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A DUAL-POROSITY-STOKES MODEL AND FINITE ELEMENT
METHOD FOR COUPLING DUAL-POROSITY FLOW AND FREE

FLOW∗

JIANGYONG HOU† , MEILAN QIU‡ , XIAOMING HE§ , CHAOHUA GUO¶,

MINGZHEN WEI‖, AND BAOJUN BAI‖

Abstract. In this paper, we propose and numerically solve a new model considering confined
flow in dual-porosity media coupled with free flow in embedded macrofractures and conduits. Such
situation arises, for example, for fluid flows in hydraulic fractured tight/shale oil/gas reservoirs. The
flow in dual-porosity media, which consists of both matrix and microfractures, is described by a
dual-porosity model. And the flow in the macrofractures and conduits is governed by the Stokes
equation. Then the two models are coupled through four physically valid interface conditions on
the interface between dual-porosity media and macrofractures/conduits, which play a key role in a
physically faithful simulation with high accuracy. All the four interface conditions are constructed
based on fundamental properties of the traditional dual-porosity model and the well-known Stokes–
Darcy model. The weak formulation is derived for the proposed model, and the well-posedness of
the model is analyzed. A finite element semidiscretization in space is presented based on the weak
formulation, and four different schemes are then utilized for the full discretization. The convergence
of the full discretization with the backward Euler scheme is analyzed. Four numerical experiments
are presented to validate the proposed model and demonstrate the features of both the model and
the numerical method, such as the optimal convergence rate of the numerical solution, the detail flow
characteristics around macrofractures and conduits, and the applicability to the real world problems.

Key words. dual-porosity model, Stokes equation, interface condition, multistage fractured
horizontal wellbore
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DOI. 10.1137/15M1044072

1. Introduction. The coupling of porous media flow and free flow arises in many
important applications, such as groundwater systems [27, 35, 36, 56, 62], industrial
filtrations [40, 52, 70], petroleum extraction [3, 5, 6, 28, 90], biochemical transport
[18, 33, 42, 73, 80], and so on. For this kind of coupled flow, the Stokes–Darcy model
has been widely used and extensively investigated by many researchers during the
past decade; see, e.g., [7, 8, 14, 17, 19, 21, 30, 37, 39, 43, 45, 49, 50, 59, 63, 65, 67,
68, 69, 74, 75, 84, 86, 87] and the references cited therein. The Stokes–Darcy model
describes a coupled flow in a so-called porous media–conduit system in which a free
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flow and a porous medium flow occur in separate but abutting domains with the two
flows coupled on the interface between the two domains.

The Darcy model in the traditional Stokes–Darcy system is a single porosity
model, which is not accurate to describe the complicated porous media with mul-
tiple porosities. For example, a naturally fractured reservoir is comprised of low
permeable rock matrix blocks surrounded by an irregular network of natural micro-
fractures, and the matrix and microfractures have different fluid storage and con-
ductivity properties [2, 82, 88]. The traditional dual-porosity models have been
widely used to describe the naturally fractured porous media for different prob-
lems in hydrology, carbon sequestration, geothermal system, and petroleum extrac-
tion [4, 25, 32, 46, 47, 51, 53, 54, 61, 79, 91]. But this model itself does not consider
the free flow in large conduits. On the other hand, none of the existing Stokes–Darcy
models consider a dual-porosity model when they couple the porous media flow with
the free flow. Therefore, based on the key idea of the traditional Stokes–Darcy model,
in this paper we propose a new dual-porosity-Stokes model to govern the flow in the
coupled system which consists of dual-porosity media and macrofractures/conduits.

A dual-porosity medium includes the matrix system and the microfracture sys-
tem, which are generally assumed to involve two overlapping but interacting domains
with different hydraulic and transport properties. The microfracture system is more
permeable than the matrix system, while the matrix system has larger storage capac-
ity compared with the microfracture system [2, 82]. The single phase dual-porosity
model includes two equations, the matrix pressure equation and the microfracture
pressure equation, which characterize the flow in the matrix medium and microfrac-
ture medium, respectively. These two equations are coupled through a mass exchange
term which describes the fluids flowing from the matrix to the microfractures. Fur-
thermore, in the traditional dual-porosity model, the description of the production
from the microfracture medium to the wellbore is simplified as a source term in the
microfracture equation.

In this paper, we propose, numerically solve, and analyze a new dual-porosity-
Stokes model, which utilizes interface conditions to couple a dual-porosity model
with the Stokes equation, for confined flow in dual-porosity media coupled with free
flow in embedded conduits or macrofractures. The dual-porosity media include the
matrix and the microfractures, and the conduits include the macrofractures and the
wellbore, etc. The dual-porosity media and the conduits are two nonoverlapping but
contiguous regions with interfaces between them. The dual-porosity model and the
Stokes equation are used to govern the flow in dual-porosity media and conduits,
respectively.

In contrast to the traditional Stokes–Darcy model, the new model uses two pres-
sures, the matrix pressure and the fracture pressure, instead of only one pressure, to
couple with the Stokes equations. Thus, four physically valid interface conditions are
utilized to couple the two models on the interface between the dual-porosity media
and the conduits, including a no-exchange condition, a mass balance condition, a
force balance condition, and the Beavers–Joseph condition [10]. The first interface
condition is proposed for the flow in the matrix based on a fundamental property of a
dual-porosity model that the flow in matrix only goes into the microfractures but does
not interact with conduits on the interface. Motivated by another fundamental prop-
erty of a dual-porosity model that the flow exchange on the interface only happens
between the microfractures and the conduits, the other three interface conditions are
borrowed from the traditional Stokes–Darcy model to describe the flux transfer and
exchange on the interface between the microfractures and the conduits.
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To our best knowledge, this is the first work to model and simulate the coupled
flow in a dual-porosity-conduit interface system. Therefore, after the weak formu-
lation is first formed, a finite element method is proposed with four different time
discretization schemes. We analyze the well-posedness of the model and the con-
vergence of the full discretization with the backward Euler scheme. Four numerical
experiments are also presented to show the features of the model and the finite element
method. The first experiment shows that the optimal convergence order is obtained
for the finite element method. The second experiment investigates the characteristics
of the flow around natural macrofractures. In the third and fourth experiments, a
horizontal wellbore with open-hole completion and a multistage fractured horizontal
wellbore (MsFHW) with cased hole completion, respectively, are studied. In sum-
mary, the proposed works enable an accurate and physically valid tool for simulating
the complex coupled flow in dual-porosity media and embedded conduits.

The rest of the paper is organized as follows. In section 2, we propose the dual-
porosity-Stokes model by introducing the governing equations and the corresponding
interface conditions. In section 3, the weak formulation is derived and the well-
posedness of the model are analyzed. In section 4, the finite element method is
presented and analyzed. In section 5, four numerical experiments are provided to
validate the model and illustrate the features of both the model and the finite element
method. In section 6, a short conclusion is provided.

2. Dual-porosity-Stokes model. For a simple illustration of the model prob-
lem, we use a composite domain, which consists of a dual-porosity subdomain Ωd
and the conduit subdomain Ωc, to describe a dual-porosity-conduit system sketched
in Figure 1. These two subdomains are nonoverlapping, i.e., Ωd ∩ Ωc = ∅. ∂Ωd and
∂Ωc are the boundaries of Ωd and Ωc, respectively. Γcd is the interface between these
two subdomains. Let Γd = ∂Ωd/Γcd and Γc = ∂Ωc/Γcd. We also consider the time
domain [0, T ] for the model.

ΓdΓd

ΓcΓc

Γd

Γc

Ωd

Ωc

Γcd

Fig. 1. The interface (dashed line) separates two subdomains: the dual-porosity media region
and the free flow region.

In dual-porosity media, Ωd, the dual-porosity model is used to govern the flow.
First, we recall a traditional dual-porosity model, which is composed of matrix and
microfracture equations [51, 88] as follows:

φmCmt
∂pm
∂t
−∇ ·

(
km
µ
∇pm

)
= −Q,(2.1)

φfCft
∂pf
∂t
−∇ ·

(
kf
µ
∇pf

)
= Q+ qp,(2.2)
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where Q = σkm
µ (pm − pf ) is a mass exchange term between matrix and microfrac-

tures, σ is a shape factor characterizing the morphology and dimension of the micro-
fractures, φm ( φf ) denotes the porosity of the matrix (fracture) medium, Cmt (Cft)
is the total compressibility for the matrix (fracture) system, pm ( pf ) is the pressure
in matrix (fracture), km ( kf ) is the intrinsic permeability in matrix (fracture), µ is
the dynamic viscosity, and qp is the sink/source term.

In the conduits Ωc, such as hydraulic fractures and horizontal wellbore, the flow
is governed by the Stokes equation

∂uc
∂t
−∇ · T(uc, p) = f ,(2.3)

∇ · uc = 0,(2.4)

where uc is the velocity, p is the kinematic pressure, T(uc, p) := 2νD(uc) − pI is the
stress tensor, D(uc) := 1

2 (∇uc + ∇uTc ) is the deformation tensor, I is the identity
matrix, ν is the kinematic viscosity of the fluid, and f is a general body forcing term.

