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ABSTRACT

In this paper we present a generalization of the Knuth-Bendix procedure for 

generating a complete set of reductions modulo an equational theory. Previous such 

completion procedures have been restricted to equational theories which generate 

finite congruence classes. The distinguishing feature of this work is that we are able 

to generate complete sets of reductions for some equational theories which generate 

infinite congruence classes. In particular, we are able to handle the class of 

equational theories which contain the associative, commutative, and identity laws for 

one or more operators.

We first generalize the notion of rewriting modulo an equational theory to 

include a special form of conditional reduction. We are able to show that this 

conditional rewriting relation restores the finite termination property which is often 

lost when rewriting in the presence of infinite congruence classes. We then develop 

Church-Rosser tests based on the conditional rewriting relation and set forth a 

completion procedure incorporating these tests. Finally, we describe a computer 

program which implements the theory and give the results of several experiments 

using the program.

Key Words: complete sets of reductions, Knuth-Bendix procedure, E-completion, 

E-unification, conditional reductions, finite termination property, Church-Rosser

property.
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I. INTRODUCTION

We begin by giving a concise, though somewhat informal description of the 

problem addressed by this research. More formal and complete discussions of each 

essential element will be given in later chapters. After setting forth the specific 

purpose of this research we discuss why this problem is worthy of our attention. 

Finally, we preview the structure and content of the remainder of the chapters.

A. OBJECTIVE

Briefly stated, a complete set of reductions for a given algebraic system is 

defined such that any two terms which are congruent under the axioms of the 

algebraic system must have identical forms after the set of reductions has been 

applied exhaustively to each. Whenever a complete set of reductions can be found 

for a given algebraic system it eliminates the unmanageable search space often 

encountered in equational theorem proving, providing a very efficient tool for solving 

equality problems relative to the axioms of the system.

Knuth and Bendix [ 0 7 0 ]  first established two necessary and sufficient 

conditions for a set of reductions to be complete. These conditions have come to be 

called the finite termination property and the confluence property. Based on these 

conditions they were able to devise both an algorithm for testing the completeness of 

a set of reductions and a procedure which can take the equational axioms of an 

algebraic system and possibly generate a complete set of reductions. We will refer to 

their procedure as the Knuth-Bendix completion procedure and to all similar 

procedures as completion procedures. The Knuth-Bendix procedure was able to 

generate complete sets of reductions for a limited number of algebraic systems, most 

notably free groups. Early completion procedures, however, were not able to handle 

any algebraic system whose definition included a commutativity axiom because
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inclusion of these axioms in the reduction set resulted in the loss of the finite 

termination property.

Peterson and Stickel were able to overcome this limitation of

completion procedures by splitting the equational axioms of an algebraic system into 

two sets: (1) equations which are incorporated into the pattern matching process 

used to apply reductions, and (2) equations which form the basis of a set of 

reductions to be completed. Their approach requires not only the finite termination 

and confluence properties, but also a linearity property for equations in the first set 

and a special compatibility property between the reductions and the first set of 

equations. Besides these properties it is necessary to have a finite and complete 

unification algorithm for the equations which are incorporated into the pattern 

matching process. Peterson and Stickel were able to generate complete sets of 

reductions for algebraic systems which included both associativity and commutativity 

axioms, building these axioms into the pattern matching facility via 

associative/commutative unification. Such completion procedures have come to be 

called E-completion procedures, where E represents the set of equations incorporated 

into the pattern matching process. Using this E-completion procedure, Peterson and 

Stickel were able to generate complete sets of reductions for algebraic systems such as 

commutative groups, commutative rings, and distributive lattices.

Jouannaud and Kirchner [JK863 generalized the theory of E-completion 

sufficiently to account for all previous completion and E-completion theory. They 

were able to replace the compatibility requirement of Peterson and Stickel with a 

more general property which they call coherence and to remove the linearity 

requirement for E in favor of the more general requirement that the congruence 

classes generated by E must be finite. In the introduction to their paper, Jouannaud 

and Kirchner state:
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Our proof holds for the particular case of Peterson and Stickel's rewriting 
relation, without any linearity hypothesis on rules or equations. However, 
the case of infinite congruence classes remains the last open problem of the 
theory of equational term rewriting systems.

They also return to this point in their conclusion, stating:

... the last open problem of infinite congruence classes should be addressed, 
since many interesting cases such as equipotency and identity fall in this 
category.

It is the goal of this research to attack the problem of E-completion when the 

set E generates infinite congruence classes. Rather than attempting to solve this 

problem for all equational theories which generate infinite congruence classes, 

however, we address only the class of equational theories which contain the 

associative, commutative, and identity laws for one or more operators. We will call 

these ACI equational theories and the corresponding E-completion process we will 

call ACI-completion. It is the presence of the identity law in these equational 

theories which causes them to generate infinite congruence classes and thus fall 

outside the realm of previous E-completion theory. In the chapters that follow we 

will develop, implement, and experiment with a new theory for E-completion which 

handles the class of ACI equational theories.

