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Adsorption of Rare Gas Atoms on Xenon 

DONALD E. HAGEN* 

Battelle Memorial Institute, Columbus, Ohio 43201 

(Received 25 January 1972) 

The problem of adsorption of rare gas atoms on solids is treated for the case of submonolayer films. 
An energy spectrum calculation method which is suitable for band structure or heat capacity calcula­
tions is discussed. It is particularly useful for adsorbate-substrate systems in the region intermediate 
between "tight binding" and "plane wave" behavior. The method employs a technique introduced by 
Kohn and Luttinger of using the eigenfunctions corresponding to a particular point in the Brillouin zone 
as a basis set. The cases of He and Ne adsorbed on Xe are discussed. 

I. INTRODUCTION 

The physical adsorption of rare gas atoms on solids 
is a subject which enjoys current theoretical and experi­
mental interest. l-9 Recent experimental work has fo­
cused upon physically adsorbed films in the submono­
layer range. The density of these thin films is low 
enough to allow the interaction between the adsorbed 
atoms and substrate to be treated as dominant over 
the interaction between neighboring atoms in the film. 
The initial approach to a theoretical study of such 
films is a treatment of the single particle states of an 
adsorbed atom. 

Two different methods have been used to study 
this problem. The first is a "tight binding" approachl- 3 

which is used for the highly localized case where the 
adsorbed atom becomes firmly trapped in one adsorp­
tion site on the surface and exhibits low mobility. The 
second is a "plane wave" approach4- 7 which is used for 
the nonlocalized case where the adsorbed atom exhibits 
high mobility on the surface. Both of these approaches 
are quantum mechanical in nature. They share a central 

point in the Brillouin zone. This is the point where 
band extrema and the ground state occur. 

We use the "plane wave" method to calculate the 
eigenfunctions at k=O. Hence our accuracy is limited 
to that found in the "plane wave" approach. However 
the "plane wave" method can be made quite accurate, 
even in localized regime,6 provided that one is willing 
to work with sufficiently large basis sets. Large basis 
sets, however, are unwieldy and impractical for energy 
spectrum calculations at more than one or two points 
in reciprocal lattice space because of the large amounts 
of computer time involved. Hence in the intermediate 
regime the "plane wave" method is not suitable for 
band structure or heat capacity calculations, since the 
energy spectrum has to be calculated at many points 
in the Brillouin zone; but it is practical for use at just 
one point, k=O, to generate the eigenfunctions. These 
eigenfunctions can then be used to calculate the energy 
spectrum at the other points in k space. 

II. POTENTIAL ENERGY 

theme of a numerical calculation involving a wave- The substrate is assumed to be a semi-infinite perfect 
function expansion in terms of a set of suitable basis Xe crystal having at the surface an unrelaxed structure 
functions. The two methods differ in their choice of identical to the bulk. Defects, thermal vibrations, and 
basis sets. The "tight binding" method uses a basis deformation due to the adsorbed atom are neglected. 
set (harmonic oscillator eigenfunctions) that is appro- Xe has an fcc lattice structure with lattice constant 
priate to the highly localized case. The "plane wave" ao=6.24 A. The (111) face of this crystal contains Xe 
method uses a basis set (plane waves) that is appro- atoms arranged in a closed hexagonal array. Figure 
priate to the nonlocalized case. Obviously these methods (1a) shows a portion of this surface. The circles repre­
apply to different adsorbate-substrate systems and sent Xe atoms. The coordinate system is set up with 
further methods are needed for the intermediate re- the xy axes lying in the plane of the surface and the 
gions.3 In this work we propose such a method. z axis normal to the surface. The nearest neighbor 

We focus our attention on a system consisting of the distance for atoms in the plane of the surface is a= 
light rare gases, He and Ne, as adsorbate and a heavy ao/Y2. An adsorption site occurs at the center of each 
rare gas crystal, Xe, as substrate. We consider the (111) equilateral triangle formed by three neighboring sur­
face of the Xe crystal as the adsorption surface. face atoms. Neighboring adsorption sites are not per-

Our approach is a band structure calculation method fectly identical,1 but the difference between them is 
first proposed by Kohn and Luttinger.1O As in the above quite small and here we neglect it. 
methods, we perform a quantum mechanical calcula- The interaction of the rare gas atom with the sub­
tion which involves expanding the system's wavefunc- strate can be written as a sum over all Xe atoms of 
tion in a suitable set of basis functions. In the Kohn- the two-body Lennard-Jones (12-6) potential. Values 
Luttinger representation the basis set consists of the used for the Lennard-Jones parameters EO and po were 
eigenfunctions of the system's Hamiltonian at the k=O taken from Ricca3 and are Eo=66.24X1Q-16 erg, po= 