To combine the two separate models above together into the coupled system, we
need to propose four interface conditions on the interface Γcd based on the following
fundamental property of dual-porosity media. In general, the matrix permeability in a
dual-porosity medium is critically low compared with the microfracture permeability.
For example, in a shale or tight reservoir, the matrix permeability is usually 105 to 107

times smaller than the microfracture permeability [11, 12, 16, 24, 51]. On the other
hand, the matrix porosity is usually 102 to 103 times larger than the microfracture
porosity [12, 24, 51]. Furthermore, the shape factor σ, which ranges from 0 to 1, can
be determined according to the morphology and dimension of the microfractures by
using different types of formulas; see [64, 66, 71, 85] and the references therein for
more details.

Therefore, in the dual-porosity media, the matrix system serves as the main
storage space and the microfracture system serves as the preferential fluid movement
channel. Due to the critically low permeability in the matrix and the much faster flow
in the microfractures, the dual-porosity model neglects the flows between the matrix
and the conduits/macrofractures. That is, the dual-porosity model assumes that the
fluid drains from the matrix block into the adjacent microfractures and then into the
conduits/macrofractures [9, 15, 48, 58, 60, 72]. Since the matrix is assumed to only
feed the microfractures, the conduits/macrofractures do not directly communicate
with the matrix but are only fed by the microfractures.

The first interface condition is a no-exchange condition between the matrix and
the conduits/macrofractures:

(2.5) − km
µ
∇pm · (−ncd) = 0,

where ncd is the unit normal vector on the interface edges pointing from Ωc to Ωd. The
no-exchange condition means no flux could go across the interface from the matrix
system directly to the conduits. This is based on the above fundamental property of
the dual-porosity model which assumes that the matrix only feeds the microfractures
and does not directly communicate with the conduits/macrofractures.

Then, similar to the three interface conditions of the Stokes–Darcy model, the
following three conditions are imposed for the interaction between the flow in the
microfractures and the flow in the conduits/macrofractures:

uc · ncd = −kf
µ
∇pf · ncd,(2.6)
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− nTcdT(uc, p)ncd =
pf
ρ
,(2.7)

− Pτ (T(uc, p)ncd) =
αν
√
N√

trace(Π)
Pτ
(

uc +
kf
µ
∇pf

)
,(2.8)

where Pτ denotes the projection onto the local tangent plane on Γcd, α is a constant
parameter, Π is the intrinsic permeability of the fracture medium and Π = kf I, N
is the spatial dimension, and ρ is the fluid density. The interface condition (2.6)
stands for the conservation of mass between the microfractures and the conduits.
The condition (2.7) describes the balance of the forces [26, 31]. The last condition
(2.8) is referred to as the Beavers–Joseph interface condition [10], which has been
studied for the Stokes–Darcy model [20, 22, 23, 29, 41, 55]. These three conditions
comply with the above fundamental property of the dual-porosity model. That is,
the conduits/macrofractures are only fed by the microfractures, and the flux trans-
fer and exchange on the interface only happens between the microfractures and the
conduits/macrofractures.

For simplicity, we impose the following Dirichlet boundary conditions:

(2.9) pm = pdirm , pf = pdirf on Γd; uc = udir on Γc.

For real world applications, more realistic boundary conditions may need to be im-
posed, which will be discussed in the examples of section 5. The initial conditions for
the problem are given by

pm(x, 0) = p0
m, pf (x, 0) = p0

f , uc(x, 0) = u0
c .(2.10)

3. Weak formulation. In this section, we will derive the weak formulation and
show the well-posedness for the proposed model. Define the Hilbert spaces

Hs
Γd

:= {ψ ∈ Hs(Ωd) : ψ = 0 on Γd},
Hs

Γc := {v ∈ [Hs(Ωc)]
N : v = 0 on Γc}, M := L2(Ωc),

and the product Hilbert spaces

X := H1(Ωd)×H1(Ωd)× [H1(Ωc)]
N ,

X0 := H1
Γd
×H1

Γd
×H1

Γc , L2 := L2(Ωd)× L2(Ωd)× [L2(Ωc)]
N .

Define two norms on M and X0, respectively:

||q||0 := ||q||M ∀q ∈M ;

||−→u ||X0
:=

(
||pm||2H1

Γd

+ ||pf ||2H1
Γd

+ ||uc||2H1
Γc

)1/2

∀−→u = (pm, pf ,uc) ∈ X0.

We also need the trace space defined as H
1
2
00(Γcd) := H1

Γc
|Γcd , which is a nonclosed

subspace of H
1
2 (Γcd) and has a continuous zero extension to H

1
2 (∂Ωc) [22, 23].

We briefly derive the weak formulation of the coupled dual-porosity-Stokes sys-
tem from the two original models with interface conditions. First, multiplying the
equations of dual-porosity model (2.1) and (2.2) by test functions ψm and ψf , respec-
tively, and then integrating the result over Ωd, we have, for all (ψm, ψf ) ∈ H1

Γd
×H1

Γd
and t ∈ (0, T ),
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Ωd

(
φmCmt

∂pm
∂t

ψm +
km
µ
∇pm · ∇ψm +

σkm
µ

(pm − pf )ψm

)
dΩ(3.1)

−
∫

Γcd

(
km
µ
∇pm · (−ncd)

)
ψmdΓ = 0,∫

Ωd

(
φfCft

∂pf
∂t

ψf +
kf
µ
∇pf · ∇ψf +

σkm
µ

(pf − pm)ψf

)
dΩ(3.2)

−
∫

Γcd

(
kf
µ
∇pf · (−ncd)

)
ψfdΓ =

∫
Ωd

qpψf dΩ.

Similarly, multiplying the Stokes system (2.3) and (2.4) by a velocity test function v
and a pressure test function q, respectively, integrating the result over Ωc, we have,
for all (v, q) ∈ H1

Γc
×M and t ∈ (0, T ),∫

Ωc

(
∂uc
∂t
· v + (2νD(uc)− pI) · ∇v

)
dΩ−

∫
Γcd

(
nTcd(2νD(uc)− pI)ncd

)
v · ncddΓ

−
∫

Γcd

Pτ ((2νD(uc)− pI)ncd) · vdΓ =

∫
Ωc

f · vdΩ,

(3.3)

∫
Ωc

(∇ · uc)qdΩ = 0.

(3.4)

Next, to couple the two subsystems (3.1)–(3.2) and (3.3)–(3.4) into the complete sys-
tem, we apply the interface condition (2.5) to (3.1), apply the interface condition (2.6)
to (3.2), and apply the interface conditions (2.7)–(2.8) to (3.3). Then, multiplying
(3.3)–(3.4) by a rescaling constant η and summing all the resulting equations, we
obtain∫

Ωd

(
φmCmt

∂pm

∂t
ψm +

km

µ
∇pm · ∇ψm +

σkm

µ
(pm − pf )ψm

)
dΩ

+

∫
Ωd

(
φfCft

∂pf

∂t
ψf +

kf

µ
∇pf · ∇ψf +

σkm

µ
(pf − pm)ψf

)
dΩ−

∫
Γcd

uc · ncdψfdΓ

+ η

∫
Ωc

(
∂uc

∂t
· v + 2νD(uc) : D(v)− p∇ · v

)
dΩ

+ η

∫
Γcd

(
1

ρ
pfv · ncd +

αν
√
N√

trace(Π)
Pτ
(

uc +
kf

µ
∇pf

)
· v
)
dΓ = η

∫
Ωc

f · v dΩ +

∫
Ωd

qpψf dΩ,

(3.5)

η

∫
Ωc

∇ · ucq dΩ = 0.

(3.6)

Here the integral of Pτ (
kf
µ ∇pf )·v on Γcd is understood to be the value of the functional

Pτ (
kf
µ ∇pf )|Γcd ∈

(
H

1
2
00(Γcd)

)′
applied to v|Γcd ∈ H

1
2
00(Γcd), which is well defined when

kf is isotropic; see [23] and the references cited therein.
For simplicity, we define the bilinear forms aη(·, ·) : X0 ×X0 → R and bη(·, ·) :

M ×X0 → R as follows. For −→u = (pm, pf ,uc) and −→v = (ψm, ψf ,v) in X0 and p in
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M , define

aη(−→u ,−→v ) =

∫
Ωd

(
km
µ
∇pm · ∇ψm +

σkm
µ

(pm − pf )ψm

)
dΩ

+

∫
Ωd

(
kf
µ
∇pf · ∇ψf +

σkm
µ

(pf − pm)ψf

)
dΩ

+

∫
Γcd

(
− uc · ncdψf +

η

ρ
pfv · ncd

)
dΓ + η

∫
Ωc

2νD(uc) : D(v)dΩ

+ η

∫
Γcd

(
αν
√
N√

trace(Π)
Pτ (uc +

kf
µ
∇pf ) · v

)
dΓ(3.7)

and

(3.8) bη(p,v) = −η
∫

Ωc

p∇ · v dΩ.

