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SYNOPSIS 

Tenth International Specialty Conference on Cold-formed Steel Structures 
St. Louis, Missouri, U.S.A., October 23--24, 1990 

BEHAVIOUR OF CHANNEL BEAMS 
WITH UNBRACED COMPRESSION FLANGES 

by 

L K Seahl and J Rhodesl 

Lips and other types of edge stiffeners are widely used in thin-walled structures. The most common type 
of edge stiffener is fonned by turning the free edge of the unstiffened flange inwards or outwards to fonn 
a lip, which substantially improves the buckling resistance of a member thus leading to greater efficiency. 
In this paper the structural behaviour and strength of edge stiffened beam sections, subjected to bending 
such that the unbraced edge stiffeners are in compression, are examined both theoretically and 
experimentally. An outline of two series of tests on edge stiffened beam sections of various geometries 
is given. Results of the experimental investigation are compared with the theoretical predictions. The 
agreement between theory and experiment is reasonably good. Design procedures are proposed based on 
the effective width concept and the theoretical findings to predict the ultimate strength of such edge 
stiffened beam sections. Comparisons between the experimental and predicted ultimate moments, based 
on the proposed design procedures are also presented. 

1. INTRODUCTION 

Edge stiffened thin-walled sections under unifonn compression and moments acting in such a way that 
the stiffened flange is in compression, have received a great deal of research attention in the past. Notable 
advances have been made in understanding the post-local buckling behaviour of such sections. The case 
of lipped Channel beam sections bent in such a way that the lips act as compression flanges, has not 
received so much attention. When the beam is loaded in such a manner, the tension flange of the beam 
remains straight and does not displace laterally. The unbraced compressed lips, however, tend to buckle 
in the lateral direction, accompanied by the out-of-plane bending of the web, as shown figures (1) and 
(2). This buckling phenomenon is particularly noticeable in relatively shott lengths of beam. 

The problem was probably first tackled by Douty [1] in 1962 and is briefly illustrated in' reference [2]. 
Douty considered the compression portion of the web and .the compression lips as a column supported on 
an elastic foundation where the elastic support is provided by the remaining portion of the web and the 
tension flange acting together as an elastic frame. 

1 Department of Mechanical & Production Engineering, Nanyang Technological Institute, Singapore 
2263. 

2 Currently Visiting Professor of Nanyang Technological Institute, Singapore. 
Department of Mechanics of Materials, University of Strathclyde, Glasgow G I IXI. 
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Douty's method is close to the case when the compression lips buckle into numbers of short waves, which 
is the behaviour more likely to be observed in a long beam with small lips. However, for such along 
beam subjected to bending, the lateral-torsional buckling may well be the governing mode of failure. 

.. ---o~ ahap,40 

--hfl~ lo:ra at. ald.-len&th 

r--- ---, , . lQ: · . 
• I · . 
: ---------- : 

2. OUTLINE OF THEORETICAL ANALYSIS 

The analysis is described with reference to the lipped Top-Hat & Channel section shown in figure (3). In 
the analysis, the beam is treated as a system of plates joined at the edges and acted upon by axial stress 
systems, due to bending of the beam and lateral distortion of the beam section, as shown in figure (4). 

TOP-HAT 

Figure 3 

An approximate deflected form is assumed in terms of two unknown arbitrary coefficients. One is the 
curvature coefficient, 'C', due to bending and the otheris the curvature coefficient, 'd', due to the lateral 
displacement of the lip. The strain energy is then evaluated in terms of these two coefficients. The total 
change in potential energy of the system is then minimised with respect to the 'd' curvature coefficient, 
leading to a cubic equation. By specifying the bending curvature, the stresses and moments can be 
determined and the ultimate moment is determined by assuming that the maximum moment is reached 
when the maximum compressive membrane stress reaches the material yield stress. 
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With reference to figures (1) to (3), the assumed deflected form for plates and stiffener are as follows: 

For Top-Hat section beam: 
The flange; bi 

W =f(l X _X2)_~(l x -x2-e)Sin TCYi 
1 2 p 2 P b i 

For the web; b2 

W =~(l x _x2_e) TCh 
2 2 P bi 

For the stiffener; b3 

W =£(1 x_x2)+~TCY3(1 x-x2-e) 
3 2 P 2 b i P 

d TCb2 2 
V =--(1 x-x -e) 

3 2 bi P 

A) STRESsrs DOl TO BlHDIKCI 

+ 

B) SUESSES DOi: TO LATERAL· 

DISPLACEMENT OF THI LIPS 

... (1) 

... (2) 

... (3) 

... (4) 

In the above equations, 'e' represents the cross sectional deflection at the ends of the beam as shown in 
figure 2. Preliminary analysis shows that such deflection must be included to accurately predict the 
behaviour. Since the beam is subjected to pure moment, it has only normal stresses with no shearing 
stresses set up in it. The compatability and moment equilibrium about the web-flange junctions, the 
lip-web junctions and the free edge are satisfied. 

