
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Summer 1988

Complete sets of reductions modulo A class of equational Complete sets of reductions modulo A class of equational

theories which generate infinite congruence classes theories which generate infinite congruence classes

Timothy B. Baird

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Baird, Timothy B., "Complete sets of reductions modulo A class of equational theories which generate
infinite congruence classes" (1988). Doctoral Dissertations. 694.
https://scholarsmine.mst.edu/doctoral_dissertations/694

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/694?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

C O M P L E T E S E T S O F R E D U C T I O N S

M O D U L O A C L A S S O F E Q U A T I O N A L T H E O R I E S

W H I C H G E N E R A T E I N F I N I T E C O N G R U E N C E C L A S S E S

B Y

T I M O T H Y B. B A I R D , 1 9 5 6 -

A D I S S E R T A T I O N

P r e s e n t e d t o t h e F a c u l t y o f t h e G r a d u a t e S c h o o l o f t h e

U N I V E R S I T Y O F M I S S O U R I - R O L L A

I n P a r t i a l F u l f i l l m e n t o f t h e R e q u i r e m e n t s f o r t h e D e g r e e

D O C T O R O F P H I L O S O P H Y

i n

C O M P U T E R S C I E N C E

1 9 8 8

ii

ABSTRACT

In this paper we present a generalization of the Knuth-Bendix procedure for

generating a complete set of reductions modulo an equational theory. Previous such

completion procedures have been restricted to equational theories which generate

finite congruence classes. The distinguishing feature of this work is that we are able

to generate complete sets of reductions for some equational theories which generate

infinite congruence classes. In particular, we are able to handle the class of

equational theories which contain the associative, commutative, and identity laws for

one or more operators.

We first generalize the notion of rewriting modulo an equational theory to

include a special form of conditional reduction. We are able to show that this

conditional rewriting relation restores the finite termination property which is often

lost when rewriting in the presence of infinite congruence classes. We then develop

Church-Rosser tests based on the conditional rewriting relation and set forth a

completion procedure incorporating these tests. Finally, we describe a computer

program which implements the theory and give the results of several experiments

using the program.

Key Words: complete sets of reductions, Knuth-Bendix procedure, E-completion,

E-unification, conditional reductions, finite termination property, Church-Rosser

property.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Ralph Wilkerson, for his guidance and

support during the course of my studies and research. I am also grateful for the

assistance of the other members of my advisory committee: Dr. Arlan DeKock, Dr.

Peter Ho, Dr. Ronald Kellogg, and Dr. George Zobrist. Special thanks also go to

Dr. Gerald Peterson of McDonnell-Douglas in Saint Louis, Missouri, who first

suggested this research topic and who has shared in every phase of this project. His

insight and assistance are deeply appreciated.

I would also like to thank Dr. Dean Priest and Dr. Steve Smith of Harding

University in Searcy, Arkansas, who arranged for my leave of absence to pursue this

degree. I am very grateful for the financial assistance provided by Harding University

these last three years.

The work presented in this document is but a part of a larger group effort in the

Computer Science department at the University of Missouri-Rolla. I would like to

thank all of those involved in this research effort. Fellow graduate students Blayne

Mayfield and Barbara Smith have provided stimulating discussion, encouragement,

assistance, friendship, and empathy throughout our work together. Sincere thanks is

expressed to each of them. The program which implements the theory presented in

this document is also a product of a group effort. Contributions were made by Dr.

Wilkerson, Dr. Peterson, Barbara Smith, and our local LISP expert, Blayne Mayfield.

Many friends and family members have offered encouragement throughout this

undertaking. I especially thank my parents for all their love. Most of all, I thank my

wife, Debbie, whose love and friendship make all things worthwhile. Without her

continued support and assistance, this work could not have been done.

IV

TABLE OF CONTENTS

Page

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. iii

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES .. ix

I. INTRODUCTION ... 1

A. OBJECTIVE ... 1

B. MOTIVATION .. 4

C. STRUCTURE ... 6

II. PRELIMINARIES .. 7

A. DEFINITIONS .. 7

1. Terms ... 7

2. Unifiers ... 10

3. Equational Theories ...12

4. Rewriting Relations ...15

B. UNIFICATION ALGORITHMS ... 17

1. Standard Unification ...18

2. Commutative Unification ..19

3. Associativc/Commutative Unification21

a. ACI-Unification: Same Root Operator21

b. ACI-Unification: Different Root Operators....................23

c. AC-Unification via ACI-Unification 26

4. Combining E-Unification Algorithms28

V

III. COMPLETE SETS OF REDUCTIONS ...30

A. DEFINITIONS .. 30

B. USING COMPLETE SETS OF REDUCTIONS 31

1. Applications..31

2. Efficiency Benefit ...32

C. GENERATING COMPLETE SETS OF REDUCTIONS34

1. Knuth-Bendix Completion Procedure35

a. Testing the Finite Termination Property 35

b. Testing the Church-Rosser Property 36

c. A Completion Procedure...40

2. Peterson-Stickel E-Completion Procedure42

a. E-Unification and E-Matching Approach43

b. E-Completeness and E-Compatibility 44

c. E-Compatibility and Extensions 45

d. An AC-Completion Procedure 46

3. Jouannaud-Kirchner E-Completion Procedure47

a. Confluence and Coherence .. 48

b. Church-Rosser Properties ...50

c. Generalized Extensions ... 51

4. Kaplan-Remy Completion for Conditional Reductions . . . 52

IV. TERMINATION VIA CONDITIONAL REDUCTIONS54

A. INTRODUCTION ... 54

B. PRELIMINARIES ... 56

1. Core Elements ... 56

2. Weighting Function Properties ...57

C. R/E TERMINATION ... 58

1. Termination Theorem..58

2. A Generalization of R / E ... 63

D. APPLYING THE TERMINATION THEOREM64

1. Calculating Conditions ..64

2. Rewriting Strength ...68

3. Implementing the Rewriting Relation69

V. ON ACI-COMPLETION ... 71

A. INTRODUCTION ... 71

B. CONDITIONAL REWRITING DEFINITIONS 72

C. TESTING ACI-COMPLETENESS ...73

1. E-Church-Rosscr Property ... 73

2. Local Coherence Property ... 74

3. Local Confluence Property ... 76

4. An Algorithm to Test ACI-Completeness77

D. ACI-COMPLETION CONSIDERATIONS 79

1. Identity Substitution Inference ...79

2. Satisfying Coherence .. 82

3. Critical Pairs and Conditional Reductions83

E. AN ACI-COMPLETION PROCEDURE86

VI. RESULTS OF AN IMPLEMENTATION91

A. IMPLEMENTATION NOTES ... 91

1. Data Structures ...91

2. E-Matching with Conditional Reductions93

3. Dealing with Term Symmetry ...95

4. Using Extensions ...96

5. User Interface ... 98

B. RESULTS ... 100

1. ACI-Complete Reduction Sets .. 101

a. Example 1: Commutative groups 101

vi

b. Example 2: Commutative rings with unit element . . 102

c. Example 3: Boolean r in g s ... 103

d. Example 4: Group homomorphisms 105

c. Example 5: Ring homomorphisms 106

f. Example 6: Distributive lattices 109

2. Demonstration of Generality ... 110

a. Example 7: Groups using standard completion 110

b. Example 8: Latticoids using C-completion 112

c. Example 9: Commutative groups using
AC-completion ...113

3. ACI-Completion versus AC-Completion114

a. Step Size of Deductions ... 114

b. Efficiency ..115

VII. CONCLUSION ...118

A. SUMMARY ... 118

B. FURTHER RESEARCH ...120

REFERENCES ...122

vii

VITA 125

vrn

LIST OF ILLUSTRATIONS

Figure Page

1 Tree representation for a term .. 8

2 Standard Unification Algorithm ... 18

3 Commutative Unification A lgorithm .. 20

4 ACI-Unification: Same Root Operator .. 24

5A ACI-Unification Algorithm ... 25

5B ACI-Unification: Different Root O perators.. 26

6 AC-Unification Algorithm .. 27

7 Interleaved E-Unification A lgorithm .. 29

8 Confluence .. 37

9 Local Confluence ... 37

10 A Knuth-Bendix Completion Procedure ... 41

11A Peterson-Stickel AC-Completion Procedure - Part 1 47

11B Peterson-Stickel AC-Completion Procedure - Part 2 48

12 Confluence versus Coherence ... 49

13 An algorithm to test ACI-Completeness ... 78

14A An ACI-completion procedure - Part l ... 88

14B An ACI-completion procedure - Part 2 ... 90

LIST OF TABLES

Table Page

I COMPARISON OF NUMBER OF INFERENCES, AC VERSUS
ACI ... 115

II COMPARISON OF TIMES, AC VERSUS ACI 116

III COMPARISON OF NUMBER OF CRITICAL PAIRS, AC VERSUS
ACI ... 117

ix

1

I. INTRODUCTION

We begin by giving a concise, though somewhat informal description of the

problem addressed by this research. More formal and complete discussions of each

essential element will be given in later chapters. After setting forth the specific

purpose of this research we discuss why this problem is worthy of our attention.

Finally, we preview the structure and content of the remainder of the chapters.

A. OBJECTIVE

Briefly stated, a complete set of reductions for a given algebraic system is

defined such that any two terms which are congruent under the axioms of the

algebraic system must have identical forms after the set of reductions has been

applied exhaustively to each. Whenever a complete set of reductions can be found

for a given algebraic system it eliminates the unmanageable search space often

encountered in equational theorem proving, providing a very efficient tool for solving

equality problems relative to the axioms of the system.

Knuth and Bendix [0 7 0] first established two necessary and sufficient

conditions for a set of reductions to be complete. These conditions have come to be

called the finite termination property and the confluence property. Based on these

conditions they were able to devise both an algorithm for testing the completeness of

a set of reductions and a procedure which can take the equational axioms of an

algebraic system and possibly generate a complete set of reductions. We will refer to

their procedure as the Knuth-Bendix completion procedure and to all similar

procedures as completion procedures. The Knuth-Bendix procedure was able to

generate complete sets of reductions for a limited number of algebraic systems, most

notably free groups. Early completion procedures, however, were not able to handle

any algebraic system whose definition included a commutativity axiom because

2

inclusion of these axioms in the reduction set resulted in the loss of the finite

termination property.

Peterson and Stickel were able to overcome this limitation of

completion procedures by splitting the equational axioms of an algebraic system into

two sets: (1) equations which are incorporated into the pattern matching process

used to apply reductions, and (2) equations which form the basis of a set of

reductions to be completed. Their approach requires not only the finite termination

and confluence properties, but also a linearity property for equations in the first set

and a special compatibility property between the reductions and the first set of

equations. Besides these properties it is necessary to have a finite and complete

unification algorithm for the equations which are incorporated into the pattern

matching process. Peterson and Stickel were able to generate complete sets of

reductions for algebraic systems which included both associativity and commutativity

axioms, building these axioms into the pattern matching facility via

associative/commutative unification. Such completion procedures have come to be

called E-completion procedures, where E represents the set of equations incorporated

into the pattern matching process. Using this E-completion procedure, Peterson and

Stickel were able to generate complete sets of reductions for algebraic systems such as

commutative groups, commutative rings, and distributive lattices.

Jouannaud and Kirchner [JK863 generalized the theory of E-completion

sufficiently to account for all previous completion and E-completion theory. They

were able to replace the compatibility requirement of Peterson and Stickel with a

more general property which they call coherence and to remove the linearity

requirement for E in favor of the more general requirement that the congruence

classes generated by E must be finite. In the introduction to their paper, Jouannaud

and Kirchner state:

3

Our proof holds for the particular case of Peterson and Stickel's rewriting
relation, without any linearity hypothesis on rules or equations. However,
the case of infinite congruence classes remains the last open problem of the
theory of equational term rewriting systems.

They also return to this point in their conclusion, stating:

... the last open problem of infinite congruence classes should be addressed,
since many interesting cases such as equipotency and identity fall in this
category.

It is the goal of this research to attack the problem of E-completion when the

set E generates infinite congruence classes. Rather than attempting to solve this

problem for all equational theories which generate infinite congruence classes,

however, we address only the class of equational theories which contain the

associative, commutative, and identity laws for one or more operators. We will call

these ACI equational theories and the corresponding E-completion process we will

call ACI-completion. It is the presence of the identity law in these equational

theories which causes them to generate infinite congruence classes and thus fall

outside the realm of previous E-completion theory. In the chapters that follow we

will develop, implement, and experiment with a new theory for E-completion which

handles the class of ACI equational theories.

Others have addressed the problem of infinite E-congruence classes. Bachmair

and Plaisted have generalized the theory of Jouannaud and Kirchner so as to

have apparently removed the finite congruence class requirement. They do, however,

still maintain the other requirements of Jouannaud and Kirchner, including the finite

termination property. We will demonstrate that the finite termination property

needed in their model is usually lost when the equational theory generates infinite

congruence classes, leaving the real issue of an implementable E-completion

procedure in the presence of infinite E-congruence classes as an open problem.

4

B. MOTIVATION

Why do we want to develop an E-completion procedure for ACI equational

theories? Not only is this an interesting and challenging open problem, we see three

benefits which may be realized from the solution: (1) increased step size for equality

inferences, (2) increased understanding of the essential elements of E-completion

procedures, and (3) a pattern matching process which is more closely akin to the

process used by a human mathematician. We now discuss each of these benefits in

turn.

It is generally recognized that one of the major problems in the area of

automated reasoning is the development of inference rules which take deduction steps

of the appropriate size [WoS&Jl. The resolution principle though

theoretically complete, suffers greatly when dealing with equality because of a step

size which is too small. Ideally, we would like to increase step size without sacrificing

completeness. Demodulation _W06l~], paramodulation _WR69~\, and complete sets

of reductions have all been developed to address this problem.

From the development of previous E-complction procedures it is easy to observe

that the step size of an equality inference becomes larger whenever the congruence

classes generated by E become larger. When the set E is empty each inference step

clashes two individual clauses to produce an individual clause. When E generates

congruence classes, however, each inference step clashes all of the clauses in one

congruence class with all of the clauses in another congruence class in a single

operation, producing a resultant clause which stands by itself in place of all of the

clauses in its congruence class. Consequently, we find fewer inferences arc needed to

cover the same ground and fewer reductions are needed to constitute a complete set

of reductions for a given algebraic system.

5

Because each inference is accomplishing more by itself and fewer reductions are

needed, the branching factor of the search tree and the resulting size of the search

space are both reduced. If we are able to develop pattern matching facilities for the

larger equational theories which are as efficient as those for smaller theories, we may

be able to generate complete sets of reductions for algebraic systems which have been

unattainable by previous E-completion systems. Furthermore, a generalized

E-completion theory which handles infinite E-congruence classes may allow us to

attempt problems which were not feasible under previous E-completion theory. An

ACI-completion procedure is a small, first step in that direction.

Besides the possibility that increased step size of equality inferences may lead to

the solution of new problems, there is the benefit that the development of an

ACI-completion procedure will lead to a better understanding of E-completion

procedures in general. Generalization of a theory necessitates that essential and

inessential elements are more clearly distinguished. The concepts presented here, or

others that spring from them, may eventually lead to improving the performance of

automated reasoning systems which deal with equality inferences. More specifically,

we believe that the solution of the E-completion problem for this one class of

equational theories which generates infinite congruence classes provides insight into

how to attack the larger problem of E-completion for all equational theories which

generate infinite congruence classes.

As a third benefit, we point out that incorporating associativity, commutativity,

and identity laws into the pattern matching process seems intuitively to be more like

the way human mathematicians deal with these axioms. In particular, the identity

law, despite its inherent simplicity, is a source of great difficulty for all previous

E-completion theory. Yet this law does not seem to cause any real difficulty for the

experienced mathematician. The core element and conditional reduction approach

6

which we develop in this research is inspired by the way we believe we approach these

problems when we are working without the aid of the computer.

C. STRUCTURE

It is our intention that this document be sufficiently self-contained so that a

reader unfamiliar with the area of term rewriting systems will be able to find the

necessary background material here. Of course, the references cited may be used to

fill in any gaps. We do assume that the reader is generally familiar with systems of

mathematical notation.

In Chapters 2 and 3 we give background information which is needed to

understand the theory which is developed in later chapters. Chapter 2 gives basic

vocabulary and definitions associated with completion theory, as well as a brief

review of pattern matching algorithms which are essential ingredients of completion

procedures. Chapter 3 is a detailed literature review of the theory of complete sets of

reductions and completion procedures.

In Chapters 4 and 5 we develop our theory of ACI-completion. Chapter 4

presents a new type of conditional rewriting relation as a method for establishing the

finite termination property in the presence of infinite AC I-congruence classes. In

Chapter 5 we first develop tests for completeness modulo an ACI equational theory

based on the new conditional rewriting relation and then give an ACI-completion

procedure.

In Chapters 6 and 7 we report results of implementing the given theory in a

computer program. Chapter 6 describes several experiments which were performed

and Chapter 7 presents conclusions as well as ideas for further research.

7

II. PRELIMINARIES

Before we can present the necessary mathematical theory relative to complete

sets of reductions and completion procedures we must review the definitions and

concepts on which we will build. In this chapter we first give definitions for those

concepts which are needed as general background for all subsequent chapters. More

specific concepts will be defined and discussed in later chapters as they are needed.

After presenting these background definitions, we present an overview of unification

algorithms. Although unification is not the primary focus of this research, it is

extremely important because of its key role in completion procedures.

A. DEFINITIONS

We have grouped the background definitions into four major categories: (1)

definitions related to terms, (2) definitions related to unifiers, (3) definitions related to

equational theories, and (4) definitions related to rewriting relations. Much of the

material in this section is adapted from [P S 8 l] and [JAM}.

1. Terms.

We assume the existence of a countably infinite set, V, of variables and a finite

set, F, of operators such that VC\F=<j). With each operator we associate a degree

which indicates the number of operands on which it operates. Operators of degree

zero are called constants. Constants and variables are called simple terms. Complex

terms are formed when an operator / of degree n is paired with an ordered n-tuple of

operands, each of which may be simple or complex terms. Complex terms may be

written in prefix form as f x y) or in infix form as x fy . The set T[F,V) represents the

set of all possible terms which may be formed using elements of F and V, consistent

with the degree of each operator.

8

We use a standard tree representation for terms as follows: simple terms are

represented by leaf nodes; a complex term t which is formed from an operator / of

degree n is represented by an n-ary tree where the root node represents / and the n

children from left to right represent the ordered operands of/. For example, if x and

y are variables, 0 is a constant, + and * are binary operators, and — is a unary

operator, then the term t — (x + (0*(— y))) is represented by the term tree shown in

Figure 1.

Let Parendnode) represent the parent of a node and Cpos{node) be the position

of a child relative to its sibling nodes. We define a position function for the nodes of

a term tree by Pos{root) = t and Pos(node) = Pos(Parent(node)).Cpos(node). For

convenience we will write positions such as t.m as simply m. In the example above

Pos(+) = i, Cpos(x) = 1, Cpos(*) = 2, Pos(x) = 1, Pos(*) = 2, Pos(O) = 2.1,

Pos(—) = 2.2, and Pos(y) = 2.2.1.

A subterm of a term is the term associated with a subtree of a term tree. We

write r/m to indicate the subterm of t at position m. In our example tj2.2 = (- j>).

The subterm r/m is said to be a strict subterm whenever mi=t. We use the notation

t[.m <- s] to indicate the term which is obtained when we replace the subterm tjm by

9

another term s, without altering the remainder of t. In our running example,

/C2.2 <- a] — x + (0*a). We define the root operator of a complex term t, t.root, to be

the operator at the root of the term tree for t.

We define Vars(t) to be the set of all variables occurring in t. For our example,

Vars(t) = {x, j>}. A term t is defined to be linear iff for all x e Vars(t), x occurs

exactly once in t. Terms /, and t2 are said to be variable disjoint whenever

Vars(tt) fl Vars(t2) ~ </>.

We define the domain of a term t, Dom{t), as the set of all positions occurring in

the term tree for t. For our example, Dom(t) = {e, 1, 2, 2.1, 2.2, 2.2.1}. The first level

domain of a term t, Fdom(t), is defined to be the set of positions for all nodes which

are immediate children of t.root. Fdom(t) = {1, 2}, for our example. We also, define

the strict domain of a term t, Sdom(t), by

Sdom(t) = {p | p e Dom(t) and tjp £ Vars(t)}.

Sdom{t) represents the positions of all of the subterms of t which are not variables.

These are sometimes referred to as the positions of the non-trivial subterms of t. For

our example, Sdom(t) = {s, 2, 2.1, 2.2}.

For terms containing an operator + which satisfies the associative law

(x +j>) + z = x + (y + z), we may sometimes use a simplifying representation. We will

say that a term t has been flattened whenever all subterms rooted with the same

associative operator as their parent term have been collapsed, removing the operator

of the subterm and placing the operands of the subterm in the scope of the parent

term's operator. For example, the terms (a + b) + (c + d) and (((a + b) + c) + d) both

have the flattened representation a + b + c + d. This representation requires that we

no longer view + as an operator of degree two, but as an operator of arbitrary

degree.

10

2. Unifiers.

Wc define a substitution pair to be an ordered pair (v,l) and is usually written as

Vi- t, where v is a variable and / is a term. A substitution is then defined to be a set

of substitution pairs {v, ♦- /„ v2 <- t2, ..., v„«- /„} such that each v, occurs exactly once

in the n-tuple (vlt v2, ..., vj. We say that a substitution a is applied to a term t,

usually written as simply to, whenever for every v, <- t, e o we simultaneously replace

all occurrences of v, in t with For example, consider the substitution

o = {x ■*-a, y * -b + x) and the term t = (x+ y) — x. Applying a to t gives

to = (a + (b + x)) — a.

Whenever we have two substitutions, ct, and o2, we obtain their composition,

o{o2, by the following:

<j\02 = {V[«- tto2 | v, <- t, e a,} U {v, *- | (v, t, e o2 and V(vy- <- tj) e ox vl ^ vy)}

The desired consequence of this definition is that (tox)o2 = In other words, we

get the same result from composing two substitutions and then applying the

composed substitution as we do from applying the individual substitutions one after

the other. Whenever no variable occurring in either side of a substitution pair of o,

occurs in either side of a substitution pair of o2 we say that a, and o2 are variable

disjoint. For variable disjoint substitutions oxo2 = o2o„ and thus, order of

composition has no effect.

Whenever a substitution o satisfies the equation /, = t2o we say that a is a

matching substitution or simply a matcher for terms /, and t2. We also say that /, is an

instance of t2. Suppose that r, — x + 0 and t2 = a + 0, then o — {x <- a} is a matcher

for /, and t2. Whenever a substitution o satisfies the equation txo = t2o we say that a

is a unifying substitution or simply a unifier for r, and t2. For example, when q = x + 0

and t2 — a + y o = {x*-a, .y<-0} is a unifier for r, and t2. For variable disjoint

11

terms it should be clear that a matcher is always a unifier, but a unifier is not always

a matcher. Matchers and unifiers are sometimes referred to as one-way unifiers and

two-way unifiers, respectively.

We now point out that unifiers are not necessarily unique. For example,

<7, = {«<-jc + a, v <^y + b) and o2 — [u <- z + a, x *- z, v *- w + b, y *- w} are both

unifiers for /, = (or + a) + (y + b) and t2 = u + v Clearly there are an infinite number of

unifiers which follow the form of o2, as z and w can be replaced by any valid terms

and the result is still a unifier. We say that a substitution a2 is an instance of another

substitution iff there exists a third substitution o3 such that o2 = <j,<t3. Note that in

our last example o2 is an instance of a,. This is easily seen using

a3 = {jc *- z, y *- w). We say that cr, is more general than a2 whenever a2 is an

instance of <?,. We define a substitution 6 to be a most general unifier for terms t, and

t2 whenever all other unifiers of t, and t2 are instances of d.

A variable renaming substitution is a substitution of the form

{x, *-yu x2 *-y2, ..., xn where all of the jc,s arc disjoint variable names and all of

the yts are also disjoint variable names. Two substitutions, a, and o2, are said to be

the same modulo variable renaming whenever there exists variable renaming

substitutions 0, and d2 such that o2 = o1dl and o, = o202. Robinson proved in

C/?<?65] that a most general unifier, when it exists, is unique modulo variable

renaming.

