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Tenth International Specialty Conference on Cold·formed Steel Structures 
St. Louis. Missouri. U.s.A .• October 23-24. 1990 

BENDING BEHAVIOUR OF DOUBLE-C THIN WALLED BEAMS 

De Martino A.I - Ghersi A.2 - Mazzolani F.M.3 

SUMMARY 

This paper is part of a general research project devoted to the study of the cold-formed 
thin walled sections, with the aim to provide useful data on the use of these profiles in 
seismic resistant structures. One of the main goal of this project is to define a consistent 
numerical model able to simulate the entire moment-rotation curve. 

1. INTRODUCTION 

As it is well known, the bending behaviour of thin walled structural elements is 
strongly affected by the local buckling of the compressed part. For this reason, in most 
papers on this subject we can find several interpretations of this phenomenon which are 
sometimes very sophisticated but mainly devoted to the definition of specific limit state 
conditions (yielding moment, ultimate moment, maximum rotation etc.) more than to the 
evaluation of the complete load-deformation (moment-curvature) history. 

Aim ofthis paper is the study of the bending behaviour of the cold-formed thin walled 
sections, through the analysis of the parameters which affect the shape of moment-curvature 
diagrams, both directly influencing the physical meaning of the loading process and 
indirectly the numerical model chosen to interpret it. 

In particular, we have investigated on the behaviour of the double-channel cold­
formed sections. The influence of each parameter has been examined on sections specially 
selected in order to cover different values of bIt ratios both for flanges and webs. 

2. SIMULATION PROCEDURE 

The analysis of the influence of the selected parameters on the bending process has 
been numerically performed by means of a computer program built-up for this purpouse. 
Starting from the ideal moment-curvature relationship for a given section, made of elastic 
perfectly plastic material, the program allows the introduction of the different numerical 
models, and the related parameters, chosen to interpret the phenomenon. 

The computer program works on the section subdivided in several small areas, to 
which it is possible to associate a residual deformation, a specific stress-strain relationship 
together with all informations needed to the knowledge of load history. During the 
deformation process unloadings may occur due to lack of simmetry generated by local 
buckling. 
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3. INFLUENCE PARAMETERS 

To investigate the behaviour of cold-formed thin walled sections, we have considered 
the main phenomena characterizing their behaviour which can be interpreted by means of 
numerical models. 

In this way, starting from the simulation of the moment-curvature relation for a given 
section in the basic condition (elasto-plastic stress-strain relationship without local 
buckling) we have examined, first of all, the phenomenon oflocal buckling and the different 
numerical models able to give a suitable interpretation both in the elastic and inelastic 
range, as explained later on. 

The second step considers the influence of geometrical imperfections which increase 
the local slenderness of the section. Different stress-strain relationships are also considered 
in order to interpret the changes in value of the elastic limit and of the ultimate stress due 
to hardening effects arising in consequence of bend forming. 

4. GEOMETRICAL AND MECHANICAL DATA 

With the aim to better interpret the influence of single parameters we have analyzed 
six double-channel sections with the following geometrical characteristics: 

a) 300x200x50x2 mm lipped channel with bJtr 95 b,jtw=I45 
b) 300x200x80x5 mm lipped channel with bJtr 35.6 b,jtw=57.8 
c) 200xlOOx2.5 mm channel with bJtr38 bwltw=76 
d) 200x100x5 mm channel with bJtr 17.8 bwltw=35.6 
e) 200x40x3 mm channel with bJtrlO.7 bwltw=61.3 
f) 200x40x5 mm channel with bJtr 5.8 b,jtw=35.6 

and with radius of curvature r=5 mm for section a, C 

r=8 mm for section e 
r=Il mm for section b, d,f 

For an easier comparison, the results have been adimensionalized by the elastic limit 
moment and the corresponding curvature, obtained neglecting local buckling and inter­
preting the behaviour of the material by a bilinear stress-strain curve with elastic limit 
equal to 235 N/mm2. 

For each parameter considered the results have been reported in six adimensionalized 
moment-curvature diagrams. In each diagram we have emphasized the base curve of the 
section not affected by any parameter (curve 0), which maximum moment value is related 
to the shape factor of each section. 

5. INFLUENCE OF COMPRESSED FLANGE INSTABILITY MODEL 

According to the theory of stability in the elastic range, for a slab of thickness t 
uniformly axially loaded on the opposite sides of width b, the critical values for stress and 
strain are 

(1') (1 ") 

with k depending upon the restrain conditions. If the slab is subjected to a load greater then 
the critical one and the end sections remain plane, the normal stress in a plane parallel to 
the loaded one is no more constant, but varies reaching the maximum value at the edges. 

