
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Aug 2007

Approximate Dynamic Programming and Neural Networks on Approximate Dynamic Programming and Neural Networks on

Game Hardware Game Hardware

Ryan J. Meuth

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
R. J. Meuth and D. C. Wunsch, "Approximate Dynamic Programming and Neural Networks on Game
Hardware," Proceedings of the International Joint Conference on Neural Networks, 2007, Institute of
Electrical and Electronics Engineers (IEEE), Aug 2007.
The definitive version is available at https://doi.org/10.1109/IJCNN.2007.4371069

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F700&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F700&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/IJCNN.2007.4371069
mailto:scholarsmine@mst.edu

APPROXIMATE DYNAMIC PROGRAMMING AND NEURAL NETWORKS ON GAME HARDWARE

Ryan J. Meuth, Donald C. Wunsch II

University of Missouri- Rolla
Dept. of Electrical & Computer Engineering

1870 Miner Circle,
Rolla, MO, 65401

Abstract - Modern graphics processing units (GPU) and game

consoles are used for much more than simply 3D graphics

applications and video games. From machine vision to finite

element analysis, GPU’s are being used in diverse

applications, collectively called General Purpose computation

onf Graphics Processor Units (GPGPU). Additionally, game

consoles are entering the market of high performance

computing as inexpensive nodes in computing clusters. This

paper explores the capabilities and limitations of modern

GPU’s and game consoles, surveying the ADP and neural

network technologies that can be applied to these devices.

I. INTRODUCTION

In recent years consumer graphics processing hardware
has experienced significant growth in performance driven
by increasingly realistic game simulations and popular
multimedia demands. As a result, the gaming industry has
leveraged a parallel processing model to provide a
doubling of graphics computing capability every six
months, as opposed to the 18 month doubling rate of
general computing processors, leading to a “Super-
Moore’s Law” trend that is illustrated in Figure 1. As
these graphics processors become more capable and
flexible, they have become desirable platforms for general
computation. Owens [1] provides a extensive overview of
the industry of general purpose computation on GPU’s.
However, Owens neglects to mention neural network and
approximate dynamic programming applications on
graphics processing units. Here, we provide an overview
of these techniques, with associated challenges and
limitations.

Figure 2 shows an overview of the graphics processing
pipeline.

Manuscript received January 30, 2007. This work was supported in part
by The Boeing Company, M. K. Finley Endowment, and the National
Science Foundation.
Ryan Meuth is with the Department of Electrical and Computer
Engineering at the University of Missouri – Rolla, Rolla MO, 65401,
USA. (phone: 573-341-4521; e-mail: rmeuth@umr.edu).
Donald C. Wunsch II is with the Department of Electrical and Computer
Engineering at the University of Missouri Rolla, Rolla, MO, 65401,
USA. (e-mail: dwunsch@umr.edu).

On the host system side, the application generates a data
structure to be rendered, consisting of a set of verticies and
their corresponding colors that define a polygon. This
data structure is passed to the vertex processor, which is
the first programmable unit in the graphics pipeline, which
typically applies transformations to the vertices. The
rasterizer then maps these coordinates to pixel locations,
generating a set of fragments. These fragments are then
passed to the fragment processor, the second
programmable unit in the pipeline.

Fig. 1. The exponential increase in performance of graphics processing
units compared to the performance of Intel processors over the last 4
years. Figure courtesy of Owens [1].

The fragment processor determines which fragments are to
be drawn to the frame buffer, and then fills pixels with
color information based on a program called a shader.
Shader programs allow complex lighting and texture
information to be mapped onto pixels. The frame buffer
holds the completed image for output to a display device.

To maintain high frame rates under increasingly
graphically intensive applications the vertex and fragment
processors have been implemented as a single-instruction,
multiple-data (SIMD) parallel processing architecture.
Modern graphics processors combine vertex and fragment
processors into a generalized unified shader unit.