We also define the inner product 〈·, ·〉η : X0 ×X0 → R

〈∂t−→u ,−→v 〉η =

∫
Ωd

(
φmCmt

∂pm
∂t

ψm + φfCft
∂pf
∂t

ψf

)
dΩ + η

∫
Ωc

∂uc
∂t
· vdΩ(3.9)

and the linear forcing functional `η(·) : X0 → R

`η(−→v ) =

(
0

η〈f ,v〉Ωc + 〈qp, ψf 〉Ωd

)
,(3.10)

where 〈f ,v〉Ωc :=
∫

Ωc
f · vdΩ and 〈qp, ψf 〉Ωd :=

∫
Ωd
qpψf dΩ are the dualities induced

by the L2 inner product on Ωc and Ωd, respectively.
Thus, the weak formulation is to find (−→u , p) = (pm, pf ,uc, p) ∈ L2(0, T ; X0) ×

L2(0, T ;M) such that

〈∂t−→u ,−→v 〉η + aη(−→u ,−→v ) + bη(p,v) = `η(−→v ) ∀−→v = (ψm, ψf ,v) ∈ X0,(3.11)

bη(q,uc) = 0 ∀ q ∈M(3.12)

with the initial condition−→u (0) = −→u 0, where ∂t
−→u ∈ H1(0, T ; X′0), X′0 denotes the dual

space of X0, and −→u 0 = (p0
m, p

0
f ,u

0
c). For the general Dirichlet boundary condition

(2.9), the standard homogenization technique can be applied to obtain an equivalent
system with the homogeneous Dirichlet boundary conditions.

In the rest of this section, we will follow the analysis in [23] to show the continuity
and a G̊arding-type inequality of aη(·, ·) for the well-posedness of the proposed model.
For simplification, we will use || · ||1 to denote the H1 norm of the corresponding
space and || · ||0 to denote the L2 norm of the corresponding space. First, we have the
following lemma for the continuity of aη(·, ·).

Lemma 1. The bilinear form aη(·, ·) is continuous on X0; i.e., there exists a
constant Cη such that, for all −→u ,−→v ∈ X0,

(3.13) aη(−→u ,−→v ) ≤ Cη‖−→u ‖X0‖
−→v ‖X0 .

Proof. Using the Cauchy–Schwarz inequality, the trace inequality, and Poincaré
inequality, we have
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aη(−→u ,−→v ) ≤
∣∣∣∣kmµ

∣∣∣∣‖pm‖1‖ψm‖1 +

∣∣∣∣kf + σkm
µ

∣∣∣∣‖pf‖1‖ψf‖1 + |2ην|‖uc‖1‖v‖1

+

∣∣∣∣σkmµ
∣∣∣∣‖pm‖1‖ψm‖1 +

∣∣∣∣C4

√
Nηνα√

λmin(Π)
+
η

ρ
C2

∣∣∣∣‖pf‖1‖v‖1 + C1‖uc‖1‖ψf‖1

+

∣∣∣∣σkmµ
∣∣∣∣‖pm‖1‖ψf‖1 +

∣∣∣∣σkmµ
∣∣∣∣‖pf‖1‖ψm‖1 +

∣∣∣∣C3

√
Nηνα√

λmin(Π)

∣∣∣∣‖uc‖1‖v‖1,(3.14)

where the Ci’s are generic constants depending on the domain and the interface and
λmin(Π) denotes the smallest eigenvalues of Π. Define

γ1,η = max

{∣∣∣∣kmµ
∣∣∣∣, ∣∣∣∣kf + σkm

µ

∣∣∣∣, |2ην|}, γ2,η = max

{∣∣∣∣σkmµ
∣∣∣∣, ∣∣∣∣C4

√
Nηνα√

λmin(Π)
+
η

ρ
C2

∣∣∣∣, C1

}
,

γ3,η = max

{∣∣∣∣σkmµ
∣∣∣∣, ∣∣∣∣C3

√
Nηνα√

λmin(Π)

∣∣∣∣}, Cη = max{γ1,η, γ2,η, γ3,η}.

Then the inequality (3.14) leads to

aη(−→u ,−→v ) ≤ γ1,η(‖pm‖21 + ‖pf‖21 + ‖uc‖21)1/2(‖ψm‖21 + ‖ψf‖21 + ‖v‖21)1/2

+ γ2,η(‖pm‖21 + ‖pf‖21 + ‖uc‖21)1/2(‖ψm‖21 + ‖ψf‖21 + ‖v‖21)1/2

+ γ3,η(‖pm‖21 + ‖pf‖21 + ‖uc‖21)1/2(‖ψm‖21 + ‖ψf‖21 + ‖v‖21)1/2

= Cη‖−→u ‖X0‖
−→v ‖X0 ,(3.15)

which completes the proof of the continuity of the bilinear form aη(·, ·).
In the following lemma, we will follow the idea in [23] to show that the bilinear

form aη(·, ·) is essentially coercive in the sense of a G̊arding-type inequality [44].

Lemma 2. The bilinear form aη(·, ·) satisfies the following G̊arding-type inequal-
ity: for small enough rescaling parameter η > 0, there exist constants C1,η > 0 and
C0,η > 0 such that

(3.16) aη(−→u ,−→u ) ≥ C1,η‖−→u ‖2X0
− C0,η‖−→u ‖2L2 ∀−→u ∈ X0.

Proof. According to the Cauchy–Schwarz, Korn’s, the Poincaré, the trace, and
Young’s inequalities, we obtain

(3.17)

aη(−→u ,−→u ) + C0,η‖−→u ‖2L2

= C0,η‖−→u ‖2L2 + 2ην‖D(uc)‖20 +
1

µ

∫
Ωd

km∇pm · ∇pmdΩd +
σ

µ

∫
Ωd

km(pm − pf )2dΩd

+
1

µ

∫
Ωd

kf∇pf · ∇pfdΩd +

(
η

ρ
− 1

)∫
Γcd

pfuc · ncddΓ +

√
Nηαν√
kf

∥∥∥∥Pτ (uc)

∥∥∥∥2

L2(Γcd)

+

〈
ηαν

√
Nkf

µ
Pτ (∇pf ),Pτ (uc)

〉(
(H

1/2
00 (Γcd))′ ,H

1/2
00 (Γcd)

)
≥ C0,η‖pm‖20 + C0,η‖pf‖20 + C0,η‖uc‖20 +

km
µ
‖∇pm‖20 +

kf
µ
‖∇pf‖20 + 2ηνC5‖∇uc‖20

−
(

1 +
η

ρ

)
C6‖pf‖

1
2
0 ‖uc‖

1
2
0 ‖∇pf‖

1
2
0 ‖∇uc‖

1
2
0 −

√
Nkfηαν

µ
C7‖∇pf‖0‖∇uc‖0
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≥ C0,η‖pm‖20 + C0,η‖pf‖20 + C0,η‖uc‖20 +
km
µ
‖∇pm‖20 +

kf
µ
‖∇pf‖20 + 2ηνC5‖∇uc‖20

− ηνC5

2
‖∇uc‖20 −

kf
4µ
‖∇pf‖20 −

√
µ(1 + η

ρ )2C2
2

2
√
ηνC5kf

‖pf‖20 −
√
µ(1 + η

ρ )2C2
2

2
√
ηνC5kf

‖uc‖20

− ηνC5

2
‖∇uc‖20 −

Nkfηα
2ν

2C5µ2
‖∇pf‖20

≥ C1,η‖−→u ‖2X0
,

where the Ci’s are generic constants depending on the domain and interface, C1,η =

min{C0,η

2 , ηνC5,
km
2µ ,

kf
µ }, and we choose small enough rescaling parameter η and large

enough C0,η such that

Nkfηα
2ν

2C5µ2
≤ kf

4µ
,

√
µ(1 + η

ρ )2C2
2√

ηνC5kf
≤ C0,η.

This completes the proof of Lemma 2.

Combining Lemmas 1 and 2 and Lemma 3.1 of [23], we can obtain the following
well-posedness conclusion.

Theorem 3. The dual-porosity-Stokes model with the four interface conditions
(2.5)–(2.8) is well-posed.

4. Finite element method. Let Xh
0 = Hh

Γd
× Hh

Γd
×Hh

Γc
and Mh be proper

finite element subspaces of X0 = H1
Γd
× H1

Γd
×H1

Γc
and M , respectively. The pair

Xh
0 and Mh is assumed to satisfy the discrete inf-sup condition, that is, there exists

a constant β > 0 such that

(4.1) inf
06=qh∈Mh

sup
06=vh∈Hh

Γc

bη(qh,vh)

‖qh‖0‖vh‖1
≥ β.

Consider Xh
0 with continuous piecewise polynomials of degree k and Mh with

continuous piecewise polynomials of degree k − 1 (k ≥ 1). First, we assume that the
subspaces Xh

0 and Mh satisfy the following approximation properties:

inf−→v h∈Xh
0

‖−→v −−→v h‖1 ≤ Chr‖−→v ‖r+1 ∀−→v ∈ Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
, 0 < r ≤ k,(4.2)

inf
qh∈Mh

‖q − qh‖0 ≤ Chr‖q‖r ∀q ∈ Hr(Ωc), 0 < r ≤ k,(4.3)

and the following projection properties:

Πhw ∈ Hh
Γc , (∇(w −Πhw), qh) = 0 ∀qh ∈Mh, w ∈ H1

Γc ,(4.4)

‖w −Πhw‖1 ≤ Chs‖w‖s+1 ∀w ∈ Hs+1
Γc

,(4.5)

where Πh : H1
Γc
→ Hh

Γc
is a projection operator on subspaces Xh

0 and Mh, 0 ≤ s ≤ k,
and C is a positive constant independent of h and w.