Referring to figure (4), summing the stresses and including the axial shortening due to the lateral 
displacement of the lips, the stresses on the flange can be written as: 

... (5) 

The stresses on the web: 

[ - TCb2b;] E flp(aW2)2 
CJ2 =E C(y-y~-d-- +- - dx 

bi AT 2lp 0 ax ... (6) 
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... (7) 

where y is the distance of the neutral axis to the middle surface of the tension flange before any lateral 
displacement occurs. AT is the cross-section of the beam per unit thickness. As the lips buckle separately, 
the section will open up and these will cause a change in the neutral axis position. If the neutral axis is 
assumed to remain at the initial position, there will be axial forces set up in the plate system. These axial 
forces can be determined as follows: 

f
bI fb2 fb, 

LF = t O"ldYI + 2t 0"2dY2 + 2t 0"3dY3 ... (8) 
o 0 0 

In order to satisfy the eqUilibrium condition, an equal but opposite force is introduced into equations (5), 
(6) and (7). 

The total bending energy, V BT for the flange, webs and lips is: 
V BT = VBI + 2VB2 + 2VB3 ... (9) 

Where 'V Bi' is bending energy of individual plates: 

... (10) 

i=I,2or3 

A minimum value of V BT arises at a particular' e' value, and can be determined by differentiating the total 
bending energy 'VBT' with respect to 'e', gives: 

[2 (b )2( 4C) 
e =i+ 2U ~ 1-~d 

To simplify the analysis, the 'e' value can be taken as: 
[2 

e=~ 
6 

... (11) 

... (12) 

If the membrane shear stresses and stresses in the y-direction were neglected, the membrane energy due 
to deformation of the middle plane of a plate element by forces applied in this plane is: 

vM=2~fa;dv ... (13) 

Applying this equation to a system of plates, the total membrane energy for the whole system of plates 
can be written as: 

VMT=~{f ~dvI+2 f ~dV2+2 f a;dvJ ... (14) 
2E, VI V2 V3 J 
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The total potential energy change, VrVMT+VDT' which is too lengthy to be detailed here can now be 
minimised respect to the curvature coefficient 'd', which will yield the following cubic expression: 

d3J.+d2J2+dJ3+J4=O ... (15) 

where: 

The numerical constants, 'Bi' are detailed in Appendix I. 

Equation (15) can be solved to obtain the' d' curvature fora specific value of the 'C' curvature. A numerical 
method known as Muller'S method is used to solve equation (15) for multiple roots, and the minimum, 
non-zero positive root is used in calculation of the corresponding bending moment. If considering only 
the linear 'd' terms. The following expression is obtained: 

••. (16) 

The moments on the beam can be calculated by summation of moments about an axis through the tension 
flange, giving: 

M = 2b2t f' --<r3dY3 + 2t fb, --<rzY:PY2 ... (17) 
o 0 

The theoretical ultimate moment of the lipped beam section is determined based on a simple yield criterion, 
i.e. when the maximum compressive stress at any point reaches the material yield stress. 

Another parameter of particular interest is the centre deflection of the beam. The actual loading during 
the experiment is four point bending. But, since the distance between the support and loading knife edge 
is kept small compared to the distance between the two loading knife edge, the centre deflection can then 
be approximated by assuming that the simply supported beam was under pure moment of such magnitude, 
i.e. 