5413 
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x-y-z coordinate system on the 
( 111) plane of the Xe crystal. 
Each circle represents a surface Xe 
atom. "a" denotes the nearest 
neighbor separation for atoms in 
the plane. (b) The Brillouin zone 
for the Xe lattice. 
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3.72 A for He on Xe; and Eo=123.7XIQ-16 erg, po= 

3.82 A for Ne on Xe. If VCr) is the potential energy of 
the adsorbed atom with position vector r, and Pi is the 
distance between the adsorbed atom and the ith atom 
then ' ' 

VCr) = L EO[(Po/Pi)1L (Po/Pi) 6], (1) 
i 

where the sum extends over all Xe atoms. The details 
of the numerical calculation of the potential are given 
elsewhere.4 

The behavior of VCr) can be displayed by plotting 
VCr) as a function of z for fixed positions (x, y) in the 
surface plane. This has been done for three special 
points in the plane: (1) at the adsorption site, (2) at a 
saddle point midway between two Xe atoms, and (3) 
at a Xe atom site. The results are shown in Fig. 2 
for He as adsorbate and in Fig. 3 for Ne as adsorbate. 
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FIG. 2. Potential profile for He on Xe. Shows V(r) as a 
function of z for three fixed points in the x-y plane. Also shown 
are energy level diagrams for the lowest seven r (k = 0) states 
of 3He and 4He. 
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FI~. 3. Potential profile for Ne on Xe. Shows V(r) as a 
functIOn of z for three fixed points in the x-y plane. Also shown 
are energy level diagrams for the lowest seven r(k=O) states 
for Ne. . 

The potential is noticeably nonseparable, i.e., it can­
not be written as the sum of a function of x and y and 
a function of z. This will result in a mixing of motion 
parallel to the surface with motion perpendicular to 
the surface. The adsorbed atom will undergo localiza­
tion in the xy dimension as well as in the z dimension. 
The minimum values of the potential for our three 
special points in the plane are given in Table I. These 
values are all about 2% deeper than the corresponding 
values found by Ricca.3 

III. BASIS SET 

The Kohn-Luttinger basis functions are the k = 0 
eigenfunctions for the single particle states of the ad­
sorbed atom in the potential field given by Eq. (1). 
They are found by solving the Schrodinger equation, 

[-(h2/2m)V'2+V(r»)r(r)=E~(r), (2) 

where m is the mass of the atom and E is its energy. 
The periodicity of the potential allows us to apply 

Bloch's theorem and decompose the wavefunction into 
Bloch waves, 

'It(r) = exp(ik·r) uk(r), (3) 

where k is a two-dimensional vector lying in the xy 
plane and Uk is a function which retains the periodicity 

TABLE I. Potential energies of adsorption (measured in units of 
10-16 erg) for He and Ne on the (111) face of Xe. 

Adsorbed atom Site Saddle Atom 

He -274.3 -237.8 -150.8 

Ne -527.4 -462.1 -300.2 
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of the crystal. We first look at the k=O point in the 
Brillouin zone and apply the "plane wave" method to 
calculate the 17 lowest eigenvalues and their corre­
sponding eigenfunctions. This method is described fully 
by Milford and Novac06•6 and is only outlined here. 
The function uk(r) is expanded in terms of a set of 
basis functions. A plane wave or complex exponential 
Fourier series expansion is used for the xy dependence 
of uk(r). The z dependence is expanded as a linear 
combination of Morse functions. The expansion has the 
form 

uk(r) = L L AjKCk)Mj(z) exp(t'K·r), (4) 
i K 

where the M's represent the Morse functions and K 
represents the two-dimensional wave vector for the 
plane waves. By the use of Eqs. (3) and (4), Eq. (2) 
becomes an eigenvalue equation for a matrix whose 
eigenvalues are the E(k) and whose eigenvectors have 

-75r--------,--------~ 

-100 
0> 
~ 

'" 
'" -
I 

0 -125 -
~I 
w 

-150 

K T' M 
FIG. 4. Energy bands for aHe along the KrM contour in the 

Brillouin zone, showing the lowest seven bands. 

components given by the A iK• Once all the components 
of this matrix are calculated the eigenvalues and eigen­
vectors are found by standard numerical techniques. 

Nineteen plane waves and seven Morse functions are 
used in the calculation making a total of 133 functions 
in the basis set. This allows the energy levels to be 
calculated to an accuracy of 1% for Ne adsorbed on 
Xe and better than 1 % for He on Xe. 