The process of finding matchers is called matching. The process of finding

unifiers is called unification. When the terms being unified are variable disjoint, as

will always be the case in the completion theory which follows, it is easy to see that a

procedure which performs unification can be used to perform matching. If wc treat

all of the variables in one of the terms as constants then the unifier generated by

unification is also a matcher. Because of this close conceptual connection between

12

the two processes we will focus our discussion of matching and unification algorithms

on the problems of unification.

3. Equational Theories.

An equation is an ordered pair of terms (/ ,r) , usually written as / = r. An

equational theory, E, is a set of equations. If E is an equational theory, then

Ec = {r = l \ l = r e E}. For an equational theory E wc define the one step

E-equality relation, == , on pairs of terms as follows:

5 = / iff there exists (1) an equation / = r e £ u P ,

(2) a node n e l)om(s), and

(3) a substitution 0

such that sjn = Id and t = sC« «- rd^\.

The E-equality relation, = , is then defined to be the reflexive, symmetric,

transitive closure of ==, which is clearly an equivalence relation. Whenever an

E-equality relation satisfies the property 5 = t =>J[_m <- s] =J{_m <- t~\ for all terms

f s, and te T(V,F), then the E-equivalence relation is said to be compatible with the

term structure for T{V,F). The E-equivalence class for a term t, [r] £, is defined by

[t~\E = {i | 1 e T(V,F) and s = /}. When = is an equivalence relation which is also

compatible with the term structure for a set of terms, then the Ii-equivalence class is

said to be an E-congruence class. Suppose that we have E = {x ~f-y = y + jc}. We can

show that a + b = b + a using x + y = y + x as /= r , c as n, and {x«- a, y * -b } as cr.

Similarly, we can show that

[a + (b + c)]£ = {a + (b + c), a + (c + b), (b + c) + a, (c -I- b) + a}.

E-membership for sets, eE, is defined by s eES iff there exists a s' such that s = s' and

s' e S. Thus, using E from the previous example, we would say that

13

b + a eE {a, b, a + b}. Finally, we define E-equality for substitutions, o and o', by

o = o' iff p e o implies p eEo' and p' e o' implies p' eEo.

The following lemma states that E-equality is preserved under the application of

substitutions, or equivalently, that E-equality is compatible with the application of

substitutions:

Compatibility Lemma CP5813- Suppose s, t e T(V,F), 6 is a substitution, and E is

an equational theory. If s = t, then s6 = tO.

The problems of matching and unification are easily redefined in the presence of

equational theories. We say that a substitution is an E-matcher for terms /, and t2

whenever a satisfies the equation f, = t2a. The process of finding such substitutions

we call E-matching. Likewise, we say that o is an E-unifier for /, and t2 whenever it

satisfies the equation txo = t2o. The process of finding E-unificrs is called

E-unification. Whenever r, = t2o we also say that r, is an E-instance of t2. A

substitution o, is said to be an E-instance of another substitution o2 whenever there

exists a third substitution o2 such that at = o2oy We indicate by i£0 the set of all

substitutions which are E-instances of substitutions in the substitution set, 0 .

The problem of E-unification has been studied for many different equational

theories. The existence of a most general E-unifier which is unique modulo variable

renaming does not generally hold for E-unification. For example, when we have the

equational theory E= {x + y — y + jc} it is easy to see that both

cr, = {.*• <— c -f d, y <— a, z *— 6} and o2 = {x a + b, y «- c, z <— d] are E-unifiers for

terms — x + (y> + z) and t3 = (a + b) + (c + d), yet neither o, nor o2 are variable

renaming E-instances of the other. When E contains only the associative law

(x+y) -F z — x + (y + z) it has been shown that there may be an infinite set of such

unique E-unifiers for two terms CS/813- Because of these complications the following

14

general properties are defined for E-unification algorithms which produce a set £ of

E-unifiers for terms /, and t2: [5/79]

finiteness: | £ | <, oo.

completeness: V0 such that t f = t20 (3a e £ and a substitution t such that 6 = or).

(All possible E-unifiers are E-instances of some E-unifier in £).

minimality: For no Oj e £ is ot = aft where 0 ¥= {}.

(No E-unifier in £ is an E-instance of another E-unifier in £).

The counterpart to a most general unifier for E-unification is the existence of a

finite, complete, and minimal set of E-unifiers. Finiteness and completeness are the

most important properties since we can never finish producing E-unifiers without

finiteness and we cannot be sure that we have found general forms for all possible

E-unifiers without completeness. Minimality can always be obtained from finiteness

and completeness by post-processing the set of E-unificrs and throwing out those

which are E-instances of others. This post-processing is very costly, thus an

algorithm which avoids producing redundant unifiers is often important for reasons of

efficiency. A summary of known finite, complete, and minimal E-unification

algorithms is given in [5/79].

A system consisting of a set, one or more n-ary operations on the set, and one

or more relations on the set is defined to be an algebraic structure [771775]. When all

of the relations on the set can be defined by equations we will call this an equational

algebraic structure. In this research we will be particularly interested in equational

algebraic structures defined by the set T{V,F) and an equational theory A where there

exists another equational theory E such that E <5 A and a finite and complete

E-unification algorithm exists for E. We will focus particularly on structures where E

contains associative, commutative, and identity laws (A Cl equational theories),

associative and commutative laws {ACequational theories), commutative laws

(C equational theories), and where E contains no laws {empty equational theories).

15

4. Rewriting Relations.

A rewrite rule is an ordered pair (X, p), usually written X -* p, which may be

applied to an arbitrary term t as follows: if there exists a position m e Dom(t) and a

substitution a such that //m — Xa, then the resulting term, t' , is given by t[m pa~\.

We say that t rewrites to f . The idea is that X and p are equivalent and we have

substituted one for the other. Note that a is a matcher for X and tjm and may be

found via any matching algorithm. The application of a rewrite rule is sometimes

called a substitution rule of inference. This is the same process we use when we draw

the conclusion "Mary is sick today" from the statements "John's wife is sick today"

and "Mary is John's wife".

A reduction is a special rewrite rule where it is understood that p is in some

sense simpler than X. When t rewrites to f via a reduction we say that / reduces to t '.

Reductions are precisely the same as the demodulators introduced in the demodulation

process of Wos _Wo67\ When a reduction is applied to a term t, the new version of

t is equivalent to and yet simpler than the original i. For example, when we apply the

reduction e*x -*■ x to the term t = a*(e*b) using m - 2 and a = {x«- b) the resulting

term t' = a*b is simpler than the original t. When no reduction in a reduction set R

can be used to reduce a term t we say that / is irreducible by R. An irreducible term is

sometimes called a normal form or terminal form of the term from which it has been

derived. We use the notation rf* to indicate a term which has been derived from t by

zero or more applications of reductions from R and is now a terminal form relative to

R.

A conditional reduction is a reduction of the form I f C Then X —> p. The

condition, C, normally involves the same variables and operators as X -* p and is

evaluated after the matching substitution is found. If the condition holds the

reduction is applied as usual, otherwise the process is aborted. For example, the

16

reduction I f x ± 0 Then x*x~1 -> 1 can be used to prevent rewriting with a substitution

which sets jc to zero, thus preventing division by zero. The most commonly studied

conditional reductions are reductions where C is of the form

/[= «, and t2 = u2 and... and tn — un [5/^86, 0 8 7] . In most cases the presence of the

condition on the reduction arises out of the semantics of the problem, just as in our

example the semantics of the division process clearly demands that we not divide by

zero. In this research we will introduce a new type of conditional reduction where the

conditions are of a slightly different form and arise more from the syntax of the

problem, rather than the semantics.

A set of rewrite rules, R, can be used to define a binary relation on the set of
Rterms. The rewriting relation R, written as -♦ , is the set of ordered pairs (/„ t2) such

Rthat r, rewrites to t2 using some rewrite rule from R. We write /, -*■ t2 to indicate
r *(/,, t2) e -*■. We use the notation to indicate the reflexive, transitive closure of

R R
->. Thus tx -* t2 means that we can move from /, to t2 using zero or more applications

of -*•. We also define E-rewriting relations, often called rewriting modulo E, by

altering the rewriting definitions to account for an equational theory, E. This

generally can be viewed as rewriting between two different E-congruence classes.

Three rewriting relations which have been used extensively in the study of
K R.E R/E

completion procedures and which will be used in this research are ->, -» , and -+ .

These arc defined as follows:

/, t2 iff X -* p e R, m e Dom{tx), txlm = Xa, and t2 = [_m <- per]
X,p,a,m

/j t2 iff X -* p e R, m e Dom{tx), t jm = Xo, and t2 = *- p a]
p, a, m

RjE r R E
tx -* t2 iff 3 f',, t 2 such that = f x -* f 2 = t2
I'P.o t,P,<r

17

The first relation, , is the standard rewriting relation which is used when the
R E

equational theory is empty. The second relation, A , is a limited form of rewriting

modulo E which is easily implemented via E-matching. If we use the notation = to

indicate an E-equality relation where each = step takes place at or below m, then an
R.E

equivalent alternate definition for -> is

r,e . £ r
/, -» i2 iff X -* p e R, m e Dom{t{), and 3 such tha t /, = —» t2

X y p yo ^m X t p t a , m

RJE
The third relation, -» , is the most general form of rewriting modulo E and is used

R E
more in proofs of the theory than in implementations. The difference between A and
RfE . .-* is sometimes very subtle. Suppose that R contains the single reduction

(— x) + jc -> 0 and E is an AC equational theory. Then the term = (a + b) + (—b)
R/E A C Rcan be rewritten via -> using the sequence r, = a + ((—b) + b) -* a -t- 0. The term f,

H Ecannot be rewritten at all via A because there does not exist a position m e Dom(/1)

and a substitution a such that t j m ^ ((—x) + x)o. It should be clear from the

definitions that

B. UNIFICATION ALGORITHMS

Because the concepts of matching, E-matching, unification, and E-unification all

play a central role in the development of completion procedures we present a brief

summary of matching and unification algorithms in this section. We will focus on

unification and E-unification since the matching problems are simpler instances of

these. For our purposes, we are interested in unification relative to empty, C, AC,

and ACI equational theories. We must also consider terms which involve various

operators, each of which may be associated with a different one of these equational

theories.

18

1. Standard Unification.

We will refer to unification relative to the empty equational theory as standard

unification or S-unifcation. This type of unification has also been called Robinson

unification, after its founder, and Null-E unification [Ma88]. A variation on

Robinson's algorithm is given in Figure 2. Robinson C#<?65] proved that the

standard unification algorithm will always terminate, returning the most general

unifier if it exists, and failure otherwise.

Procedure S-Unify (/„ t2, L)

Case

1: /, = t2 => Return L

2: /s-Far(;,) => If f, occurs in t2
Then Return 0
Else Return U,eE o0{tl *- t2}

3: Is- Var(t2) => Return S-Unify(t2, tu E)

4: Complex(fj) and Complex(t2) and Length(/,) = Length(t2) and
tx.root — t2.root=> For each m e Fdom{tx) do

E : = U,tE S-Unifyi(tJm)o,(tJm)o,{o})
End For
Return I

5: Otherwise => Return 0

End Procedure S-Unify

Figure 2. Standard Unification Algorithm

The following examples illustrate the algorithm:

Example 1: Suppose we want to unify the terms P(a, x, fix)) and P[y, b, z). All of

the unification algorithms which we present make use of an initial unifier set, L, with

19

which the final unifier set must be consistent. This is actually only needed for the

recursive calls. All of the presented unification algorithms also return their result in

the form of a set of unifiers, even though for standard unification this set can contain

at most one element. The unifier set {4>} represents the single unifier with no

substitution pairs. We will begin all top level calls using this value for £. The unifier

set <j) will be returned when no unifier is possible. We begin this example with the

call S-UniJy(P(a, x, J{x)), P[y, b, z), This call is handled by Case 4 which

generates the following recursive calls:

(1) S-Unify{a, y, {</>}): Case 3 generates S-Unifyiy, a, {</>}) which returns {{y<- u}}.

(2) S-Unify{x, b, {y <— a}): Case 2 returns {{y *- a, x «- A}}.

(3) S-Unify{f[b), z, \y <- a, x <- &}): Case 3 generates S-Unify{z, J[b), {y«- a, x «- b})

which returns {{y *- a, x «- b, z <—j{b)}} via Case 2.

Example 2: Suppose we want to unify x and J{x). We begin with the call

S-Unify(x, J{x), {<£}). This is handled by Case 2, where /, is found to be a variable

occurring in t2. Thus the unification fails and returns 4>.

2. Commutative Unification.

The commutative unification, or C-unification, algorithm given here is due to

Siekmann C-S/79]. Let C-Permute(t) be the set of all possible terms which may be

formed by permuting the operands of all of the commutative operators in t. For

example, let / be a commutative operator and let r, ~j{aj[b,c)). This gives

C-Permute^) = {J{aJ{b,c)), J{aJ{c,b)), J[f[b,c),a), J{f[c,b),a)}. Siekmann pointed out

that an obvious solution to the C-unification problem for terms r, and t2 is to perform

S-unification for all possible pairs from C-Permute^) x C-Permute(t2). Siekmann

showed that this approach is finite and complete, though not minimal. In fact, this

approach is very inefficient.

20

This led Siekmann to modify the obvious solution as follows: Let C-Oprs(t) be

the number of occurrences of commutative operators in term t. First order the terms

such that C-Oprs{tx) > C-Oprs(t2). Then perform S-unification for each pair from

{/,} x C-Permute(t2), with the slight modification that two terms be considered as

identical whenever they are C-equal. These modifications greatly improve

performance over the obvious solution, while maintaining finiteness and

completeness. The algorithm is still not minimal, however. The complete

C-unification algorithm is given in Figure 3.

Procedure C-Unify (/j, t2, Z)

If C-Oprs(t2) > C-Oprs(t,)

Then /, , /: = Swap(tit t2)

Return U« &J— W S-Unify(tu s, Z)

End Procedure C-Unify

Figure 3. Commutative Unification Algorithm

The following example illustrates the use of C-Unify:

Example 3: Suppose we want to unify J[a, x) and fty, J[z, a)), modulo

commutativity. We begin with the call C-Unify{/[a, x), f[y, f[z, a)), {0}). The terms

are already properly ordered, thus permutations are found by

C-Permute{f[y, J{z, a))) = [fly, J[z, a)), j\f[z, a), y), J[y, Aa , z)), /[/|>, z), y)}.

This results in the following calls to S-Unify:

(l) S-UnifyiAa, x), f y , A*t «)). {«/>}) returns {{y * -a, x<~A^, «)}}

21

(2) S-Unifyifa, x), J[f[2, a), y), {</>}) fails and returns 4>

(3) S-Unify[f[a, x), J\y, j[a, z)), {</>}) returns {{y<r- a, * < -/> , z)}}

(4) S-Unify(f{a, x), J[f[a, z), y), {$}) fails and returns 4>

Thus C-Unify returns { \y «- a, x *~J{z, a)}, {y <- a, x *~J{a, z)} }.

3. Associative/Commutative Unification.

In this section we will jointly address both AC-unification and AC I-unification.

We first examine the problem of ACI-unification for two terms which have the same

root ACI operator. We then consider the problem of ACI-unification of two terms

which do not have the same root ACI operator. Finally, we show how AC-unifiers

can be generated from ACI-unifiers.

a. ACl-Unification: Same Root Operator. The algorithm presented here is due

to Stickel CSr81]. Before beginning the ACI-unification process, terms are flattened

according to the method described earlier in this chapter. Those terms which contain

operands which are not variables are then converted into terms with only variables as

operands, introducing new variables where necessary and recording the substitution

necessary to undo this change at a point later in the process. This process, called

variable abstraction, is illustrated in the following example: Suppose we want to

ACI-unify the terms J[xlt a) and Jlyuyi) w here/is an ACI operator with identity e, jt,

and y { are variables, and a is a constant. Performing variable abstraction we generate

the new variable xlt and the new variable only terms, J[x„ jr2) and f[y\,yx). We record

the substitution o, = {jc2 <- a) for later use.

We now address the case of ACI-unification for two terms which begin with the

same ACI operator and contain only variables in the scope of that operator. Stickers

algorithm is as follows:

(1) Eliminate common operands.

22

(2) Form an equation from the two terms where the coefficient of each variable in
the equation is equal to the multiplicity of the corresponding variable in the
term.

(3) Generate all non-negative integral solutions to the equation, eliminating all
those solutions composable from other solutions.

(4) Associate a new variable with each solution. These will be called the introduced
variables.

(5) Assemble a single unifier composed of assignments to the original variables
with as many of each new variable as specified by the solution element in the
sum associated with the new variable and the original variable. Zero
components in the solution represent an assignment to the identity.

Resuming our example, we now apply the above algorithm to our variable only

terms J{xu x2) andyfo.y,):

(1) There are no common operands to remove for this example.

(2) The equation to be solved is x, + x2 = 2yv The class of equations which arise at
this step is called the class of homogeneous linear diophantine equations. An
algorithm for finding the basis of solutions for such equations is given bv Huet

(3) The basis of solutions is:

Solution *1 *2 y\ jq + Xi 2y, New Variable
l 0 0 0 0 0 Zi
2 0 2 1 2 2 Z2
3 1 1 1 2 2 Z3
4 2 0 1 2 2 24

(4) The introduced variables, z„ are shown in the table above.

(5) The single ACI-unifier for the variable only terms may be read from the
columns of the above table and is given by

° 2 = {*1 *~ ~A Z3> Z4, 24). x 2 * ~ A Z 2. z 2> 23). J'l * - A z 2, z 3 > 24)}-

For terms which are not variable only terms, we must now reconcile the unifier

from the variable only terms with the substitution recorded during the variable

abstraction step. All possible reconciliations must be considered. It is at this point

that our single unifier from the variable only case may give us a set of unifiers. For

our example we must reconcile a, and ov Combining x2 a and x2 z2, z3) yields

za«- e and z3 <- a. Since there are no other variables replaced in <j , we may quit and

23

apply the result of the reconciliation to a2, giving us the single unifier

{.x, z4, z4), x2 <- a,y, *-J[a,z4)}. As the variable x2 does not appear in either of

the original terms to be unified, it may be dropped, giving us a final unifier of

{ * 1 *~Aa' Z4, Z4), y 1

It is important to note that if there had been other substitution pairs in <7, in the

previous example, we would have needed to continue reconciling the reconciliations.

For example, AC 1 -unifying J[x,a) and j[b,b) yields exactly the same problem as the

previous example after variable abstraction, except that er, = {jc2 <- a, y t <- b}. In this

case the reconciliation of cr, and o2 proceeds as follows:

(1) Combining x2 <- a and x2 <-J{z.2, z2, z3) yields z2 <- e and z3 <- a.

(2) Combining y, «- b andj>, *-J[z2, z3, z4) yields three possibilities:
(a) z2 b, z3 *- e, zt *~ e
(b) Zj e, z3 4 - b, z4 4 - e
(c) z2 4 - e, z3 4 - e , z4 4 b

(3) Reconciling (2a) with (1) fails because z2*- e and z2*~ b conflict.
Reconciling (2b) with (1) fails because z3<- a and z3<- b conflict.
Reconciling (2c) with (1) fails because z3 4 - a and z3 4 - e conflict.

(4) As no possibility from (2) will reconcile with (1), no ACI-unifier is possible.

Figure 4 summarizes Stickers ACI-unification algorithm for terms with the same root

operator. This algorithm is shown to be finite, complete, and minimal whenever there

are no other operators imbedded in the terms CS/81,Fa84].

b. ACI-Unification: Different Root Operators..

Because of the identity equation, ACI-unification is possible between two terms

which have different root operators. This can only happen when at least one of the

root operators is an ACI operator which appears in a very special context. Suppose

we have the terms r, = x + (a*b) and t2 = (u*v), where + and * are ACI operators with

identities 0 and 1, respectively. It is possible to collapse the outer level of f, by

applying the substitution {x*-0} and then moving to another member of the

24

Procedure ACI-Unify-Same (r„ t2, £)

/„ t2: — Eliminate-Common{tx, t2)

For each (sx, .y2) e Make-ACI-Pairs(tx, t2) do

E : = S-Unify(sxo, j2<7,{ct})

Fnd For

Return £

End Procedure ACI-Unify-Same

Procedure Make-ACI-Pairs (/„ f2)

su m, : = Multiplicities^ ,)

s2, m2: = Multiplicities(/2)

bx,b2: = Basis(mu m2, tl.rooi)

Return {(5, b) | s, e 5, and b, e bx} U {(s, b,) | s, e s2 and b, e b2)

End Procedure Make-ACI-Pairs

Notes:

Eliminate-Common{x + y + a, a + b) returns = x + y and t2 = b

Multiplicities^ 4- y + a + y + a) returns s = (jc, y, a) and m = (1, 2, 2)

Basis((\, 1), (2), +) returns (z3 + z4 + z4, z2 + z2 + z3), (z2 + z3 + z4) (see example)

Figure 4. AC I-Unification: Same Root Operator

resulting ACl-congrucncc class, namely (a*b). At this point we have effectively

removed + as the root operator of the term and replaced it with *, which can now

match the root operator of tv It is easy to see that this can only happen when all or

25

all but one of the first level operands of an ACI operator are variables. If all of the

first level operands are variables and there are n first level operands, then the term

may be collapsed n different ways, with each variable unifying with r2. When all but

one of the first level operands are variables, the only possible unification is to set all

the variables to the identity and then ACI-unify the remaining operand with r2. When

the two terms are rooted with different operators, both of which are ACI, the

collapsing process must be attempted in both directions. For our example, collapsing

t2 allows both u and v to unify with all of r,. Mayfield's algorithm for ACI-unification

which handles two terms with differing root operators is given in Figure 5. The

finiteness and completeness of this algorithm are addressed in

Procedure ACI-Unify (r„ r2, X)

{Assumes that one or both terms have an ACI operator at the root}

Case

1: r, = r2 => Return X

2: Is-Var(t,) => If r, occurs in t2
Then Return $
Else Return U«i;<To{r1 r2}

3: Is- Var(t2) => Return ACI-Unify(t2, tu X)

4: Is-ACI(tvroot) => Return ACI-Unify-DifJ[tx, t2, X)

5: - iIs-ACI{t2.root) => Return ACI-Unify-Diff[t2, tx, X)

6: tvroot t2.root =» Return ACI-Unify-Diff{tu t2, X)U
A Cl-Unify-Di/J[t2, /„X)

7: Otherwise =» Return ACI-Unify-Same(/„ t2, X)

End Procedure ACI-Unify

Figure 5A. ACI-Unification Algorithm

26

Procedure ACI-Unify-DifT (/,, t2, L)

{Assumes t2.root is an ACI operator, + , with identity /}

{Assumes /, is either simple or has a different operator}

n \ — | Fdom(t2) |

/ : = / + /+ ... + / {n identities}

L ': = 4>

For j : — 1 to n do

Z ':= Z' 1/ S-Unify{fu t2,Y)

End For

Return £'

End Procedure ACI-Unify-DifF

Figure 5B. ACI-Unification: Different Root Operators

c. AC-Unification via ACI-Unification.

Stickel C^r8l] also suggests a method for generating AC-unifiers from

ACI-unifiers. To do this we begin by treating the AC operators as if they were ACI

operators and generating a complete set of ACI-unifiers. We then substitute the

identity for introduced variables in all possible combinations in the right hand side of

substitution pairs for each ACI-unifier. This is subject to the restriction that no

unifier is retained which assigns one of the original variables to the identity. Suppose

the operator / had been an AC operator in the previous example where we

ACI-unified J\xu a) and yij'i.J'i)- The ACI-unifier for these terms was

27

{*i «-./(«**), yx <-y(a,z4)}. The only remaining introduced variable is z4. We can

now either substitute the identity for z4 or leave z4 alone, giving

{ {*1 a, y\ «- a), {jtj 4,z4), ^ }

as the complete set of AC-unifiers for our terms.