1-4244-1380-X/07/$25.00 ©2007 IEEE

Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

Fig. 2. The graphics processing pipeline. Modern GPU’s combine the
vertex and fragment processor into a unified shader unit that is able to
perform either of these functions. Currently, GPU’s can include up to
128 unified shader units. Figure courtesy of Goodnight [2].

At this writing, GPU’s can include up to 128 unified
shader units, operating at up to 1.3Ghz. As the entire
pipeline is based on the 32-bit floating point data type, this
yields a significant processing capability on the order of
hundreds of GFLOPS in a single desktop chassis.
Additionally, bus enhancements now allow multiple
graphics cards to work together in the same system [3].
The widespread availability of these devices has allowed
inexpensive high performance computing environments to
be constructed that leverage both CPU and GPU capability
to create a ‘cluster of clusters’ [4].

For general purpose computing, the GPU architecture
lends itself well to applications where calculations are
repeatedly performed on large blocks of data [5]. In this
way, particle systems, finite element analysis, image
processing, and other numerical computation are well
suited to utilize the GPU. However, the shader units of
GPU’s do not yet include efficient looping or branching
hardware, so algorithms utilizing data-dependant
operations are difficult to implement effectively. Also, the
data bus that hosts the GPU is often inefficient for small
data transfers, so to achieve a reasonable speedup data
must be operated on in batches [6].

Graphics processing units gain their computational power
from their ability to apply a program to an array of vectors
in parallel. Graphics processing units typically include
processing pipelines that number in powers of two, thus
the highest efficiency is achieved utilizing arrays that are
similarly dimensioned. However, these calculations are
limited to the data currently being operated on, meaning
that there is no direct communication capability between

the processing elements. Additionally, array sizes are
fixed at compile-time, placing an upper bound on
algorithms that require dynamic data sizes.

The lack of primitive looping and branching capability on
GPUs decreases the efficiency of data dependant
operations. Due to this limitation, each branch of an IF
statement is evaluated, and only the result of the desired
branch is retained, thus no computation can be saved using
branching instructions. Additionally, the lack of explicit
looping capability requires the un-rolling of algorithms
into array or matrix form for efficient operation.

Many of these difficulties have been overcome by creative
algorithm design and implementation on the target
systems. Iterative, calculation intensive algorithms gain
the most benefit from being ported to GPUs. Typically
most of the porting difficulty involves mapping the
algorithmic data structures into GPU video memory such
that the data can be operated on efficiently, given the GPU
limitations and capabilities.

GPU shader programs are written in a language similar to
assembly, and can be developed through a graphics
programming interface, such as the open-source OpenGL
or Microsoft’s DirectX. High-level languages such as
Brook, Sh, and RapidMind allow developers to use C-
based language extensions to create shader programs,
providing data abstraction, reducing the learning curve of
these devices. Some of these high level languages include
library functions such as ‘Reduce’ which can perform a
given operation on an array resulting in a single vector
using an algorithm that operates with complexity of order
log2(N).

II. GAME CONSOLES

Driven by increasingly complex video games and graphics
as well as new entertainment media demands such as
internet, digital photography and video playback,
consumer video game consoles have become powerful
general purpose machines. At the same time, these
systems must be brought to the public at an affordable
price point. Figure 3 compares the ratio of Floating Point
Operations per Second (FLOPS) per dollar of several
game consoles and Intel Pentium Based Systems. Here we
can see that the cost-effectiveness of the latest generation
of game consoles is an order of magnitude higher than that
of any Intel-based system. These features make gaming
consoles a highly desirable platform for inexpensive high
performance computing systems.

Though the performance per dollar ratio of these systems
is attractive, they are not without limitations, most notably

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

in their interconnect ability. Only the last two generations
of consoles have included networking capabilities, and
then only one port is provided, limiting the efficiency of
interconnects architectures in console-based clusters.

Until the latest generation of game consoles, the
technology embedded in consoles has often lagged behind
the capability of personal computers at the time.
However, the selling price of these devices makes them
very competitive. In the previous generation of game
consoles, this was recognized, and several attempts were
made to utilize inexpensive game consoles as nodes in a
super computing cluster. Very little success was made
with the original Xbox [7], but researchers at the
University of Illinois – Urbana Champaign succeeded in
developing a 65-node computing cluster based off of the
popular Playstation 2 video game console. This cluster
was used for chemical simulations, and with a price point
of $15,000 for the entire cluster, the system provided a
high level of performance per dollar [8].