Others have addressed the problem of infinite E-congruence classes. Bachmair 

and Plaisted have generalized the theory of Jouannaud and Kirchner so as to

have apparently removed the finite congruence class requirement. They do, however, 

still maintain the other requirements of Jouannaud and Kirchner, including the finite 

termination property. We will demonstrate that the finite termination property 

needed in their model is usually lost when the equational theory generates infinite 

congruence classes, leaving the real issue of an implementable E-completion 

procedure in the presence of infinite E-congruence classes as an open problem.
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B. MOTIVATION

Why do we want to develop an E-completion procedure for ACI equational 

theories? Not only is this an interesting and challenging open problem, we see three 

benefits which may be realized from the solution: (1) increased step size for equality 

inferences, (2) increased understanding of the essential elements of E-completion 

procedures, and (3) a pattern matching process which is more closely akin to the 

process used by a human mathematician. We now discuss each of these benefits in 

turn.

It is generally recognized that one of the major problems in the area of 

automated reasoning is the development of inference rules which take deduction steps 

of the appropriate size [WoS&Jl. The resolution principle though

theoretically complete, suffers greatly when dealing with equality because of a step 

size which is too small. Ideally, we would like to increase step size without sacrificing 

completeness. Demodulation \_W06l~], paramodulation \_WR69~\, and complete sets 

of reductions have all been developed to address this problem.

From the development of previous E-complction procedures it is easy to observe 

that the step size of an equality inference becomes larger whenever the congruence 

classes generated by E become larger. When the set E is empty each inference step 

clashes two individual clauses to produce an individual clause. When E generates 

congruence classes, however, each inference step clashes all of the clauses in one 

congruence class with all of the clauses in another congruence class in a single 

operation, producing a resultant clause which stands by itself in place of all of the 

clauses in its congruence class. Consequently, we find fewer inferences arc needed to 

cover the same ground and fewer reductions are needed to constitute a complete set 

of reductions for a given algebraic system.



5

Because each inference is accomplishing more by itself and fewer reductions are 

needed, the branching factor of the search tree and the resulting size of the search 

space are both reduced. If we are able to develop pattern matching facilities for the 

larger equational theories which are as efficient as those for smaller theories, we may 

be able to generate complete sets of reductions for algebraic systems which have been 

unattainable by previous E-completion systems. Furthermore, a generalized 

E-completion theory which handles infinite E-congruence classes may allow us to 

attempt problems which were not feasible under previous E-completion theory. An 

ACI-completion procedure is a small, first step in that direction.

Besides the possibility that increased step size of equality inferences may lead to 

the solution of new problems, there is the benefit that the development of an 

ACI-completion procedure will lead to a better understanding of E-completion 

procedures in general. Generalization of a theory necessitates that essential and 

inessential elements are more clearly distinguished. The concepts presented here, or 

others that spring from them, may eventually lead to improving the performance of 

automated reasoning systems which deal with equality inferences. More specifically, 

we believe that the solution of the E-completion problem for this one class of 

equational theories which generates infinite congruence classes provides insight into 

how to attack the larger problem of E-completion for all equational theories which 

generate infinite congruence classes.

As a third benefit, we point out that incorporating associativity, commutativity, 

and identity laws into the pattern matching process seems intuitively to be more like 

the way human mathematicians deal with these axioms. In particular, the identity 

law, despite its inherent simplicity, is a source of great difficulty for all previous 

E-completion theory. Yet this law does not seem to cause any real difficulty for the 

experienced mathematician. The core element and conditional reduction approach



6

which we develop in this research is inspired by the way we believe we approach these 

problems when we are working without the aid of the computer.

C. STRUCTURE

It is our intention that this document be sufficiently self-contained so that a 

reader unfamiliar with the area of term rewriting systems will be able to find the 

necessary background material here. Of course, the references cited may be used to 

fill in any gaps. We do assume that the reader is generally familiar with systems of 

mathematical notation.

In Chapters 2 and 3 we give background information which is needed to 

understand the theory which is developed in later chapters. Chapter 2 gives basic 

vocabulary and definitions associated with completion theory, as well as a brief 

review of pattern matching algorithms which are essential ingredients of completion 

procedures. Chapter 3 is a detailed literature review of the theory of complete sets of 

reductions and completion procedures.

In Chapters 4 and 5 we develop our theory of ACI-completion. Chapter 4 

presents a new type of conditional rewriting relation as a method for establishing the 

finite termination property in the presence of infinite AC I-congruence classes. In 

Chapter 5 we first develop tests for completeness modulo an ACI equational theory 

based on the new conditional rewriting relation and then give an ACI-completion 

procedure.