1) =Cf;, 
c 8 ... (18) 
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3. THE INITIAL INSTABILITY OF BEAMS WITH SMALL LIPS 

When the width of the lips is small, there may be a tendency to buckle into more than one half-wave and 
it is important to know the moment that causes the onset of this instability. The critical moment in such 
a case can be determined by setting the "J3" term in equation (15) equal to zero. The reason is, if the 
assumed deflected forms used vary sinusoidally instead of parabolically, then the 'J4 ' term in equation 
(15) will become zero for buckling into more than one half-wave and equation (15) becomes: 

... (19) 

Note if the number of buckle half-waves is even, then the 'Jz' term in equation (15) will also become zero. 
At the point of buckling (ie. d=O), J3=0, this gives the critical curvature 'CCR' as: 

3 [t2 J C -- ---B +2B 
CR - 1'7J7 6(1 _ u2) 1 4 

... (20) 

The critical curvature in equation (20) has a minimum value with respect to the length. This minimum 
value can be obtained by differentiating the equation (20) with respect to Ip and equating to zero, yields 
the following expressions. 

fore=O: 

... (21) 

fore =1;/6: 

4 4 [4 4 2 3 3 24(I-u2) 3 J 
IpmiIo= 4(1 1 I) bl +-31t(b2 +b3 )+ 2 bl B4 

1t -+=--= t 
30 • :J. 

... (22) 

where: e = I;/e = 6 

Substituting these value of '~' as '1/ into equation (20) gives the minimum critical curvature. A 
comparison of this critical curvature with those determined by assuming sinusoidal deflected forms, for 
both c and d curvatures, is shown in figure (5). In this figure, the average critical curvature approximates 
to the solution for a beam under constant moment obtained from the analysis using a sinusoidal deflected 
forms agree quite well with the solutions obtained from the analysis using a parabolic deflected form of 

e=O case. But if the ends of the lips are allowed to displace laterally (e = 1;/6 case), a much lower critical 

curvature is obtained. Therefore, especially for short lengths of beams the ends of the lips must be allowed 
to displace laterally in the analysis. 

Figure (6) shows the comparison of the stress ratio, for varying aspect ratios, between the analysis described 
in this chapter and the Finite Strip [3] results. Due to the nature of the method used in this analysis, an 
upper bound solution is expected. Therefore, for the e=O case, the analysis results are higher than Finite 

Strip results since the Finite Strip is a more accurate analysis. For e = 1;/6 case, the Finite Strip result is 

higher since it didn't consider the 'e' term in the formulation, and this has been shown to be of high 
importance. 
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Figure (7) shows the comparison of the critical stress calculated using equation (20), and results obtained 
from the Finite Strip program developed by Rhodes [3], and from Douty's [1] method which is illustrated 
in reference [2]_ It can be seen from this figure that the Finite Strip results are slightly above the results 



342 

of equation (20) for e = 1;/6 cases, which in fact is an upper bound solution. For the particular dimensions 

used in this figure, Douty's [1] method suggests that the lips will buckle inelastically at a lip size of about 
bJb2=O.16, based on an equivalent column analysis. If only elastic buckling is considered, Douty's 
solutions are close to solutions of equation (20). 
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In the actual situation, the single half-wave deflections exist even if the moment is small. This means 
that at the point of buckling the ' d' curvature due to the single half-wave buckle mode is not equal to zero. 
Hence, in order to obtain an approximate critical moment for this complex buckling problem, the following 
procedure is set-up: 

i) First, assume d=O and obtain 'Cat' using equation (20) and equation (22) 

ii) Substitute 'Cat' into equation (15), and obtain the corresponding 'd' curvature. 

iii) With these 'CCR' and 'd' curvatures, the corresponding critical moment can be approximated using 
equation (17). 

4. EXPERIMENTAL INVESTIGATION 

An experimental investigation was carried out in order to obtain infonnation on the behaviour of beams, 
produced by cold-forming to nonnal engineering tolerances, under moment action, and to compare the 
results with those of the theoretical solution. Two series of tests were carried out where the specimens 
are manufactured from galvanised mild steel sheet. 
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Spec. I L b1 b2 b3 cr, 
No. (mm) (mm) (mm) (mm) (mm) (NInun') 

Spec. I L b1 b2 b3 cr, 
No. (mm) (mm) (mm) (mm) (mm) (N1nun') 