This phenomenon is usually interpreted considering the stress constant and equal to 
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the maximum value for a reduced width, the so called "effective width". For a given cr",...>crcr 

the effective width b.uis provided imposing cr=crmarfor a slab width b.u(von Karman [1]) 
and then 

By the same hypothesis we can obtain the average value for stress and strain 

A different interpretation of the phenomenon is provided taking into account the 
whole section with a variable distribution for stress and strain approximatively given by 

( ) 21ty (4") e=em + lOmax-em cosb 

This formulation is completely equivalent to the previous one in the elastic field, providing 
the same average values. 

For deformation values greater then the elastic limit, we can find in literature many 
interpretations based on theoretical analysis and on experimental data. Among them we 
have examined the following models: 

1) Critical value provided by (1') and post-critical behaviour interpreted by means of the 
effective width using (2'). Since both expressions are referred to stress, the buckling 
of the compressed part doesn't arise in the yielding field. 

2) Critical value and post-critical behaviour based on the same concept previously related, 
but using the relations (1 ") e (2") in terms of strain instead of stress. 

3) Critical value provided by (1 ") and post-critical behaviour analysed assuming the strain 
distribution given by (4") with the average value by (3"). 

4) Critical value of strain and post-critical behaviour interpreted by means of the effective 
width, using the following relation given by the authors on the base of formulation 
proposed by Kemp [2], Lay and Galambos [4] 

with 

and 

A =0.951-V e -1 
s-1 

A = 1.406 

e -s 
B=--e 

s -1 y 

B=O 

(5) 

Eh and eh are the values of tangent modulus and of strain at the beginning of the hardening 
range. 
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5) Critical value of strain and post-critical behaviour interpreted by means of the effective 
width, using the following relation given by the authors on the base of the experimental 
data reported in [6] 

b .ff 0.49 --!k £;5/18 

t (Em.x - 0.95 £.)219 
(6) 

In fig. I the curves corresponding to the above mentioned models for flange buckling 
have been plotted. No local buckling of web is here considered. For modell, 2, 3 and 5, 
k coefficient has been chosen equal to 4 for the lipped sections and 0.425 for unlipped 
ones. Number 0 indicates the curve obtained when local buckling is not at all considered. 

We note that curves 0 and 1 are coincident for compact sections, for which yielding 
is achieved before the critical value. The other curves show a maximum moment plateau 
wider for compact sections than for the slender ones, followed by a lightly falling branch. 
The choice of buckling model in order to evaluate the maximum moment appears to be 
more relevant for the slender sections, while for the more compact ones the maximum 
moment is always almost equal to the plastic moment. 

6. INFLUENCE OF RESTRAIN CONDITIONS OF FLANGE 

Using the second buckling model of the previous section, we have analysed the 
influence of restrain condition of the uniformly compressed flange, in relation to the 
geometrical dimensions of web and flanges. We have considered 4 values of k coefficient 
for lipped sections and 2 values for unlipped ones, as illustrated in fig.2. 

Forcompact sections the influence of the restrain conditions on the maximum moment 
value is roughly appreciable while in the decreasing branch the variation is more significant; 
the slender sections show an opposite behaviour. 

7. INFLUENCE OF THE SLENDERNESS OF COMPRESSED FIBRES 

In assessing the relations (2), (5) and (6) we can interpret the slab ascomposed by a 
set of fibers for which a slenderness linearly varing with the web distance can be assumed. 
!tis possible to generalize this model and to consider a non linear variation of this parameter 
[7]. We have so selected two more models, parabolic and circular, providing a new value 
of effective width, b' 'fI' related to the one obtained by the linear variation model b4f 

- parabolic model: 

- circular model: 

The results plotted in fig.3, assuming the second buckling model for the compressed flange, 
with k=4 for lipped sections and 0.425 for the others, show an appreciable influence of 
models specially in the decreasing branch for compact sections and also for the maximum 
moment value for the slender ones. 
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8. INFLUENCE OF WEB BUCKLING 

The local buckling of web, which is subjected to a linear strain distribution, can be 
interpreted, referring to the compressed zone only, in the same way as forthe compressed 
flange. The different strain distribution requires greater values of k coefficient, shown in 
fig.4. The curves emphasize the influence of web buckling, which strongly reduces the 
moment as far as curvature increases, more relevantly and with an earlier starting point 
for the sections having a more slender web (cases a, c). At the contrary, in case of compact 
webs (cases d,j) the overall behaviour is practically not influenced by web buckling. 