The AC-unification algorithm described is given in Figure 6. This algorithm is

shown to be finite and complete in C Wi%7~],

Procedure AC-Unify (r„ t2, L)

E := ACI-Unify^, t2, 2)

For each a e E do

Z : = Kars(cr) — Varsity) — Kars(/2)

{Let i be a temporary identity for ty.root}

a : = {{z «- /} | z e Z}
For each y e 2‘ do

If {v +- t) e (<7y)l' => t i

Then S ' : = £ ' U (ay)|/

End For

End For

End Procedure AC-Unify

Figure 6. AC-Unification Algorithm

28

4. Combining E-Unification Algorithms.

Because of the nature of the algebraic systems over which we wish to find

complete sets of reductions, we must deal with E-unification for two terms which

contain various operators, each associated with its own equational theory. For

example, we might want to E-unify the term x + ((— y)*z) with b*(—J[u,v)), where +

is an ACI operator, * is an AC operator, / is a C operator, and — is an empty E

operator.

Yellick CYe85j has developed a framework for combining unification algorithms

for equational theories which are both confined and regular. All of our candidate

equational theories meet her definitions of these criteria except those which are ACI.

These fail because the identity law is not confined. Mayfield [A/a88] has developed

an interleaving of empty E, C, AC, and ACI unification which is a variation on the

Yellick model. The basic approach of this method is that a top level E-unification

procedure classifies the type of unification problem based on the type of operators at

the roots of the two terms to be E-unified. After classification a call is made to the

appropriate specialized E-unification routines which then make recursive calls back to

the top level for the E-unification of any lower level operands. Figure 7 gives

Mayfield's interleaved E-unification algorithm. This method is believed to be finite

and complete for the interleaving of these four equational theories.

29

Procedure E-Unify (/„ t2, E)

{This handles 0, C, AC, and ACI equational theories}

Case

1: Simple^) and Simple(t2) => Return S-Unifyitxt2Z)

2: Simple(/,) => If Is-ACI{tvroot)
Then Return ACI-Unify{tu t2, E)
Else Return S-Unify(tu t2, E)

3: Simple(t2) => Return E-Unify(t2, E)

4: ls-C(tvroot) and Is-C{t2.root) => Return C-Unify(rf, t2, E)

5: h-AC{tvroot) and h-AC{t2.root) => Return AC-Unify(tlt r2, E)

6: ls-ACI(tvroot) and Is-ACI{t2.root) ==> Return ACI-Unify{tx, t2> E)

7: Otherwise =» Return S-Unify{tx, t2, E)

End Procedure E-Unify

Note: This requires that S-Unify and ACI-Unify-Same be modified
to call back to E-Unify, rather than to S-Unify

Figure 7. Interleaved E-Unification Algorithm

30

III. COMPLETE SETS OF REDUCTIONS

Building on the definitions and concepts presented in the previous chapter, we

now focus our attention more specifically on the theory of complete sets of

reductions. We begin this chapter by giving formal definitions related to

completeness. We then discuss the application and benefits of complete sets of

reductions in the context of automated theorem proving. Finally, we review major

contributions from the literature relative to the theory of generating complete sets of

reductions.

A. DEFINITIONS

The universal word problem is the problem of deciding whether or not two

arbitrary algebraic terms arc equal with respect to a given equational theory. This

problem has been shown to be undecidable in the general case. We will address a

class of instances where it is decidable.

R .A rewriting relation, —►, is said to be noetherian or finitely terminating if no
. R J? Rinfinite descending chain /, -* t2 r3 -* ... exists. When a noetherian rewriting relation

is applied to a term t until it can be applied no more, the resulting irreducible term

is called a terminal form or normal form of t, written as f|*. Clearly there may be

more than one terminal form for /, however, all such forms are computable whenever

R is noetherian.

We say that a rewriting relation -♦ on terms T(F,V) has the Church-Rosser

property whenever for all terms /„ t2 e T(F,V), f, = t2 implies that there exists another
R R

term r3 e T\F, V) such that /, /3 and t2 -> ty An alternate way of stating this concept
R Ris to say that equivalent terms have a common rewriting under -*. Whenever -* is a

noetherian rewriting relation which satisfies the Church-Rosser property, the set R is

31

called a complete set o f reductions. It is easy to see that whenever R is a complete set

of reductions, each term has a unique terminal form. Suppose /, and t2 are two terms

which are equivalent under the E-equality relation generated by R. By the finite

termination property of R we can find terminal forms r,].* and f2j*. Clearly these

terminal forms are equivalent under R, and thus, by the Church-Rosser property they

must have a common rewriting. But since they are terminal forms, they cannot be

rewritten, thus they must already be identical. We call these unique terminal forms

canonical forms. An equivalent alternate definition of completeness is that R is

complete whenever /, = t2 => /,].* = fiJA

B. USING COMPLETE SETS OF REDUCTIONS

Before examining the manner in which complete sets of reductions are generated,

let us examine our motivations for generating them in the first place. We first

address how they may be used and then the efficiency benefits which they bring.

I. Applications.

We now point out that the existence of a complete set of reductions implies a

solution to the universal word problem for the relevant domain. In order to

determine whether or not two terms are equivalent with respect to a given equational

theory for which a complete set of reductions exists, we simply find the canonical

forms for each term and compare them. If the canonical forms are identical, then the

terms are equivalent, otherwise they are not. This constitutes a decision procedure

for the word problem. Because of the strength of this property, complete sets of

reductions may be used as (1) canonical simplifiers, (2) the basis for proving

theorems, and (3) an augmentation for other proof techniques.

32

When a theorem to be proved is of the form /, = t2 where a complete set of

reductions exists for the algebraic system, A, then we can prove or disprove the

theorem by deciding the word problem as described above. Even when a theorem to

be proved is not of the form f, = t2, and another inference technique must be used to

attempt a proof, a complete set of reductions may be very useful. For example,

suppose we are using the resolution rule of inference C/?o65] to attempt a proof of

the theorem P in a system where we have among the axioms a rule such as

IF Q(ti) THEN P. Suppose further that the resolution mechanism has just generated

the clause Q(t2) where r, and t2 are not unifiable. Now if a complete set of reductions

can be used to reduce f, to and i2 to t'2 where t'l and t \ will unify, then the

resolution mechanism can conclude P. Thus a complete set of reductions can be used

to augment resolution and similarly any other inference technique.

Hullot [//u80D has catalogued several problem domains for which complete sets

of reductions have been found, thus making them candidates for these applications.

2. Efficiency Benefit.

The primary advantage of using a complete set of reductions in automated

theorem proving is one of efficiency. It is theoretically possible to prove with

resolution anything which can be proved by applying a complete set of reductions. It

is also often possible to prove these same results using incomplete sets of rewrite rules

and/or reductions. Yet none of these other techniques can compete with complete

sets of reductions in terms of efficiency.

One of the greatest gains in efficiency over resolution comes by virtue of the fact

that complete sets of reductions are rewrite rules and thus are more suited for dealing

with the equality relation. Soon after Robinson introduced the concept of resolution,

it was realized that resolution is very inefficient when it comes to dealing with the

33

equality relation. Siebert [S/68] pointed out early on that proof procedures for logic

systems with equality suffer greatly when they must treat equality as any other binary

relation, with axioms added to give it desired properties such as reflexivity, symmetry,

transitivity, and equality under argument substitution. Similarly, Robinson and Wos

[W R69] stated that the intermediate debris generated in applying equality axioms

with resolution generate increasingly larger generations of useless offspring, polluting

the search space badly. They conclude that a substitution rule of inference, or rewrite

rule, tends to be more convergent. We might say that rewrite rules, which in essence

have the equality axioms built in to the inference mechanism, seem to capture the

semantics of the equality relation whereas resolution has only a syntactic level

encoding of the equality relation.

The application of a complete set of reductions provides the greatest gains in

efficiency over resolution and the application of incomplete reduction sets in the area

of the search mechanism. These gains in efficiency come from the completeness

property. Whereas resolution, rewrite, and reduction inference mechanisms must

expand their search trees in some breadth first fashion in order to be able to

guarantee that they will not miss a proof, applying a complete set of reductions

completely eliminates the need for a search tree. Since every path through the tree

leads to the exact same canonical form, the search tree collapses to a linear path, with

every step producing a result that is guaranteed to be closer to the final solution.

Thus the reductions may be applied in any order. This elimination of a complicated

search results in a greatly simplified algorithm for applying a complete set of

reductions, while at the same time significantly reducing both the time and space

needed for execution.

A simple example will serve to illustrate the efficiency gains which we have

discussed. For this example we use the complete set of ten reductions generated by

Knuth and Bendix [/TT70] for group theory to prove a simple identity. The

34

reductions are used first as a reduction set and then together with equality axioms in

a resolution system. The Interactive Theorem Prover, ITP, from Argonne Labs

[0L84] was used for both runs. The problem was to prove the identity

{e*a)~i*(a*e) = (e-1) 1.

When ITP was given this problem using only demodulation (application of

reductions), it was able to find the solution by way of applying five reductions and

making 64 attempted term matches. When ITP was given this same problem plus the

necessary equality axioms, using full binary resolution, weighting strategies,

subsumption, and the set of support strategy, it generated 123 clauses and attempted

17,585 unifications before finding an eight step proof of the identity. Here the

combined effects of dealing poorly with the equality relation and having to expand

the search tree can clearly be seen.

Note that these gains are multiplied every time we use a complete set of

reductions, whereas the cost of generating a complete set of reductions is a one time

charge. Once we have a complete set of reductions for a given algebraic system we

need never generate it again, yet we can use it over and over as we attempt to prove

theorems relative to the domain of the given algebraic system.

C. GENERATING COMPLETE SETS OF REDUCTIONS

We now address the process whereby a complete set of reductions may be

generated. We refer to such procedures as completion procedures. We will see that

each of the completion procedures presented is actually a very slight generalization of

another type of procedure, a procedure which tests a given set of reductions for

completeness. Because of this researchers have generally approached the problem of

developing a completion procedure by first developing testable conditions which

imply completeness. Keeping this in mind we now review what we believe to be the

35

more important contributions from the literature relative to the development and

generalization of completion procedures. The research which we will present in

subsequent chapters will build on concepts developed in each of these earlier works.

1. Knuth-Bendix Completion Procedure.

In 1967 Knuth and Bcndix presented an algorithm for determining

whether or not a given set of reductions is complete and a procedure which may be

able to complete an incomplete set of reductions. Their theory centers around the

development of testable properties which imply the finite termination and

Church-Rosser properties, thereby implying completeness.

a. Testing the Finite Termination Property.

The method used by Knuth and Bendix to establish the finite termination

property is to establish a weighting function and thereby an ordering relation on the

set of all terms to be considered. Suppose wc can define a weighting function which

assigns a positive integer weight to any term which we wish to consider and that we

can show that the weight of a term strictly decreases each time a reduction is applied.

Since the weight of a term can never be at or below zero, there can only be a finite

number of applications of the rewrite rules before we reach a terminal form. Let W(t)

be a function which gives the weight of term t. The key here is defining the weighting

function in such a way that the weight of a term strictly decreases each time a

reduction is applied. This requirement can then be shown whenever W{A) > IV(p) for

all reductions in the reduction set and the following two properties are provided by

the ordering relation:

(1) W(tt)> W(t2) => W(tlo)> for all substitutions a. (Ordering is preserved

under the application of substitutions.)

36

(2) > W(t2) => W{J[....tl...)) > W(J[...t2...)). (Terms differing only by a subterm

have their ordering determined by the ordering of their differing subterms.) We

say that the weighting function is compatible with the term structure.

Recalling that a reduction is applied to a term t = t_m <— AaJ producing a new term

t' = r£m <- pa3, we can see that, given > JV{p), then JV(Ao) > W(po) by (1) and

l¥(t) > IV(t') by (2). Thus applying the reduction will always decrease the weight.

Knuth and Bendix go into great detail in their paper to define one such ordering

relation and prove that it has the stated properties for terms of a certain structure. It

is important to note, however, that any ordering relation with the required properties

will suffice.

The ordering relation provides us with a way of testing for the termination

property. The test for termination is really quite simple. Once we have a weighting

function which meets the required properties, all we need to do is verify that

W(A)> W{p) for every A -* p e R. If every reduction passes this test, then the finite

termination of is assured.

b. Testing the Church-Rosser Property.

In order to explain the test for the Church-Rosser property we will first present

a scries of new properties which imply this property. The following discussion docs

not follow precisely the same path as the original Knuth-Bendix paper, however, we

believe it makes more clear the important steps leading up to the same point.

A rewriting relation, -» , is said to be confluent if for all terms t, q, and
R R R

t2 e T(F, V) t ^ /, and t A. t2 => there exists a term r3 e T(F, V] such that r, A r3 and
A

t2 tr This definition is illustrated in Figure 8.
RIt is easy to show that a noetherian rewriting relation -» has the Church-Rosser

property iff -A has the confluence property. See Bundy for a simple proof of

37

this. Terms r, and t2 are said to conflate whenever they have a common rewriting as

in Figure 8.

We say that a rewriting relation, -», is locally confluent if for all terms t, /, and
R R *t2 e T(F, V) t -* tx and t -* t2 => there exists a term t3 e T(F, V) such that r, -+ t} and

R

t2 -> t3. Note that this definition differs from the definition of confluence only in that
Rr, and t2 are each derived from t via a single application of ->. This definition is

illustrated in Figure 9.

Figure 9. Local Confluence

38

It can be shown that finite termination and confluence imply local confluence. This

was proposed by Newman in 1942 and proved in full generality by Huet in 1977 using

a technique called noetherian induction C//«8l]. Bundy [2?w83] also has a nice

summary of this proof.

Tracing back the chain of properties, we now see that the properties of finite

termination and local confluence will assure us that we have a complete set of

reductions. While the terms Church-Rosser, confluence, and local confluence do not

appear in the original Knuth-Bendix paper, the result that termination and local

confluence imply completeness is precisely the same concept which is expressed as the

"lattice condition" in Theorem 4 of that paper. It is the property of local confluence

which allowed Knuth and Bendix to design an algorithm to test a set of reductions for

completeness.

The problem that remains is in showing that a set of reductions is locally

confluent for a possibly infinite set of terms. It is in the design of a test for local

confluence that Knuth and Bendix brought real insight to the problem. Rather than

attempt to develop a test which operates on a possibly infinite set of terms, they

developed a test which operates on the finite set of reductions which can be applied

to those terms. This, is very similar to the manner in which Robinson moved from

examining interactions among an infinite number of instantiations of a set of rules to

examining the interactions among a finite number of rules themselves when he

developed the concepts of resolution and unification

Knuth and Bendix observed that local confluence can only be an issue when the

reductions allow a term to be rewritten in more than one way. Suppose we have a

term i which can be rewritten into /, by r, and into t2 by rv They noted that cither (1)

r, and r2 apply to totally different subterms of t, or (2) one rewritten subterm is

entirely enclosed in the other rewritten subterm. (The fact that a term can be

39

represented as a tree prevents two subterms of the same term from overlapping each

other only partially.)

In the first case r, may still be applied to t2 to get t3 and r2 may still be applied to

/, to get t3, thus local confluence is preserved. In the second case the analysis is more

involved: application of one rule may prevent the application of the other. Knuth

and Bendix observed, however, that in this case there must be some subterm

t/m — ,̂<7, and some subterm /l,o jn = X2a2. When rx and r2 (and thus ai and a2) are

variable disjoint it can be shown that there exists a position ri e Dom(XJ such that

X3ajn = (XJn')au giving {XJri)axa2 — X2ala2 and ct,ct2 is a unifier for XJn' and X2. This

means that it is possible to find a most general unifier, 0, for XJn' and X2.

Furthermore, we can determine what the resulting terms /, and t2 will look like
Rafter r, and r2 have been applied. By the definition of -» we know that

A = *- Pi<b3 anc* t2 = l[m *- Xxa ^n *- p2a2~\~\. Clearly f, and t2 are conflatable

when their subterms tjm = p,er, and tjm = Xxa ^ n <- p2a2~\ are conflatable. Noting

that tjm = plolo2 and tjm = Pil) \̂ 2̂ when r, and r2 are variable disjoint, it is

clear that tjm = pxaxa2 is an instance of c, = p,0 and tjm = (^,[V <- p2l)o lcr2 is an

instance of c2 = (^,[V <- Pi\)Q where 0 is the most general unifier of XJrt' and X2, as

described above. It follows that tjm and tjm are conflatable whenever c, and c2 are

conflatable. Although the term does not appear in the original Knuth-Bendix paper,

the pair < c„ c2 > has generally been called the critical pair of the Knuth-Bendix

algorithm.

We can now detect all situations of this type by attempting to unify all of the

subwords of all with all other ^s in the set of reductions. (This is called the

"superposition" process in the Knuth-Bendix paper.) When the unification of XJn

with X2 succeeds yielding a unifier, 0, we can then form the critical pair

< p,0, <- pj\d > . For example, when Xx -+ p, is (x*y)*z -* jr*(g*z) and >i2 -» p2 is

40

u~'*u e, the subterm (jr*y) of X{ unifies with X2 yielding 6 — {x *- t r \ y u). This

gives the critical pair < (x*(y*z))d, (e*z)6 > , or, after applying the substitution,

< (u~l*(u*z)), e*z > .

This now provides a method for testing a terminating set of reductions for local

confluence. For every pair (r„ r2) e R x R the critical pairs are found as described

above. Then for each critical pair < cu c2 > we compute the terminal forms c j* and

c2l R. If the terminal forms are identical, then the pair is conflatable, otherwise it is

not. If all critical pairs conflate, then local confluence is assured and the reductions

form a complete set.

c. A Completion Procedure. The algorithm described for testing a set of

reductions for completeness suggests a procedure for possibly extending an

incomplete set of reductions to make it complete. Suppose we are testing a critical

pair < c,, Cj > , formed from the reduction set R, for conflatability by comparing

terminal forms c,!* and c2i R, and we find that these terms arc not identical. By the

very nature of the critical pair process we know that c,]* and c2i R are clearly

equivalent with respect to the equational theory represented by R. If these

non-conflating terms can be ordered properly so as to preserve the finite termination

property, then we can form a new reduction, either c,lfi -> c2|* or c2[R -» c,l*,

depending on which terminal form has greater weight according to the term weighting

function. Adding this new reduction "forces" the confluence of the troublesome

critical pair. If, however, neither term has more weight than the other according to

our ordering relation, we cannot make the pair conflatable and we must terminate

with failure. Of course, every time wc add a new reduction to R we introduce the

possibility of new critical pairs and thus the process must be repeated until on a

single pass all critical pairs are found to conflate without the addition of any new

reductions. The critical pair step is often called the inference step of the completion

41

process because it is out of that step that new reductions arc generated which bring

the set of reductions closer to completeness.

With the addition of new reductions there is also the possibility that some of the

old reductions are no longer needed to have a complete set. After a new reductions is

added to R, for all old reductions A -» p, A and p can be reduced to their terminal

forms by the set of reductions /? — {>! -»p}. If and p i ^ 1̂ are identical then

A p is not needed to retain completeness and may be deleted from R. This

simplification step is not necessary, but may be used to generate a minimal complete

set of reductions.

The Knuth-Bendix completion procedure given in Figure 10 is an adaptation of

one given by Musser and Kapur

Procedure Completion {R)
Repeat

R ':= R
For each < c,, c2 > e U<, ,)eRxK Crideal-Pairs(p, q) do

Ifc ,iR# c 2i«
Then

Case
W{cdR) > fF(c2i*): R := R U (c.i* - c2l«}
W(c2!*) > R : = R U {c2l* -♦ c, j*}
Otherwise Halt with Failure

End If
{R may be simplified here, if desired}

End For
Until R = R'

End Procedure Completion

Procedure Critical-Pairs (A, -+ p,, X2 -» p2)
Return
{ < p,cr, p2a > I o = S-Unify(jl„ A2)} 1)
{ < pKo,(X\[m <— p23)<t > | meSdomiXi), and a — S-Unify{XJm, A2)} U
{ < (X2i_m <- p2a > | m e Sdom(X2), m=£ t, and a = S-Unify{Xu XJm)}

End Procedure Critical-Pairs

Figure 10. A Knuth-Bendix Completion Procedure

42

There are three possible outcomes from this completion procedure: (1) it may halt

after finding a complete set of reductions, (2) it may halt with failure because a

non-conflatablc pair cannot be ordered to form a new reduction, or (3) it may find

critical pairs and add new reductions on every iteration, thus never halting. When the

procedure fails because of an ordering problem it may be possible to try again with

another term weighting function. Because any ordering relation which meets the

properties stated earlier will suffice, it is often possible to find a different ordering

relation which properly orients the offending pair. Then we may start over at the

beginning of the procedure.

Knuth and Bendix were able to generate complete sets of reductions for some

small algebraic systems using this procedure. The most notable of these is the system

for a free group w'here they were able to start with a set of three equations and

generate a complete set of ten reductions. The complete proof of correctness for the

Knuth-Bendix completion procedure was given by Huet in 1977 _Hu% 1].

It is interesting to note that the Knuth-Bendix completion procedure can be

thought of as one instance in the general class of of critical pair completion procedures

which includes many other well known procedures, such as Euclid's algorithm. See

Buchberger CBu853 for an interesting comparison of the Knuth-Bendix procedure to

other procedures in this class.

2. Peterson-Stickel E-Completion Procedure.

As we pointed out in the introductory chapter, the Knuth-Bendix completion

procedure is able to generate complete sets of reductions for a limited number of

algebraic systems. Completion procedures based on the original Knuth-Bendix theory

43

are not able to handle any algebraic system whose definition includes a commutativity

axiom because these axioms cannot be oriented to form a reduction. Thus the finite

termination property cannot be maintained. Peterson and Stickel C^S8l] were able

to overcome this limitation of completion procedures by splitting the equational

axioms of an algebraic system into two sets: (1) equations which are incorporated in

the matching and unification processes needed to apply reductions and compute

critical pairs, and (2) equations which form the basis of the reduction set to be

completed. This type of completion procedure has come to be called an E-completion

procedure where E is the set of equations built into the matching and unification

processes. Wc first review the features which set this theory apart from the

Knuth-Bendix theory, and then present the E-completion procedure itself.

a. E-Unification and E-Matching Approach.

The most significant feature of the Peterson-Stickel E-completion procedure is

the use of E-unification to compute critical pairs and E-matching to apply reductions.

The combined effect of these two operations is that single inferences within the

completion procedure are actually performed on entire E-congruence classes of terms,

rather than just on single terms. Two E-equal terms are treated as if they are the

same term and there is never any reason to rewrite a term into an E-cqual term.

Thus when we have an algebraic system with an unorientable axiom such as

commutativity, building that axiom into the unification and matching processes

prevents us from having to handle it as a reduction. This means that the

Peterson-Stickel theory is applicable to entire classes of algebraic systems which

cannot be addressed with the Knuth-Bendix theory.

Not only does this method of computing over E-congruence classes open up

entire new problem domains for completion procedures, it provides a more general

and more efficient manner for dealing with some equations which were handled as

44

reductions under the Knuth-Bendix theory. The associative law is an example of such

an equation. Peterson and Stickel point out that, although it can be oriented as a

reduction, some generality is lost in the process. Furthermore, when associativity and

commutativity are built into E together, the E-congruence classes become even larger,

allowing a single inference to cover more cases, resulting in greater efficiency.

The primary requirements for the Peterson-Stickel theory are (1) the existence of

a finite and complete unification algorithm for the equational theory E, and (2) the
R E

finite termination property for the rewriting relation -*. Peterson and Stickel show

that the existence of such an E-unification algorithm implies the existence of an

E-matching algorithm and a decision procedure for E-equality, each of which are also

required by the theory. An additional requirement is that the equations of E all

contain exactly two occurrences of each variable, one on the left and one on the

right.

b. E-Completeness and E-Compatibility.

In the Peterson-Stickel theory, an E-complete set o f reductions is defined to be a

set of reductions R such that for all pairs of terms /, and t2, rt =£ t2 => /,].*•* = t2[R-E.

This generalization of the earlier definition of completeness says that R is E-complete

when terms which are equivalent with respect to the entire algebraic system reduce to

terminal forms in the same E-congruence class.