We also introduce the divergence-free function space

(4.6) Xdiv
0 = H1

Γd
×H1

Γd
×H1

Γc,div, where H1
Γc,div = {w ∈ H1

Γc |div w = 0},

and the discretely divergence-free finite element space

(4.7) Xh,div
0 = {(ψm, ψf ,v) ∈ Xh

0 : b(vh, qh) = 0 ∀qh ∈Mh}.
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Define Ph : L2 → Xh,div
0 to be the projection operator with respect to the L2

inner product, i.e.,

Ph−→z ∈ Xh,div
0 , (Ph−→z ,−→v h) = (−→z ,−→v h) ∀−→v h ∈ Xh,div

0 ,∀−→z ∈ L2.(4.8)

We recall that the operator Ph satisfies the following approximation properties (see
Propositions 2.2 and 2.6 in [57]):

‖−→z − Ph−→z ‖1 → 0 as h→ 0 ∀−→z ∈ Xdiv
0 ;(4.9)

‖−→z − Ph−→z ‖1 ≤ Chr‖−→z ‖r+1 ∀−→z ∈ Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
∩Xdiv

0 ;(4.10)

‖−→z − Ph−→z ‖0 ≤ Chr+1‖−→z ‖r+1 ∀−→z ∈ Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
∩Xdiv

0 ;(4.11)

‖−→z − Ph−→z ‖L2(0,T ;X0) → 0 as h→ 0 ∀−→z ∈ L2(0, T ; Xdiv
0 );(4.12)

‖−→z − Ph−→z ‖L2(0,T ;X0) ≤ Chr‖−→z ‖L2(0,T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
)(4.13)

∀−→z ∈ L2(0, T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
∩Xdiv

0 );

‖−→z − Ph−→z ‖L2(0,T ;M) ≤ Chr+1‖−→z ‖L2(0,T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
)(4.14)

∀−→z ∈ L2(0, T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
∩Xdiv

0 ),

where r ∈ [0, k].

4.1. Discretization. The finite element semidiscretization for (3.11)–(3.12) is
to find (−→u h, ph) = (pmh, pfh,uch, ph) ∈ H1(0, T ; Xh

0 )× L2(0, T ;Mh) satisfying

〈∂t−→u h,
−→v h〉η + aη(−→u h,

−→v h) + bη(ph,vh) = `η(−→v h)(4.15)

∀−→v h = (ψmh, ψfh,vh) ∈ Xh
0 ,

bη(qh,uch) = 0 ∀ qh ∈Mh,(4.16)

together with the initial condition −→u h(0) = Ph−→u 0 and boundary condition −→u h =
Ph−→u Γ.

Based on the G̊arding-type inequality (3.16) and the same argument in [22], it
is easy to see that if the linear forcing functional `η ∈ L2(0, T ; L2), then the system

(4.15)–(4.16) has a unique solution (−→u h, ph) ∈ H1(0, T ; Xh,div
0 ))× L2(0, T ;Mh).

For the full discretization, we use4t to denote the time step size and n to indicate
the nth step at time tn = n4t. We first traditionally consider the backward Euler
scheme as follows:〈−→u n

h −
−→u n−1
h

4t
,−→v h

〉
η

+ aη(−→u n
h,
−→v h) + bη(pnh,vh) = `nη (−→v h),(4.17)

bη(qh,u
n
ch) = 0,(4.18)

where

`nη (−→v h) =

(
0

η
∫

Ωc
f(tn) · vhdΩ +

∫
Ωd
qp(tn)ψfh dΩ

)
.(4.19)

Since the backward Euler scheme has only first order accuracy, we also consider
the Crank–Nicolson scheme, which has second order accuracy:
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1

4t
〈−→u n

h,
−→v h〉η +

1

2

(
aη(−→u n

h,
−→v h) + bη(pnh,vh) + bη(qh,u

n
ch)

)
= −1

2

(
aη(−→u n−1

h ,−→v h) + bη(pn−1
h ,vh) + bη(qh,u

n−1
ch )

)
+

1

2
`nη (−→v h) +

1

2
`n−1
η (−→v h) +

1

4t
〈−→u n−1

h ,−→v h〉η.(4.20)

Both of the schemes above are single-step ones with unconditional stability. In
the following, we consider two multistep schemes with unconditional stability. One
scheme is the two-step backward differentiation scheme, which also has second order
accuracy:

1

4t

〈
3

2
−→u n
h,
−→v h

〉
η

+ aη(−→u n
h,
−→v h) + bη(pnh,vh) + bη(qh,u

n
ch)

= `nη (−→v h) +
1

4t

〈
2−→u n−1

h − 1

2
−→u n−2
h ,−→v h

〉
η

.(4.21)

In addition to the original initial condition of the problem, this scheme needs an
additional initial condition at the time step n = 1, which can be provided by the
backward Euler scheme.

The other multistep scheme we consider is the three-step backward differentiation
scheme, which has third order accuracy:

1

4t

〈
11

6
−→u n
h,
−→v h

〉
η

+ aη(−→u n
h,
−→v h) + bη(pnh,vh) + bη(qh,u

n
ch)

= `nη (−→v h) +
1

4t

〈
3−→u n−1

h − 3

2
−→u n−2
h +

1

3
−→u n−3
h ,−→v h

〉
η

.(4.22)

In addition to the original initial condition of the problem, this scheme needs two
additional initial conditions at the time steps n = 1 and n = 2, which can be provided
by the Crank–Nicolson scheme and two-step backward differentiation scheme. When
we use Taylor–Hood elements for the free flow and quadratic finite elements for the
dual-porosity flow in the semidiscretization, we can reach third order accuracy in the
L2 norm. Then the three-step backward differentiation scheme can provide a global
third order accuracy with 4t = h, while the backward Euler scheme needs 4t = h3

for the same goal.

4.2. Convergence analysis. In this subsection, we will follow the analysis in
[22] to show the convergence of full discretization with the backward Euler scheme.
We first will introduce a projection operator which is similar to that of [22]. Define
P = (Ps−→u ,Ppp) : X0×M → Xh

0 ×Mh such that, for (−→u , p) ∈ X0×M , the projection
(Ps−→u ,Ppp) = (Ps1pm,Ps2pf ,Ps3uc,Ppp) satisfies

aη(−→u − Ps−→u ,−→v h) + C0,η〈−→u − Ps−→u ,−→v h〉η + bη(p− Ppp,vh) = 0(4.23)

∀−→v h = (ψmh, ψfh,v) ∈ Xh
0 ,

bη(qh,uc − Ps3uc) = 0 ∀ qh ∈Mh.(4.24)

There exists a unique solution (Ps−→u ,Ppp) ∈ Xh
0×Mh for a given (−→u , p) ∈ X0×M

according to the G̊arding-type inequality (3.16), and the solution (Ps−→u ,Ppp) satisfies
the following approximate properties.
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Lemma 4. Consider 0 < r ≤ k. Assume that

(−→u , p) = (pm, pf ,uc, p) ∈ Lq(0, T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
)× Lq(0, T ; Hr(Ωc))

for some q ∈ [1,∞). Let (Ps−→u ,Ppp) be the projection solution of (4.23)–(4.24); then
we have

‖−→u − Ps−→u ‖Lq(0,T ;H1
Γd
×H1

Γd
×H1

Γc
) + ‖p− Ppp‖Lq(0,T ;M)

≤ Chr
(
‖−→u ‖Lq(0,T ;Hr+1

Γd
×Hr+1

Γd
×Hr+1

Γc
) + ‖p‖Lq(0,T ;Hr(Ωc))

)
.(4.25)

Furthermore, assume that (−→u , p) = (pm, pf ,uc, p) ∈ H1(0, T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
)×

H1(0, T ; Hr(Ωc)); then we have

‖∂t−→u − ∂tPs−→u ‖L2(0,T ;H1
Γd
×H1

Γd
×H1

Γc
) + ‖∂tp− ∂tPpp‖L2(0,T ;M)

≤ Chr
(
‖−→u ‖H1(0,T ;Hr+1

Γd
×Hr+1

Γd
×Hr+1

Γc
) + ‖p‖H1(0,T ;Hr(Ωc))

)
.(4.26)

Proof. The proof of (4.25) follows the same argument as in Proposition 4.1 of [22].
Hence we only prove the inequality (4.26) here. Differentiating (4.23)–(4.24) with
respect to t, we obtain

aη(∂t
−→u − ∂tPs−→u ,−→v h) + C0,η〈∂t−→u − ∂tPs−→u ,−→v h〉η(4.27)

+ bη(∂tp− ∂tPpp,vh) = 0,

bη(qh, ∂tuc − ∂tPs3uc) = 0(4.28)

for any −→v h = (ψmh, ψfh,vh) ∈ Xh
0 and qh ∈Mh. Define −→e h = ∂t

−→u − ∂tPs−→u . Based
on −→v h − ∂tPs−→u ∈ Xh

0 , the definition of projection operator Πh in (4.4), and (4.28),
(4.27) leads to

aη(−→e h,
−→e h) + C0,η〈−→e h,

−→e h〉η
= aη(−→e h, ∂t

−→u −−→v h) + C0,η〈−→e h, ∂t
−→u −−→v h〉η − bη(∂tp− ∂tPpp,vh − ∂tPs3uc)

= aη(−→e h, ∂t
−→u −−→v h) + C0,η〈−→e h, ∂t

−→u −−→v h〉η − bη(∂tp− ∂tPpp,vh − ∂tΠhuc)

− bη(∂tp− ∂tqh, ∂tΠhuc − ∂tuc)
− bη(∂tp− ∂tqh, ∂tuc − ∂tPs3uc).(4.29)