The resulting ground state energies for 3He, 4He, and 
Ne adsorbed on Xe are: -163.8XlO-16 erg, -174.4X 
10-16 erg, and -496X 10-16 erg, respectively. The seven 
lowest energy levels for aHe and 4He are shown on Fig. 2 
and the corresponding levels for Ne are shown on Fig. 3. 
The zero point energies for 3Re, lliXI0-16 erg, and 
4He, lOOX 10-16 erg, are larger than the minimum 
energy barrier (difference between the potential mini­
mum above the adsorption site and above a saddle 
point) of 36X 10-16 erg that opposes tunneling from 
site to site, but less than the maximum potential 
barrier (difference between the potential minimum 
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FIG. 5. Energy bands for 'He along the Kr M contour in the 
Brillouin zone, showing the lowest seven bands. 

above the adsorption site and above a Xe atomic site) 
of 123 X 10-16 erg. Renee 3He and 4He fall into the "plane 
wave" regime. The effect of the periodic potential will 
be stronger here than in the case of He adsorbed on 
graphite4 but it will not be strong enough to localize 
the He. The Ne zero point energy 31XI0-16 erg is less 
than the minimum potential barrier 65 X 10-16 erg put­
ting it well into the intermediate region. 

We also calculated the ground state energy of Ne 
on Xe using a smaller basis set to compare the resul ts 
with a "tight binding" calculation done with a basis 
set of similar size. Using a basis set containing 57 func­
tions (19 plane waves and 3 Morse functions) we found 
a ground state energy of Eo= -447X 10-16 erg. This 
compares with a "tight binding" result3 of Eo= 
-454.1X 10-16 erg done with a 36 function basis set 
(nine harmonic xy functions and four Morse functions). 
Hence for Ne on Xe the "tight binding" method gives 
slightly better results than the "plane wave" method 
when basis sets of similar size are used. However the 
"plane wave" method gives the more accurate result 
when the 133 function basis is used. 
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FIG. 6. Energy bands for Ne along the KrM contour in the 
Brillouin zone, showing the lowest seven bands. 



5416 DONALD E. HAGEN 

IV. BAND STRUCTURE 

The eigenfunctions from Sec. III are used as a new 
basis set for the band structure calculation. Let c/Jn(r) 
denote the nth eigenfunction for the problem at k = O. 
Then Eq. (3) can be written 

if;(r) =exp(1"k·r) L Bnc/JnCr), (5) 
n 

where the B's represent the new expansion coefficients. 
The energy spectrum is then calculated for various 
points in the Brillouin zone using the same numerical 
methods as before except that the k = 0 eigenfunctions 
form the basis set rather than the plane waves, i.e., 
Eq. (5) is used rather than Eq. (4). 

The accuracy of the Kohn-Luttinger method is tested 
by comparing its resulting energy levels with those of 
the "plane wave" method at several points in the 
Brillouin zone. The maximum difference between the 
two results is found to be about two orders of magni­
tude less than the error introduced into the problem 
by the use of a truncated rather than an infinite basis 
set in the original "plane wave" calculation of the 
Kohn-Luttinger eigenfunctions. Hence this method 
introduces no further error into the calculation beyond 
that already found in the "plane wave" method. 

Our real space unit cell is a rhombus consisting of four 
neighboring Xe atoms. The rhombus has an edge of 
length "a." The corresponding Brillouin zone is a hexa­
gon with an edge of length 41r/3a. This is shown in 
Fig. 1 (b). In the conventional manner the points of 
high symmetry are labeled r, M, and K. The band 
structure is calculated along the KrM contour. 

Figure 4 shows the band structure for aHe, and Fig. 5 
shows it for 4He. The noticeable features of the band 
structure are wide bands and a large gap between the 
lowest two bands and the rest of the band structure. 
The large widths of the lower bands indicate that the 
adsorbed He atom will enjoy considerable mobility on 
the surface. These band structures are very similar to 
those found for He adsorbed on Xe-plated graphite? 
This indicates that most of the effect of the crystal 
periodicity is coming from the first layer of surface 
atoms. The ground state energies reported for He on 
Xe-plated graphite lie significantly higher than those 

given here for He on pure Xe. This can be attributed 
to the fact that the Lennard-Jones parameters used in 
the Xe-plated graphite calculations came from molec­
ular beam data and differ from those used here which 
came from virial coefficient data. 

Figure 6 shows the band structure for N e along the 
KrM contour. It is noticeably different from the case 
of He. Here we find narrower bands accompanied by 
larger band gaps. The Ne atom will have a relatively 
low mobility and will become localized. 

V. CONCLUSION 

The Kohn-Luttinger band structure method is shown 
to be a useful approach to the energy spectrum problem 
in the physical adsorption of rare gas atoms. It is 
especially useful in the region intermediate between 
"plane wave" behavior and "tight binding" behavior. 
It has been used to calculate band structures for the 
cases of He and Ne adsorbed on the Cll1) face of solid 
Xe. The basis set used in the calculation consisted of 
the 17 lowest k = 0 eigenfunctions. The main advantage 
of this method is that it allows the numerical calcu­
lations to be done with a small basis set and hence 
uses a relatively small amount of computer core and 
time. Its accuracy is the same as a "plane wave" calcu­
lation using a large basis set. 
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