

𝑐,ℎ
.

(3) 𝜂𝑘+1
𝑝,ℎ

and 𝜂𝑘+1
𝑓,ℎ

are updated in the following manner:

𝜂
𝑘+1

𝑓,ℎ
=

𝛾
𝑓

𝛾
𝑝

𝜂
𝑘

𝑝,ℎ
− (1 +

𝛾
𝑓

𝛾
𝑝

)𝑔𝜙
𝑘

𝑚,ℎ
+ 𝑔𝑧,

𝜂
𝑘+1

𝑝,ℎ
= −𝜂
𝑘

𝑓,ℎ
+ (𝛾
𝑓
+ 𝛾
𝑝
) �⃗�
𝑘

𝑐,ℎ
⋅ ⃗𝑛
𝑐
+ 𝑔𝑧.

(27)

5. Numerical Example

Example 1. Consider the model problem (2)–(6) with the
BJS interface condition (7) on Ω = [0, 𝜋] × [−1, 1] with
Ω
𝑚
= [0, 𝜋] × [0, 1] and Ω

𝑐
= [0, 𝜋] × [−1, 0]. Choose

(𝛼]√d/√trace(∏)) = 1, ] = 1, 𝑔 = 1, 𝑧 = 0, and K = 𝐾I,
where I is the identity matrix and 𝐾 = 1. The boundary
condition data functions and the source terms are chosen
such that the exact solution is given by

𝜙
𝑚
= (𝑒
𝑦

− 𝑒
−𝑦

) sin (𝑥) 𝑒𝑡,

�⃗�
𝑐
= [

𝐾

𝜋
sin (2𝜋𝑦) cos (𝑥) 𝑒𝑡,

(−2𝐾 +
𝐾

𝜋2
sin2 (𝜋𝑦)) sin (𝑥) 𝑒𝑡]

𝑇

,

𝑝
𝑐
= 0.

(28)

We divide Ω
𝑚
and Ω

𝑐
into rectangles of height ℎ = 1/𝑁 and

width 𝜋ℎ, where 𝑁 is a positive integer, and then subdivide
each rectangle into two triangles by drawing a diagonal.
The Taylor-Hood element pair is used for the Navier-Stokes
equations, and the quadratic finite element is used for the
second-order formulation of the Darcy equation.

For the coupled finite element method of the steady
Navier-Stokes-Darcy model with BJS interface condition,
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Figure 5: Geometric convergence rate of the pressure of the free flow (a) and 𝜂
𝑓
(b) versus the iteration counter𝑚 for the parallel DDMwith

BJS interface condition.

Table 2: 𝐿2 errors in velocity and hydraulic head for the parallel DDM with BJS interface condition.

𝐿
2 velocity errors 𝑒(𝑖)/𝑒(𝑖 − 4) 𝐿

2 hydraulic head errors 𝑒(𝑖)/𝑒(𝑖 − 4)

𝑒(0) 2.342 × 10
−2

6.338 × 10
−1

𝑒(4) (𝑖 = 4) 1.225 × 10
−3 0.0523 3.337 × 10

−2 0.0527
𝑒(8) (𝑖 = 8) 6.450 × 10

−5 0.0527 1.756 × 10
−3 0.0526

𝑒(12) (𝑖 = 12) 3.395 × 10
−6 0.0526 9.246 × 10

−5 0.0527
𝑒(16) (𝑖 = 16) 1.787 × 10

−7 0.0526 4.868 × 10
−6 0.0527

𝑒(20) (𝑖 = 20) 9.409 × 10
−9 0.0527 2.562 × 10

−7 0.0526

Table 1 provides errors for different choices of ℎ. Using linear
regression, the errors in Table 1 satisfy
�⃗�𝑐,ℎ − �⃗�𝑐

0
≈ 0.714ℎ

3.011

,
�⃗�𝑐,ℎ − �⃗�𝑐

1
≈ 3.867ℎ

1.987

,

𝑝𝑐,ℎ − 𝑝𝑐
0
≈ 5.123ℎ

3.129

,

𝜙𝑚,ℎ − 𝜙𝑚
0
≈ 0.354ℎ

2.998

,
𝜙𝑚,ℎ − 𝜙𝑚

1
≈ 1.556ℎ

1.995

.