Now let vh = ∂tΠ
huc and −→v h = (ψmh, ψfh, ∂tΠ

huc) in (4.29). Together with the
G̊arding-type inequality (3.16), the Cauchy–Schwarz inequality, and Young’s inequal-
ity, we obtain the following estimate:

C1,η‖−→e h‖21 − C0,η‖−→e h‖20 + C0,η‖−→e h‖20
≤ aη(−→e h,

−→e h) + C0,η〈−→e h,
−→e h〉η

= aη(−→e h, ∂t
−→u −−→v h) + C0,η〈−→e h, ∂t

−→u −−→v h〉η
− bη(∂tp− ∂tqh, ∂tΠhuc − ∂tuc)− bη(∂tp− ∂tqh, ∂tuc − ∂tPs3uc)

≤ C(‖−→e h‖1‖∂t−→u −−→v h‖1 + ‖∂tp− ∂tqh‖0‖∂tΠhuc − ∂tuc‖1 + ‖∂tp− ∂tqh‖0‖−→e h‖1)

≤ C1,η

2
‖−→e h‖21 + C

(
‖∂t−→u −−→v h‖21 + ‖∂tp− ∂tqh‖20 + ‖∂tΠhuc − ∂tuc‖21

)
,

which implies that

(4.30) ‖−→e h‖1 ≤ C
(
‖∂t−→u −−→v h‖1 + ‖∂tp− ∂tqh‖0 + ‖∂tΠhuc − ∂tuc‖1

)
.
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By the same argument with the div-stability condition in Proposition 4.1 of [22], we
have

(4.31) ‖∂tp− ∂tPpp‖0 ≤ C
(
‖∂t−→u −−→v h‖1 + ‖∂tp− ∂tqh‖0 + ‖∂tΠhuc − ∂tuc‖1

)
.

Combining (4.30), (4.31), (4.2), (4.3), and (4.5), we complete the proof of (4.26).

Furthermore, we assume

aη(−→u ,−→v ) + C0,η〈−→u ,−→v 〉η + bη(p,v) = `η(−→v ) ∀−→v = (ψm, ψf ,v) ∈ X0,(4.32)

bη(q,uc) = 0 ∀ q ∈M(4.33)

is regular in the sense of

(4.34) ‖−→u ‖2 + ‖p‖1 ≤ C‖`η‖0,

where the solution −→u = (pm, pf ,uc) ∈ X0. Then we have the following Aubin–
Nitsche-type estimate on ‖−→u − Ps−→u ‖L2 .

Lemma 5. Under the assumptions of Lemma 4, we have the estimates

‖−→u − Ps−→u ‖Lq(0,T ;L2) + h‖p− Ppp‖Lq(0,T ;M)

≤ Chr+1

(
‖−→u ‖Lq(0,T ;Hr+1

Γd
×Hr+1

Γd
×Hr+1

Γc
) + ‖p‖Lq(0,T ;Hr(Ωc))

)
,(4.35)

‖∂t−→u − ∂tPs−→u ‖L2(0,T ;L2) + h‖∂tp− ∂tPpp‖L2(0,T ;M)

≤ Chr+1

(
‖−→u ‖H1(0,T ;Hr+1

Γd
×Hr+1

Γd
×Hr+1

Γc
) + ‖p‖H1(0,T ;Hr(Ωc))

)
.(4.36)

Proof. The proof of (4.35) follows the same argument as in Proposition 4.3 of [22].
Hence we only prove (4.36) here. Define −→e h = ∂t

−→u − ∂tPs−→u = (∂tpm, ∂tpf , ∂tuc) −
(∂tPs1pm, ∂tPs2pf , ∂tPs3uc). Consider

aη(−→u d,−→v ) + C0,η〈−→u d,−→v 〉η + bη(pd,v) = 〈−→e h,
−→v 〉η(4.37)

∀−→v = (ψm, ψf ,v) ∈ X0,

bη(q,udc) = 0 ∀ q ∈M.(4.38)

Then (4.34) leads to

(4.39) ‖−→u d‖2 + ‖pd‖1 ≤ C‖−→e h‖0.

Choose −→v = −→e h and v = ∂tuc − ∂tPs3uc in (4.37). Then, by using (4.27), (4.28),
(4.38), and the Cauchy–Schwarz inequality, for any −→v h ∈ Xh

0 and qh ∈Mh, we obtain

(4.40)

C‖−→e h‖20
≤ 〈−→e h,

−→e h〉η
= aη(−→u d −−→v h,

−→e h) + C0,η〈−→u d −−→v h,
−→e h〉η + bη(pd − qh, ∂tuc − ∂tPs3uc)

+ aη(−→v h,
−→e h) + C0,η〈−→v h,

−→e h〉η + bη(qh, ∂tuc − ∂tPs3uc)
= aη(−→u d −−→v h,

−→e h) + C0,η〈−→u d −−→v h,
−→e h〉η + bη(pd − qh, ∂tuc − ∂tPs3uc)

+ bη(∂tp− ∂tPpp,udc − vh)
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≤ C
(
‖−→e h‖1 + ‖∂tp− ∂tPpp‖0

)
×
(

inf−→v h∈Xh
0

‖−→u d −−→v h‖1 + inf
qh∈Mh

‖pd − qh‖0
)
,

where C is a generic constant whose value may be different from line to line. Using
(4.2), (4.3), and (4.39), we get

inf−→v h∈Xh
0

‖−→u d −−→v h‖1 + inf
qh∈Mh

‖pd − qh‖0 ≤ Ch
(
‖−→u d‖2 + ‖pd‖1

)
≤ Ch‖−→e h‖0.(4.41)

Plugging (4.41) into (4.40), integrating (4.40) with respect to t, and applying (4.26),
we obtain

‖−→e h‖L2(0,T ;L2) ≤ Chr+1
(
‖−→u ‖H1(0,T ;Hr+1

Γd
×Hr+1

Γd
×Hr+1

Γc
) + ‖p‖H1(0,T ;Hr(Ωc))

)
.(4.42)

Combining (4.42) and (4.26), the proof of (4.36) is completed.

Define

||−→u ||0,η :=

(
||pm||2H1

Γd

+ ||pf ||2H1
Γd

+ ||η 1
2 uc||2H1

Γc

)1/2

for any −→u = (pm, pf ,uc) ∈ X0. Finally, we follow the standard energy method
framework [22, 38, 83, 89] to analyze the full discretization error −→u (tn)−−→u n

h.

Theorem 6. Assume that 0 < r ≤ k, the solution (−→u , p) of the system (3.11)–
(3.12) satisfies ∂tt

−→u ∈ L2(0, T ; L2), (−→u , p) ∈ H1(0, T ;Hr+1
Γd
× Hr+1

Γd
× Hr+1

Γc
) ×

H1(0, T ; Hr(Ωc)), (−→u , p) ∈ L∞(0, T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
)×L∞(0, T ; Hr(Ωc)), and

the regularity property (4.34) of problem (4.32)–(4.33) holds. Let (−→u n
h, p

n
h) be the

solution of the backward Euler scheme (4.17), and assume that the initial approxima-
tion −→u 0

h of −→u (0) satisfies ‖−→u 0
h − Ps−→u (0)‖L2 ≤ C?hr+1. Then we have the following

estimate:

‖−→u (tn)−−→u n
h‖0,η ≤ C

[
hr+1 +4t‖∂tt−→u ‖L2(0,T ;L2)

+ hr+1
(
‖−→u ‖H1(0,T ;Hr+1

Γd
×Hr+1

Γd
×Hr+1

Γc
)

+ ‖p‖H1(0,T ;Hr(Ωc)) + ‖−→u ‖L∞(0,T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
)

+ ‖p‖L∞(0,T ;Hr(Ωc))

)]
.(4.43)

Proof. Taking −→v = −→v h = (ψmh, ψfh,vh) in (3.11) and q = qh in (3.12) and
subtracting (4.17)–(4.18) from (3.11)–(3.12) with t = tn, we get〈

∂t
−→u (tn)−

−→u n
h −
−→u n−1
h

4t
,−→v h

〉
η

+ aη(−→u (tn)−−→u n
h,
−→v h)(4.44)

+ bη(p(tn)− pnh,vh) = 0,

bη(qh,uc(tn)− unch) = 0.(4.45)

Define
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−→
θ n = Ps−→u (tn)−−→u n

h,
−→ρ n = −→u (tn)− Ps−→u (tn),

θn = Ppp(tn)− pnh, ρn = p(tn)− Ppp(tn),(4.46)

where

−→
θ n = (θnm, θ

n
f ,θ

n
c ), θnm = Ps1pm(tn)− pnmh,

θnf = Ps2pf (tn)− pnfh, θnc = Ps3uc(tn)− unch,
−→ρ n = (ρnm, ρ

n
f ,ρ

n
c ), ρnm = pm(tn)− Ps1pm(tn),

ρnf = pf (tn)− Ps2pf (tn), ρnc = uc(tn)− Ps3uc(tn).

Then

∂t
−→u (tn)−

−→u n
h −
−→u n−1
h

4t
= −→ω n

1 +−→ω n
2 +

−→
θ n −

−→
θ n−1

4t
,(4.47)

where

−→ω n
1 = ∂t

−→u (tn)−
−→u (tn)−−→u (tn−1)

4t
, −→ω n

2 =
−→u (tn)−−→u (tn−1)

4t
− Ps

(−→u (tn)−−→u (tn−1)

4t

)
.