ATl 0.88 915 52.38 51.42 0. 289.6 AC1 0..81 915 50..93 50.29 0. 284.41 
AU 0..87 915 52 52.24 8.04 289.6 AC2 0..81 915 50..66 50.21 0 284.41 
AD 0..88 915 53.12 52.62 10.77 289.6 AC3 0..81 915 50..69 50..57 6.47 284.41 
AT4 0..87 915 52.7 53.64 13.8 289.6 AC4 0.81 915 50.35 50.30 6.3 284.41 
AT5 0..89 915 53.36 52.42 16.98 289.6 ACS 0.81 915 50..77 50.85 9.59 284.41 
AT6 0.87 915 54.06 52.14 20.36 289.6 AC6 0..81 915 50..55 50..51 9.74 284.41 
AT7 0..87 915 53.08 52.5 23.43 289.6 AC7 0..82 915 51.73 51.66 13.42 277.04 
AT8 0.88 915 54.17 52.45 26.61 289.6 AC8 0..82 915 50..72 50..60 12.74 284.41 
AT9 0..967 915 52.784 51.2 0 307.45 AC9 0..98 915 53.76 51.56 0. 314.8 
ATlO 0..97 915 51.99 51.2 7.34 307.45 ACIO 1.04 915 50.67 49.88 0. 314.8 
ATll 0..97 915 51.6 51.5 10.72 307.45 ACll 0..97 915 50..83 50..0.8 6.28 298.96 
ATl2 0..97 915 51.6 51.65 13.1 307.45 AC12 1.03 915 50..37 50.25 6.64 314.8 
ATl3 0..97 915 51.99 50..4 17.07 307.45 AC13 0..98 915 50.99 50.80 8.94 314.8 
ATl4 0.97 915 52.39 50.8 20..05 307.45 AC14 1.03 915 50..55 50..27 10.24 314.8 
AT15 0..97 915 52.39 52.19 22.33 292.21 AC15 1.0.8 915 50..36 50..33 12.37 314.8 
AT16 0..96 915 52.2 51.6 26.89 307.45 AC16 1.0.3 915 .50..55 50.23 12.59 276.42 
ATl7 1.136 915 51.594 51.2 0. 315.6 AC17 1.13 915 50..72 50..43 0. 241.8 
AT18 1.14 915 53.18 51.4 7.74 315.6 AC18 1.14 915 51.04 50..44 0. 241.8 
AT19 1.14 915 52.18 51.45 10.62 315.6 AC19 1.15 915 50..26 49.87 6.3 241.8 
AUQ 1.14 915 52.98 50..9 13.89 315.6 AC20 1.15 915 50..31 49.10 6.74 241.8 
AU1 1.14 915 53.18 5\.1 16.77 315.6 AC21 1.15 915 51.42 50..33 9.59 241.8 
AU2 1.15 915 51.99 51.89 19.84 315.6 AC22 1.15 915 51.05 50..58 9.33 241.8 
AU3 1.15 915 53.18 51.59 22.82 295.4 AC23 1.14 915 51.41 50..99 12.63 273.31 
AU4 1.15 915 52.39 52.09 26 315.6 AC24 1.15 915 51.47 51.23 12.84 241.8 

TABLE 1 SPECIMEN'S DIMENSIONS crOP-HAT) TABLE 2 SPECIMEN'S DIMENSIONS (CHANNELl 

The fIrst series of tests consists of 48 beams, of which 24 are outwardly turned lipped Top-Hat sections 
and 24 are inwardly turned lipped Channel sections. The nominal lip widths varied from 0 to 25mm for 
the Top-Hat sections. For the Channel sections, the nominal lip widths varied from 0 to 12.7mm. All the 
48 beams were 915mm in length, with three nominal thickness of steel sheet; O.8mm, 1.0mm, and 1.2mm. 
The nominal widths of the web and flange were both 5Omm. The geometry and average centre line 
dimensions of this series of specimens are given in tables 1 and 2. 

The second series of tests consisted of 8 Top-Hat specimens, which were 2m in length initially with a 
nominal thickness of steel sheet ofO.75mm. The widths of the web and flanges were 50mm and the width 
of the lips were 15mm. Three out of the eight specimens were cemented with strain gauges, at midlength 
as shown in fIgure (8). The main purpose of the strain investigation was to obtain an idea of how the 
variation of the membrane stress on the lips is affected by the length of the beam. The geometry and 
average centre line dimensions of this series of specimens are given in table 3 

t 
'----- Stuin C.Ufltld 

Figure 8 
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spec. t bl b2 b3 t. at failure Mexp 
no (mm) (mm) (mm) (mm) (mm) {kN.mm} 

BTl 0.76 51.24 41.24 14.62 400 284.8 
BT2 0.75 47.25 40.25 14.125 600 295.36 
BTI 0.75 50.25 39.25 14.125 1600 163.68 
BT4 0.76 51.24 40.24 14.62 1600 161.98 
BT5 0.76 49.24 41.24 14.62 1600 145.98 
BT6 0.75 51.25 40.25 10.625 1600 142.4 
BT7 0.76 51.24 40.74 6.62 1600 172.66 
BT8 0.75 50.25 39.25 0 1600 72.98 

TABLE 3 SPECIMEN'S DIMENSIONS (TEST SERIES 2) 

The specimens were tested to failure on a Tinius Olsen Testing Machine with readings of deflections, 
strains, loads taken during the tests. The test rig is shown diagrammatically in figure (9). 