R.E
A set R of reductions is said to be E-compatible if whenever /, -*■ t2, there exist a

node m e Oom(f,), terms t\, t'2, a substitution a, and a reduction 2 -» p e R such that
R.E

tjm — la and t2 = t \ t \ = r,[[m Pa~\-

If r, = ylj —► p, and r2 = X2-*p2 are two reductions from R then

E-Critical-Pairs{ru r2) is defined to be the set of all pairs < (A , C m p2])u, p,<j > such

that m e Sdom(X,)t o e E-Unifiers(XJm, A2). Note that E-critical pairs are computed

45

just like the critical pairs of the Knuth-Bendix theory, with the exception that

E-unification is used in place of unification and multiple critical pairs may arise from

one overlap because there is one pair per E-unifier.

E-Completeness Theorem: CPS81]

Let R be an E-compatible set of reductions and let -* be a rewriting relation satisfying

the finite termination property. Then R is E-complete iff for every critical pair

< c„ c2 > e q)eR,RE-Critical-Pairs(p, q) c,J* = c2j*.

In other words, E-completeness relies on the confluence of E-critical pairs modulo

E-equality. The major problem with the E-completeness theorem is that R must be

known to be E-compatible.

c. E-Compatibility and Extensions.

The following theorem presents sufficient conditions for E-compatibility.

E-Compatibility Theorem: CTS81]

Suppose E is an equational theory whose equations are linear and non-erasing and that

R is a set of reductions. Suppose also that whenever 1—r e E (or r = / e £),

Al -» p, e R, m e Sdom(l) but m=L c, and a e E-Unify(ljm, /!,), it follows that there exist
R.E

A2 -» p2 and a substitution y such that /Cm <- >1,] = i 2y and /[m <- p ,] —> p2y, then R is

E-compatible.

At this point we focus on the class of problems where E is an AC equational

theory. Tor equations such as the commutative law, E-compatibility is satisfied

immediately since there is no m e Sdom(l) such that m A e. For the associative law

equations, Peterson and Stickel showed how to extend the set R to satisfy the

E-compatibility requirements.

46

An AC extension relative to E of a reduction k -* p, where + is an AC operator

in E which is the root of k, is a new reduction v + k -> v + p where v is a variable such

that Ears(k -+ p). Define R‘EC to be the union of R and the set of all reductions

which are AC extensions relative to E of reductions in R.

Extension Theorem: []/,581]

Let E be an AC equational theory and R be a set o f reductions. Then R°£ is

E-compatible.

This theorem states that we can maintain E-compatibility for AC theories by

adding AC extensions for each reduction. Recall from the definition of AC

extensions that they only exist when the root operator of the left side of a reduction

is an AC operator. Putting this result together with the previous result that

E-compatibility together with confluence modulo E-equality of E-critical pairs yields

an E-complete reduction set leads to a modified version of the Knuth-Bendix

completion procedure which is sufficient to perform AC-completion.

d. An AC-Completion Procedure.

Figure 11 presents an adapted version of the Peterson-Stickel AC-completion

procedure. Using an implementation of this procedure, Peterson and Stickel were

able to generate AC-complete reduction sets for a number of algebraic systems,

among them commutative groups, commutative rings, and distributive lattices

[P S 82J

47

Procedure AC-Completion (CP)
R R : = <j>
While (RR U CP) =£ 4> do

R, RR : = Pry-To-Conflate-Pairs(R,RR,CP)
If RR*<f>
Then (r„ r2) : = "smallest" member of RR

RR : — RR — {(/■„ r2)}
CP: = AC-Critical-Pairs(ru r2)

End While
Return R

End Procedure AC-Completion

Procedure Try-To-Conflate-Pairs
While CP A 0 do

(s = t) : ="smallest" member of CP
CP : = CP — {(s = r)}
If.vl^V i l* -F
Then r: = Form-Reduct ion(s[R-E,

R ,R R := Add- Reduction^,R,RR)
R, RR : = Simplify-R(R,RR)

End While
Return R, RR

End Procedure Try-To-Conflate-Pairs

Procedure AC-Critical-Pairs ->• pu X2 -* p2)
Return

{ < p lo , p 2o > | o e AC-Unify(Xu X2)} \J
{ < Pt<7,(/l,Cm p23)<* > I meSdom(Xt), m ^ c ,
and a e AC-Unify(XJm, J.2)} U

{ < (/i20 *- P2cr > \ m e Sdom(X.2), m A e,
and a e AC-Unify(Xu XJm)}

End Procedure AC-Critical-Pairs

Figure 11 A. Peterson-Stickel AC-Completion Procedure - Part 1

3. Jouannaud-Kirchner E-Completion Procedure.

Jouannaud and Kirchner [_JKS6] generalized the Peterson-Stickel theory,

lessening the requirements slightly and providing a different approach to the problems

of E-compatibility and extensions. Maintaining a high degree of generality toward

the implemented rewriting relation, they developed all of their theoretical results using
r e

a rewriting relation -» which is free to be any rewriting relation satisfying the

48

Procedure Form-Reduction (s, /)
Case IV(s) > W(t): Return s -*■ /

W(t) > W(s): Return t -* s
Otherwise Halt with Failure

Hnd Procedure 1'orm-Reduction

Procedure Add-Reduction (r,R,RR)
R := Ru{ q] qe {r}?}
RR : = RR U {(<7, q') j q e {r}£ and q' e R}
Return R, RR

End Procedure Add-Reduction

Procedure Simplify-R
For each r e R do

If r i (*-«).£ 4 r
Then RR : = RR — {(q,q’) | q e {r}f and q' e

R: = R - { q \ qe {r}|'} £
If, for = X -> p, X i=- p
Then r : = Form-Reduction(A, p)

R, RR : = Add-Reduction{r ,R,RR)
R, RR : = Simplify-R(R,RR)

Return R, RR
End Procedure Simplify-R

Figure 11B. Peterson-Stickel AC-Completion Procedure - Part 2

R R ^ R/Einequality -> £ -> . We now present a brief summary of their theory,

highlighting the points where their theory differs from that presented previously.

a. Confluence and Coherence.

The properties of confluence and local confluence are formulated in terms of ->

as follows. A pair (/,, r2) is RE-confluent modulo E, denoted r,|,r2 iff there exist terms A,
re re

and l'2 such that /, t2 *-♦ t\, and /', = t'2. Rh is confluent modulo E i(T for all terms
re r£

t, f„ and t2, t *-> q, and / *-» t2 =» /,|/2. RE is locally confluent modulo E with R iff for all

terms t, /„ and t2, t -*• /„ and t -*• t2 =» r,|/2.

49

In place of the E-compatibility property of Peterson and Stickel, Jouannaud and

Kirchner introduce the notion of coherence. Confluence and coherence are two

instances of the same general concept: that a term may be mapped into two different

forms (possibly by two different relations) and that these two forms may be brought

back together by another relation. They define coherence and local coherence
re

formally as follows: RE is coherent modulo E iff for all terms t, tu and t2, t /„ and
/. pet — t2 =* /, j/r R1 is locally coherent modulo E iff for all terms /, and t2, t /,, and

/ = t2 => /, J./2. Thus confluence addresses the case where a term is pulled apart via two
r e . . .

applications of -*■ and coherence addresses the case where a term is pulled apart via
r e

-> and E-equality. This comparison is illustrated in Figure 12.

The E-critical pairs defined in our discussion of the Peterson-Stickel

E-completion procedure must now be further distinguished as confluence critical pairs

to distinguish them from coherence critical pairs. Coherence critical pairs are

computed in exactly the same manner as confluence critical pairs except that a

reduction X -* p and an equation / = r play the roles of J, -* p, and X2 p2. Following

much the same pattern as the original Knuth-Bendix theory, the local confluence and

50

local coherence properties will be reduced to the confluence of their critical pairs,

respectively. The notions of confluence and coherence, playing similar roles, provide

the core of the Jouannaud-Kirchner E-completion theory.

b. Church-Rosser Properties.

RuER is defined to be Church-Rosser modulo E iff for all terms /, and t2, /, = t2 =>
RfE R/E0 *

there exists a term t3 such that /, -* t3 and t2 -> t3. The following theorem highlights

the roles of confluence and coherence in achieving this property.

E-Church-Rosser Theorem: C J 0 6]

I f the rewriting relation -> satisfies the finite termination property, then the following

properties are equivalent:

(1) R is RE Church- Rosser modulo E.

(2) RE is confluent modulo E and RE is coherent modulo E.

(3) RE is locally confluent modulo E and RE is locally coherent modulo E.

(4) for all terms /, and t2, /, *= t2 iff r,|*£ = /2|*£.

We now give the main theorem of the Jouannaud-Kirchner paper, in a slightly

simplified form. Their theory allows, for purposes of efficiency, the separation of the

set R into two sets, L and N, such that all of the reductions in L satisfy the

requirement that no variable appears more than once in the left side of a reduction.

It is permissible under their theory, however, to have such rules in N. We will

simplify matters by leaving all of the reductions in R for our purposes, treating R as

their N.

E-Church-Rosser Decidability Theorem: [7AT86]

Assume an equational theory E such that a finite and complete unification algorithm

exists for E and E-congruence classes are finite. Let R be a set o f reductions such that
R/E
-» satisfies the finite termination properly. R is RE-Church-Rosser modulo E iff:

51

(1) all confluence critical pairs < c„ c2 > in ^^E-Critical-Pairsip, q) are R/E

confluent modulo E.

(2) for any coherence critical pair < c,, c2 > in Uire)sRxEE-Critical-Pairs(r,e) there exists a
r e

term c'2 such that c2 —► c'2 and < c,, c'2 > is R/E confluent modulo E.

The proofs of these last two theorems are based on multiset induction, a special case

of the noetherian induction technique used in Huet's proof of the original

Knuth-Bendix theory.

Note that the E-compatibility property of Peterson and Stickel has been

replaced by the confluence of coherence critical pairs and that the linearity and

non-erasing requirements for E have been replaced by the single requirement that E

generate finite congruence classes.

c. Generalized Extensions.

In the Jouannaud-Kirchner theory, the concept of an extended reduction is

improved in two ways over extensions as presented in the Peterson-Stickel theory.

First, rather than systematically adding extensions for every reduction whose left side

is rooted with an AC operator, Jouannaud and Kirchner examine the coherence

critical pairs of a reduction with the equations of E. Only when there is a pair which

will not conflate do they add an extended reduction to R. They call this the concept

of dynamic extensions. Secondly, they generalize the concept of AC extensions such

that they can generate an extension for any reduction, no matter what the equational

theory may be. Suppose that the reduction X -* p and the equation / = r produce a

coherence critical pair which does not conflate when l/m and X are E-unified. They

show that the new reduction l[_m * -X/\-+l_m *-p] is an extension which will

conflate the troublesome pair. This does not depend on / = r being part of an AC

equational theory, as in the Peterson-Stickel theory.

52

4. Kaplan-Rcmy Completion for Conditional Reductions.

Moving in a slightly different direction, we now present a brief look at the

theory of completion for a set of conditional reductions. We address this because the

completion process presented in later chapters turns out to be E-completion of

conditional reductions. Although the conditions which arise in this research are

somewhat specialized to our problem, they do maintain enough generality as to be

similar to the conditions of other researchers.

Kaplan and Remy [A7?87] address the standard completion problem, without

respect to an equational theory, for conditional reductions of the form

If«, = v, and u2 — v2 and ... and un = vn Then X -» p.

In order to apply one of these reductions, a term matching substitution o is found

between X and the term to be reduced. If this match is successful, then a is applied to

the condition and a check is made to see if the condition holds. In their theory this

evaluation involves applying the reductions recursively to the terms of the condition;

in our case it will not. Aside from this difference, our conditions will be used in the

same manner.

Kaplan and Remy define a steady conditional rewriting system to be one in which

the variables in the condition and in p also all appear in X. A contextual critical pair

is defined to be a critical pair of the same form as the Knuth-Bendix critical pair, with

an associated critical context which is the result of applying the unifier used to

produce the critical pair to the conjunction of the conditions from each of the

reductions involved in the critical pair. A contextual critical pair is then said to be

feasible iff the critical context holds. This leads to the following theorem.

53

Church-Rosser Theorem for Conditional Rewriting Systems: CA7?87]

Given a steady conditional rewriting system R, —*• is locally confluent, and thus confluent,

iff for every feasible contextual critical pair <c,,c2> with critical context C,

= c2o[R for all substitutions o which cause the critical context to hold.

Although the form and manner of application of our conditional reductions will

be slightly different, we will build on the concept of subjecting critical pairs to the

conditions of both involved reductions. We will also apply this concept to coherence

critical pairs as we blend the theory of E-completion with the theory of completion

for conditional reductions.

54

IV. TERMINATION VIA CONDITIONAL REDUCTIONS

A. INTRODUCTION

Much of the work in term rewriting relative to an equational theory, E, has
R/E R,E R/E

involved the use of the -» and -> rewriting relations. In general, -*• has been used to
R E

develop theoretical results and some form of -+ has been used in computer programs

which implement those theories. Both of these are rewriting relations between

elements of congruence classes generated by the equational theory and have been

shown to terminate when the equational theory generates finite congruence classes,

such as those generated by an AC equational theory. When we move to equational

theories which generate infinite congruence classes, such as those generated by an

ACI equational theory, however, we may lose the termination property for both of

these rewriting relations.

The fact that we may lose termination when rewriting relative to an ACI

equational theory is significant for two reasons. In the first place, most theoretical

results related to establishing that a set of reductions is complete relative to an
. R/Eequational theory depend on the termination of -* . Jouannaud and Kirchner

[7^86] develop the theory of completing a set of reductions relative to an equational
R/E

theory provided the equational theory generates finite congruence classes and -*

terminates. In the same work it is also noted that a significant open problem in this

area is the generalization of the completion theory to handle equational theories

which generate infinite congruence classes. Bachmair and Plaistcd C#P873 generalize

the previous work, removing the requirement of finite congruence classes, but still
R/E

requiring the termination of -* . This generalization does not help, however, if the
R/E

termination of -» is lost for equational theories which generate infinite congruence

classes. In what follows we will demonstrate that this is often the case. The second

55

reason for the significance of the loss of termination is quite simple. Aside from any

theoretical results relating to completeness, reductions can still be very useful for

simplifying expressions. This usefulness is severely limited, however, if the

implemented rewriting relation must deal with the possibility of infinite chains.

R,E
Recall from Chapter 2 that -»

R ,E
't

R/E
and are defined such that

<m

and

Note that R,E

R I E ,r r E , R , El\ h lf f l\ ~ 11 -* 1 2 — t2 ■

, thus if contains infinite chains will contain them also.
R,E R/E

The following example demonstrates that ->• and -» termination can, in fact, both be

lost when rewriting relative to an ACI equational theory.

Let R contain the reduction — (-* + y) -> (— •*) + (—y) and let E be the ACI

equational theory for + . Then the term (—a) can be rewritten as

(- a) = - (« + 0) A (—a) + (—0) = — (a + 0) + (—0) $ ((-a) + (-0)) + (-0) = ...

R E
When rewritten as an A chain we have

(—a) (—a) + (—0) -> ((—a) + (— 0)) + (— 0) -* ...

R,E R/E
Clearly both -» and contain infinite chains in this example. It is very easy to find

many other similar examples where termination is lost for ACI equational theories

and for other equational theories which generate infinite congruence classes.

In order to develop any theory for rewriting relative to an ACI equational

theory, we must first develop a rewriting relation which is provably terminating. In
R/E

the following we develop a generalization of the -» rewriting relation for rewriting

56

relative to ACI equational theories and establish the criteria under which its

termination is guaranteed.

B. PRELIMINARIES * 1

R/E
Before we develop the termination criteria for -♦ , we must first introduce two

other concepts which will be used in the proofs of termination. These are the

concepts of core elements and properties of weighting functions.

1. Core Elements.

We now define the notion of a core element of a congruence class generated by

an ACI equational theory. We will say that a term t is a core element of [r]xc/ if t is

in normal form with respect to the rewriting relation where / is the set of

reductions of the form x + 0 -» x and AC is the set of associative and commutative

laws for each ACI operator, + , in the equational theory. The rewriting relation used
R E

here is precisely the same as -V with I playing the role of R and AC playing the role

of E. We will write t[' to mean the normal form of t with respect to Note that /

is by itself a complete set of reductions with respect to AC, thus all core elements of

[tlua are AC-equal to each other. Clearly this means that there are a finite number

of terms in the core for any congruence class generated by an ACI theory.

Furthermore, given any term of finite size, we can easily find the associated core

element.

For example, consider the ACI congruence class which contains the terms

o + b, (a + b) + 0, (a + 0) + b, b + (0 + a), (a + 0) + (0 + b), (0 -f- 0) + (b + a),

([(a + b) + 0) -(- 0), ... The core for this congruence class contains only the two terms

a + b and b + a.

57

2. Weighting Function Properties.

R/E
As is usually the case, our proof of termination for the -> rewriting relation will

be based on the use of a weighting function, W, such that W(t) gives the weight of

any term t. We will depend on the following six properties for W:

W l: V t W{t) > 0

W2: i is an identity for an ACI operator in E => Vr W(t) < W(t)

wy. j = / => kV(s) = W({)

WA: fV(s) > W(t) » W(Tim «- s]) > ^ (7 tm /])

1̂ 5: > ^(r) and 9 is any substitution =» W(s9) > IV(td)

W6: t/m = s, for some m e Dom(t) => < IV(t)

These properties have been shown for a number of weighting functions. Since

weighting functions are usually dependent on the actual operators allowable in s and

/, we will assume that such a W exists. The required properties can then be

demonstrated when the sets R and E have been given, making known the allowable

operators for s and t. For problems which involve the ACI operators + and * and

the unary operator —, the complexity measures of Lankford [_Lal9^[have been

shown to meet the required properties.

Another possible approach to this problem would have been to develop a new

weighting function which handles some of the problems which we encounter when

dealing with infinite congruence classes. For instance, we could have attempted to

develop a weighting function which assigns the same weight to all members of an

ACI congruence class. In doing this, however, we would lose property fV5, which

seems to be more useful than the suggested property. Our present approach,

therefore, is to work with weighting functions similar to those which have already

been developed by those working with finite congruence classes under AC theories.

58

C. R/E TERMINATION

RIE
In this section we establish sufficient conditions for the termination of . The

basic approach is to demonstrate criteria under which the weight of a term strictly
R/E

decreases on every -» step. We first present and prove a theorem which indicates
R/E

these requirements. This result is then used to redefine the notion of -» rewriting.

1. Termination Theorem.

In order to accomplish our goal in this section we begin by proving a group of

lemmas which allow us to reduce the problem to that of classifying the substitution

involved in the rewriting. Necessary terminology and functions will be defined along

the way.

The following property of ACI congruence classes was mentioned informally in

our previous discussion of core elements. We state it more formally here for reference

in a later proof.

Lemma 1: If t A= s, r j7 = s],7-

Proof: This is a direct consequence of the definition of [' and the fact that I is by

itself a complete set of reductions with respect to AC. □

We now show that coring a term can never increase its weight.

Lemma 2: For every term, t, JF(/!0 < W{t).

Proof: It will suffice to show that if s is obtained from t by one application of an

identity law, then IF(s) < W(t). We assume without loss of generality that the identity

law is jc + 0 -»0, for some ACI operator + . There must be some m e Dom(t) such

that t/m = u + 0 for some term u, and s = /[m «- By W6, W(u) < W(u + 0), and

by W4, tV(s) = W(tlm «]) < IF(r[m <-(« + 0)]) = W(t). □

59

The next lemma makes it clear that we can preserve ACI-equality when we

substitute equals for equals on both sides of the equality, provided that the subterm

being replaced is in the same context in each term, relative to the ACI theory. This

contextual requirement is assured by the added condition that the subterm occurs

exactly once in each side. It is easy to see that the lemma is not true without this

contextual requirement.

Lemma 3: Given terms t and f , a constant c, and positions x e dom(i) and

x' e dom(i’) such that l_x «- <0 A= t'{_x' *- cX c =£ ident(a) for any ACI operator a

in E, and c occurs in neither t nor t', then for any term s, t[_x «- sH =* /'C*' <- /] .

Proof: Since we are given that /Qjc <— c] *= t'[_x' <— c], this means that there exists a

sequence of terms / [jc <- c] = /, =' t2 =' ... A= t„ = / '[* ' c], where =' is used to

mean a single application of one of the ACI equations. Since none of these

equations can eliminate or duplicate c it follows that there is exactly one occurrence

of c in each tt. This means that a corresponding sequence of steps with each c

replaced by j can be used to demonstrate that /£* <- x] /'[■*' *- □

We now establish the existence of a core term which is similar enough in

structure to a given term that we can replace a subterm in each with ACI-equal terms

and preserve ACI-equality. This lemma will provide the backbone for the proof of

our main theorem in this section.

Lemma 4: Given a term, t, and a position, x e dom{t), then there exists a core term,

f , and a position, jc' e dom(t'), such that for any term s, /£•*■ <- *= f'C*' sJ/X

Proof: Let f — (r[x *- c3)i' where c is a special constant not previously appearing in
ACI

t and c A ident{a) for any ACI operator a in E. The special constant c will serve as a

marker to mark position jc in / and allow the determination of the corresponding

position in /' after the coring process has taken place. Clearly the rewriting relation
I A C

can move the position of c during the coring process, however, it can neither

eliminate nor duplicate c since the AC equations can only serve to permute terms and

60

the I reduction can only eliminate identities, which c is not. Thus there must be one

and only one position x' e dom(t') such that t'jx' = c. We know that

/[x <- c] (/[x ♦- since i ' preserves ACI-equality. But (/Cjc ■«— cU)X/ = /' by

definition, and since / '/x '= c, we now have /[x <- c] A= t'[_x' *- c]. Since c occurs

exactly once on each side of this equation, we can apply Lemma 3 and substitute any

term 5 for the marker giving / [jc +- 5] A= / '[x ' <- s]. Finally, we can core s on one

side since coring preserves ACI-equality and we have /[jc «- s] / '[jc' «- -sJ/D- □

It is important to note that the term 5 can be changed arbitrarily after /' and x'

have been found. This will allow us to find /' for a given / and then change the

substituted subterm without having to find another / — /' pair.

Our next lemma will be used later to establish that, under the conditions which
R/E

we will assume, —► cannot replace a subterm which is E-equal to an identity.
ACI

Lemma 5: If then /]/ A ident(a) for any ACI operator a in E.

Proof: Assume t[‘ =;. ident(a). This implies that t[‘ = ident(a) by Lemma I since

both are core terms. Then by W3 we have W(ideru{a)) = IT(/|0- But this together

with the given hypothesis allows us to conclude that W(ident(a)) > which

contradicts W2. Thus the assumption that t[' A= ident(a) must be false. □

The following lemma presents another result which will be needed in the proof

of our main theorem. This shows that coring the subterm inserted into a cored term

is equivalent to coring the resulting term, provided that the inserted subterm does not

collapse down to an identity.
ACI

Lemma 6: If y e dom{t[r) and s]/ # ident(a) for any ACI operator a in E, then

Oi'Cr <- = /i'L y «- 4 'J -
I jiC

Proof: Clearly /J/Jjj *- sj.1] is in normal form with respect to -*• unless = idenl{a)

for some ACI operator a in / j ' which has s]/ in its scope. Since we are given that

s i ' it ident{a) for any ACI operator a in E, this cannot be the case. Thus

61

/J/Qy *- = (rj7Q> <- jtX7])!7* which is equal to (tl'Cy *- s]) j.7 by the definition of

i 7. □

Given a substitution a = {x,«- /„ x2 «- r2, ..., x„ <- /„} and a term r, we can split <7

into two disjoint portions by defining functions Si and S2 as follows:

S,(a, /) = {(.x;. <- /,) | (jc, <- /,) e <7 and x(is in the scope of an ACI operator,

a, in t and /, = Ident{a), the identity for a.}

S2(cr, t) = a — S,(ct, t)

Clearly, if a, = S,(a, t) and a2 — S2(a, t) then ct = ct, U <72 = axar Our main theorem will
R/E

show that the termination of -* is dependent only on the S, portion of the term

matching substitution which is used to apply each reduction. In order to show that

the Sj portion of a substitution plays the vital role in this process, we will first

consider the role of the S2 portion.