(29)

These rates of convergence are consistent with the approxi-
mation capability of the Taylor-Hood element and quadratic
element, which is third order with respect to 𝐿2 norm of �⃗�

𝑐

and 𝜙
𝑚
, second order with respect to 𝐻1 norm of �⃗�

𝑐
and

𝜙
𝑚
, and second order with respect to 𝐿2 norms of 𝑝

𝑐
. In

particular, the third-order convergence rate of 𝑝
𝑐
observed

above, which is better than the approximation capability
of the linear element, is mainly due to the special analytic
solution 𝑝 = 0.

For the parallel DDM with ] = 1, 𝐾 = 1, 𝛾
𝑓
= 0.3, and

ℎ = 1/32, Figures 2 and 3 show the 𝐿2 errors of hydraulic
head, velocity, pressure, and 𝜂

𝑓
. We can see that the parallel

domain decomposition method is convergent for 𝛾
𝑓
≤ 𝛾
𝑝
.

Moreover, Figures 4 and 5 show that a smaller 𝛾
𝑓
/𝛾
𝑝
leads to

faster convergence.
Then Tables 2 and 3 list some 𝐿2 errors in velocity,

hydraulic head, pressure, and 𝜂
𝑓
for the parallel domain

decomposition method with 𝛾
𝑓
= 0.3 and 𝛾

𝑝
= 1.2. The data

in these two tables indicate the geometric convergence rate
√𝛾
𝑓
/𝛾
𝑝
since all the error ratios are less than (√𝛾

𝑓
/𝛾
𝑝
)
4

=

(√1/4)
4

= 0.0625.
Finally, for the preconditioning feature of the domain

decomposition method, Table 4 shows the number of itera-
tions𝑀 is independent of the grid size ℎ. Here, we set 𝛾

𝑆
=

0.3, 𝛾
𝐷
= 1.2, ] = 1, and 𝐾 = 1. Let 𝜙𝑘

ℎ
, �⃗�𝑘
ℎ
, and 𝑝𝑘

ℎ
denote

the finite element solutions of 𝜙𝑘
𝐷
, �⃗�𝑘
𝑆
, and 𝑝𝑘

𝑆
at the 𝑘th step
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Table 3: 𝐿2 errors in pressure and 𝜂
𝑓
for the parallel DDM with BJS interface condition.

𝐿
2 velocity errors 𝑒(𝑖)/𝑒(𝑖 − 4) 𝐿

2 hydraulic head errors 𝑒(𝑖)/𝑒(𝑖 − 4)

𝑒(0) 7.268 × 10
−1

5.668 × 10
−2

𝑒(4) (𝑖 = 4) 3.826 × 10
−2 0.0526 2.752 × 10

−3 0.0486
𝑒(8) (𝑖 = 8) 2.014 × 10

−3 0.0526 1.399 × 10
−4 0.0508

𝑒(12) (𝑖 = 12) 1.060 × 10
−4 0.0526 7.233 × 10

−6 0.0517
𝑒(16) (𝑖 = 16) 5.579 × 10

−6 0.0526 3.767 × 10
−7 0.0521

𝑒(20) (𝑖 = 20) 2.937 × 10
−7 0.0526 1.969 × 10

−8 0.0523

Table 4: The iteration counter 𝑀 versus the grid size ℎ for both
the parallel Robin-Robin domain decomposition method with BJS
interface condition.

ℎ 1/8 1/16 1/32 1/64

𝑀 19 19 19 19

of the domain decomposition algorithm. The criterion used
to stop the iteration, that is, to determine the value 𝑀, is
‖�⃗�
𝑘

ℎ
− �⃗�
𝑘−1

ℎ
‖
0
+ ‖𝜙
𝑘

ℎ
− 𝜙
𝑘−1

ℎ
‖
0
+ ‖𝑝
𝑘

ℎ
− 𝑝
𝑘−1

ℎ
‖
0
< 𝜀, where the

tolerance 𝜀 = 10−5.

6. Conclusions

In this paper, a parallel physics-based domain decomposition
method is proposed for the stationary Navier-Stokes-Darcy
model with the BJS interface condition.This method is based
on the Robin boundary conditions constructed from the
three physical interface conditions.Moreover, it is convergent
with geometric convergence rates if the relaxation parameter
is selected properly. The number of iteration steps is inde-
pendent of the grid size due to the natural preconditioning
advantage of the domain decomposition methods.
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