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APPROXIMATE DYNAMIC PROGRAMMING AND NEURAL NETWORKS ON GAME HARDWARE 

 
Ryan J. Meuth, Donald C. Wunsch II 

University of Missouri- Rolla  
Dept. of Electrical & Computer Engineering 

1870 Miner Circle, 
Rolla, MO, 65401 

 
Abstract - Modern graphics processing units (GPU) and game 

consoles are used for much more than simply 3D graphics 

applications and video games.  From machine vision to finite 

element analysis, GPU’s are being used in  diverse 

applications, collectively called General Purpose computation 

onf Graphics Processor Units (GPGPU).  Additionally, game 

consoles are entering the market of high performance 

computing as inexpensive nodes in computing clusters. This 

paper explores the capabilities and limitations of modern 

GPU’s and game consoles,  surveying the ADP and neural 

network technologies that can be applied to these devices. 

 

I. INTRODUCTION 
 
In recent years consumer graphics processing hardware 
has experienced significant growth in performance driven 
by increasingly realistic game simulations and popular 
multimedia demands.  As a result, the gaming industry has 
leveraged a parallel processing model to provide a 
doubling of graphics computing capability every six 
months, as opposed to the 18 month doubling rate of 
general computing processors, leading to a “Super-
Moore’s Law” trend that is illustrated in Figure 1.  As 
these graphics processors become more capable and 
flexible, they have become desirable platforms for general 
computation.  Owens [1] provides a extensive overview of 
the industry of general purpose computation on GPU’s. 
However, Owens neglects to mention neural network and 
approximate dynamic programming applications on 
graphics processing units.  Here, we provide an overview 
of these techniques, with associated challenges and 
limitations. 
 
Figure 2 shows an overview of the graphics processing 
pipeline.   
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On the host system side, the application generates a data 
structure to be rendered, consisting of a set of verticies and 
their corresponding colors that define a polygon.  This 
data structure is passed to the vertex processor, which is 
the first programmable unit in the graphics pipeline, which 
typically applies transformations to the vertices.  The 
rasterizer then maps these coordinates to pixel locations, 
generating a set of fragments.  These fragments are then 
passed to the fragment processor, the second 
programmable unit in the pipeline.   
 

 
Fig. 1. The exponential increase in performance of graphics processing 
units compared to the performance of Intel processors over the last 4 
years.  Figure courtesy of Owens [1]. 

 

The fragment processor determines which fragments are to 
be drawn to the frame buffer, and then fills pixels with 
color information based on a program called a shader.  
Shader programs allow complex lighting and texture 
information to be mapped onto pixels. The frame buffer 
holds the completed image for output to a display device. 
 

To maintain high frame rates under increasingly 
graphically intensive applications the vertex and fragment 
processors have been implemented as a single-instruction, 
multiple-data (SIMD) parallel processing architecture.  
Modern graphics processors combine vertex and fragment 
processors into a generalized unified shader unit. 
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Fig. 2. The graphics processing pipeline.  Modern GPU’s combine the 
vertex and fragment processor into a unified shader unit that is able to 
perform either of these functions.  Currently, GPU’s can include up to 
128 unified shader units.  Figure courtesy of Goodnight [2]. 

 
At this writing, GPU’s can include up to 128  unified 
shader units, operating at up to 1.3Ghz.  As the entire 
pipeline is based on the 32-bit floating point data type, this 
yields a significant processing capability on the order of 
hundreds of GFLOPS in a single desktop chassis.  
Additionally, bus enhancements now allow multiple 
graphics cards to work together in the same system [3].  
The widespread availability of these devices has allowed 
inexpensive high performance computing environments to 
be constructed that leverage both CPU and GPU capability 
to create a ‘cluster of clusters’ [4]. 
 
For general purpose computing, the GPU architecture 
lends itself well to applications where calculations are 
repeatedly performed on large blocks of data [5].  In this 
way, particle systems, finite element analysis, image 
processing, and other numerical computation are well 
suited to utilize the GPU.   However, the shader units of 
GPU’s do not yet include efficient looping or branching 
hardware, so algorithms utilizing data-dependant 
operations are difficult to implement effectively.  Also, the 
data bus that hosts the GPU is often inefficient for small 
data transfers, so to achieve a reasonable speedup data 
must be operated on in batches [6]. 
 
Graphics processing units gain their computational power 
from their ability to apply a program to an array of vectors 
in parallel.  Graphics processing units typically include 
processing pipelines that number in powers of two, thus 
the highest efficiency is achieved utilizing arrays that are 
similarly dimensioned.  However, these calculations are 
limited to the data currently being operated on, meaning 
that there is no direct communication capability between 

the processing elements.   Additionally, array sizes are 
fixed at compile-time, placing an upper bound on 
algorithms that require dynamic data sizes.   
 