Lemma 7: Consider a substitution o and a term t. Let o2 = S2(a, /) and define a cored

substitution, a[', by

° l ! = {(*; *- hi1) I C*i h) e <*}.

then (fCT2)l/ = (rlO <r2iC

Proof: The only way these terms can differ is if o2j,7 can introduce a context for the

application of I 7 into causing not to be a core term while (ro2)j.7 is clearly

a core term. This cannot happen, however, because if the context for j 7 had been in

t, it has already been eliminated and if t*= Ident(a) where x, is in the scope of an ACI

operator, a, in/, then (x, <-/,)<£ <7217 by definition of E2. □

As the final piece which we will need in order to prove our main theorem for

this section, we now define the restricted substitution set, 0 (i -+ p), as follows:

0(yl -> p) = {0 | 0 — {x, <- Ident(aJ, ...xn «- Ident(an)}, where

62

n > 0,

each a, is an ACI operator,

each x, is a variable in X which is in the scope of a„ and

mx<,)[‘) < ^((pa)io).

We now state and prove our main result: that -» must terminate when the

conditions for each rule, represented by 0(>i -* p), are enforced.

Termination Theorem:
RjE

If the reduction t s is allowed to take place only when a iE@(X -*• p), then the

rewriting relation -*• must terminate.

Proof: It will be sufficient to show that, under the given conditions, ^(tfO > W(sl‘).

If /, -*■ t2 -U ... is an infinite sequence of -U reductions, then t,!', /2i ;, ... is an infinite

sequence of terms whose weights get strictly smaller, but this is impossible by Wl.
«//■

We proceed as follows: By the definition of t s , there exist terms /' and s' such

that
E . R ,

t = 1 r t . s
Since t = t[\ it follows that

/' R-►J, y>, a
RBy the definition of , there exists m e Dom{f) such that tJjm = Xa and

o '= /'[m <-p<j]. By Lemma 4 there exists a core term t" and a position

rri e Dom(t") such that for every term u,

(1) /'Cm<-u] = t"[_rri *- u j7].

Let o, = /l) and o2 = 'L1(o,X). From the definitions ofS , and S2 it is clear that

a = o,o2. From the definition of E-equality for substitutions, it follows that

a = cr1| /o2. Since for each (x, <- /,) e o, the definition ofL, gives that /< = Ident(a), it

follows that t \ ' — Ident(aj. From the given condition, a £ i^©^. -+ p), we see that

-> p), giving

63

w w i o =

> mp°> 1010

= m(p°i) 10

by Lemma 1 and W3

by the definition of 0(2 —> p)

by Lemma 1 and W3,

> w i p i n ’* io

= ^ (M iO

by Lemma 7

by W5

by Lemma 2

by Lemma 1 and W3

by definitions of D, and £2.

Now Lemma 5 assures us that (Act)!7 cannot be an identity. We conclude that

W(i io = W(i'i o

= ^ (r"C m '^ (2 CT)i7])

> ^ (/ ''[/n ^ '(p u) l7])

> < - (pct) ! 7])] . 7)

= ^((r'[m<-p(73)i0

= W{s’l 0

= ^(slO

by Lemma 1 and W3

since t'/m — Xa

by (1) above

by Lemma 6

by W4

by Lemma 2

by (1), Lemma 1 and W3

since s' = i'_m <- pa]

by Lemma 1 and W3. □

2. A Generalization of R/E.

R/E
We now propose to redefine the notion of -*■ rewriting as follows:

RjE F R F

h t f .* '2 lf f h = t'\ xrp,a ^2 = h and a $ -* p)

R/ E
Note that the conditional version of -» can be thought of as a generalization of the

R/E
normal definition of -* . All that is required is to have "empty" conditions on

R/F.
reductions of the normal -» variety. When viewed as such, any theory developed

64

around conditional reductions subsumes a similar theory developed around the usual
R/E

unconditional reductions. Hereafter we will use -» to refer to this generalization.

Peterson et al. CP#87] present a procedure for testing the completeness of a set of

reductions relative to an ACI equational theory, based on the conditional version of
R/E R/E

the -» rewriting relation presented above. It was assumed in that study that -> did

terminate, subject to the conditions, and the main proofs were based on that

assumption. Our termination result thus collaborates that assumption. In the

following chapter we will develop a procedure for completing a set of reductions

relative to an ACI equational theory, using the generalized conditional rewriting

relation.

D. APPLYING THE TERMINATION THEOREM

1. Calculating Conditions.

We new describe a simple procedure for calculating the conditions which are

needed for each reduction in order to satisfy the termination property. Recall from

the previous section that the conditions for each reduction are represented by the

restricted substitution set ©(A -> p) which is defined by:

0(A -* p) = {o j a = {x, «- Idendjx,), ...x„«- Ident{a„)}, where

n > 0,

each a, is an ACI operator,

each x, is a variable in X which is in the scope of oc„ and

m w) <-

We begin by finding the set /(i), where I(t) is given by

/(/) = {(x <- Ident(a)) | x is a variable in t in the scope of an ACI operator, a}.

65

The set 7(>l) then forms the basis of identity substitution pairs from which all possible

members of 0(A -> p) will be generated. We then generate potential substitutions,

P(X), where P(t) is given by

Clearly, the powerset, 2'w, generates all possible combinations of identity substitution

pairs. We must discard any substitution which assigns more than one identity to the

same variable, however, because these are not valid substitutions. Finally, we test

each member, o, of P(A) to see whether or not lF((A<T)fr) < W ^pa)^. If the test

succeeds we place a in 0(A -»p), otherwise we do not.

Example 1: The following example illustrates how the preceding procedure is applied
R/E

to a set of reductions to ensure —► termination when E is an ACI equational theory.

Consider the following set of reductions where + is an ACI operator and — has none

of the ACI properties:

For each of the examples which we present in this section we will use the weighting

function W(r) which is defined as follows:

lY ({-x)) = 2 + 2*W(x)

For R1 the only variable in the scope of an ACI operator is x. The corresponding

ACI operator is + and the corresponding identity is 0. This gives /(A) — {x«- 0} and

P(2) — {</>, {x<-0}}. Using these substitutions for a, we find that Vcr

P(t) — {y \ y e and y is a valid substitution}.

Rl: x + (— jc) -> 0

R2: — (— x) -* x

R3: ~ {x+ y) - (- x) + { -y)

W(constant) — 2

W(x*y) = W{x)* W(y)

W{yariable) = 2

W{x+y)= W(jc)+ fV(y) + 5

66

W(Xalr)> Wipol*), thus no restrictions are needed for Rl. R2 has no variables in

the scope of ACI operators, giving I{X) - P(X) = 0(R2) = <f>. Thus R2 must only

satisfy the property IV(X) > IV(p), which it does. R3 has variables x and y in the

scope of the ACI operator + with the corresponding identity 0. This gives

I(X) — {x <- 0, y <- 0}, and P(X) — {<f>, {x <-()}, {y<-0}, (x «- 0, y «- 0}}. Calling

these substitutions au a2t <r3, and aAl respectively, we find that W{Xa[r) < tV(pai') for

all substitutions a = a, except a — av Thus 0(R3) becomes {a2, a3, <r4}. Since aA is an

instance of a2 and <j3, however, any substitution which is an E-instance of cr4 will also

be an E-instance of a2 and ct3. Because of this we will get the same result with ©(R3)

= {<r2, or3} as with 0(R3) = {a2, er3, cr4}. For the sake of simplicity we will use the

more concise form. We now have the restrictions 0(R1) = <f>, 0(R2) = <)>, and
R/E

0(R3) = { {x <- 0}, {y <- 0} }. Equivalently, the set of reductions which guarantees

termination can be represented as the set of conditional reductions given below:

Rl: * + (-*) -» 0

R2: - (- x) -> x

R3: If x # 0 andy¥* 0 then — (jr+.y) -+ (—x) + (—y)

This set has been shown to be a complete set of reductions for abelian groups relative

to the ACI equational theory for + .

The preceding example suggests a better procedure for computing 0(2 —> p).

When X contains at least one variable there will always be substitutions in P(X) which

are instances of other substitutions in P(X) because the powerset of /(X) will contain

members which are supersets of other members. For instance, as shown above,

P(*+y) = {</>,{x«-0},{y*-0},{x*-0,y«-0}}. Calling these substitutions a„ a2, o3,

and aAt respectively, it is clear that a2, er3, and <r4 are supersets of o, making them

instances of a„ and <r4 is likewise an instance of both a2 and u3. This suggests that we

generate and test the elements of the powerset from the smallest to the largest. If an

67

element p of P(X) is placed in 0(2 -*• p) then no larger element q of P(2) which is a

superset of p need even be tested as to whether or not W((Aq)I7) < ^ ((m UO- The

test would indicate that q should be added to 0(2 -* p), but we know that we can

leave it out. Because of the manner in which the substitutions are used, this clearly

will not change the effect of 0(2 -*■ p) but will speed up its calculation while

automatically providing the restrictions in the most concise form. An interesting

result of the process is that 0(2 -» p) — <f> represents a reduction with no restrictions

while 0(2 -*■ p) = {4>} represents a reduction which is always restricted, since every

substitution is an instance of the empty substitution.

Example 2: In this example we will calculate restrictions using the procedure just

described, so as to obtain minimal restrictions. Consider the following set of

reductions:

R4: + z) -* (x*y) + (**z)

R5: x*0 -> 0

R6: -*• ~ (x*y)

For R4, 7(2) = {jc 1, y * - 0, z <- 0} and when we generate the powerset elements

from the smallest to the largest we find that the singleton sets {x *- l}, {y «- 0}, and

{z «- 0} are all added to 0(/l -+p). No larger members need be tested as all larger

members are supersets of at least one of these sets. For both R5 and R6 we find

7(2) = {><- 1}, P(A) = {<(>, {x*-l}}, and 0(2 -> p) = {x*- 1}. Viewing these

restrictions as conditional reductions we now have:

R4: If jc 1 andy A 0 and z^O then x*(y + z) -* {x*y) + (x*z)

R5: Ifx?fe 1 thenx*0 -> 0

R6: I fx # 1 thenjc*(-y) -* — (x*y)

68

The set {Rl, R2, R3, R4, R5, R6} has been shown to be a complete set of

reductions for commutative rings with unit elements relative to the ACI equational

theory for + and *.

Example 3: As a final example let us examine a reduction which leads to a more

complicated set of restrictions. Consider the following reduction which is an

absorbtion law from the definition of a distributive lattice:

R7: x + (x*y) -+ x

1{X) = {x<-0, x*- 1, .y<-0, y*r- 1}. Note that ^<-0 must be included because,

under identity substitution and coring, it is possible for y to appear in the scope of

the + operator. P(A) with elements listed from smallest to largest is {$, {x <— 0},

{x<-l}, {y 0), {x«-0, >’<—0}, {x<-0, yx-1}, {x * 1, y * 0},

{x<- 1, y «- 1}}. Note that several members of 2,w were discarded because they were

not valid substitutions. Of the remaining substitutions, only (x <-0, y< -l} and

{x< -l,y< -0} are placed in 0(2 -> p). This restriction differs from the previous

examples in that it allows for either x or y to take on an identity, but prevents both x

and y from taking on identities at the same time. Represented as a conditional

reduction, R7 now becomes:

R7: If —i((x = 0 and_y = 1) or (x = 1 andy» = 0)) then x + (x*y) -*• x,

or, equivalently,

R7: If (x ^ 0 or.y t6 1) and (x ^ 1 ory ¥= 0) then x + (x*y) -> x.

2. Rewriting Strength.

Have we weakened the original rewriting relations by adding the conditions in

the above examples? No, we have not. In Example 1 the most general form of a

critical pair which could have been conflated by R3 before the conditions but cannot

69

be conflated by R3 after the conditions must be < — (/ + 0), (—/) + (-0) > or

< — (0 + /), (—0) + (—/) > . It is easy to see that Rl can be used to conflate all such

pairs since (—/) + (—0) = (— /) + ((—0) + 0) ^ (— /) + 0 = — (/ + 0). Thus, taken

together, the rewriting power of {Rl, R2, R3} has not been weakened by the

introduction of the conditions needed for termination.

Likewise, in Example 2 we see that the most general form of pairs which could

have been conflated by R4 were it not for the conditions must be either

< 1 *(y + z), 1 *y + 1 *z > , < jr*(0 + z), jr*0 + x*z > , or < jr*(y + 0), x*y + jc*0 > .

The pair < l*(y + z), l*g + l*z> conflates trivially since 1 *{y + z) = l*g + l*z. The

other two pairs are easily conflated via R5 since x * 0 + x*z -* 0 + jc* z = jr*(0 + z).

As before we see that, taken together, the rewriting power of the entire reduction set

has not been weakened by the conditions.

Finally, we see that in Example 3 the restriction on R7 only prevents its

application to a pair of the general form < 0 + (0*1), 0 > or < 1 + (1*0), 1 > , which

conflate trivially since 0 + (0*1) = 0 and 1 + (1*0) = 1. Thus the restriction only

prevents its application when its application was not needed in the first place. These

examples indicate that the conditions needed for termination may not weaken the

rewriting strength of a reduction at all, and that when they do another reduction in

the same set may still provide the same functionality as that which was removed. In

such cases termination is achieved while the set of reductions as a whole loses no

rewriting strength. -*■.

3. Implementing the Rewriting Relation.

R/E .
Since —► is a very general form of a rewriting relation between congruence

R/E
classes generated by an equational theory, it is clear that the conditions which give -»

termination also give the termination of many less general rewriting relations. For

70

. . , . , , R RIB ,instance, any rewriting relation -» such that - + £ - » £ - > must terminate under
R/E

these same conditions. This is important because the -> rewriting relation is not

conveniently implemented in a computer program, especially when E generates
r£infinite congruence classes. We have found it useful to implement -» for an ACI

equational theory, E, as follows:

r e r e t

h x^ a h iff h t' 2 ^ t f l = h, and a $ i£0 (i -♦ p).

R /?/£
This rewriting relation is in the range between -+ and -> and is very easy to

implement. The conditions which give termination arc enforced as a simple

modification to the ACI term matching routine. The term matching routine receives

a term, a pattern, and the conditions. Whereas the normal ACI term matching would

return the first substitution which matches the pattern to the term, the modified

routine returns the first such match which does not violate the conditions. If no such

match can be found, the term and pattern are considered not to match.

The rewriting relation we have described is actually a rewriting relation from a

core element of one congruence class to a core element of another congruence class.

When rewriting with in this manner, we begin with a core element, but we are allowed

to leave the core during the ACI-matching step before we apply the reduction. We

then push the result back down to the core.

71

V. ON ACI-COMPLETION

A. INTRODUCTION

The goal of this chapter is to generalize the theory of E-completion to enable

the presentation of an ACI-completion procedure. In doing so we achieve three of

the four benefits achieved by earlier generalizations: (1) the enhanced pattern

matching process will be more akin to the human process since identity elements are

the root of the problem in the mathematical theory and they are easily dealt with by

the human mathematician, (2) increased step size for equality inferences results in

smaller search trees, shorter proofs, and smaller reduction sets, (3) insight is provided

into related problems, particularly the problem of E-completion for other equational

theories which generate infinite congruence classes. We do not increase the problem

domain for the universal word problem, however, because we have not found a

complete set of reductions via ACI-completion for any algebraic structure not already

handled via AC-completion.

The basic approach of this work will be to build around the generalized -U

rewriting relation presented in Chapter 4. This rewriting relation has been shown to

terminate when H is an ACI equational theory. Because it is a generalization of the
R/E . .
-» rewriting relation used in previous E-completion procedures such as

[7^86, 5P87], we cannot assume their E-completion results, but must develop our
R/E

ACI-completion procedure to match the new definition of -» .

72

B. CONDITIONAL REWRITING DEFINITIONS

Before proceeding to the ACI-completion theory, we first define conditional

versions for each of the standard rewriting relations which we will use. As mentioned

previously, each standard rewriting relation can be thought of as an instance of its

conditional counterpart, with all of the conditions being empty. For terms t and s,
ft

we will say that t -+ 5 iff there is a reduction X -* p e R, m e dom(t), and ai, p, a, m

substitution o such that

a i eO (X -► p),

t/m = Xcf, and

s = rCm <— per].

The restriction a ̂ /,.(-)(X -► p) is the only difference between our relation and the

usual definition of -X- . The procedure for calculating ©(A -* p) is given in Chapter 4.

We will say that t -* s iff there is a reduction X -> p e R, m e dom(t), and a
X, p, 0, m

substitution a such that

a $ ieQ(X -* p),

tjm = Xa, and

5 = t_m *— pa].

Equivalently, we may state this definition by

R,E
t s
X,p,a, m

iir t = f
< >»,

R

p, v* fn
s.

Finally, we define the rewriting relation -+ by

RjE
t -> S
i, p, a X, p, a

E
= S.

Except for the conditions, these rewriting relations are just like their counterparts

which are defined in Chapter 2. It is shown in Chapter 4 that all three of these

73

conditional rewriting relations satisfy the termination property when E is an ACI

equational theory.

C. TESTING ACI-COMPLETENESS

The material presented in this section is a summary of material presented in

and much of it is taken verbatim from that source. The work done by

Peterson ct al. is closely related to this work and lays the essential groundwork for the

remainder of this paper. We summarize only necessary results here, omitting the

proofs.

1. E-Church-Rosser Property.

The theoretical basis for this section is a general E-Church-Rosser theorem

similar to that of CJ/f86]|, using similar notation which we now review. Let S be a

set. Let = be a symmetric relation on S and let = be its reflexive, transitive, closure.

Let R (or - i) be a relation on 5 and R/E be the relation = o o = , which must be

well-founded. Let rj* be a normal form obtained from t using the well-founded

relation R. Let R ' (or) be the set {(/>, q) i {q,p) e R}. Let ==E be the relation

= u U <- , and let =E be the reflexive, transitive, closure of ==E. Finally, let
r ERE (or -*•) be any relation which satisfies the inequality R £ RE SE R/E. We now

make the following definitions:

Definition 1: RE is E-Complete means

/ - £ / iff sI rE = t[RE.

We will use the notation < s *= t> throughout this paper to represent critical pairs,

rather than the traditional notation < s , t > . This will serve as a reminder that the

74

process of forming a critical pair generates two terms whose normal forms must be

brought together in order to achieve E-completeness.
• » EDefinition 2: RE is locally coherent modulo E if whenever t = s and t -* f,, it follows

that there is a term .v, such that s s, and /, and .v, have a common —► successor.
Ah

Definition 3: RE is locally confluent modulo E if whenever / -> t, and t —* t2, it follows
R/E

that r, and t2 have a common -» successor.

E-Church-Rosser Theorem: [P.B87]

The following two statements are equivalent:

(1) RE is E-complete.

(2) RE is locally coherent and locally confluent modulo E.

2. Local Coherence Property.

We now state a characterization of local coherence for our conditional rewriting

relation.

Local Coherence Theorem:

The following two statements are equivalent:

(1) R, E is locally coherent modulo E.

(2) Whenever l — r e E (or r= l eE) , 2 —» p e R, m e sdom(l) but m =£ e, and

a e E-Unify(l/m, 2) a tj<£i£©(2 -> p), it follows that 3« 3 ro -* u and lo_m <— paJ

and u have a common successor.

We will say that 2 -*■ p coheres with 1= r when (2) above holds for all

appropriate values of m and a.

Based on the Local Coherence Theorem we can implement the following test for

local coherence: First find all / = r, 2 -♦ p, m, and a which satisfy the conditions of
R E

(2) of the theorem. Then test each ra for -> reducibility. If some ro is not reducible

75

then coherence fails. If ro is reducible by -* using some X' -* p', o', and m', then the

coherence critical pair

< lo_m «- pa] R=E ro£m' <— p'o'] >

R/E
can be reduced to normal form via -». If both sides are identical in some normal

form, then coherence succeeds, otherwise coherence fails.

When the set E is an ACI equational theory, which is our interest in this

research, the test for local coherence can be further simplified by the following

observations:

(1) All reductions cohere with the identity laws. This is true because for an arbitrary

identity law, x + 0 = 0, the only m satisfying (2) of the theorem is the one such

that Ijm — 0, thus o e E-Unify(X, 0). This means that Xo = 0, however, it is shown

in Chapter 4 that Xo = 0 ==> a e i£0(T -*• p) by the definition of 0(2 -*• p) and

necessary properties of the weighting function.

(2) All reductions cohere with the commutative laws. This is true because when 1= r

is a commutative law there is no m satisfying m e sdom{[) and m =£ c.

(3) If X -* p w + X' -> w 4- p' where w $ Vars(X' -» p') then X -* p coheres with the

associative law for -f . This is proved in CTZ187] under the added assumption

that iv $ fars(0(^ -+ p)). From the calculation procedure given for 0(A -* p) in

Chapter 4, however, we can show that the conditions assumed here imply that

w Vars{(d{X -* p)). The essence of this observation is that reductions which have

already been extended for a given ACI operator automatically cohere with the

associative law for that operator.

Since coherence with the identity and commutative laws is automatic and

extensions give coherence with the associative laws, the procedure for assuring

coherence for an ACI equational theory simplifies to the following: for each

76

reduction X p e R together with the associative law for each ACI operator + in X

perform the coherence test described above. If the test fails we can then replace

X -* p with its extension, w + X -» w + p such that w £ Vars{X -» p), and coherence will

be assured.

R/E
Because the Local Coherence Theorem only requires a common -♦ successor, wc

are allowed to flatten and/or core the terms after the coherence critical pair has been

formed, during the process of finding normal forms. This is because the E-equality
R/E

steps involved in the flattening and coring processes together with the -* reductions
R/E

still form a rewriting relation which is consistent with the definition of -*• . It is very

important, however, that this flattening and/or coring not take place until after the
R.E

coherence critical pair has been formed because the theorem calls for ro to be ->
R/E . . .

reducible and flattening and/or coring ro too early results in a test for -*• reducibility
R.E .

instead. In actuality, we usually use the rewriting relation —► together with flattening

and coring to produce normal forms which are tested for E-cquality, because this is
R/E

much easier to implement than the more general rewriting relation -* . Clearly this is
. */•£■still a valid process as long as we use a rewriting relation which is contained in —► .

3. Local Confluence Property.

We now state a characterization of local confluence based on our conditional

rewriting relation.

Local Confluence Theorem: C/>̂ 87]

If R,E is locally coherent modulo E, then the following two statements are equivalent.

(1) RE is locally confluent modulo E.

(2) Whenever 2, -* p, e R, X2-> p2e R, m e and a e E-Unify(XJrn, X2) a

a $ i£0 (2, -* p,) and a £ i£0 (2j -» p2), it follows that 2,<7[wi *- p2o\1 and p,a have
R/E

a common -* successor.

77

Based on the Local Confluence Theorem we can implement the following test

for confluence: First ensure that local coherence is satisfied. This is done using the

procedure described with the Local Coherence Theorem. In the case of an ACI

equational theory we know that we will be able to satisfy coherence by extending

reductions where needed, as pointed out above. The next step is to generate all of the

confluence critical pairs

i r R v E< A}o_m <— p2o J = P\0 >

for which the hypotheses of (2) above are satisfied. Both sides of the critical pair are
R/E

then reduced to normal forms via -+ and compared. If the normal forms are

identical, the pair conflates, and the test for confluence succeeds, otherwise it fails.
R,t:

Again we remark that it is sufficient to compute normal forms via -» together with

flattening and/or coring, with a final check for E-equality.

4. An Algorithm to Test ACI-Completeness.

Figure 13 presents an algorithm which applies the Local Coherence Theorem

and the Local Confluence Theorem together with the the coherence results relating

specifically to ACI equational theories to test a set of reductions for

ACI-completeness. This algorithm has been implemented in a computer program and

has verified several sets of reductions to be ACI-complete. The ACI'Completion

procedure presented in the final section of this paper will be a generalization of this

algorithm.