FLOPS/Dollar

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

4.50E+08

P
e

n
ti
u

m
 3

P
e

n
ti
u

m
 4

Q
u

a
d

X
b

o
x

P
e

n
ti
u

m
 4

P
S

2

P
e

n
ti
u

m
 4

D
u

a
l

X
b

o
x
 3

6
0

P
S

3

Fig. 3. Shows the FLOPS per dollar ratio of the past two generations of
game consoles and Intel Processor-based systems. We can see that the
latest generation of game consoles is several orders of magnitude more
cost efficient than the latest Pentium-based systems.

The latest generation of game consoles differs from the
former in that Microsoft’s Xbox 360 and Sony’s
Playstation 3 both include new technologies that greatly
surpass what is available in the home PC market. The
Xbox 360 includes a tri-core Power PC processor
operating at 3.2Ghz, theoretically providing a peak
processing capability of 115.2 GFLOPS. The Xbox 360
surpasses PC-based computing capability by an order of
magnitude, at a quarter of the cost [9]. Additionally, the
Playstation 3 is capable of 205 GFLOPS provided by a
nine-core processor called the Cell Broadband Engine
cooperatively developed by Sony, IBM and Toshiba. The
Cell consists of a single Power PC (PPE) based processor
that manages 8 Synergistic Processing Elements (SPE)
connected by an extremely high speed interconnect bus

and shared memory. The PPE controls the SPEs like a
cluster master node, implementing job queue, shared
memory, and bus management. The Cell is unique in that
the device is capable of managing 8 independent threads at
full processor speed, with full branching and floating point
operations available on each SPE [10, 11].

The Cell is also interesting in that it can be programmed
using existing tools for graphics processing units, making
much existing GPGPU work directly portable to these
platforms.

Currently, no projects have been undertaken to develop
high performance computing clusters based on the current
generation game consoles. However, IBM will be using
the Cell Processor in its next generation super computer,
codenamed “RoadRunner.” The machine will consist of
16,000 AMD Opteron cores matched with 16,000 Cell
Broadband Engines, collectively rated at over 1 peta-
FLOP/s. This will make it the most powerful super
computer in the world by several orders of magnitude. It
is to be built for the Department of Energy at Los Alamos
National Laboratory in New Mexico. [12]

III. DYNAMIC PROGRAMMING

Iterative search methods have been applied to GPU’s,
illustrating their usefulness in game AI methods, motion
planning, and DNA sequence alignment. Lengyel details
an algorithm for motion planning that is actually the
slowest possible on a serial machine, and achieves optimal
real time operation utilizing a GPU’s parallel hardware on
the uniform Piano Mover Problem [13]. Lengyel’s
algorithm first finds the action that should be taken at each
location in the configuration space using a dynamic
programming method to find the shortest path. This
dynamic programming method has the characteristic of an
expanding front of solutions, starting from the goal
location, and proceeding through the search space. Once
this action policy is found for every location in the space,
the path is found from the starting position, and the system
kinematics are modeled. This method operates optimally
in real-time on reasonably sized problems utilizing the
parallel computation properties of the GPU.

Most methods for finding the provably optimal policy of
MDP’s have an exponential time complexity as each state
transition sequence must be evaluated. For large MDP
formulations, it is often necessary to approximate the
Bellman Equation. However, Todorov explores a sub-
class of MDP’s and details a method he calls Z-Learning
for finding the optimal policy in linear time [14].
Similarly, Wunsch shows a closed-form solution to
cellular simultaneous recurrent network adaptive critic

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

design for the generalized maze problem [15]. For large
problems, these algorithms can benefit significantly from
the acceleration that GPU’s can provide.