The lack of primitive looping and branching capability on 
GPUs decreases the efficiency of data dependant 
operations.  Due to this limitation, each branch of an IF 
statement is evaluated, and only the result of the desired 
branch is retained, thus no computation can be saved using 
branching instructions.  Additionally, the lack of explicit 
looping capability requires the un-rolling of algorithms 
into array or matrix form for efficient operation. 
 
Many of these difficulties have been overcome by creative 
algorithm design and implementation on the target 
systems.  Iterative, calculation intensive algorithms gain 
the most benefit from being ported to GPUs.  Typically 
most of the porting difficulty involves mapping the 
algorithmic data structures into GPU video memory such 
that the data can be operated on efficiently, given the GPU 
limitations and capabilities. 
 
GPU shader programs are written in a language similar to 
assembly, and can be developed through a graphics 
programming interface, such as the open-source OpenGL 
or Microsoft’s DirectX. High-level languages such as 
Brook, Sh, and RapidMind allow developers to use C-
based language extensions to create shader programs, 
providing data abstraction, reducing the learning curve of 
these devices.  Some of these high level languages include 
library functions such as ‘Reduce’ which can perform a 
given operation on an array resulting in a single vector 
using an algorithm that operates with complexity of order 
log2(N). 
 

II. GAME CONSOLES 

 

Driven by increasingly complex video games and graphics 
as well as new entertainment media demands such as 
internet, digital photography and video playback, 
consumer video game consoles have become powerful 
general purpose machines.  At the same time, these 
systems must be brought to the public at an affordable 
price point. Figure 3 compares the ratio of Floating Point 
Operations per Second (FLOPS) per dollar of several 
game consoles and Intel Pentium Based Systems.  Here we 
can see that the cost-effectiveness of the latest generation 
of game consoles is an order of magnitude higher than that 
of any Intel-based system. These features make gaming 
consoles a highly desirable platform for inexpensive high 
performance computing systems.   
 
Though the performance per dollar ratio of these systems 
is attractive, they are not without limitations, most notably 
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in their interconnect ability.  Only the last two generations 
of consoles have included networking capabilities, and 
then only one port is provided, limiting the efficiency of 
interconnects architectures in console-based clusters.  
 
Until the latest generation of game consoles, the 
technology embedded in consoles has often lagged behind 
the capability of personal computers at the time.  
However, the selling price of these devices makes them 
very competitive.  In the previous generation of game 
consoles, this was recognized, and several attempts were 
made to utilize inexpensive game consoles as nodes in a 
super computing cluster.  Very little success was made 
with the original Xbox [7], but researchers at the 
University of Illinois – Urbana Champaign succeeded in 
developing a 65-node computing cluster based off of the 
popular Playstation 2 video game console.  This cluster 
was used for chemical simulations, and with a price point 
of $15,000 for the entire cluster, the system provided a 
high level of performance per dollar [8].   
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Fig. 3. Shows the FLOPS per dollar ratio of the past two generations of 
game consoles and Intel Processor-based systems.  We can see that the 
latest generation of game consoles is several orders of magnitude more 
cost efficient than the latest Pentium-based systems. 
 

The latest generation of game consoles differs from the 
former in that Microsoft’s Xbox 360 and Sony’s 
Playstation 3 both include new technologies that greatly 
surpass what is available in the home PC market.  The 
Xbox 360 includes a tri-core Power PC processor 
operating at 3.2Ghz, theoretically providing a peak 
processing capability of 115.2 GFLOPS. The Xbox 360 
surpasses PC-based computing capability by an order of 
magnitude, at a quarter of the cost [9].  Additionally, the 
Playstation 3 is capable of 205 GFLOPS provided by a 
nine-core processor called the Cell Broadband Engine 
cooperatively developed by Sony, IBM and Toshiba.  The 
Cell consists of a single Power PC (PPE) based processor 
that manages 8 Synergistic Processing Elements (SPE) 
connected by an extremely high speed interconnect bus 

and shared memory.  The PPE controls the SPEs like a 
cluster master node, implementing job queue, shared 
memory, and bus management.  The Cell is unique in that 
the device is capable of managing 8 independent threads at 
full processor speed, with full branching and floating point 
operations available on each SPE [10, 11].   
 
The Cell is also interesting in that it can be programmed 
using existing tools for graphics processing units, making 
much existing GPGPU work directly portable to these 
platforms.   
 