Taking −→v h =
−→
θ n and qh = θn in (4.23)–(4.24) and (4.44)–(4.45), and using (4.46)–

(4.47), we get 〈
−→ω n

1 +−→ω n
2 +

−→
θ n −

−→
θ n−1

4t
,
−→
θ n
〉
η

+ aη(
−→
θ n,
−→
θ n)(4.48)

+ bη(θn,θnc )− C0,η〈−→ρ n,
−→
θ n〉η = 0,

bη(θn,θnc ) = 0.(4.49)

Hence we have 〈−→
θ n −

−→
θ n−1

4t
,
−→
θ n
〉
η

+ aη(
−→
θ n,
−→
θ n)

= −〈−→ω n
1 ,
−→
θ n〉η − 〈−→ω n

2 ,
−→
θ n〉η + C0,η〈−→ρ n,

−→
θ n〉η.(4.50)

Applying (a − b)a = a2−b2
2 + (a−b)2

2 to the first term of (4.50) and summing (4.50)
over n = 1, . . . ,m, we get

‖
−→
θ m‖20,η +

m∑
n=1

(4t)2

∥∥∥∥−→θ n −−→θ n−1

4t

∥∥∥∥2

0,η

+ 2
m∑
n=1

4taη(
−→
θ n,
−→
θ n)

= ‖
−→
θ 0‖20,η − 2

m∑
n=1

4t〈−→ω n
1 ,
−→
θ n〉η − 2

m∑
n=1

4t〈−→ω n
2 ,
−→
θ n〉η

+ 2

m∑
n=1

C0,η4t〈−→ρ n,
−→
θ n〉η.(4.51)

Based on Taylor’s expansion and Lemma 5, we recall the same arguments of Theorem
4.4 in [22] to analyze the last three terms on the right-hand side in (4.51). Then we
obtain
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‖
−→
θ m‖20,η +

m∑
n=1

(4t)2

∥∥∥∥−→θ n −−→θ n−1

4t

∥∥∥∥2

0,η

+ 2
m∑
n=1

4taη(
−→
θ n,
−→
θ n) + 2

m∑
n=1

4tC0,η〈
−→
θ n,
−→
θ n〉η

≤ ‖
−→
θ 0‖20,η + 6η(4t)2‖∂tt−→u ‖2L2(0,T ;L2) +

1

2

m∑
n=1

4t‖
−→
θ n‖20,η + 2

m∑
n=1

4tC0,η‖
−→
θ n‖20,η

+ Ch2(r+1)
(
‖−→u ‖2

H1(0,T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
)

+ ‖p‖2H1(0,T ;Hr(Ωc))

+‖−→u ‖2
L∞(0,T ;Hr+1

Γd
×Hr+1

Γd
×Hr+1

Γc
)

+ ‖p‖2L∞(0,T ;Hr(Ωc))

)
.(4.52)

By using Gronwall’s inequality, we obtain

‖
−→
θ m‖20,η +

m∑
n=1

(4t)2

∥∥∥∥−→θ n −−→θ n−1

4t

∥∥∥∥2

0,η

+ 2

m∑
n=1

4taη(
−→
θ n,
−→
θ n) + 2

m∑
n=1

4tC0,η〈
−→
θ n,
−→
θ n〉η

≤ C
[
‖
−→
θ 0‖20,η +4t2‖∂tt−→u ‖2L2(0,T ;L2)

+ h2(r+1)
(
‖−→u ‖2

H1(0,T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
)

+ ‖p‖2H1(0,T ;Hr(Ωc))

+ ‖−→u ‖2
L∞(0,T ;Hr+1

Γd
×Hr+1

Γd
×Hr+1

Γc
)

+ ‖p‖2L∞(0,T ;Hr(Ωc))

)]
.(4.53)

With the estimate for the initial approximation ‖
−→
θ 0‖0,η ≤ Chr+1, we obtain

‖
−→
θ m‖20,η ≤ C

[
h2(r+1) +4t‖∂tt−→u ‖2L2(0,T ;L2)

+ h2(r+1)
(
‖−→u ‖2

H1(0,T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
)

+ ‖p‖2H1(0,T ;Hr(Ωc))

)
+ h2(r+1)

(
‖−→u ‖2

L∞(0,T ;Hr+1
Γd
×Hr+1

Γd
×Hr+1

Γc
)

+ ‖p‖2L∞(0,T ;Hr(Ωc))

)]
.(4.54)

Using (4.35), (4.54), and the triangle inequality

‖−→u (tn)−−→u n
h‖0,η ≤ ‖

−→u (tn)− Ps−→u (tn)‖0,η + ‖
−→
θ n‖0,η,

the proof of Theorem 6 can be completed.

5. Numerical examples. In this section, we present four numerical examples to
validate and illustrate the proposed model and finite element method. The quadratic
finite elements and the Taylor–Hood finite elements [23] are used for the dual-porosity
model and the Stokes equation, respectively. The Taylor–Hood finite elements sat-
isfy the inf-sup condition (4.1). In the first example, we show the optimal conver-
gence rates of the finite element method with the backward Euler scheme, the Crank–
Nicolson scheme, and the two-step and three-step backward differentiation schemes
for the time discretization. The second example simulates the flow around macrofrac-
tures. In the third example, we study the flow around a horizontal wellbore with
open-hole completion. In the last example, we consider a multistage hydraulic frac-
tured horizontal wellbore with cased hole completion.
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5.1. Example 1. In the first example, which is to validate the proposed model
and show the optimal convergence rates of the proposed finite element method, we
consider the domain illustrated in Figure 1. The dual-porosity domain and the conduit
domain are Ωd = (0, 1) × (0, 0.75) and Ωc = (0, 1) × (−0.25, 0), respectively. The
interface between these two domains is Γcd = (0, 1) × {0}. The parameters of the
model are chosen as φm = 1, φf = 1, km = 0.01, kf = 1, µ = 1, ν = 1, ρ = 1, σ = 1,
Cmt = 1, Cft = 1.

It is easy to verify that the following functions exactly satisfy the divergence-free
equation (2.4) and the interface conditions (2.5)–(2.8):

pm = sin(xy2 − y3) cos(t), (x, y, t) ∈ Ωd × [0, 1],(5.1)

pf =

(
2− π sin(πx)

)(
cos(π(1− y))− y

)
cos(2πt), (x, y, t) ∈ Ωd × [0, 1],(5.2)

uc =


(
x2y2 + exp(−y)

)
cos(2πt)(

− 2
3xy

3 + (2− π sin(πx))

)
cos(2πt)

 , (x, y, t) ∈ Ωc × [0, 1],(5.3)

p =

(
π sin(πx)− 2

)
cos(2πy) cos(2πt), (x, y, t) ∈ Ωc × [0, 1].(5.4)

Then the source terms, initial conditions, and Dirichlet boundary conditions of the
model are chosen such that the above functions are the exact solutions of the model.

The numerical results at the time T = 1 with three different time step sizes
4t = h, h2, h3 for the backward Euler scheme are listed in Tables 1–3. The numeri-
cal results at the time T = 1 with the time step size 4t = h for the Crank–Nicolson
scheme, the two-step backward differentiation scheme, and the three-step backward
differentiation scheme are listed in Tables 4–6. The accuracy orders for the back-
ward Euler scheme, the Crank–Nicolson scheme, the two-step backward differentia-
tion scheme, and the three-step backward differentiation scheme in time are O(4t),
O(4t2), O(4t2), and O(4t3), respectively. Hence all the tables show the optimal
convergence of the proposed finite element method in both the L2 and H1 norms
with respect to the corresponding choices on 4t.

Table 1
The L2 and H1 errors and convergence orders for all variables at T = 1 with time step size

4t = h for the backward Euler scheme.

L2 error and convergence order

h ||pm − pmh||0 Rate ||pf − pfh||0 Rate ||uc − uch||0 Rate ||p− ph||0 Rate

1/8 2.033e-3 0.89 4.058e-2 0.59 1.423e-2 0.49 2.119e-1 0.66

1/16 1.136e-3 0.84 2.526e-2 0.68 8.557e-3 0.73 1.228e-1 0.79

1/32 5.515e-4 1.04 1.313e-2 0.94 4.272e-3 1.00 6.019e-2 1.03

1/64 2.838e-4 0.96 6.967e-3 0.91 2.217e-3 0.95 3.097e-2 0.96

H1 error and convergence order

h ||pm − pmh||1 Rate ||pf − pfh||1 Rate ||uc − uch||1 Rate ||p− ph||1 Rate

1/8 2.125e-2 0.84 2.046e-1 0.92 1.308e-1 0.55 2.692e+00 0.73

1/16 1.188e-2 0.84 1.191e-1 0.78 7.854e-2 0.74 1.508e+00 0.84

1/32 5.756e-3 1.05 6.038e-2 0.98 3.930e-2 1.00 8.148e-1 0.89

1/64 2.959e-3 0.96 3.170e-2 0.93 2.043e-2 0.94 4.827e-1 0.76
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Table 2
The L2 and H1 errors and convergence orders for all variables at T = 1 with time step size

4t = h2 for the backward Euler scheme.