The function E-Unify may be any finite E-unification algorithm which returns a

complete set of E-unifiers for the given terms, such as the one presented in Chapter 2.

The function ACI-Operators needs to return all of the ACI operators which appear in

78

the given term. The functions Vars and Sdom are both defined in Chapter 2. The

restricted substitution function © is described in Chapter 4.

Procedure Test-ACI-CompIeteness (R)
For each X -» p e R do

For each + e ACI-Operators(X) do
a:= (jr -f (y + z) = (x + j>) + z)
If 3(s = /) e Coherence-Critical-Pairs{a, X -* p) b sJ.*/£ ^ t l RIE
Then R : = /? — {2 -> p}

R : = /? U {m> + 2 -+ w + p}, w £ Vars(2 -*• p)
Fnd I ;or

End For
£

If 3(5 = r) e Û q)iR̂RConfluence-Critical-Pairs{p,q) 3 s lR/E¥= t[R'E
Then Return Failure
Else Return Success

End Procedure Test-ACI-Completeness

Procedure Coherence-Critical-Pairs (/ = r, X -*■ p)
Return {(ra = pa) | a e E-Unify(l, 2), a £ z£0(2 p)}

U {(ra = (l_m <- p])a) | a e E-Unify(ljm, X), a $ i^{X -> p),
/n e Sdom(l), and /n e}

U {((2[m <- r])<r = pa) \ a e E-Unify(l, X/m), a £ ifl^X -> p),
m e Sdom(2), and

End Procedure Coherence-Critical-Pairs

Procedure Confluence-Critical-Pairs (2, -*■ p„ X2 -» p2)
Return {(p,a = p2a) | a e E-Unify{Xx, 22), a $ ik0(2, -> pt),

and a £ ijX){X2 -* p2)}
U {(p,cr = (2,[m «- P2])<7) I e E-Unify(XJm, X2), a $ z^(2, -+ p,),

a £ i j) (X 2 - * p2), m e Sz/om(2,), a n d m f t)
U {((22[> <- p,J)a = P2ct) | a e E-Unify(Xu XJm), a $ z^(2, p,),

a ^ t£0(22 -> p2), m e Sdom(22), and m # e}
End Procedure Confluence-Critical-Pairs

Figure 13. An algorithm to test ACI-Completeness

79

D. ACI-COMPLETION CONSIDERATIONS

As we develop an ACI-completion procedure based on the test for

ACI-completeness presented in the previous section we will first address three areas

where the ACI-completion procedure differs from previous E-completion procedures.

These differences arise because we are focusing specifically on an ACI equational

theory and because we are working with the conditions needed for termination of the
/£- rewriting relation.

1. Identity Substitution Inference.

The first concept peculiar to ACI-completion which we would like to address is

what we have called identity substitution inference. By the Compatibility Lemma given

in Chapter 2 we know that if / R= r is a valid equation, then for any substitution, a,

la =£ ro is also a valid equation. We are only interested in the case where a is a

substitution which replaces one or more variables in / and/or r with an identity.

Having made the identity substitutions we then core each side, still preserving

(R U £)-equality, and obtain a new equation, (lo)^ =£ (ro)]/.

An application of identity substitution inference is found in the processing of

confluence critical pairs. When a confluence critical pair is found which will not

conflate via the existing R and no orientation can be found to use the pair as a

reduction, identity substitution inference may be helpful in resisting failure. Similar

to other failure resistance schemes which delay the processing of a troublesome pair,

hoping to be able to handle it after other pairs have been processed and more

reductions have been added to R CFG84], we put the problem pair aside for later

processing. Rather than simply going on to other pairs before coming back to the

problem pair, however, we first try the rule of identity substitution inference. This is

80

an application of the idea that learning something is better than learning nothing at

all.

Suppose we have a critical pair, < / = r > which will neither conflate nor orient

to form a reduction. Suppose further that we can find an identity substitution, a,

such that the new equation, (la)\! R= (ro) | f, is orientable as a reduction. Then we

can add the new reduction to R, possibly increasing our chances of conflating the

problem pair when we come back to it. In fact, it may be the case that the reduction

formed by the identity substitution inference is immediately able to conflate the

critical pair from which it was generated. The hope that identity substitution and

coring will produce an orientable equation from an unorientable one is based on the

possibility that some variable which is replaced by an identity may occur in a different

context on one side of the equation than it does on the other, causing one side to

"collapse" more than the other.

The following example illustrates how identity substitution inference may be

used to resist failure during the ACI-completion process. Let K be the ACI

equational theory for + and let the initial set R of reductions contain only the single

reduction

Rl: x + y + (— y)-»x.

Noting that this reduction passes the test for local coherence, we move to the test for

local confluence. Forming confluence critical pairs of Rl with itself we obtain the

following pairs:

PI

P2

P3

P4

< x + y = x -f-y >

< — (x + y) + y + z =* — (x f w) + w + z >

< x + _ y R=̂ £ — (— (z + x) + z + w) + w + y ; >

PI and P2 obviously conflate without applying any reductions. The pair P3, however,

does not conflate since the sides are not E-equal and the only reduction, Rl, cannot

81

be applied. Furthermore, it is clear from the form of each side that any weighting

function which weights all variables equally will assign the same weight to both sides

of the pair, preventing us from orienting the sides to form a reduction. At this point

we put P3 aside for later processing and see if we can gain anything from the rule of

identity substitution inference. Applying the substitution a — {w *- 0} to both sides

of the pair and coring the result we get the new pair

P5: < — (x + y) + y + z R= (— x) + z > .

This pair is now orientable as a reduction giving us

R2: - (j r+ ^)+ j/ + z -^ (- j r) + z

which is added to R. Recalling that we have set the pair P3 aside for later processing,

we note that P3 will now conflate since both sides rewrite to (— x) + z using R2.

Thus we have gained enough information from the identity substitution inference to

completely handle the P3 pair.

Another application of identity substitution inference is the removal of

unnecessary variables from reductions. Suppose that we have generated the critical

pair

P6: < x + - (- y) = E x + y > ,

the pair will neither conflate nor reduce further by the present R, and the weighting

function assigns a greater weight to the left hand side of the pair. We could, of

course, form the reduction

R3: jt + - (- y) - + j r + j '.

If we note, however, that the reduction

R4: - (- y) - * y

will also conflate the pair P6, then we can simply apply the rule of identity

substitution inference to the critical pair using the substitution a = {jc 0} and form

the reduction R4 instead. Furthermore, it is easy to verify that R4 will pass all the

82

tests for local coherence for any ACI equational theory. In other words, the

completion process was about to generate a reduction with an unneeded variable.

The procedure just described can easily be generalized. Before forming a

reduction X -> p from a non-conflating critical pair p, find the largest identity

substitution a such that (Xo) |/ -» (po)l' will conflate p. Add the smaller reduction

(Xo)[1 -> (pa)l1 to the reduction set instead of X -> p. The significance of removing

these extraneous variables before the reduction is formed is that this helps to keep

down the number of variables involved in the ACI-unification and ACI-matching

processes as well as the number of overlappings involved in computing critical pairs.

We have observed considerable savings of both time and space during the

ACI-completion process using this method.

2. Satisfying Coherence.

From the E-Church-Rosser Theorem we have seen that both local confluence

and local coherence are needed to have an E-complete reduction set. Local

confluence has always been the central issue of completion and E-completion

procedures up to this point. If confluence pairs do not conflate, new reductions are

formed and added to the reduction set. No reduction is ever removed from the

reduction set unless some combination of the other reductions provides duplicate

functionality. This guarantees that the reduction set can only increase in rewriting

strength during the completion process, and that the final reduction set will have the

capability of conflating all critical pairs which were generated at any point during the

completion process. We propose to address the local coherence property by

processing coherence critical pairs in precisely the same manner in which confluence

critical pairs are normally processed.

83

When a reduction is added to the reduction set we simply compute all coherence

critical pairs between that reduction and the equational theory, placing these new

critical pairs on the list with any outstanding confluence and/or coherence critical

pairs. If the program halts, we will know that all confluence pairs of the final

reduction set and all coherence pairs of the final reduction set have already been

conflated. Thus both properties are satisfied and the reduction set is L-complete.

This completely avoids using the concept of extended reductions. In turn, this

also eliminates the need for protection schemes which must be used to ensure that the

form of an extended reduction is not altered in such a way as to lose the coherence

property and to ensure that a reduction which is needed for the coherence of another

reduction is not deleted from the reduction set. We will address the issue of

extensions and protection schemes more in the next chapter. It is interesting to note

that most of the reductions which are formed as the result of processing coherence

critical pairs in the manner suggested above are exactly the same as the extended

reductions which come from the theory of extensions. The exceptions to this rule are

precisely those cases where the extension would not function properly without the

protection scheme. Of course, for those reductions which already satisfy the

coherence property with respect to the equational theory, all coherence pairs will

ultimately conflate without causing the addition of any new reductions.

3. Critical Pairs and Conditional Reductions.

There are two ways in which conditional reductions affect the processing of

critical pairs. The first effect is found in the computation of the pairs themselves. As

indicated by the Local Coherence and Local Confluence Theorems, critical pairs are

affected by the conditions on both of the involved terms. Because the unifiers

generated by overlapping the two terms must not violate the conditions of either

term, many potential critical pairs are avoided.

84

The second effect of conditions on the processing of critical pairs is seen in the

processing of a confluence critical pair which does not conflate. In all previous

completion and O-completion procedures, critical pairs which do not conflate are

oriented, if possible, to form a new reduction which is added to R. Because of the

conditions which may be required to maintain termination of the rewriting relation,

however, we cannot simply orient the pair and add a reduction to R. Once we have

determined an orientation of X -* p, we must compute the conditions which ensure

termination, according to the procedure given in Chapter 4. These conditions are

calculated in the form of a set of restricted substitutions, 0(^ -* p), such that no

rewriting is allowed using X -> p and a term matching substitution which is an

E-instance of a substitution in the restricted set. If 0(A -> p) is empty then we can

simply add the new reduction to R and procede as most other E-completion

procedures. If 0(>1 -+ p) is not empty, however, then we will handle the critical pair

according to a method which we will call splitting a critical pair.

The concept of splitting a critical pair is based on the concept of proof by

exhaustive cases. If we need to show that Vx P{x) is true, we know that this can be

done by splitting the proof into exhaustive cases and then showing that the desired

result holds for each case. For instance, if we are able to show that P(0) is true and

that V x x ^ O => P(x) is true, then we have shown that VxP(x) is true. A simple

example illustrates how we can apply this to a critical pair. Suppose we have just

generated the critical pair

P7: < jc*0*=0>

and it will not conflate via the current R. Orienting the sides by weight gives the

reduction x*0 -> 0 and calculating the restricted substitutions gives

0(>l -> p) = {x <- 1}. In conditional form this gives a potential reduction of

R5: If x 1 then x*0 -> 0.

85

In order to satisfy the test for local confluence which is needed to have a complete set

of reductions, however, we must show that the pair P7 conflates for all values of x.

Clearly the reduction R5 will cause the pair P7 to conflate for all values of j c except

the case when x = 1. We thus split the critical pair into the reduction R5 and the new

critical pair

P8: < l * 0 * - 0 >

which is formed by applying the substitution {jc ♦— I} to the P7 pair. The new pair,

P8, represents the only instance of P7 not conflated by R5. This new pair must also

be conflated before the reduction set is deemed to be complete. The hope is that the

new pair will either conflate trivially (without the application of any reductions),

conflate via other reductions in R, or orient to form yet another reduction. In this

example the P8 pair conflates trivially because 1*0 = 0, showing us that R5, even with

its restrictions, is sufficient to conflate the P7 pair.

The process of splitting a critical pair becomes slightly more complicated as the

restricted substitution set grows in size. For example the critical pair

P9: < - (X + y) ^ (- *) + (- y) >

gives 0(2 -*• p) = { { jc <— 0},{y «- 0}}. As a conditional reduction we have

R6: If jc 0 and y=t 0 then — (jc +y) -> (— jc) + (—y).

In order to show that the P9 pair conflates in all cases we must show that it conflates

for all values of x and y. Clearly this can be done by showing that P9 conflates in the

following three cases which exhaust the domain of jc and y.:

Case I : jc # 0 andy= t 0

Case 2: j c = 0

Case 3: y = 0

The P9 pair conflates for Case 1 via the conditional reduction, R6. 1*9 conflates for

Case 2 and Case 3 if the critical pairs

P10: < - (0 + y) *= (- 0) + (-.y) > , and

86

PI I: < ~ (j c + 0) = (— j c) + (— 0) > ,

respectively, conflate. P10 and Pll were formed by separately applying each of the

substitutions in 0(2 -*• p) to P9. As before, the new critical pairs which arc split off

of the original critical pair include all instances of the original which are not

conflatable via the new conditional reduction.

Generalizing the previous examples gives us the following procedure for splitting

a critical pair, p, which does not conflate: First we orient the sides of the pair and

compute 0(2 -*• p) = {0,, 02, ..., 9n}. We then add the conditional reduction

[0(2 -* p), 2 -» p] to R and add the new critical pairs p0„ p62, ...,p0„ to the list of

critical pairs which must be processed independently. The pair p must be conflated

for all values of its variables, or equivalently, pa must conflate for all substitutions a.

Clearly the new reduction will conflate pa for all substitutions a except those which

are E-instances of some Qt. The pair p$„ however, represents the most general form

of an instance of pa not handled by the new reduction. If all pairs p0, conflate then

pa conflates for all substitutions a. Note that when ©(>1 -*• p) is empty no new critical

pairs are formed, only a reduction. This is exactly the manner in which a

non-conflating critical pair is handled in previous completion and E-completion

procedures.

E. AN ACI-COMPLETION PROCEDURE

Figure 14 presents a procedure which attempts to complete a set of reductions

modulo an ACI equational theory. This procedure is a generalization of the

algorithm for testing ACI-completeness which was presented earlier. It follows the

pattern of the AC-completion procedure presented in Chapter 3 with the following

enhancements:

(1) failure resistance is built in according to the method of [FG84]

(2) identity substitution inference is added to the failure resistance mechanism,

87

(3) the rewriting relation uses conditional reductions to maintain termination in the

presence of infinite ACI congruence classes,

(4) coherence critical pairs are processed just as confluence critical pairs, without the

use of extensions, and

(5) the process of splitting critical pairs is used to ensure confluence via conditional

reductions.

In the completion procedure given in Figure 14 the following conventions are

used: R is a set of conditional reductions; RR is that portion of R x R which has not

been processed; CP is a set of critical pair equations; and D is a set of delayed critical

pairs, pairs which have been put aside in order to avoid failure until all other pairs

have been processed.

The top level procedure ACI-Completion implements the failure resistance layer.

This routine is normally invoked with an empty R and the defining equations (other

than the ACI equations) in CP. When the defining equations, E„ form a superset of

another set of equations, E2, for which we have already found an ACI-complete set of

reductions, we will invoke this procedure with the complete set of reductions for E2 in

R and E, — E2 in CP.

The procedure Try-To-Complete-R is the normal E-completion layer. This

procedure exhausts all of R x R before succeeding or giving up. The procedure

Try-To-Conflate-Pairs exhausts the set of critical pairs before returning to the

previous level. The procedure Try-To-Form-Reduciion implements the concepts of

resisting failure via identity substitution inference, and failure resistance via the

delaying of a critical pair. This procedure returns an oriented reduction if one can be

derived from the pair, and possibly a critical pair whose processing should be delayed

as long as possible, indicating the original pair did not orient to form a reduction.

88

Procedure ACI-Completion (R, CP)
Repeat

R', CP : — Try-To-Complete-R(R,CP)
Until R' = R
If CP = 4>
Then Return Success, R
Else Return Failure

Find Procedure ACI-Completion

Procedure Try-To-Complete-R (R, CP)
RR, D : = <f), <f)
While {RR U CP)¥=4> do

R, RR, D ': = Try-To-Conflate-Pairs(R.RR.CP)
D : = DUD'
URR¥=<))
Then (r„ r2): — "smallest" member of RR

RR:= R R -{ (ru r2)}
CP : = Confluence-Critical-Pairs(ru r2)

End While
Return R, D

End Procedure Try-To-Complete-R

Procedure Try-To-Conflate-Pairs (R, RR, CP)
D:= 4>
While CP # 4> do

(5 = /): = "smallest" member of CP
CP ■ = C P -{(s = t)}
I f s |* '£ * t i R >E
Then r,d: = Try-To-Form-Reduction(slR,E, r |R/£)

D : = D u{d)
If r 7̂ (f)
Then R,RR,CP: = Add-Reduction(r,R,RR,CP)

R,RR,CP: = Simplify-R(R,RR,CP)
End While
Return R, RR, D

End Procedure Try-To-Conflate-Pairs

Figure 14A. An ACI-completion procedure - Part 1

The procedure Add-Reduction adds the condition to the oriented pair, adds

critical pairs representing instances of the original which are not handled by the

conditional reduction, and adds all of the coherence critical pairs formed from the

89

reduction and any relevant associative law. The procedures Add-Reduction and

Simplify-R are used to keep the set R completely inter-reduced during the completion

process. These procedures also keep RR current with R.

The procedures Coherence-Critical-Pairs and Confluence-Critical-Pairs are

exactly the same as defined in Figure 13, page 78. The functions ACl-Operators,

Vars, and Sdom are also the same as those presented in Figure 13. The function

AC-Operators returns AC operators, just as ACl-Operators returns ACI operators.

The weighting function W and the restricted substitution function 0 are both

described in Chapter 4.

As with other completion procedures, this procedure may halt after finding an

ACI-complete set of reductions; halt with failure after finding a non-conflating critical

pair which cannot be oriented, even after all other potential critical pairs have been

processed; or continue indefinitely adding new reductions to R. This procedure has

been implemented in a computer program which has found ACI-complete reduction

sets for a number of algebraic structures. Several of these will be presented in the

next chapter.

The ACI-completion procedure presented in Figure 14 is not only able to

perform E-completion relative to ACI equational theories, but also for empty, C, and

AC equational theories as well as any combination of these. All that is necessary is

that the procedure E-Unify return a finite and complete set of E-unifiers and that we

are able to compute terminal forms via E-matching with respect to the desired

equational theories. We point out that for empty and C equational theories there will

be no coherence critical pairs, and for AC equational theories the only coherence

critical pairs will be those from the associative law, just as those for ACI equational

theories. Note that this is already handled in the Add-Reduction procedure. The

conditions on the reductions will always be empty when a reduction has no ACI

90

Procedure Try-To-Form-Reduction (s, t)
Case tV(s) > W(t):

Return s -* t, <p
W(i) > fV(s):

Return t -* s, <p
W{t) = W(s):

If 3(5' -► /') e {(sri' -» rriO I H'(srl') > PV(trlf)
and V(x «- I) e z, i is an identity}

Then Return s’ -* (5 = /)
Else Return tp, {s = t)

End Procedure Try-To-Form-Rcduction

Procedure Add-Reduction (>t -► p, R, RR, CP)
r : = (6(A-*p), X p)
R : = R U {r}
RR : = RR U {{r, r') \ r' e R}
CP: = CP U {(X = p)r I t e Q{X -> p)}
zl : = {(jc -F (y + z) = (jc + y) + z) | + e ACI-Operators(X) U z!C-Oymm?rs(/i)}
CP:= CP U UacACoherence-Critical-Pairs(a,r)
Return R, CP

End Procedure Add-Reduction

Procedure Simplify-R (R,RR,CP)
For each r e R do

If r
Then RR : = RR — {(r, r’) \ r' e R)

/? := R -{r}
R, RR, CP : = R, RR, CP)
R,RR,CP: = Simplify-R{R,RR,CP)

End For
Return R, RR, CP

End Procedure Simplify-R

Figure 14B. An ACI-completion procedure - Part 2

operators, but this is permissible since they are often empty even when reductions do

have ACI operators. Thus, with no changes, this one procedure not only provides

E-completion for a new class of equational theories, but also for these important

classes of equational theories which have been addressed by earlier researchers. We

will demonstrate this generality in the upcoming chapter.

91

VI. RESULTS OF AN IMPLEMENTATION

The ACI-completion procedure given in the previous chapter has been

implemented in a computer program. This program is written in Common LISP as

described by Steele QS/84] and has been run successfully under a number of different

hardware and software configurations including a DEC Microvax II, a XEROX 1109,

a Symbolics, and an IBM PC-RT. Those interested may obtain a copy of the

program in machine readable form by contacting the author through the Computer

Science Department, at the University of Missouri-Rolla. The purpose of this

chapter is twofold. First we discuss important aspects of the program

implementation which are not spelled out by the ACI-completion procedure g iv e n

previously. Secondly, we present some of the complete sets of reductions which have

been generated by this program.

A. IMPLEMENTATION NOTES * 1

The following details of program implementation seem worthy of separate

discussion: (1) the data structures used, (2) the implementation of the E-matching

algorithm, (3) a method for dealing with term symmetry, (4) the use of extended

reductions, and (5) the user interface. Each item has been selected because of its

significance to the overall understanding and/or usage of the program. We now

discuss each in turn.

1. Data Structures.

Constants, variables, and operators are represented by LISP atoms. Variables

are distinguished from constants and operators by the value of the property

VARIABLE on the LISP property list for the atom. For variables this property will

have a value of T, for all other atoms the value will be NIL. Simple terms are

92

constants and variables. A complex term is represented as a list in prefix form, i.e.

the first element of the list is always the operator. For example, the term x + (— x)

would be represented by the list (+ x (— jc)). AC and ACI operators result in

flattened terms, i.e. (+ (+ a b) c) is represented as (+ a b c), where + becomes

an operator of varying degree.

The equational theory associated with an operator will be indicated by assigning

a value of T to one of the properties C, AC, or ACI on the property list for the

atom. If the C property is set to T the associated equational theory is understood to

be the commutative theory for that operator. Likewise, T for the property AC

indicates an associative/commutative equational theory and T for the property ACI

indicates an associative/commutative/identity equational theory. No more than one

of these properties should be set to T. All properties not set to T should be set to

NIL. If all three of these properties are set to NIL the associated equational theory

is empty. For an ACI operator, one additional property, IDENTITY, holds the value

of the identity which is associated with the operator. For example, if + is an ACI

operator with identity 0, the LISP function (GET ' + 'ACI) should return T and the

LISP function (GET ' + 'IDENTITY) should return 0. Using the LISP property

list to encode the associated equational theory makes this information readily

available to any routine which needs to make use of it.

Substitutions are represented as lists of variable term pairs such that the LISP

CAR of the pair gives the variable and LISP CDR of the pair gives the term.

Because of this a substitution of a simple term for a variable results in a LISP dotted

pair, while the substitution of a complex term for a variable results in a normal list

whose second element is the primary operator for the term. For example, the

substitution {x *- a, y *- (b + z)} would be represented as the list ((x.a) (y + b z)).

The LISP atom NIL represents the empty substitution.

93

Because the restricted substitution set for a reduction never changes, we

calculate 0(2 -*■ p) according to the procedure given in Chapter 4 and store it with the

reduction when the reduction is formed. This makes the restrictions available without

calculation at any point where they are needed. A conditional reduction is thus

represented as a list of three items: the restricted substitution set, the left hand side,

and the right hand side. The unconditional reduction (— (— x)) -* x would be stored

as (NIL (- (— x)) x) where NIL indicates there are no restricted substitutions.

The conditional reduction

If x ^ 0 and y ^ 0 then — (x +y) -* (— jc) + (— y)

is stored as the list

((((x .O)) (O . o))) (- (+ x y)) (+ (- X) (- y))).

Critical pairs and the defining equations for the algebraic structure which arc

not part of the equational theory are simply stored as lists of two items: the left hand

side and the right hand side. Because these are equations and not reductions,

however, there is no real significance as to which term is on which side. For example,

the critical pair x + (— 0 + •*)) =£ (— y) could be stored as either the list

((+ x (— (+ y x))) (—y)) or its reverse.

All sets are represented as lists where the order is not significant. Thus the set

{a, b, c} may be any permutation of the list (a b c). The empty set is always

represented by NIL. The set data structure is used to represent the reduction set (/?),

the unprocessed portion of R x R {RR), critical pair equations {CP), and delayed

critical pairs (£>).