Adjuslable Loading Ann ____ , 

SPECIMEN 

Table of Testing Machine 

I A 

Ram of Testing 
Machine 

I 
., 
" .' r' 

The two strain gauged specimens namely BTl & BT2, in test series B were tested in a slightly different 
way. Initially, the span of these two beams was 2m, the loading was applied to about 1/3 of the predicted 
failure load and then they were unloaded. The beam length was then cut to l.8m and loaded again to 
about 1/3 of the predicted failure load. The process was repeated 6 times, each time the length of the 
beam being shortened by 200mm. At a final length ofO.8m and l.Om respectively, the beam was loaded 
until the collapse occurred. 
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5. EXPERIMENTAL RESULTS AND OBSERVATIONS 

5.1 Test Series A 

Typical examples of the buckled shape of the lips for the Top Hat and Channel sections are shown in 
figures (10), (11) and (12). 
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Theoretical Prediction 

It was observed during experiment that when the lip width is more than or equal to about 12mm, the lips 
buckled into a single half-wavelength. For the Top Hat section the lips buckled in such a way that the 
section was opening up at mid-length, as shown in figure (11), and for Channel the section was closing 
in at mid-length, as shown figure (12b). However when the lip width is smaller than about 12mm the lips 
of both Top Hat and Channel sections buckled into more than one half-wave length. It was also noticed 
during experiment that when the lips buckled into more than one half-wave length, the buckling 
configuration for both Top-Hat and Channel sections is the same (Figures lOa and 12a). This is most 
probably due to the downward movement of the loading knife edges which forced the lips of the Top-Hat 
section to buckle into the same configuration as the Channel section. In a further examination of this 

problem theoretically, using SinT and Sin 3;" terms in the deflected forms; equations (1), (2) and (3) 

become: 

For the tension flange; 

W e (I 2) d S' 1lX S· n:YI F S· 31lX S. n:YI 1=- x-x - m- m-- m-- m-
2 p lp hi lp hi 

For the webs; 

n:Y2 . 1lX n:Y2. 31lX 
W2 =d-Sm-+F-Sm-

hi lp hi lp 

For the lips; 

C 2 n:Y3. 1lX n:Y3. 31lX 
W3 =-(l?-X )+d-Sm--F-Sm-

2 hi lp hi lp 
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Carrying out the same analysis procedures, gives the predictions that for Top-Hat beam section, the 
minimum potential energy occurs at a buckling configuration in the opposite direction to that which had 
been observed in the experiment. The observed and predicted buckling configurations are shown in figure 
(lOa&b). However, for the Channel beam section, the predicted buckling configuration and those observed 
in the experiment is the same (Figure 12a). Therefore, it may be concluded that when the lip width is less 
than 12mm, the downward movement of the loading knife edges will help the lips of the Channel section 
to buckle more quickly and fail at a lower moment. For the Top-Hat section however this may not increase 
the moment carrying capacity. 

During the initial test, two of the specimens failed by local crushing of the flange. This type of failure 
was avoided in the remainder of the tests by providing more substantial load spreaders at the points of 
loading and support. 

5.2 Test Series B 

During the experiment, it was observed that for specimens of 2m length, even though the load is applied 
through the axis of symmetry, the beam failed by the lateral-torsional buckling mode and this is further 
confmned by the Finite Strip program developed by Rhodes [3]. This problem is outwith the scope of 
the present investigation, therefore the results will not be discussed but will be published in a future paper. 

6. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 

Figures (13), (14) and (15) shows the comparison of the predicted and experimental stress distribution for 
specimens AT14, BTl and BT2 respectively. 
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The stresses in figure (13) were plotted until the point at which the loading knife edges obstructed the 
buckled lips_ In these figures, the predicted stresses at the lip-web junction (a.) agree quite well with the 

experimental results up to the point of collapse, but the stresses at the lip free edges only agree in the 
linear range_ However, the prediction of the failure moment was based on compression yield, since yield 
in tension might not cause collapse of the beam_ 
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Figures (16) to (21), shows the comparison of the theoretical ultimate moments with those obtained 
experimentally, in non-dimensional form. The theoretical ultimate moments are computed based on the 
average dimensions of specimens. These figures show a reasonably good agreement between theory and 
experiment. The maximum discrepancies for Top-Hat sections are within about 26% on the conservative 
side in all cases. For the Channel sections, the maximum overestimation and underestimation are about 
8.4% and 33% respectively. 
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The theoretical curve on these figures consist of two portions. The left side of the curve was drawn based 
on the criterion that the ultimate moment of the beam is the critical moment. The right side of the curve 
was drawn based on the assumption that the ultimate moment of the beam is reached when the maximum 
compressive membrane stress reaches the material yield stress. For design purposes, the cross over point 
of the theoretical curves may be used as a reference point for the stiffener rigidity requirements. It can 
be seen that the moment carrying capacity, although still increasing, is not significantly improved by 
increasing the lip width beyond this reference point. It is noticed that this reference point suggests 
decreasing lip requirements as the thickness increases. 
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Figure (16), shows also the ultimate moment detennined using simple beam theory, which is substantially 
overestimate compared to the experiment. Also notice that the Channel section beams with lip widths 
less than 12mm generally carried lower moments than Top-Hat section beams with the same lip widths. 
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Figure (22), shows that as the length increases, the stress ratio a,lac approaches unity. The compression 

lips tend to buckle more seriously as the length of the beam decreases. The experimental and theoretical 
results shown follow a similar trend. The theoretical curve in this figure is based on the linear terms only. 
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TABLE 4 COMPARISON OF EXPERIMENTAL ULTIMATE MOMENTS WITH THEORETICAL 
PREDICTIONS (SERIES 2:TOP HAT BEAM) 

spec. t l. b3 A Mexp Mth Mth/Mexp 
no (mm) (mm) (mm) (mm) (kN.mm) (kN.mm) 

BTl 0.76 400 14.62 160 284.8 236.03 0.83 
BT2 0.75 600 14.13 160 295.36 231.6 0.784 
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Figures (23) to (26), show some of the typical moment-deflection curves. Good correlation of the beam's 
stiffness is obtained between the experimental curves and theoretical predictions. The comparisons for 
specimens of 2m length are shown in table (4). 
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7. FORMULATION OF DESIGN PROCEDURES 

Consider the Top-Hat section beam shown in figure (27), with the axial stress system acting upon the 
section. For an equivalent effective width of the lip, (b3ecc) which carries the same load, b3efc must be 

where 

(J,=stress at the free edge of the lip. 

(Jc=Stress at the lip-web junction 
<J, 

(JR=-, should be less than or equal to unity. 
<J, 

... (23) 

Using equation (23), the effective compression section modulus (Z.) can be evaluated, and ultimate moment 
can be determined. 

For design purposes, only the linear terms in the analysis are taken into account. For a practical range of 
parameters, where ~ is from 0 to 50, R is from 0.25 to 1.5, hL is from 0.05 to 0.65 and ht is from 10 to 
210. It was found by trial and error that the stress ratio, (JR expressed as below has the best fit: 

where, n=O.25, m=1.25 
s=0.24, p=O.75 

and (JR must not be greater than unity. 

... (24) 

From the experiment, it was observed that for specimens with (b:Jb2) ratio ofless than about 0.25, the lips 
will buckle into more than one half-wave length. Since for simple lips the (bit) ratio is limited to 60, this 
(b:Jb2) ratio will be used as an adequacy requirement. For beam sections with (b:Jb2) ratio of more than 
0.25, the effective widths of the lips are calculated using equations (23) and (24). For beam sections with 
(b:Jb2) ratio of less than 0.25, the moments are determined as follows: 

b3 
Ziload = Z. + 4(Z. - Z.) b;. 

or, in general, equation (25) can be written as: 

... (25) 

... (26) 

The ultimate moment of an unstiffened beam sections (Mu) is determined according to B.S. 5950: Part 5, 
sec 5.2.2.5 [5]. 
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8. COMPARISON OF EXPERIMENTAL AND PREDICTED ULTIMATE MOMENT. 