9. INFLUENCE OF GEOMETRICAL IMPERFECTIONS 

As it is well known, geometrical imperfections play an important role on buckling 
behaviour of cold-formed sections. Usually we take into account this problem by substi­
tuting the previous von Karman expression with a new relation giving a reduced value of 
effective width [5], b"if' which influences both the critical limit value and the post-critical 
behaviour. We have utilized the well known expression by Winter 

It easy to note (fig.5) how this parameter influences only the range of the low curvatures, 
giving a reduction in maximum moment for the sections in which buckling occurs now in 
the elastic field. 

10. INFLUENCE OF STRESS-STRAIN RELATIONSHIP OF MATERIAL 

Stress-strain relationship of steel, previously interpreted by the usual elastic perfectly 
plastic model, can be modified in the low strain range to interpret the non linear behaviour 
due, for example, to mechanical imperfections; it can be also modified in the high strain 
range to take into account the hardening of material. 

For the first one, we can substitute the bilinear expression, up to a strain E2>Ey, by 
the curve (a) given by 

Hardening is taken into account starting from the strain Eh=12 Ey, by a linear relation 
with Eh equal to tangent modulus at Eh (b), a linear relation withEh equal to secant modulus 
(c) or a. non linear relation similar to the (7) with an horizontal final tangent (d). 

The use of curve a gives an appreciable influence, even if limited to the range of low 
curvature. On the other hand the hardening influences obviously the range of the high 
curvature and in relation to the value of the selected modulus. 

11. CONCLUSIVE REMARKS 

The present analysis has emphasized the role played by the different influence 
parameters which have been considered in the proposed model. The numerical model of 
cold-formed thin walled sections is getting to be calibrated on the base of the results of an 
experimental program now in progress. After calibration, it will allow to perform a 
complete parametric analysis on this kind of sections, to get information on their bending 
behaviour in the whole range of deformation. 



642 

APPENDIX-REFERENCES 
1. von Karman Th., Sechler E.E., Donnell L.H., "The strenght of thin plates in com­

pression", Trans. ASME 1932, AppI.Mech., APM-54-5. 

2. Lay M.G., Galambos T.V., "Inelastic beams under moment gradient", Journal ofthe 
Structural Division, ASCE, vo1.93, No.ST!, Proc.Paper 5110, February 1967. 

3. CNR -10022/84, "Profili formati a freddo: istruzioni per I'impiego nelle costruzioni", 
Istruzioni CNR sulle costruzioni metalliche, 1984. 

4. Kemp AR., "Interaction of plastic local and lateral buckling", Journal of Structural 
Engineering, vol.111, n.lO, October 1985. 

5. "Behaviour and Design of Steel Plated Structures", ECCS, TC 8, TWS 8.3, n.44, 1986. 

6. Ballio G., Mazzolani EM., Strutture in acciaio, Hoepli, Milano, 1987. 

7. Bianchi S., Ceccoli C., "Colonne di acciaio sottoposte a carichi ciclici. Simulazione 
numerica e confronto con esperienze", 3° Convegno Nazionale L'Ingegneria Sismica 
in Italia, Roma, 30 settembre - 2 ottobre 1987. 

8. De Martino A., De Martino F.P., Ghersi A, Mazzolani F.M., II comportamento 
flessionale dei profili sottili sagomati a freddo: impostazione della ricerca, Acciaio, 
September 1989. 

9. De Martino A, Ghersi A., Mazzolani F.M., Analisi dei parametri di influenza del 
comportamento flessionale delle sezioni a cassone in parete sottile, C.T.A., Giornate 
Italiane della Costruzione in Acciaio, Capri, October 1989. 

10. De Martino A, Ghersi A., Mazzolani EM., Calibration of a bending model for thin 
walled steel box-sections, International Colloquium on Stability of Steel Structures, 
Hungary, Budapest, April 1990. 