IV. NEURAL NETWORKS

Neural networks are highly parallelizable and repetitious
processes which should match well with the GPU
computing architecture. As a workhorse of Approximate
Dynamic Programming methods HDP, DHP, GDHP, etc.,
there exists a high demand for this acceleration.
Zhongwen achieves a massive 200 times increase in
performance of an MLP implementation on graphics
hardware over a typical cpu, enabling real-time soccer ball
tracking on commodity hardware [16]. Zhongwen uses
the GPU to first extract a set of characteristics from image
data, then applies a pre-trained MLP to these
characteristics for classification. Zhongwen also provides
several tips for ensuring efficient implementation of
algorithms on GPU’s. These tips include minimizing the
pass count (or number of times a program must be applied
to data), and minimizing data transfers between CPU and
GPU sides.

 Steinkraus implements a fully functional 2 layer artificial
neural network on the GPU, resulting in a 3X speedup for
both training and testing phases [17]. Steinkraus’ method
stores input data, training data, and weights in texture
memory on the GPU. Then a batch training method is
used to update the network weights. Steinkaus identifies 4
functions that he uses to compute the weight update, the
least efficient of which is the Inner Product function. This
function could be accelerated using the Reduce
functionality of modern graphics processing units for
additional efficiency.

Similarly, Chellapilla ports a convolutional neural network
to the GPU, resulting in a 4x speedup [18].

Bernhard takes a different approach, implementing spiking
neural networks for image segmentation, which achieves
up to a 20 times increase in performance [19]. Bernhard
utilized a special counter on the GPU called the Occlusion
Query, which tracks how many times a pixel has been
modified by a shader program. Using this counter, he was
able to efficiently compile the activations of pre-synaptic
neurons in a spiking neural network.

V. CONCLUSIONS

It can be easily seen from this review that significant
performance gains can be elicited from implementing
Approximate Dynamic Programming algorithms on
graphics processing units. However, there is an amount of

art to these implementations. In some cases the
performance gains can be as high as 200 times, but as low
as 2 times or actually less than CPU operation. Thus it is
necessary to understand the limitations of the graphics
processing hardware, and to take these limitations into
account when developing algorithms targeted at the GPU.
It should also be noted that all the reviewed papers in this
document were operating on last-generation hardware. As
of the end of 2006, the next generation graphics hardware
has been released, which include an order of magnitude
more shader units per processor, as well as improved
branching capabilities. One can envision the possible
capability of 256 programmable shader units working in
parallel at 1.3 GHz each, in a single desktop box.
Unfortunately none of the previous work has analyzed the
performance of their algorithms relative to the number of
computational units involved, which makes it unclear how
new hardware will effect the performance of these
methods.

Additionally, utilization of the latest generation game
consoles can be a cost-effective method for accelerating
ADP and neural network methods, and this application
remains a topic of open exploration.

VI. REFERENCES

[1] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris,

Jens Krüger, Aaron E. Lefohn, Timothy, “A Survey of General-
Purpose Computation on Graphics Hardware,” Computer

Graphics Forum, Volume 26
[2] Goodnight, N., Wang, R., Humphreys, G., “Computation on

programmable graphics hardware” Computer Graphics and

Applications, IEEE Volume 25, Issue 5, Sept.-Oct. 2005
Page(s):12 – 15

[3] “GeForce 8800 specifications,”
http://www.nvidia.com/page/geforce_8800.html, accessed
November 9, 2006.

[4] Zhe Fan; Feng Qiu; Kaufman, A.; Yoakum-Stover, S., “GPU
Cluster for High Performance Computing” Supercomputing, 2004.
Proceedings of the ACM/IEEE SC2004 Conference 2004
Page(s):47 – 47

[5] Ekman M., Warg F., Nilsson J., “An in-depth look at computer
performance growth.” ACM SIGARCH Computer Architecture

News 33, 1 (Mar. 2005), 144–147.
[6] Tranoso, P.; Charalambous, M.; “Exploring graphics processor

performance for general purpose applications,” Digital System

Design, 2005. Proceedings. 8th Euromicro Conference on 30 Aug.-
3 Sept. 2005 Page(s):306 – 313

[7] “12 Node Xbox Linux Cluster,”
http://www.xl-cluster.org/index.php accessed January 19, 2007.