Figures (28) and (29), show the comparison of the experimental ultimate moments with those calculated 
using simple beam theory with the allowable stress detennined according to the Douty's design procedures, 
without using any factors of safety. These figures shows that Douty's design ultimate moments tend to 
overestimate the experimental results, accept for small lip width specimens. The comparisons are in better 
agreement for Channel sections than Top-Hat sections, since the b/b2 ratios of the Channel sections are 
not more than about 0.25. The maximum overestimation is 51 %. 

The graphical comparisons of the proposed design procedures are also shown in these figures, with 
corresponding values shown in table (5). In table (5), the very high overestimation of those thin Channel 
sections with b/b2 ratio less than 0.2, namely, specimen AC3, AC4, AC5, and AC6, was due to the fact 
that in these tests the downward movement of the loading knife edges forced the lips to buckle more 
quickly and fail at a lower load than would otherwise be the case. If these four results are discounted, 
then the predicted results show very good agreement with the experimental results, overall on the 
conservative side. The maximum overestimation and underestimation will then be 16% and 25.2% 
respectively. 
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ATlI 16.77 533.4 152.4 767.14 1.073 
AT22 19.84 533.4 152.4 760.78 1.234 
AT23 2282 533.4 152.4 737.47 1.317 
AT24 26 533.4 152.4 938.79 1.209 
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1.075 AC15 
N.A. ACI6 
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0.878 AC24 
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b3 I,. 
(mm) (mm) 

6.47 661 
6.3 610.2 

9.59 661 
9.74 661 
13.42 661 
12.74 483.2 
6.28 483.2 
6.64 483.2 
8.94 483.2 
10.24 483.2 
12.37 483.2 
12.59 483.2 
6.3 483.2 

6.74 483.2 
9.59 483.2 
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12.84 483.2 

<> 

~<> 
<> 9 
x X <>x 

X 

CHANNEL SECTION 

X Douty 

<> Proposed design 

12 

Ch IS· aDD~ ~cgQD 

A M..,. M"IM..,. 
(mm) (kN.mm) 

76.2 188.2 1.189 
76.2 175 1.246 
76.2 211.92 1.596 
76.2 213.61 1.590 
76.2 491.65 0.893 
165.1 409.6 1.026 
165.1 257.2 1.167 
165.1 293.87 1.217 
165.1 422.42 1.027 
165.1 443.74 1.159 

1SO.34 629.94 0.981 
lSO.34 560.123 0.963 
165.1 394.2 0,901 
165.1 378.35 0.969 

lSO.34 465.43 1.016 
171.45 427.23 1.094 
lSO.34 730.25 0.844 
lSO.34 597.84 0.957 

TABLE 5 COMPARISON OF EXPERIMENT ULTIMATE MOMENTS WITH DESIGN RULES 

14 

M,JM ... 

1.217 
1.268 
1.548 
1.546 
0.875 
0.947 
1.094 
1.132 
0.932 
1.051 
0.911 
0.867 
0.748 
0.803 
0.850 
0.911 
0.753 
0.832 
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Figure (30) shows that for test series A specimens (lp=483 to 661mm), the governing failure mode will 
be the symmetrical buckling mode. For test series B specimens (L=2m), the governing failure mode will 
be the lateral-torsional buckling mode. These two modes of failure are the same as those observed during 
the experiments. This figure also shows that Douty'S method only applies to the case of small lip widths. 
For large lip widths, even considering failure due to inelastic buckling using Douty'S method still lead to 
overestimation of the actual ultimate moment. 
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Table (6) shows the comparisons of experimental ultimate moments with those determined theoretically, 
according to B.S. 5950: Part 5 and design rules proposed by Rhodes [6] for test series A, unlipped 
specimens. The predicted ultimate moments based on British Standard are very conservative, compared 
to the experiment results. This is because the post-buckling strength is not allowed to be fully utilised in 
the British Standard. The theoretical critical moments shown in this figure are in better agreement with 
the experiment results. The ultimate moments predicted based on Rhodes's design rules [6] also agree 
well with the experimental results. 