L2 error and convergence order

h ||pm − pmh||0 Rate ||pf − pfh||0 Rate ||uc − uch||0 Rate ||p− ph||0 Rate

1/8 3.968e-4 1.92 9.816e-3 1.84 3.076e-3 1.84 4.728e-2 1.91

1/16 1.002e-4 1.99 2.523e-3 1.96 7.830e-4 1.97 1.185e-2 2.00

1/32 2.510e-5 2.00 6.352e-4 1.99 1.967e-4 1.99 2.962e-3 2.00

1/64 6.278e-6 2.00 1.591e-4 2.00 4.927e-5 2.00 7.403e-4 2.00

H1 error and convergence order

h ||pm − pmh||1 Rate ||pf − pfh||1 Rate ||uc − uch||1 Rate ||p− ph||1 Rate

1/8 4.283e-3 1.87 8.332e-2 1.90 3.392e-2 1.83 1.425e+00 1.12

1/16 1.083e-3 1.98 2.124e-2 1.97 8.720e-3 1.96 6.518e-1 1.13

1/32 2.714e-4 2.00 5.341e-3 1.99 2.200e-3 1.99 3.165e-1 1.04

1/64 6.787e-5 2.00 1.338e-3 2.00 5.520e-4 1.99 1.570e-1 1.01

Table 3
The L2 and H1 errors and convergence orders for all variables at T = 1 with time step size

4t = h3 for the backward Euler scheme.

L2 error and convergence order

h ||pm − pmh||0 Rate ||pf − pfh||0 Rate ||uc − uch||0 Rate ||p− ph||0 Rate

1/8 7.176e-5 2.92 2.169e-3 2.97 6.629e-4 2.91 2.036e-2 2.05

1/16 9.034e-6 2.99 2.665e-4 3.02 8.351e-5 2.99 4.710e-3 2.11

1/32 1.133e-6 3.00 3.292e-5 3.02 1.047e-5 3.00 1.143e-3 2.04

1/64 1.418e-7 3.00 4.090e-6 3.01 1.309e-6 3.00 2.833e-4 2.01

H1 error and convergence order

h ||pm − pmh||1 Rate ||pf − pfh||1 Rate ||uc − uch||1 Rate ||p− ph||1 Rate

1/8 1.373e-3 2.37 7.129e-2 1.96 2.045e-2 2.05 1.274e+00 0.87

1/16 3.047e-4 2.17 1.799e-2 1.99 5.027e-3 2.02 6.310e-1 1.01

1/32 7.352e-5 2.05 4.513e-3 1.99 1.253e-3 2.00 3.137e-1 1.01

1/64 1.821e-5 2.01 1.130e-3 2.00 3.134e-4 2.00 1.566e-1 1.00

5.2. Example 2. Research on fluid flow in fractures and fractured porous media
has several decades of history [76]. The objective of this test is to investigate the flow
characteristics around macrofractures, especially the effects of the macrofractures on
the flow. Here we mainly focus on a conceptual geometric setup and the solution
around the macrofractures to validate our model. We use the square [0, 1.5]2 as the
simulation domain, inside which there are macrofractures with different shapes; see
Figure 2.

The parameters of the model are chosen as φm = 10−1, φf = 10−3, km = 10−7,
kf = 10−4, µ = 10−2, ν = 10−5, σ = 10−1, Cmt = 10−3, Cft = 10−3. As shown in
Figures 2a and 2b, we impose a pressure drop from the boundary Γin to the boundary
Γout and apply a homogeneous Neumann boundary condition on Γno:

pm = 5× 103, pf = 2× 103 on Γin, pm = 103, pf = 103 on Γout,

−km
µ
∇pm · n = 0, − kf

µ
∇pf · n = 0 on Γno,

where n is the outward unit normal to Γno. The proposed interface conditions (2.5)–
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Table 4
The L2 and H1 errors and convergence orders for all variables at T = 1 with time step size

4t = h for the Crank–Nicolson scheme.

L2 error and convergence order

h ||pm − pmh||0 Rate ||pf − pfh||0 Rate ||uc − uch||0 Rate ||p− ph||0 Rate

1/32 2.754e-6 2.15 2.773e-4 2.20 2.348e-5 2.27 2.406e-3 2.02

1/40 1.854e-6 1.77 1.861e-4 1.79 1.559e-5 1.83 1.395e-3 2.44

1/48 1.256e-6 2.13 1.258e-4 2.15 1.050e-5 2.17 9.691e-4 2.00

1/56 9.071e-7 2.11 9.073e-5 2.12 7.557e-6 2.14 7.122e-4 2.00

H1 error and convergence order

h ||pm − pmh||1 Rate ||pf − pfh||1 Rate ||uc − uch||1 Rate ||p− ph||1 Rate

1/32 7.954e-5 2.02 4.645e-3 2.01 1.301e-3 2.03 3.164e-1 1.04

1/40 5.138e-5 1.96 2.980e-3 1.99 8.308e-4 2.01 2.503e-1 1.05

1/48 3.553e-5 2.02 2.066e-3 2.01 5.761e-4 2.01 2.086e-1 1.00

1/56 2.603e-5 2.02 1.517e-3 2.01 4.229e-4 2.01 1.788e-1 1.00

Table 5
The L2 and H1 errors and convergence orders for all variables at T = 1 with time step size

4t = h for the two-step backward differentiation method.

L2 error and convergence order

h ||pm − pmh||0 Rate ||pf − pfh||0 Rate ||uc − uch||0 Rate ||p− ph||0 Rate

1/32 1.049e-5 2.07 1.587e-3 2.46 2.404e-4 2.84 3.399e-3 2.78

1/40 7.130e-6 1.73 1.015e-3 2.00 1.439e-4 2.30 2.066e-3 2.23

1/48 4.866e-6 2.10 6.563e-4 2.39 8.746e-5 2.73 1.292e-3 2.57

1/56 3.531e-6 2.08 4.577e-4 2.34 5.805e-5 2.66 8.817e-4 2.48

H1 error and convergence order

h ||pm − pmh||1 Rate ||pf − pfh||1 Rate ||uc − uch||1 Rate ||p− ph||1 Rate

1/32 1.441e-4 2.04 7.675e-3 2.37 2.793e-3 2.64 3.199e-1 1.15

1/40 9.658e-5 1.79 4.892e-3 2.02 1.725e-3 2.16 2.542e-1 1.03

1/48 6.618e-5 2.07 3.238e-3 2.26 1.101e-3 2.47 2.108e-1 1.03

1/56 4.817e-5 2.06 2.301e-3 2.22 7.618e-4 2.39 1.802e-1 1.02

(2.8) are applied on Γcd.
The numerical results for the two cases at time T = 1 are shown in Figures 3

and 4, where the warmer color indicates higher speed of the flow and the line with
arrows is the streamline. The mesh size is about h ≈ 0.0313 for the first case and
about h ≈ 0.0263 for the second case. A constant time step size 4t = 0.001 is used.
From the right plots in Figures 3 and 4, we can see that the flow in the matrix does
not directly go into the macrofractures, which is consistent with the no-exchange
interface condition (2.5). On the other hand, in the left plots of Figures 3 and 4,
the flow in the microfractures interacts with the flow in the macrofractures based
on the other three interface conditions (2.6)–(2.8). And the important effect of the
tangential jump interface condition (2.8) can be easily observed. Moreover, the flow
in the macrofractures is much faster than that of the dual-porosity media due to the
high conductivity pathway provided by the macrofractures. It can also be observed
in Figure 4 that the flow speed is higher as expected in the macrofracture which is
along with the flow direction.

In the following, we will compare the results of the dual-porosity-Stokes model
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Table 6
The L2 and H1 errors and convergence orders for all variables at T = 1 with time step size

4t = h for the three-step backward differentiation method.

L2 error and convergence order

h ||pm − pmh||0 Rate ||pf − pfh||0 Rate ||uc − uch||0 Rate ||p− ph||0 Rate

1/32 6.842e-7 3.17 4.270e-4 2.47 1.487e-4 2.79 2.404e-3 2.73

1/40 3.737e-7 2.71 2.491e-4 2.42 8.472e-5 2.52 1.402e-3 2.42

1/48 2.086e-7 3.20 1.443e-4 2.99 4.822e-5 3.09 8.465e-4 2.77

1/56 1.280e-7 3.17 9.076e-5 3.01 2.996e-5 3.09 5.607e-4 2.67

H1 error and convergence order

h ||pm − pmh||1 Rate ||pf − pfh||1 Rate ||uc − uch||1 Rate ||p− ph||1 Rate

1/32 7.284e-5 2.02 4.938e-3 2.14 1.851e-3 2.52 3.139e-1 1.02

1/40 4.658e-5 2.00 3.114e-3 2.07 1.117e-3 2.26 2.509e-1 1.00

1/48 3.232e-5 2.00 2.115e-3 2.12 7.116e-4 2.47 2.089e-1 1.00

1/56 2.373e-5 2.00 1.533e-3 2.09 4.933e-4 2.38 1.790e-1 1.00

ΓoutΓin

Γno

Γno

Ωd

Γcd

Ωc

(a) The first case

ΓoutΓin

Γout

Γin

Γout

Γin

Ωd

Ωc

ΩcΓcd

Γcd

(b) The second case

Fig. 2. An illustration of the domain, interface, and boundary for different shapes of macrofrac-
tures.

with the results of the corresponding Stokes–Darcy model. Since the Stokes–Darcy
model only considers the matrix and macrofractures without the microfractures, we
apply the same parameters of the matrix and macrofractures of the dual-porosity-
Stokes model to the Darcy and Stokes parts of the Stokes–Darcy model. From the
left plots of Figures 5 and 6, especially the value of the maximum speed, it is observed
that the flow is much slower than that of the left plots of Figures 3 and 4 because the
microfractures with much larger permeability are not considered in the Stokes–Darcy
model. From the right plots of Figures 5 and 6, it is observed that the flow performance
in the matrix is different from that of the right plots of Figures 3 and 4 due to
the different communication properties between the matrix and the macrofractures.
Therefore, the microfractures, which have much larger permeability than the matrix,
should not be ignored for modeling a dual-porosity medium. For the dual-porosity
media coupled with macrofractures or conduits, the newly proposed dual-porosity-
Stokes model can provide more accurate and physically valid results since it accounts
for the significant effect of the microfractures on the flow pathway.