Currently, no projects have been undertaken to develop 
high performance computing clusters based on the current 
generation game consoles.  However, IBM will be using 
the Cell Processor in its next generation super computer, 
codenamed “RoadRunner.”  The machine will consist of 
16,000 AMD Opteron cores matched with 16,000 Cell 
Broadband Engines, collectively rated at over 1 peta-
FLOP/s.  This will make it the most powerful super 
computer in the world by several orders of magnitude.  It 
is to be built for the Department of Energy at Los Alamos 
National Laboratory in New Mexico.  [12]  
 

III. DYNAMIC PROGRAMMING 

 

Iterative search methods have been applied to GPU’s, 
illustrating their usefulness in game AI methods, motion 
planning, and DNA sequence alignment.  Lengyel details 
an algorithm for motion planning that is actually the 
slowest possible on a serial machine, and achieves optimal 
real time operation utilizing a GPU’s parallel hardware on 
the uniform Piano Mover Problem [13]. Lengyel’s 
algorithm first finds the action that should be taken at each 
location in the configuration space using a dynamic 
programming method to find the shortest path.  This 
dynamic programming method has the characteristic of an 
expanding front of solutions, starting from the goal 
location, and proceeding through the search space.   Once 
this action policy is found for every location in the space, 
the path is found from the starting position, and the system 
kinematics are modeled.  This method operates optimally 
in real-time on reasonably sized problems utilizing the 
parallel computation properties of the GPU. 
 
Most methods for finding the provably optimal policy of 
MDP’s have an exponential time complexity as each state 
transition sequence must be evaluated.  For large MDP 
formulations, it is often necessary to approximate the 
Bellman Equation.  However, Todorov explores a sub-
class of MDP’s and details a method he calls Z-Learning 
for finding the optimal policy in linear time [14]. 
Similarly, Wunsch shows a closed-form solution to 
cellular simultaneous recurrent network adaptive critic 
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design for the generalized maze problem [15].  For large 
problems, these algorithms can benefit significantly from 
the acceleration that GPU’s can provide.   
 

IV. NEURAL NETWORKS 

 

Neural networks are highly parallelizable and repetitious 
processes which should match well with the GPU 
computing architecture. As a workhorse of Approximate 
Dynamic Programming methods HDP, DHP, GDHP, etc., 
there exists a high demand for this acceleration.  
Zhongwen achieves a massive 200 times increase in 
performance of an MLP implementation on graphics 
hardware over a typical cpu, enabling real-time soccer ball 
tracking on commodity hardware [16].   Zhongwen uses 
the GPU to first extract a set of characteristics from image 
data, then applies a pre-trained MLP to these 
characteristics for classification.  Zhongwen also provides 
several tips for ensuring efficient implementation of 
algorithms on GPU’s.  These tips include minimizing the 
pass count (or number of times a program must be applied 
to data), and minimizing data transfers between CPU and 
GPU sides.   
 
 Steinkraus implements a fully functional 2 layer artificial 
neural network on the GPU, resulting in a 3X speedup for 
both training and testing phases [17].  Steinkraus’ method 
stores input data, training data, and weights in texture 
memory on the GPU.  Then a batch training method is 
used to update the network weights.  Steinkaus identifies 4 
functions that he uses to compute the weight update, the 
least efficient of which is the Inner Product function.  This 
function could be accelerated using the Reduce 
functionality of modern graphics processing units for 
additional efficiency. 
 
Similarly, Chellapilla ports a convolutional neural network 
to the GPU, resulting in a 4x speedup [18].  
  
Bernhard takes a different approach, implementing spiking 
neural networks for image segmentation, which achieves 
up to a 20 times increase in performance [19].  Bernhard 
utilized a special counter on the GPU called the Occlusion 
Query, which tracks how many times a pixel has been 
modified by a shader program.  Using this counter, he was 
able to efficiently compile the activations of pre-synaptic 
neurons in a spiking neural network. 
 

V. CONCLUSIONS 

 

It can be easily seen from this review that significant 
performance gains can be elicited from implementing 
Approximate Dynamic Programming algorithms on 
graphics processing units. However, there is an amount of 

art to these implementations.  In some cases the 
performance gains can be as high as 200 times, but as low 
as 2 times or actually less than CPU operation. Thus it is 
necessary to understand the limitations of the graphics 
processing hardware, and to take these limitations into 
account when developing algorithms targeted at the GPU.  
It should also be noted that all the reviewed papers in this 
document were operating on last-generation hardware.  As 
of the end of 2006, the next generation graphics hardware 
has been released, which include an order of magnitude 
more shader units per processor, as well as improved 
branching capabilities. One can envision the possible 
capability of 256 programmable shader units working in 
parallel at 1.3 GHz each, in a single desktop box.  
Unfortunately none of the previous work has analyzed the 
performance of their algorithms relative to the number of 
computational units involved, which makes it unclear how 
new hardware will effect the performance of these 
methods.   
 
Additionally, utilization of the latest generation game 
consoles can be a cost-effective method for accelerating 
ADP and neural network methods, and this application 
remains a topic of open exploration. 
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