Spec.no MBS MBS/Mexp M. 
(kN.mm) (kN.mm) 

AC1 64.41 0.475 94.4 
AC2 64.93 0.476 95.05 
AC9 107.93 0.577 153.96 

AC10 123.28 0.712 171.22 
AC17 147.71 0.644 190.82 
AC18 151.21 0.655 194.74 
AT! 81.62 0.571 118.08 
AT9 104.67 0.554 148.86 
AT17 167.06 0.674 215.15 

M.JMexp Mao. 
(kN.mm) 

0.7 96.89 
0.697 97.92 
0.824 172.96 
0.989 206.02 
0.834 269.85 
0.843 277.31 
0.825 126.68 
0.788 168.42 
0.868 272.07 
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Mao./Mexp 

0.714 
0.718 
0.925 
1.190 
1.176 
1.201 
0.885 
0.891 
1.097 

MBS= Predicted ultimate moment based on B.S.5950:part 5 
MCR= Theoretical critical moment (e;:::() case) 
MR= Predicted ultimate moment based on Rhodes [6} design rules 

TABLE 6 COMPARISON OF ULTIMATE MOMENTS FOR UNLIPPED SPECIMENS 

9. CONCLUDING REMARKS 

A type of buckling behaviour is reported for short beams of edge stiffened cross section bent in such a 
way that the edge stiffeners are in compression. This buckling behaviour is characterized by the tendency 
of the compression stiffeners to buckle in the lateral direction accompanied by out-of-plane bending of 
the web. 

From the investigation, it was found that in-plane bending of the lips is very much dependant on the beam 
length, and is more likely to occur in short beams. 

All in all, it can be concluded that depending on the length; for short beams the governing failure mode 
will be the symmetrical buckling mode. When the lip width is small or inadequate (bJb2<0.25), the beam 
will tend to buckle into more than one half-wave length. For large or adequate (bJb2~.25) lip width, the 
single half-wave buckling mode will be the governing failure mode. 

It should be noted that this type of buckling is not a bifurcation buckling, but the lateral deflections of the 
lips grow from the start of loading. Even in the case of very large lips, the lip capacity is substantially 
reduced for short beams loaded in this way. This may have significant implications for continuous beams 
which undergo such loading over a short length of span or in the region of intermediate supports. 

In general, the experimental results obtained indicate that the theoretical analysis fai rly accurately describes 
the behaviour of the beams investigated. Design procedures were formulated based on the theoretical 
analysis with a limiting plate width to thickness ratio of 60. The design procedures proposed can predict 
with reasonable accuracy, the ultimate moment of the beam sections. This reflects the rationality of the 
design procedures. 

In designing such lipped channel beams, with edge stiffened webs bent in such a way that the unbraced 
stiffeners are in compression, the lowest of the two moment capacities calculated from the proposed design 
rules and the lateral-torsional buckling load from another analysis, should be used. 
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APPENDIX II-NUMERICAL CONSTANTS 

If 'e' is zero, then Bl and B2 becomes: 
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APPENDIX llI·NOTATION 

A distance between support and loading knife edges 
C curvature coefficient due to bending 
CcR critical curvature 
d curvature coefficient due to lateral displacement of the lips 

D plate flexural rigidity Et3/[12(1-'Il)] 
e arbitrary deflection constant 
E Young's modulus of Elasticity 
hL lip to web width ratio 
h, web width to thickness ratio 
Ip, Lp length of beam subjected to pure moment 
I. length between the two supports. 
~ length to web width ratio 
L Total length of specimen 
MeR. theoretical critical moment 
MD critical moment determined using Douty'S [I] method 
M..p experimental ultimate moment 
MFS critical moment determined using Finite Strip program by Rhodes [3] 
~ moment capacity of inadequately stiffened beam section 
~ ultimate moment based on proposed design procedures 
M. moment capacity of adequately stiffened beam section 
Mlh theoretical moment assuming buckling into single half-wave 
M" moment capacity of unstiffened beam section 

M uk non-dimensional ultimate moment, Muk/(aytbi} 

M non-dimensional moment, M/(aib~) 

R web to flange width ratio 
thickness of plate 

V BT total strain energy due to bending and twisting of plate system 
Vi in-plane deflected form of plate component (i=l, 2, 3) 
V MJ total membrane energy 
Wi out-of-plane deflected form of plate component (i=l, 2, 3) 
Z. effective compression section modulus 
Zm..t effective compression section modulus of inadequately stiffened beam section 
Z. effective compression section modulus of adequately stiffened beam section 
Z. effective compression section modulus of unstiffened beam section 
ap stress distribution on the plate 

a; stress distribution on the stiffeners or plate component (i=1,2,3) 

aAi stress distribution on plate component due to bending (i=1,2,3) 

aB stress due to the lateral displacement of lip 

aCR critical buckling stress 

ay yield stress of material 

~c centre deflection of beam 
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