5.3. Example 3. In this example, we simulate the flow around a horizontal
production wellbore with open-hole completion [77]. As shown in Figure 7, a hor-
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Fig. 3. Example 2: Flow speed and streamlines around two intersecting macrofractures for the
dual-porosity-Stokes model. Left: the flow in microfractures and macrofractures; Right: the flow in
the matrix.
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Fig. 4. Example 2: Flow speed and streamlines around two scattered macrofractures for the
dual-porosity-Stokes model. Left: the flow in microfractures and macrofractures; Right: the flow in
the matrix.
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Fig. 5. Example 2: Flow speed and streamlines around two intersecting macrofractures for the
Stokes–Darcy model. Left: the flow in the matrix and macrofractures; Right: the flow in the matrix
only.
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Fig. 6. Example 2: Flow speed and streamlines around two scattered macrofractures for the
Stokes–Darcy model. Left: the flow in the matrix and macrofractures; Right: the flow in the matrix
only.

izontal cross-section is considered: the simulation domain is the square [0, 2]2, and
the horizontal wellbore is simplified as a rectangle [0.6, 1.4]× [0.9, 1.1] in this domain.
With open-hole completion, the fluid in the microfractures can flow into the hori-
zontal wellbore through the interface Γcd on which the proposed interface conditions
(2.5)–(2.8) are applied. The vertical wellbore is connected to the horizontal wellbore
at the boundary Γcout on which the fluid in Ωc does not communicate with Ωd but
directly flows out of the horizontal wellbore to the vertical wellbore. Therefore, the
no-exchange boundary conditions −kfµ ∇pf · (−ncd) = 0 and −kmµ ∇pm · (−ncd) = 0
are imposed on Γcout for the flow in the microfractures and matrix, respectively. The
outflow boundary condition T(uc, p)ncd = 0 is imposed on Γcout for the free flow in
Ωc. Furthermore, we impose the constant pressure boundary condition for pm and pf
on the domain boundary Γin: pm = 5 × 104, pf = 104 on Γin. The parameters of
the model are chosen as φm = 10−2, φf = 10−4, km = 10−8, kf = 10−3, µ = 10−3,
ν = 10−6, σ = 0.9, Cmt = 10−4, Cft = 10−4.

ΓinΓin

Γin

Γin

Ωd

Ωc

Γcd

Γcd

Γcd

Γcout

Fig. 7. An illustration of the domain, interface, and boundary for the horizontal wellbore with
open-hole completion.
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Fig. 8. Example 3: Flow speed and streamlines around a horizontal wellbore with open-hole
completion and σ = 0.9. Left: the flow in microfractures and the horizontal wellbore; Right: the
flow in the matrix.
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Fig. 9. Example 3: Flow speed and streamlines in the matrix. Left: σ = 0.5; Right: σ = 0.1.

The numerical results at the time T = 2 are shown in Figure 8. The mesh size is
about h ≈ 0.0454, and the time step size is 4t = 0.002. Based on the flow direction,
we can see that the pressure near the wellbore is lower than elsewhere. The fluid
flows from the matrix to the microfractures, then flows to the wellbore, and finally is
produced with a faster speed from the right end of the horizontal wellbore where the
vertical production wellbore is located. The physically valid results comply with the
fundamental properties of the system consisting of dual-porosity media and conduits
and hence illustrate the applicability of the proposed model and finite element method
to the horizontal wellbore problem. In the next example, we will further extend our
simulation to a more complicated realistic case.

Now we provide the results for different values of the shape factor σ, which ranges
from 0 to 1. Based on Figures 8 and 9, we can see that larger σ can lead to a faster
flow in the matrix. This is consistent with the effect of larger σ on increasing the
production rate [1, 34].

5.4. Example 4. In this example, we simulate the flow around a multistage
hydraulic fractured horizontal production wellbore with cased hole completion, which
is important in the petroleum industry, especially for shale oil/gas production [13, 78,
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81]. As shown in Figure 10, a horizontal cross-section is considered: the simulation
domain is the square [0, 6]2, and the horizontal wellbore is simplified as a rectangle
[1.8, 4.2]× [2.8, 3.2] in this domain. With cased hole completion, the horizontal well-
bore does not directly communicate with the dual-porosity media but is only fed by
the hydraulic fractures [81]. Therefore, we imposed the following boundary conditions
on Γcno:

−kf
µ
∇pf · (−ncd) = 0, − km

µ
∇pm · (−ncd) = 0, uc · ncd = 0 on Γcno.

The fluid in the microfractures can flow into the hydraulic fractures through the
interface Γcd on which the proposed interface conditions (2.5)–(2.8) are applied. The
vertical wellbore is connected to the horizontal wellbore at the boundary Γcout on
which the fluid in Ωc does not communicate with Ωd but directly flows out of the
horizontal wellbore to the vertical wellbore. Therefore, we imposed the following
boundary conditions on Γcout:

−kf
µ
∇pf · (−ncd) = 0, − km

µ
∇pm · (−ncd) = 0, T(uc, p)ncd = 0 on Γcout.

Furthermore, we impose the fixed pressure boundary condition for pm and pf on the
domain boundary Γin: pm = 105, pf = 104 on Γin. The parameters of the model
are chosen as φm = 10−2, φf = 10−5, km = 10−9, kf = 10−3, µ = 10−3, ν = 10−6,
σ = 0.5, Cmt = 10−4, Cft = 10−4.
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Ωc

Γcd

Γcd

Γcd

Γcd

Γcd

Γcd

Γcout
Γcno
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Fig. 10. A sample figure to explain the treatment of interface and boundary conditions for the
multistage hydraulic fractured horizontal wellbore with cased hole completion.

The numerical results at the time T = 4 for smaller and larger hydraulic fractures
are shown in Figures 11 and 12. The mesh size is about h ≈ 0.0332 for the case
with smaller fractures and about h ≈ 0.0456 for the case of larger fractures. The
time step size is 4t = 0.004. The flow goes from the matrix to the microfractures
and then to the macrofractures only. In contrast with the results in the previous
example, the fluid does not directly flow into the horizontal wellbore since the cased
hole completion seals the interface between the horizontal wellbore and the dual-
porosity media. As expected from the purpose of the hydraulic fractures, all the
hydraulic fractures form attractions for the flow. The fluid is produced with a faster
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Fig. 11. Example 4: Flow speed and streamlines around a multistage hydraulic fractured hor-
izontal wellbore with cased hole completion. Left: the flow in microfractures and the multistage
hydraulic fractured horizontal wellbore; Right: the flow in the matrix.
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Fig. 12. Example 4: Flow speed and streamlines around a multistage hydraulic fractured hori-
zontal wellbore with cased hole completion and larger macrofractures. Left: the flow in microfractures
and the multistage hydraulic fractured horizontal wellbore; Right: the flow in the matrix.

speed from the right end of the horizontal wellbore where the vertical production
wellbore is located. When we enlarge the size of the fractures, the productivity is
dramatically increased due to the increase of the flow speed, as expected. These
physically valid numerical results illustrate the complicated dynamic features of the
dual-porosity-conduit interface system and hence further validate the feasibility of the
proposed dual-porosity-Stokes model.

6. Conclusions. In this paper, a new dual-porosity-Stokes model is first pro-
posed to govern the coupled flow in a dual-porosity media and the conduits/macro-
fractures which are embedded in or adjacent to the dual-porosity media. This model
consists of a dual-porosity model in the dual-porosity media, the Stokes equation in
the conduits and macrofractures, and four interface conditions to couple these two
constituent models. Based on the fundamental properties of the chosen dual-porosity
model and the traditional Stokes–Darcy problem, the four interface conditions include
the no-exchange condition between the matrix and the conduits as well as the mass
balance condition, the force balance condition, and the Beavers–Joseph condition.
Compared with the traditional dual-porosity model which uses a source term to rep-
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resent the effect of the wells, the Stokes equation and the interface conditions in the
new model provide a more specific and accurate description for the flow in and around
the conduits/macrofractures. The weak formulation of the new model is derived, and
the well-posedness of the model is analyzed. A finite element method is proposed
with four schemes in time discretization. The full discretization with the backward
Euler scheme is analyzed. Four numerical experiments are presented. The optimal
convergence order of the finite element method is clearly illustrated in the first exper-
iment. The flow characteristics around macrofractures, the horizontal wellbore, and
the multistage hydraulic fractured horizontal wellbore are investigated in the other
three experiments. All of the numerical examples validate the proposed model and
finite element method and illustrate their applicability to describe the complicated
flow characteristics in the dual-porosity media coupled with conduits/macrofractures.
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