643 

a b 

CIn CJC;r 
~~I\ ~ ~/~ ~ 
My My 

0 0-1 

1 r 1 -0--~~ 4 

I~ -5 3 

o -1--I-'--1-'--'--+-+-+-i iJ 
10 0 Xy 0 

1 1 io 1 1 1---1 ~o x7xy 
c d 

gIj[ ~IJ[ 
X~~ 

~ 
X~~ 

~~ 

My My 
0 - 0~1 

1 r 1 ~ I 4 
I':::: ::a.. 4 5 

5~ 

-

o L--t-t--t--"l'~ 1 1 1 ~o ilxy o~I-1 I I fo I I I I ~o x1xy 
e f 

~t ~t 
M ~ ~I 1ll 
--/~ My My 

~ 0- n_ 

1 ( 0 . 1 

o-+-t--I-I 1 I I I I ~ :::", 1 1 I 1 fO I I I I ~o x7xy 10 oil 0 Xy 

fig_l - Influence of compressed flange instability model 



644 

a b 

~ :Cor , :C.r 
M_/~ ~ l!./1\ ~ 
My My 

n n 

1 I' 1 ~ ~ d 

d 

1 1 c:::::J 
al I k=6.97 b f-- k~1.27'7 

c P------<1 1<=4- d P-- k=0.4-25 

O~f---+-I ~O 1 I--J 1 I~ 
20 xJXy 0 1 I 1 ~O 1 I 1 1 ~oi1Xy 

c d 

~IJ[ ~IJ[ 
l!., ~ l!., ~ 

My My 
0 0 

1 I' 1 (C:::- ~ti 

t:-- b 
d 

d 

--J-f---+-I ., I 1 I 1 1 I I I I ~ol!Xy 0 10 20 X Xy 0 10 

e f 

~I t ~Ij[ 
J.:L~ t!J l!./1\ 

t!J 

My My 
0 0 

- '""- b d 

1 d 1 

0 1 1 ~o 1 1 I--J-to-.?-
OXIXy 0 10 

1 1 I I~ 
20 XIXy 

fig.2 - Influence of restrain conditions of flange 



645 

a b 

1 In ~ X~ 
M ~ ~/~ ~ 
My My 

0 0 

1 E:::- 1 ( --..::::::: circular 

"lcircular -, parabolic 

r-- ~paTllbolic lllnear 

l11near 

~ 
1-1-1 ~O iJXy 

-" 
0 10 0 10 20 X/Xy 

c d 

gIJ[ ~IJ[ 
~/I\ 

~ M ~ 

My My 
0 0 

1 !':.. 1 !lclroular 
. :1circular ~ ~parabolic 
.:parabolic llinenr 
1 linear 

0 10 ~O iiXy 0 lil'-+---l 1 ~O ilXY 

e f 

gIl gIl 
~, t!/ ~/~ 

1lI 
My 

0 
My 

0 
circular 

{ 
~arabolic 

( parabolic 1 inear 
1 llinoar 1 

0 10 I-ro-J'i"" °X7Xy 
oL-t-1-1 1 ~O I---I-+---l 133J 

20 XIXy 

fig.3 - Influence of the slenderness of compressed fibers 



a 

c 

M 
My 

1 

e 

M 

646 

oL-+-1-~-~-+io~--~+-~'--~y 

0 f--I--f--I--I--f--I--f---l--~ 
10 a X Xy 

~I ][ 
f.'l 

M; 

o 1--I--I--f---l--l---l--+-f-2J 
10 20 i& Xy 

figA - Influence of web buckling 

b 

M 
My 

k=13.56 k=12.16 k=7.BI 
o I I I io I I ~ 57 a TV Xy 

d 

M 
My 

f 

M 

a 

M; 

a 

I--f--I--I--~ 
10 20 X Xy 

~It 
t!J 

I--f---l---l--l--l---l--l---l--l~ 
10 . 20~Xy 



647 

a b 

C:Cu { :cO[ 
J4. 1\ ~ M ~ 
My My 

0 

1 ( 1 ~ ...lIith<!lIt impertecUons 

1.-. ~~mp"rtectlons 
-

0 1 1 1 io 1 1 1 1 ~oiJXy 0 10 
f----l 1 ~o x7xy 

C d 

21:][ ~IJ[ 
M FJ!l4 

l!l'LI 
FJ!l4 

My My 

1 r 1 ~ 

0 1 to-+-I 1 1 ~ox7xy 0 1 io 1 1 1 1 ~olJXy 
e f 

~lt ~Il 
J4.'11 ~ l!l~ 

1lI 
My My 

1 r 1 f 

-
0 1 1 1 1 1-+-1-1---1-1 ~ 

10 20 ilxy 0 1 1 1 1 1Io+-,--j 1 ~olJxy 

fig.5 - Influence of geometrical imperfections 



648 

a 

Ib , :en ,x~ 
J.l~1I ~ ..}i, ~ 
My My 

0 

1 1 r .Jb.t 
c 

r---
I 

r ~ -

0 10 ~o frxy 0 1~ I I 
I ~ox7xy 

c d 

~I:J[ ~IJ[ 
M ~ 

J.l~~ 
~ 

My My 

1 r 1 F-::= -',--- '( fi 

I I I I I ~O?!Xy -0 10 0 10 2ox7xy 

e f 

~I j[ ~It 
J.l{ 1!/ M f.lI 
My My -
V - V-1 1 

J--+---j ~ >. o '---1--1--1 I io I I I 
I ~o iJx., 0 10 ox7xy 

fig.6 - Influence of stress-strain relationships of material 


	Bending Behaviour of Double-C Thin Walled Beams
	Recommended Citation

	Bending behaviour of double-C thin walled beams