2. E-Matching with Conditional Reductions.

Because most completion and E-completion procedures spend over ninety

percent of their run time applying reductions in order to conflate critical pairs, it is

94

essential that we have an efficient algorithm for this operation. Within the process of

applying a single reduction the dominant operation with respect to time usage is the

process of finding a matcher between the reduction and the term to be reduced.

The E-matching routine used in our program is largely due to Peterson _Pe88],

who developed an efficient E-matching routine relative to empty and ACI equational

theories, for reductions with conditions of the type we have defined. We have

extended Peterson's routine to handle E-unification relative to C and AC equational

theories. The distinguishing features of this E-matching routine are:

(1) It has the generality to handle empty, C, AC, and ACI equational theories with

very little separate code for each class of equational theories.

(2) No diophantine equations are ever generated or solved. Because we only need a

single matcher and not a complete set of matchers, it is not necessary to deal with

this subproblem which adds a great deal of complexity and time usage to the AC

and ACI unification processes.

(3) Conditions on reductions are exploited to the fullest extent possible. When a

matcher is being developed, all paths which would result in a matcher which

violates the conditions on the reduction are pruned as soon as they are

encountered. No time is wasted developing a matcher which cannot be used

because it violates the condition.

(4) Natural constraints are exploited to a large extent. For example, if there are

constants or operators in the pattern which do not appear in the term to be

matched, the match fails immediately. This simple test is performed before a

match is partially developed, only to discover that it cannot be completed.

Another example deals with the number of occurrences of variables in the

pattern. If we have a pattern such as x + x + y then we know immediately that

either x must take on the identity or there must be some subterm in the term to

be matched which occurs an even number of times. This concept generalizes for

95

any number of occurrences of variables in the pattern. Several other constraints

such as these arc used to increase the efficiency of the li-matching routine.

Since the terms we are trying to conflate contain variables, we must create the

illusion that the variables in the term to be matched are actually constants, but only

while the match is taking place. To do this we first rename the variables of the term

to make them disjoint from the variables of the pattern. We then use a technique

which we call locking the variables. This technique capitalizes on the use of the LISP

property list to identify variables. As pointed out above, a variable is distinguished

from a constant by the value of the VARIABLE property on the property list for the

constant or variable name. We lock a variable by setting the VARIABLE property to

NIL and setting a new property, LOCKED, to /'. After the matching process has

taken place we can then unlock the variable by setting VARIABLE to T and

LOCKED to NIL.

3. Dealing with Term Symmetry.

One observation that we have made from running the completion procedure and

examining the critical pairs produced is that many of the critical pairs which are

generated are redundant. The source of this redundancy is term symmetry. Mayfield

[A/a88] has a complete discussion of term symmetry and its effect on both unifiers

and critical pairs. For our purposes it will suffice to say that two critical pairs /, = r,

and l2 r2 are symmetric to each other whenever there is a substitution o such that a

is a variable renaming substitution and (/,©r,) = (/2©r2)a, where © is a commutative

operator not appearing in any of the terms /„ rlf l2, or r2. For example, the pairs

PI: < x + (— z) +>> =£ y + z + x + (- z) + (— z) > and

P2: < u -f- v + (— w)= E v + (— w) + (— w) + u + w >

are symmetric since the substitution a = {u*-x, v*-y, w*- z) gives P\ = P2o, and

a is clearly a variable renaming substitution. Mayfield shows that whenever p, and p2

96

are symmetric critical pairs (1) p, conflates via R iff p2 conflates via R, and (2) when

neither pair conflates they will yield the same reduction modulo variable renaming

and modulo E. Based on these two results it is clear that only one of the symmetric

pairs need be processed. The other may be discarded before attempting conflation

with no effect on the completion procedure. We have seen that as many as three

fourths of the critical pairs generated by ACI-unification can be discarded due to

symmetry. Mayfield has developed a test which determines whether or not two terms

are symmetric. The cost of using the test is usually much smaller than attempting to

conflate the redundant critical pairs.

4. Using Extensions.

Although we have shown in Chapter 5 that we do not need the concept of

extended reductions in order to perform E-completion, we may still want to consider

using them. Our implementation of the ACI-completion procedure given in Chapter

5 demonstrated that, while not essential, extensions often add to the efficiency of the

AC and ACI completion processes. Once a coherence critical pair is encountered

which will not conflate, a reduction may be extended and the remaining coherence

critical pairs may be discarded without further processing. The extension guarantees

that they will conflate. Because of the efficiency gain which this produces, we have

retained the use of extensions in our E-completion program.

When a reduction needs to be extended relative to an ACI operator, we simply

add the needed extension variables to the original reduction. For example, if A -» p

needs to be extended for both ACI operators + and *, we replace it with the extended

reduction m * (v t 2) h » (v h p). Clearly this one reduction provides the functionality

of the three reductions A -* p, v + A -* v + p, and u*A -* u*p since u and v may each

take on an identity and collapse away. Peterson et al. [Pfi87] showed that such an

extended reduction will cohere with the associative laws for both ACI operators +

97

and *. When a reduction needs to be extended relative to an AC operator, we retain

the original reduction intact and add one new reduction for each AC operator. This

is precisely the method of Peterson-Stickel Cf’S&l] and is necessary because the

extension variables cannot collapse away.

If the extended reductions were left in the form just described, coherence would

be guaranteed, as we have pointed out. Unfortunately, we would also like to keep the

reduction set inter-reduced at all times during the completion process. We normally

simplify a reduction to be added to R by the other reductions in R before making the

addition, and we check after adding a reduction to see if any of the old reductions

either conflate or simplify via the new R. When the extended form of a reduction has

just the right form, it is possible that this simplification may move the extension

variable and remove the ability of the extended reduction to provide coherence.

Consider the case when we are adding a reduction such as jc*0 x*y -* jc*y for

coherence, and the set R contains the distributive law x*(y + z) -> x*y + x*z. The

reduction to be added needs to be extended to satisfy coherence with the associative

law for *. However, after extension the new reduction v*(jc*0 + x*y) -* v*x*y

simplifies via the distributive law giving v*jc*0 + v*jc*g -*■ v*x*y. This new reduction

does not satisfy the coherence property with the associative law for *. For this

reason, other researchers have enforced protection schemes which protect certain

extended reductions from simplification and/or deletion during the completion

process.

We have chosen to avoid treating extensions differently than other reductions

and to avoid any sort of protection schemes by simply ignoring this potential problem

during the completion process. This creates the possibility that our program may halt

with what should be a complete set of reductions when, in fact, it is not. This

situation is easy to detect, however, by running a coherence check on the final set of

reductions. If all reductions satisfy the coherence property, then the reduction set is

98

actually complete. If they do not satisfy coherence, then it is not. In our experience

the program has never found a potentially complete set of reductions which was not

complete. This holds in spite of the fact that our program has encountered the

situation described above where the distributive law potentially destroyed the

coherence property. As long as the troublesome reduction does not make it into the

final complete set of reductions this will never cause a problem.

5. User Interface.

The purpose of this section is to briefly describe the user interface for the

ACI-completion program. The program is designed to be executed from within a

Common LISP environment. We will describe only the LISP functions needed to

define the equational theory for each operator, define the remainder of the algebraic

structure, and invoke the completion procedure.

As explained earlier in the section on data structures, the equational theory for

each operator is maintained on the LISP property list for the operator. The following

LISP functions arc designed to define the equational theory for an operator:

(MAKE-C operator), (MAKE-AC operator), and (MAKE-ACI operator identity).

For example, (MAKE-ACI ' + 0) defines + as an ACI operator with identity 0.

This means that the laws (x+y) + z = Jf + (y + z), x + j '= y + x, and x + 0 = 0 are

understood to be associated with this operator and that ACI-unification and

ACI-matching may be used whenever + is encountered. For AC and C theories the

equational theory is specified in a similar manner, with the exception that no identity

is specified. An operator which is not defined to be ACI, AC, or C is assumed to be

associated with the empty equational theory, and standard unification and matching

are used.

99

That part of the definition of the algebraic structure which is not defined in the

equational theories for the operators is normally defined via critical pair equations in

the variable CP which is passed to the completion procedure. Each equation is

defined as a list of two items, as described above in the section on data structures.

Let us suppose that we want to define the structure of an abelian group. First, we

define + to be an ACI operator using the MAKE-ACI function. We then define a

single equation CPI to be the additive inverse law, jc + (— x) = 0, using the statement

(SETQ CPI '((+ jc (— jc)) 0)). Since this is the only additional equation needed

to complete the definition of the abelian group, we next create the set CP of

equations using (SETQ CP (LIST CPI)).

Whenever the definition of the structure being defined is a superset for the

definition of another structure for which we already have an E-complete set of

reductions, we may define the variable R as the complete set of reductions for the

substructure and leave the equations which define the substructure out of CP. For

example, a commutative ring with unit element is defined by the associative,

commutative, and identity laws for + and *, the additive inverse law for + , and the

distributive law for * over + . If we already have a complete set of reductions for an

abelian group, which is a substructure of the ring, we may put the complete set of

reductions for the group in R, and only the distributive law in CP. The reductions

are each defined by a list of the form (®(d -* p) X p). For example, we might

define the first reduction by (SETQ Rl '(NIL (+ jc y (— y)) jc)). When all of

the reductions have been defined in this manner, the complete reduction set R is

defined by (SETQ R (LIST Rl R2 ...)).

Because the data structure calls for variables to be distinguished from constants

and operators by the VARIABLE property on the property list, each variable in CP

and R must be flagged as such. To facilitate this we adopt a naming convention for

variables. Our naming convention is that all atom names beginning with the letters s

100

through z will be considered to be variables. The ACI-completion procedure will

begin by marking the property list for variables according to the naming convention

and then standardizing the variable names such that they become xl, x2, ,..., xn

according to their first occurrence moving from left to right across R and then CP.

This is done in order to facilitate the process of keeping the variables of a term which

is being reduced disjoint from the variables of the reduction set which is being applied

to it.

After the sets R and CP have been defined as above, the AC'I-completion

procedure is invoked by the LISP function (ACI-COMPLETION R CP). If a

complete set of reductions is found this function will return the reduction set. If the

procedure fails it will return NIL. Pertinent data relating to the program's progress

will be output along the way.

B. RESULTS

We now present examples which show the results of running the

ACI-completion program for several different algebraic structures. The first group of

examples demonstrates that the program is able to generate ACI-complete reduction

sets. The second group of examples serves to demonstrate that sufficient generality

has been maintained to handle some other equational theories which are subsets of

ACI theories. All of the examples presented were run on an IBM PC-RT with ten

megabytes of main memory, using LUCID COMMON LISP under the AIX

operating system. All examples were run using the same program, with the exception

that a different weighting function was used for Example 7. Except where noted, the

examples were run using the weighting function <w, which is defined as follows:

co^constant) = 2

<i>i(A©y) r: co,(x) + co,(y) + 5

wi((©*)) - 2 + 2*<o,(x)

(o^variable) = 2

w,(x +y) = o;,(x) + ^(y) + 5

<y,((— x)) = 2 + 2*o),(x)

c'>i(*©.y) =

U){(H{constant)) = 3

ca,(//(x)) = 5 + <y,(x)

W](jf *y) =
(o x(H {variable)) = 3

101

1. ACI-Complete Reduction Sets.

As pointed out in previous chapters, no prior E-completion theory or

E-completion program has been able to generate or verify E-complete reduction sets

for any equational theory which generates an infinite congruence class. The following

examples of ACI-complete reduction sets illustrate that the theory presented in

chapters 4 and 5 can be successfully implemented. Thus we demonstrate that the

E-completion problem has been solved for a large subclass of equational theories

which generate infinite congruence classes.

a. Example 1: Commutative groups. The program was given the additive

inverse axiom x + (— jc) = 0 as a critical pair equation along with the declaration that

+ is an ACI operator with identity 0. It generated a complete set of reductions as

follows:

Rl: u 4- v + (— v) -*■ u from input equation

R2: I f u # 0 then v -f- (— (w + u)) -I- u - * v + (— w) from Rl with itself

Rl deleted

R3: (— 0) -> 0 from Rl simplified

• R4: (— (— u)) -» u from Rl with itself

R5: u I (- ((- v) + w)) + (- (v + x)) -► m + (- (jc + w)) from R2 with itself

R6: u + (— ((— (v + w)) + j c)) + (— v) -» u + (- jc) + w from R2 with itself

(~ ((— u) + v)) -* (— v) + u from R2 with itself

R5, R6 deleted

R8: I f 0 and v # 0 then (— (v + «)) -» (— u) + (— v) from R5 simplified

102

R2, R7 deleted

• RIO: u + (— v) + v -* u from R3 with R9

R3, R9 deleted

Thus an ACI-complete set of reductions for free commutative groups consists of R4,

R8, and RIO. In all of our examples we will mark reductions retained in the final set

with •. Note that Rl was generated as an extended form of the additive inverse law

in order to satisfy coherence. Note also that many of the generated reductions have

been generated as conditional reductions in order to maintain termination of the

rewriting relation being used. Finally, we point out that Rl was removed from the

set of reductions early in the completion process, but then reappeared as RIO near

the end.

b. Example 2: Commutative rings with unit element. The program was given

the ACI-complete set of reductions for free commutative groups as an initial R, the

distributive axiom x*(y -F 2) = x*j> + x*z as a critical pair equation, and the

declarations that + and * are ACI operators with identities 0 and 1, respectively. No

inferences were attempted among the first three reductions. The program found a

complete set of reductions as follows:

R l: u + v + (— v) —► u given

• R2: (— (—«)) -» u given

• R3: I f 0 and v 0 then (— (« + v)) -* (— v) + (—w) given

• R4: I f u¥=0 and v ^ 0 and 1
then (u+v)*w -» (w*u) + (w*v) from input equation

R5: I f u A 1
then v + (w*u*x) + (w*u*0) -* v + (w*u*x) from condition on R4

R6: u + ((—v)*w) + ((— x)*w) + (w*v) + (w*y) +
(w*z) + (w+x) -*■ u + (w*z) + (w*y) from Rl with R4

R 9: u + (- v) + (— w) + v - » u + (— w) fro m R 2 s im p lif ie d

R7: u + (— (v*0)) + (— (v*w)) + (—x) + (- y)

103

« + (- M) + (- » + (-*)

R8: u * (—v)*0 —► u *0

• R9: I f u=£ 1 th e n u *0 —* 0

R5, R7, R8 deleted

RIO: u + ((— v)*w) + ((—x)*u>) + (H>*y) + (v* y) +
(w * x) -*■ u + (w*y)

R6 deleted

R l 1: u + ((— i>)*w) + (vv»*v) + (w»*x) + (w*y) -*•
u + (w*y) + (w*x)

RIO deleted

R12: u + ((— v)*w) + (w*v) + (w*x) -> u + (w*x)

R l , R l l deleted

R13: u + ((— v)*w) + (w*v) ~> u

R12 deleted

R id : u + (- ((-v)*w)) + (- (w*v)) + (- x) + (- y) -»
“ + (-y) + (~x)

R15: I f u ^ h 1 th e n v * (— l) * u - * v * (— u)

•RIO: l f u = £ \ th en (—v)+u -> (— (u*t>))

R13, R14, R15 deleted

• R17: u + (—v) + v -*■ u

from R3 with R5

from R l with R5

from R l with R5

from R6 with R9

from R6 with R9

from RIO simplified

from R9 with R12

from R3 with R13

from R13 with itself

from R13 with itself

from R13 simplified

The ACI-com plete set o f reductions consists o f R2, R3, R4, R9, R16, and R17.

c. Example 3: Boolean rings. Following the pattern o f Hsiang C//s85] we

examined the boolean ring defined by the axioms

A l : x ® 0 = x A 5 : x *x = x

A 2 :x ® y = y ® x A 6 : x * l = x

A3: (x® y)® z - x® (y® z) A7: (x«y)*z = x*(y*z)

A4: x® (— x) = 0 A8: x*(y®z) = x*j>®x*z

104

where © is the EXCLUSIVE OR operator, * is the AND operator, 0 is false, and I is

true. The theorems Tl: and T2: jr©jr = 0 are known consequences of the

axioms of the boolean ring. Hsiang has shown that a boolean algebra, for which

there is no complete set of reductions, can be imbedded in a boolean ring by rewriting

the formulae of the algebra in terms of only © and *. Thus one can obtain a

canonical rewriting system for boolean algebras via a canonical rewriting system for

boolean rings. In order to use the ACI-completion program on the boolean ring we

began with A4, A5, A8 and T2 as critical pair equations in CP, and implicitly

included Al, A2, A3, A6, A7 and Tl by declaring © and * to be ACI operators with

identities 0 and 1, respectively. The program found a complete set of reductions via

the sequence:

Rl: I f uj= 0 and v=^0 then (— (v©u)) -> (— v)©(— u)

• R2: I f 0 and v # 0 and w i=- 1

given

then w*(v@u) (w*v)©(w*w) given

R3: I f ui= 1 then «*(— v) —> (— (u*v)) given

R4: (_ (_ „)) _ u given

R5: n©(—v)©v -v u given

• R6: I f uj; 0 then u*0 -» 0 given

• R7: I f 1 then v*u*u —» v*u from input equation

• R8: I f uj= 0 then v©u©w -> v from input equation

• R9: (— u) -*■ u from R3 with R7

Rl, R3, R4, R5 deleted

The ACI-complete set of reductions for a boolean ring consists of R2, R6, R7, R8,

and R9. This set is very similar to the AC-complete set found by Hsiang.

105

d. Example 4: Group homomorphisms. The following gives a derivation of an

ACI-complete set of reductions for a homomorphism from one abelian group into

another. We began by placing in R the complete set of reductions for an abelian

group over the operators (+ , 0, —) and the complete set of reductions for an abelian

group over the operators (®, O', ©), where + and ® arc declared to be ACI

operators with identities 0 and O', respectively. We then placed the additional

defining equation H{x +y) = H(x)(&H(y) in CP and executed the program. No

inferences were attempted among the first six reductions. A complete set was found

as follows:

• Rl: u + v + (—v) -* u given

• R2: (— (—u)) - u given

• R3: I f u 0 and v # 0 then (— (u -f v)) -» (— u) + (—v) given

• R4: u©v©(©v) -*• u given

• R5: (©(©«)) -> u given

• R6: I f u=£ O' and v ^ 0' then (©(v©u)) -» (©v)®(©u) given

• R7: I f uj= 0 and v =£ 0 then H{u + v) -* //(u)©//(v) from input equation

R8: u@//(O)0//(v) -♦ u@H{y) from condition on R7

R9: «©(©/7(0))©(©//(v))@(©w)©(©x)
u©(©//(v))©(©x)@(©w) from R6 with R8

RIO: «©(©//(0))®//(v) u®H{v) from R4 with R8

• R ll: H(0) -v 0'

R8, R9, R10 deleted

from R4 with R8

R12: u@H{(-v))®H{(-w))@H(w)®H(x)@H(y)@
H(v) -» uSH(y)@H(x) from Rl with R7

R13: «© //((-»))© //((-w))®//(w)®//(x)®//(v) -
u®II(x)

R12 deleted

from Rl 1 with R12

R14: u©//((-v))©//(v)©//(w)©f/(jc) - u®H(x)®H(w) from Rl 1 with R12

R 13 d e le te d

106

R15: « © //((-v))©//(w)©//(v) -♦ u @ I I (w) fro m R 1 3 s im p lif ie d

R14 deleted

R16: «©//((-v))@//(v) -♦ u from Rl 1 with R15

R15 deleted

R17: «© (© //((- v))) © (© / / (v)) ® (© w) © (© jc) - >

u$(©.t)©(©iv)

• R18: //((-«)) -> (©//(«))

from R6 with R16

from R4 with R16

R16, R17 deleted

The ACI-complete set of reductions for a group homomorphism is thus R1-R7, R ll,

and R18.

e. Example 5: Ring homomorphisms. Following the pattern of [F.S82], we

also generated a complete set of reductions for a homomorphism from one

commutative ring with identity into another. The setup for this problem was very

much like the previous example. We gave the program the complete set of reductions

for each of the rings (+,0, — , *ji) and (©, O', © , © , 1') where + , © and © were

declared to be ACI operators with identities 0,1,0', and 1', respectively. The

additional axioms H(x +y) = H(x)(&H(y) and H(x*y) = H(x)® H(y) were given as

equations. No inferences were attempted among the first twelve reductions. The

derivation of the complete set is as follows:

• R 1: u + (- v) 4- v -*• u given

• R2: (— (—u)) -* u given

• R3: I f 0 and v^O then (— (u + v)) -> (—w) + (—v) given

• R4: I f 1 and v ^ 0 and w ¥= 0
then u*(v + w) -» («*v) + (u*w) given

• R5: I f uj=\ then u*0 -> 0 given

• R6: I f u 4= 1 then u*(—v) -* (— («*v)) given

• R7: «©(©v)©v -> u given

107

• R8: (©(©«)) - u given

• R9: I f O' and v=£0' then (©(«©v)) -> (©u)©(©v) given

• RIO: I f u¥= V and v =£0' and w ^ O'
then u © (r ® w) -> (« © v) ® (« © w) given

•R ll: I f u ± V then u®0' -> 0' given

•R12: I f ui=Y then «©(©v) -* (©(«©v)) given

• R13: I f u ¥= 1 and 1 then H(u*v) —» H(u)®H(v) from input equation

• R14: « © / / (l) © / / (v) - u®H(v) from condition on R13

• R15: I f u i=- 0 and v^O then H(u+v) -» II(u)®H(v) from input equation

R16: «©//(0)©//(y) - «©//(v) from condition on R15

R17: u®H(v)®H(w)®H{0) -> u®H{0) from R5 with R13

R18: u®H((—v))®H{w)®H(x) -* u®H((— (jc* w * v))) from R6 with R13

R19: u@{H{v)®H{w))®H{0) -+ u®{H(v)®H(w)) from R13 with R16

R20: u®(H{u)®II(w)®H(x))®H{0)
a ® (II (v) © //(w) © //(x)) from R13 with R19

R21: w © (/ / (0) © v) @ (f / (w) © v) © (v © j c) © (v © y) -*
u®(H(w)®v)®(v®y)®(v®x)

R16 deleted

from R10 with R16

R22: w®(//(v)©//(w)@x)©(//(0)©jr)©(j:©^)©(jr©z) -»
u©(//(v)©//(w)©x)©(;c©z)©(;t©j>)

R19 deleted

from R10 with R19

R23: «@(//(0)©v)©(//(w)©v)©(v©jr) ->
u©(//(w)©v)©(v©;c)

R21 deleted

from R ll with R21

R24: n®(//(0)©v)©(//(w)©v) u®{H(w)®v)

R23 deleted

from Rl 1 with R23

R25: m © (© (/ / (0) © v)) © (© (/ / (i v) © v)) -> «©(©(//(w)©v)) from R12 with R24

R26: « © (/ / (v) © / / (w) © ^) © (/ / (0) © jc) - ►

u®(H(v)®H(w)®x) from R13 with R24

R22 deleted

R27: u©(tf(0)©//(v)©w)©(//(v)©w) -> u@(//(v)©w) from R14 with R24

fro m R 7 w ith R 2 4

108

• R29: H{0) -> 0'

R17, R20, R24, R25, R26, R27, R28 deleted

R30: «©//((-v))©//((-w))®//(w)©//(x)©//(»®
7/(v) -+ « © / / (» © //(x)

R31: w@//((-v))©//((-w))®//(w)®//(x)©//(v)
u@H(x)

R 3 0 d e l e t e d

R32: u@H((-v))®H(v)@H(w)@H(x) -+ u@H(x)®H(w)

R31 deleted

R 3 3 : u®H((-v))®H{w)®H{v) -+ u@H(w)

R 3 2 d e l e t e d

R34: u®H{(-v))®//(v) u

R 3 3 d e l e t e d

R35: u®//((-(v©w)))®(//(v)@//(w)) -+ u

R36: w®(//((—v))©w)®(//(v)©w)©(u'©x)©(w©j') -»
u®(w©y)©(w©x)

R 3 4 d e l e t e d

R37: «©//((- (v*w*x)))@(H(v)®H(w)®H(x)) -+ u

R38: w®(//((- (v*w)))©x)®(//(v)©//(w)©x)©(x©j/)©
(x©z) -> u®(x©z)©(x©_y)

R35 deleted

R39: u®(//((—v))©w)®(//(v)©M')®(w©x) -* u®(w©x)

R 3 6 d e l e t e d

R40: «/©(//((-v))©w)®(//(v)©w) -> u

R39 deleted

R41: «©(© («((-v))@w))©(©(//(v)@w)) - u

R42: u®(//((— (v*w)))©x)®(//(v)©//(w)©x) -» u

R 28: « 0 (© / / (O)) ® / / (v) u ® H (v)

from R7 with R24

from Rl with R15

from R29 with R30

from R29 with R30

from R31 simplified

from R29 with R33

from R13 with R34

from RIO with R34

from R13 with R35

from RIO with R35

from Rl 1 with R36

from Rl 1 with R39

from R12 with R40

from R13 with R40

R 3 8 d e le te d

109

• R44: //((-«)) -> (©//(m)) from R7 with R40

R18, R37, R40, R41, R42, R43 deleted

The ACI-complete set of reductions for the ring homomorphism problem consists of

the 17 reductions R1-R15, R29, and R44. Note that the AC-complete set for this

problem, as generated by previous E-completion procedures, contains 26 reductions.