[8] “65 Node PS2 Linux Cluster,”
http://arrakis.ncsa.uiuc.edu/ps2/cluster.php accessed January 19,
2007. University of Illinois, Urbana-Champaign.

[9] “Comparison of Seventh Generation Game Consoles”,
www.wikipedia.com,
http://en.wikipedia.org/wiki/Comparison_of_seventh-
generation_game_consoles, Retrieved January 19, 2007.

 [9] Pham D., Asano S., Bolliger M., Day M. N., Hofstee H. P., Johns
C., Kahle J., Kameyama., Keaty J., Masubichi Y., Riley M.,

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

Shippy D., Stasiak D., Wang M., Warnock J., Weitzel S., Wendel
D., Yamazaki T., Yazawa K.: “The design and implementation of a
first-generation CELL processor.” Proceedings of the

International Solid-State Circuits Conference (Feb. 2005), pp.
184–186.

 [10] Brown, Jeffry (2005-12-06). “Application-customized CPU
design.” IBM. http://www-
128.ibm.com/developerworks/power/library/pa-fpfxbox/?ca=dgr-
lnxw07XBoxDesign Retrieved on 2006-09-30.

[11] "Introduction to the Cell multiprocessor", IBM Journal of

Research and Development,
http://researchweb.watson.ibm.com/journal/rd/494/kahle.html,
September 7, 2005.

[12] “IBM to Build World's First Cell Broadband Engine Based
Supercomputer.” IBM http://www-
03.ibm.com/press/us/en/pressrelease/20210.wss (2006-09-06).
Retrieved on 2006-09-11.

[13] Lengyel, J., Reichert, M., Donald, B. R., Greenberg, D. P., “Real-
time robot motion planning using rasterizing computer graphics
hardware.” Computer Graphics (Proceedings of ACM SIGGRAPH

90) (Aug. 1990), vol. 24, pp. 327–335.
[14] Todorov, Emanuel, “Linearly Solvable Markov Decision

Problems,” Advances in Neural Information Processing Systems,
2006. To Appear.

[15] Wunsch, D., “The cellular simultaneous recurrent network adaptive
critic design for the generalized maze problem has a simple closed-
form solution.” IJCNN 2000, Proceedings of the IEEE-INNS-

ENNS International Joint Conference on Neural Networks, 2000.
Volume 3, 24-27 July 2000 Page(s):79 - 82 vol.3

[15] Zhongwen Luo; Hongzhi Liu; Xincai Wu, “Artificial neural
network computation on graphic process unit,” IEEE International

Joint Conference on Neural Networks, 2005. IJCNN '05.
Proceedings. Volume 1, 31 July-4 Aug. 2005 Page(s):622 - 626
vol. 1

[17] Steinkraus, D.; Buck, I.; Simard, P.Y., “Using GPUs for machine
learning algorithms,” Proceedings of Eighth International

Conference on Document Analysis and Recognition, 2005. 29
Aug.-1 Sept. 2005 Page(s):1115 - 1120 Vol. 2

[18] Chellapilla K, Puri S, Simard P, “High Performance Convolutional
Neural Networks for Document Processing,” 10th International

Workshop on Frontiers in Handwriting Recognition
(IWFHR’2006) will be held in La Baule, France on October 23-26,
2006.

[19] F. Bernhard and R. Keriven. “Spiking neurons on GPUs,”
International Conference on Computational Science. Workshop
General purpose computation on graphics hardware (GPGPU):
Methods, algorithms and applications, Reading, UK, May 2006.

Acknowledgement: The authors are grateful to Rui Xu for helpful
discussions. This work was partially supported by the National Science

Foundation and the M.K. Finley Missouri endowment.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

	Approximate Dynamic Programming and Neural Networks on Game Hardware
	Recommended Citation

	Approximate Dynamic Programming and Neural Networks on Game Hardware