R 43: « © (/ / ((- l)) © / / (v) © w) © (/ / (v) © w) -► u fro m R 1 4 w ith R 4 0

f. Example 6: Distributive lattices. For our final example of the generation of

an ACI-complete set of reductions we consider the example of a distributive lattice

with identities for the lattice meet and join operators. For this example, we started

the program with critical pair equations representing the absorption laws for the

lattice meet and join operators, and the distributive law which distributes a meet

across a join. The meet operator fl was declared to be an ACI operator with identity

U. The join operator U was declared to be an ACI operator with identity 0. The

program found an ACI-complete set as follows:

Rl: I f (u U or v + 0) and (u # 0 or v=^U)

then w fl (u U v) n u -* wflw

R2: I f (u=£ 4> or vj=U) and (u=£ U or v # 0)
then wU(uflv)Uu-» wUw

• R3: I f u=£ U and vj=U and w ^ 1
then (u fl v) U w -» (u U w) fl (v U w)

R2 deleted

R4: I f (u ^ U or v # 0 or w ± 0)
and (m ^ 0 or v ^ U or w ^ 0)
then x fl (u U w U w) fl (u U w U v) -* x fl (« U w)

Rl deleted

• R5: I f uj= 0 then vUuUu -> vUu

R4 deleted

from input equation

from input equation

from input equation

from R2 simplified

from R4 with itself

• R6: I f U or v ^ 0) and (u =£ 0 or v # U)
then w fl (u U v) fl u -* w(lu from R4 simplified

110

The ACI-complete set consists of the three reductions R3, R5, and R6. As seen in

previous examples, one of the reductions which is in the final set is deleted near the

beginning of the process and then reappears at the end. Because of this, we have

found that ACI-completion problems sometimes run more efficiently if we do not

keep R simplified at all points during the completion process. We can then perform a

simplification on the final result.

2. Demonstration of Generality.

As pointed out in the last section of Chapter 5, the ACI-completion procedure

presented is not only able to handle ACI equational theories, but is also able to

handle empty, C, and AC equational theories as well. In order to demonstrate this

point we now present examples of completion relative to one member of each of these

classes of equational theories.

a. Example 7: Groups using standard completion. We were able to duplicate

the group example from the original Knuth-Bendix paper [0 7 0] . For this example

we used the weighting function <o2 which is defined by:

co2(constant) = 3 a>2(variable) = 3

<*>2(x*y) = (cOjM - l)*w2l» &>j((x*v)-')= 2 + 5*(oj2(.r*y) + 5)

a>2(j r ‘) = 2 + 2 * co2(x)

This change of weighting function is necessary because the <u, weighting function

gives the same weight to both sides of the associative law, which must be used as a

rewrite rule in this problem. The weighting function was the only part of the

program which was changed for this problem. The multiplication operator * was

declared to be an operator with no associated equational theory. The following three

group axioms were placed in CP:

I l l

Al: e*x = x left identity

A2: jc_1*jc = e left inverse

A3: (x*y)*z = x*(y*z) associativity

The complete set of reductions modulo an empty equational theory was generated as

follows:

• Rl: e*u —► u from input equation

• R2: ir'*w -> e from input equation

• R3: (u*v)*w —* u*(v*w) from input equation

• R4: tr'*(M*v) -» v from R2 with R3

R5: e~l*u -* u from Rl with R4

R6: (w*v)_1*(u*(v*w)) ->• w from R3 with R4

R7: (e_1)_1*w -> u from R4 with R5

R8: (i r lY l*e —> u from R2 with R4

R9: (u ') ‘*v u*v

R8 deleted

from R3 with R8

• RIO: u*e -* u

R7 deleted

from R8 simplified

• Rl 1: e_1 —> e

R5 deleted

from R2 with RIO

• R12: (tr1)1 u

R9 deleted

from R9 with RIO

• R13: u*ir1 -> e from R2 with R12

• R14: u*(u_1*v) —> v from R3 with R13

R15: u*(v*(u*v) ■') -> e from R3 with R13

R16: w*(v*((u*v)_l*w)) —> w from R3 with R14

R17: u*(v*(w*(u*(v*w’))-1)) -» e from R3 with R15

R18: u*(u*v)_l -♦ v_l from R4 with R15

R 1 5 d e le te d

from R3 with R18

112

R19: «*(v*(w*i/))~‘ -» (v*w)_I

R17 deleted

R20: -♦ v~'*w

R16 deleted

• R21: -+■ ir'*v-'

R6, R18, R19, R20 deleted

from R3 with R18

from R4 with R18

The complete set of reductions consists of the ten reductions Rl, R2 , R3, R4.

R10-R14, and R21. This is the same result found by Knuth and Bendix [0 7 0] .

b. Example 8: Latticoids using C-completion. For this example we generate a

C-complete reduction set for a non-associative latticoid [5/67]]. This structure is a

like an ordinary lattice, except that it has no associative property. It is relatively hard

to come up with a structure which will yield a C-complete set of reductions. We have

discovered that any structure with an associative or distributive law will cause the loss

of the finite termination property in the presence of commutativity. For this example

we gave the program the absorption laws for the meet and join operators, n and U ,

respectively. Both operators were declared to be commutative. The C-complete set

was derived via the sequence:

• Rl: (u U v) f) u -» u from input equation

• R2: (u n v) U u -» u from input equation

• R3: u U u -+ u from Rl with R2

• R4: u f| u -*■ u from R1 with R2

• R5: («Uv)Uw-+ i/Uv from Rl with R2

• R6: (u fl v) fl « -* wflv from Rl with R2

113

The C-compIctc reduction set consists of all six of the reductions generated. To our

knowledge, this is the first time a complete set of reductions has been found for this

particular structure.

c. Example 9: Commutative groups using AC-completion. As a final example

we have duplicated the generation of an AC-complete set of reductions for

commutative groups as is presented in [PS813. We declared -f to be an AC

operator and defined CP to be the equations El: j c + 0 = x, and E2: x + (— x) = 0.

The program formed reductions from these equations and completed the reduction set

as follows:

• Rl: m + 0 -» u

• R2: u + (— v) + v —► u

• R3: (- u) + u -► 0

• R4: (-0) -> 0

• R5: (- (—«)) - u

R6: u + (— (v + w)) + w -» u + (— v)

R7: (— (u + v)) + v -► (— u)

• R8: (- (u + v)) -> (-u) + (— v)

R6, R7 deleted

from input equation

from input equation

from input equation

from Rl with R3

from R2 with itself

from R2 with itself

from R2 with itself

from R2 with R7

The AC-completc set consists of R1-R5 and R8. This is the same result found by

Peterson and Stickel. Note that R2 and R3 both came from the same input equation,

E2. R3 comes from E2 directly and R2 is the extended form of E2 which is necessary

for coherence.

114

3. AC I-Completion versus AC-Completion.

We are now able to perform a side by side comparison of both ACI-completion

and AC-completion runs for the same algebraic structures. To generate the data for

these comparisons we ran our E-completion procedure on the same algebraic

structures for which wc generated ACI-complete reduction sets in Examples 1

through 6. For each problem we changed the appropriate operators from ACI to AC

and added the necessary equations to handle the identity properties as rewrite rules.

a. Step Size of Deductions.

It is interesting to compare the number of steps for a derivation of an

ACI-complete reduction set to the number of steps for a derivation of an

AC-complete reduction set for the same algebraic structure. Table I compares the

number of inferences and related steps for our example problems. The uniformly

smaller number of inferences required for ACI-completion still took us to essentially

the same point as the corresponding AC-completion derivation. This clearly indicates

that more distance was covered by each step, on the average. The same concept is

also reflected in the smaller numbers of retained reductions. Since there are always

fewer reductions in an ACI-complete set, each reduction must be able to do more, on

the average, towards providing completeness. The consistently lower numbers seen in

Table I reflect that the branching factor of the search space is indeed smaller when

more is built into a single step. This is the result that we had hoped to see.

Unfortunately, however, this does not automatically translate into a gain in efficiency.

We address this issue in the following section.

115

Table I. COMPARISON OF NUMBER OF INFERENCES, AC VERSUS ACI

Example
Problem

Inferences
Made

AC / ACI

Matches
Attempted
AC / ACI

Reductions
Applied

AC / ACI

Reductions
Added

AC / ACI

Reductions
Retained

AC / ACI
1 28 14 6588 4284 231 138 8 10 6 3
2 243 31 256256 71368 1668 1735 46 17 10 6
3 39 13 9401 2517 143 41 15 9 9 5
4 105 36 27852 14310 214 77 23 18 15 9
5 555 148 443983 309378 866 1193 62 44 26 17
6 68 8 71998 20377 892 1110 17 6 11 3

b. Efficiency.

Even though an ACI-completion run takes fewer logical steps than its

AC-completion counterpart, the run times shown in Table II indicate that this does

not directly give an increase in efficiency. For most of the problems the

AC-completion procedure runs in less time. This is especially true of the larger

problems, where we had hoped that the exact opposite would happen. Examining the

time spent in computing terminal forms we see that our ACI-completion procedure

generally spent more time performing fewer attempted matches. We attribute this to

the fact that ACI-matching is slower than AC-matching. We also see that, for the

larger problems, the ACI-completion procedure spent considerably more time in the

formation of critical pairs. Furthermore, only part of that difference can be

attributed to ACI-unification, as reflected by the last column of Table II.

Table III gives some insight into what is going on in the formation of critical

pairs. It seems that the AC-complction process generates far less redundant critical

pairs. For the larger problems we often see that 75% of the critical pairs generated

116

Table II. COMPARISON OF TIMES, AC VERSUS ACI

Run Times (in seconds)
Example
Problem

Total
Time

AC / ACI

Terminal
Form

AC / ACI

Critical
Pair

AC / ACI

Unifi­
cation

AC / ACI
1 53.9 56.2 25.9 38.8 17.6 8.5 12.6 4.0
2 1528 3044 1084 2017 116 737 82 316
3 51.7 40.1 23.6 27.8 6.4 2.2 2.4 1.3
4 141 144 79 67 30 43 26 19
5 2382 2872 1596 2114 116 226 78 92
6 414 1627 293 1142 68 435 35 245

by AC-completion are kept after the symmetry test. For ACI-completion, however,

the program often spends a great deal of time generating a very large number of

critical pairs, only to expend more time eliminating them via the symmetry test. For

example, Table III shows that for the commutative ring problem of Example 2, 1381

critical pairs were computed yet only 224, or 16%, survived the symmetry test. The

other 84% were redundant. This suggests that we may make a real improvement in

this portion of the run time if we are able to directly generate only the asymmetric

critical pairs. This issue is addressed in [AYa88],

117

Table 111. COMPARISON OF NUMBER OF CRITICAL PAIRS, AC VERSUS

ACI

Example
Problem

Critical
Pairs

AC /ACI

Asymmetric
Pairs

AC / ACI

Percent
Retained

AC / ACI
1 132 63 93 38 70 60
2 625 1381 518 224 83 16
3 79 12 59 11 75 92
4 96 202 74 38 77 19
5 410 837 309 246 75 29
6 385 891 275 214 71 24

118

VII. CONCLUSION

A. SUMMARY

We have demonstrated that the real problem in developing an E-completion

procedure relative to an equational theory which generates infinite congruence classes

is not primarily a problem of the si/c of the congruence classes, as had been

suggested by previous researchers. We have shown that the real problem is that of
R/E

establishing the finite termination of the -> rewriting relation. We have developed a

method which solves this termination problem for the class of ACI equational

theories, proving its correctness and demonstrating its feasibility by way of our

implemented computer program.

We have developed and implemented a theory of ACI-completion around our

conditional rewriting relation, demonstrating that this approach is general enough to

handle not only ACI equational theories, but equational theories addressed by earlier

E-complction procedures as well. The new theory presented is in many ways simpler

than previous theories, avoiding complicated reduction protection schemes during the

E-completion process and potentially avoiding the use of extended reductions

altogether.

As we had hoped, the new ACI-completion procedure takes fewer inferences to

find a complete set of reductions than does its AC counterpart. It also retains fewer

reductions in the final complete set. Contrary to our intuition, however, this

produces a degradation, not a gain, in efficiency for the larger problems. It seems

that we have lessened the number of inferences required to do the job, but increased

the amount of work to perform a single inference, to the extent that any gains arc

more than lost.

119

The two changes that would be needed to remedy this problem arc certainly not

easy to achieve. First, it will take ACI-matching and ACI-unification routines which

are nearly equal in efficiency to their AC counterparts. This seems unlikely since the

ACI problems seem inherently to involve more work. For example, when two terms

have different root AC operators, the AC-matching routine can stop immediately

with no match. When two terms have different root ACI operators, however, there

may still be several paths which must be followed before the ACI-matching routine

finds that there is no match. Secondly, the hope for an algorithm which will directly

generate only the asymmetric critical pairs is a dim one because it will require an

ACI-unification algorithm which generates only asymmetric unifiers. Such an

algorithm would immediately give a minimal ACI-unification algorithm in the general

case of mixed operators. This last problem has been an outstanding open problem

for some time.

What all of this may be telling us is that for the problem of deciding how many

axioms we should build into the equational theory for E-completion systems, the old

saying "If some is good, then more is better." does not necessarily hold. Perhaps we

are seeing that E should contain only the troublesome axioms which cannot be placed

in R because they cause either a loss of termination, like commutativity, or a loss of

generality, like associativity. Given that an axiom can be placed in cither E or R

without creating problems, this research would indicate that it should be placed in R.

An intuitive argument for this conclusion is that when an equational axiom is placed

in R it is limited to use in only one direction. When it is placed in E it is undirected,

and thus less constrained in its usage. It is impossible to know whether or not these

conclusions are valid until other similar problems have been studied.

120

B. FURTHER RESEARCH

As will) most research projects we have generated more questions than answers,

leaving much to be addressed in the future. We consider the following to be the most

interesting questions to be addressed:

(1) Can the methodology developed here to deal with one class of equational theories

which generate infinite congruence classes be applied to other such classes? Can

we handle equational theories containing idempotency and equipotency laws in a

similar manner? We conjecture that this can be done. Better yet, can this

approach be generalized further so that we may have a general E-completion

procedure for equational theories, with no restrictions on the size of their

generated congruence classes?

(2) Can the concept of using conditions to achieve finite termination be applied in

other ways? For example, the abelian group problem might be solvable via a

C-completion procedure, but the associative law leads to a loss of finite

termination in the presence of the commutativity law. We believe it may be

possible to attack this problem by generalizing our conditions, which are

conditions on variables in reductions, to include conditions on operators in

reductions.

(3) Can the theories of E-completion and completion for conditional reductions be

completely blended together? We have demonstrated for a limited case that they

can. It seems likely that they can in general. As part of this problem one must

also address the issue of how we will mix both syntactic conditions, such as wc

have used for finite termination, and semantic conditions, such as we find in the

reduction I f x ¥= 0 then jr*jr* -> 1.

(4) Can we improve the efficiency of the ACI-completion procedure presented?

Obviously the ACI-matching and ACI-unification algorithms are good places to

start. We would especially benefit from a minimal ACI-unification algorithm for

121

the general case of mixed operators. Better still would be an algorithm which

efficiently generates only those unifiers which lead to asymmetric critical pairs,

avoiding the expense of generating pairs which are also costly to discard.

Another potential improvement would be the development of an ACI-unification

algorithm which exploits the conditions on the reductions in much the same

manner as the ACI-matching algorithm described. We also believe that it may be

possible to build critical pairs which contain no extraneous variables, thus saving

the cost of post-processing via identity substitution to eliminate them. Finally,

wc see many opportunities for the exploitation of parallelism in the E-matching,

E-unification, and E-completion processes. It may be possible, for example, to

develop a parallel ACI-matching routine which is as efficient as its AC

counterpart.

Each of these issues should be addressed.

122

REFERENCES

C5/67”| BirkhofF, G. (1967). Lattice Theory, American Mathematical Society
Colloquium Publications, volume 25, American Mathematical Society,
Providence, Rl.

C5/^86] Bergstra, J., and Klop, J. (1986). "Conditional rewrite rules: confluence and
termination." Journal of Computer and System Sciences, volume 32, pp.
323-362.

C5P87] Bachmair, L. and Plaisted, N. (1987). "Completion for rewriting modulo a
congruence." Proceedings of the Conference on Rewriting Techniques
and Applications, Bordeaux, France, P. Lescannc, ed., Lecture Notes in
Computer Science, volume 256, Springer-Verlag, Berlin, pp. 192-203.

[/h/83] Bundy, A. (1983). "Rewrite rules." The Computer Modelling of
Mathematical Reasoning, Academic Press, pp. 115-131.

C5m85[] Buchberger, B. (1985). "Basic features and development of the
critical-pair/completion procedure." Lecture Notes in Computer Science
volume 202, pp. 1-45.

[Fa84] Fages, F. (1984). "Associative-Commutative Unification." Proceedings of
the Seventh International Conference on Automated Deduction, R.
Shostak, ed., Lecture Notes in Computer Science, volume 170,
Springer-Verlag, Berlin, pp. 194-208.

LFC84] Forgaard, R., and Guttag, J. V. (1984). "A term rewriting system generator
with failure-resistant Knuth-Bendix." Technical Report, MIT Laboratory
for Computer Science, Massachussets Institute of Technology,
Cambridge, MA.

C/Ls85] Hsiang, J. (1985). "Refutational theorem proving using term-rewriting
systems." Artificial Intelligence, volume 25, pp. 255-300.

[//«78]] Huct, G. (1978). "An algorithm to generate the basis of solutions to
homogeneous linear diophantine equations." Information Processing
Letters, volume 7, pp. 144-147.

[//u80] Hullot, J. (1980). "A catalogue of canonical term rewriting systems."
Technical Report CSL-113, SRI International.

[//«81] Huet, G. (1981). "A complete proof of correctness of the Knuth-Bendix
completion algorithm." Journal o f Computers and System Science,
volume 23, pp. 11-21.

[7A^86] Jouannaud, J.-P., and Kirchner, H. (1986). "Completion of a set of rules
modulo a set of equations." SIAM Journal of Computing, volume 15, pp.
1155-1194.

123

[KB10~\ Knuth, D., and Bendix, P. (1970). "Simple word problems in universal
algebras." Computational Problems in Abstract Algebras, J. Leech, ed.,
Pergamon Press, Oxford, England, pp. 263-297.

CA7?87] Kaplan, S., and Remy, J. L. (1987). "Completion algorithms for conditional
rewriting systems." Preliminary Proceedings of the Colloquium on the
Resolution of Equations in Algebraic Structures. Lakeway, TX.

[La79]] Lankford, D.S. (1979). "On proving term rewriting systems are noetherian."
Technical Report, Mathematics Department, Louisiana Technical
University, Ruston, LA.

[Ma88] Mayfield, B. (to appear 1988). "The role of term symmetry in equational
unification and completion procedures." Ph.D. dissertation, University of
Missouri-Rolla, Rolla, MO.

CMAr82l Musser, D., and Kapur, D. (1982). "Rewrite rule theory and abstract data
type analysis." Lecture Notes in Computer Science, volume 144, pp.
77-83.

C<9L84] Overbeek, R., and Lusk, E. (1984). The Automated Reasoning System ITP -
User's Manual. Technical Report ANL-84-27, Argonne National
Laboratory.

[P587] Peterson, G., Baird, T., Mayfield, B., Smith, B., and Wilkerson, R. (1987).
"On testing a set of reductions for completeness modulo an equational
theory." Unpublished manuscript.

C'Pe88] Peterson, G. (1988). Private communication.

CPS81] Peterson, G., and Stickel, M. (1981) "Complete sets of reductions for some
equational theories." Journal of the Association for Computing Machinery,
volume 28, pp. 233-264.

TPS82] Peterson, G., and Stickel, M. (1982) "Complete systems of reductions using
associative and/or commutative unification." Technical Note 269, SRI
International.

C/?o65] Robinson, J.A. (1965). "A machine-oriented logic based on the resolution
principle." Journal of the Association for Computing Machinery, volume
12, pp. 23-41.

[S/68] Sibert, E. (1968). "A machine-oriented logic incorporating the equality
relation." Machine Intelligence, volume 4, Elsevier, pp. 103-131.

CS/79] Siekmann, J. (1979). "Matching under commutativity" in Symbolic and
Algebraic Computation, E. Ng, ed., Springer-Verlag, Berlin, West
Germany, pp. 531-545.

[Sr81] Stickel, M. (1981). "A Unification algorithm for associative-commutative
functions." Journal of the Association for Computing Machinery, volume
28, pp. 423-434.

124

C-Sf84] Steele, G. (1984). Common LISP: The Language, Digital Press.

_TM15~S Tremblay, J., and Manohar, R. (1975). Discrete Mathematical Structures
with Applications to Computer Science, McGraw-Hill, New York, NY.

[W787] Wilkerson, R. (1987). Private communication.

[1*067] Wos, L., et al. (1967). "The concept of demodulation in theorem proving."
Journal of the Association for Computing Machinery, volume 14, pp.
698-709.

[J-K0883 Wos, L. (1988). Automated Reasoning: 33 Basic Research Problems, Prentice
Hall, Englewood Cliffs, NJ.

fltVWJjWos, L, and Robinson, G. (1969). "Paramodulation and theorem-proving
in first order logic with equality." Machine Intelligence, volume 4,
Elsevier, pp. 135-151.

[Fc85] Yellick, K. (1985). "Combining unification algorithms for confined regular
equational theories." Conference on Rewriting Techniques and
Applications. J. Jouannaud, ed., Lecture Notes in Computer Science,
volume 202, Springer-Verlag, Berlin, West Germany, pp. 365-380.

125

VITA

Timothy Byron Baird was born on July 8, 1956 at Fort Leonard Wood,

Missouri. He graduated from Rolla High School in Rolla, Missouri in May 1974.

He received his undergraduate education at Harding University in Searcy,

Arkansas. While completing his Bachelor's degree he worked as a programmer for

Harding's Administrative Computer Center from May 1977 through May 1979. In

May 1979 he received the Bachelor of Arts degree in mathematics.

From August 1979 to May 1981 he was a graduate student and teaching

assistant in the Department of Computer Science at the University of Missouri-Rolla

in Rolla, Missouri. He was awarded the Master of Science degree in computer

science in May 1981.

From June 1981 until May 1985 he taught computer science at Harding

University, serving as an assistant professor. While teaching at Harding he also

served three years as Director of Software Support for the Academic Computer

Center.

Since June 1985 he has been on leave from Harding University and has been a

graduate student at the University of Missouri-Rolla, pursuing the Ph. D. degree in

computer science.

He has been married to Debra Elliott Baird since August 1977. They have three

children: Steven, Daniel, and David.

	Complete sets of reductions modulo A class of equational theories which generate infinite congruence classes
	Recommended Citation

	tmp.1629916725.pdf.ikL_S