In Chapters 6 and 7 we report results of implementing the given theory in a 

computer program. Chapter 6 describes several experiments which were performed 

and Chapter 7 presents conclusions as well as ideas for further research.
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II. PRELIMINARIES

Before we can present the necessary mathematical theory relative to complete 

sets of reductions and completion procedures we must review the definitions and 

concepts on which we will build. In this chapter we first give definitions for those 

concepts which are needed as general background for all subsequent chapters. More 

specific concepts will be defined and discussed in later chapters as they are needed. 

After presenting these background definitions, we present an overview of unification 

algorithms. Although unification is not the primary focus of this research, it is 

extremely important because of its key role in completion procedures.

A. DEFINITIONS

We have grouped the background definitions into four major categories: (1) 

definitions related to terms, (2) definitions related to unifiers, (3) definitions related to 

equational theories, and (4) definitions related to rewriting relations. Much of the 

material in this section is adapted from [P S 8 l] and [JAM}.

1. Terms.

We assume the existence of a countably infinite set, V, of variables and a finite 

set, F, of operators such that VC\F=<j). With each operator we associate a degree 

which indicates the number of operands on which it operates. Operators of degree 

zero are called constants. Constants and variables are called simple terms. Complex 

terms are formed when an operator /  of degree n is paired with an ordered n-tuple of 

operands, each of which may be simple or complex terms. Complex terms may be 

written in prefix form as f x y )  or in infix form as x fy .  The set T[F,V) represents the 

set of all possible terms which may be formed using elements of F and V, consistent 

with the degree of each operator.
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We use a standard tree representation for terms as follows: simple terms are 

represented by leaf nodes; a complex term t which is formed from an operator /  of 

degree n is represented by an n-ary tree where the root node represents /  and the n 

children from left to right represent the ordered operands of/. For example, if x  and 

y  are variables, 0 is a constant, + and * are binary operators, and — is a unary 

operator, then the term t — (x + (0*( — y))) is represented by the term tree shown in 

Figure 1.

Let Parendnode) represent the parent of a node and Cpos{node) be the position 

of a child relative to its sibling nodes. We define a position function for the nodes of 

a term tree by Pos{root) = t  and Pos(node) = Pos(Parent(node)).Cpos(node). For 

convenience we will write positions such as t.m as simply m. In the example above 

Pos( + ) =  i, Cpos(x) = 1, Cpos(*) = 2, Pos(x) = 1, Pos(*) = 2, Pos(O) = 2.1, 

Pos( — ) = 2.2, and Pos(y) = 2.2.1.

A subterm of a term is the term associated with a subtree of a term tree. We 

write r/m to indicate the subterm of t at position m. In our example tj2.2 = ( -  j>). 

The subterm r/m is said to be a strict subterm whenever mi=t. We use the notation 

t[.m <- s ]  to indicate the term which is obtained when we replace the subterm tjm by
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another term s, without altering the remainder of t. In our running example, 

/C2.2 <- a] — x + (0*a). We define the root operator of a complex term t, t.root, to be 

the operator at the root of the term tree for t.

We define Vars(t) to be the set of all variables occurring in t. For our example, 

Vars(t) = {x, j>}. A term t is defined to be linear iff for all x e Vars(t), x  occurs 

exactly once in t. Terms /, and t2 are said to be variable disjoint whenever 

Vars(tt) fl Vars(t2) ~ </>.

We define the domain of a term t, Dom{t), as the set of all positions occurring in 

the term tree for t. For our example, Dom(t) =  {e, 1, 2, 2.1, 2.2, 2.2.1}. The first level 

domain of a term t, Fdom(t), is defined to be the set of positions for all nodes which 

are immediate children of t.root. Fdom(t) = {1, 2}, for our example. We also, define 

the strict domain of a term t, Sdom(t), by

Sdom(t) = {p | p e Dom(t) and tjp £ Vars(t)}.

Sdom{t) represents the positions of all of the subterms of t which are not variables. 

These are sometimes referred to as the positions of the non-trivial subterms of t. For 

our example, Sdom(t) = {s, 2, 2.1, 2.2}.

For terms containing an operator + which satisfies the associative law 

(x +j>) +  z = x + (y + z), we may sometimes use a simplifying representation. We will 

say that a term t has been flattened whenever all subterms rooted with the same 

associative operator as their parent term have been collapsed, removing the operator 

of the subterm and placing the operands of the subterm in the scope of the parent 

term's operator. For example, the terms (a + b) + (c + d) and (((a + b) + c) + d) both 

have the flattened representation a + b + c + d. This representation requires that we 

no longer view + as an operator of degree two, but as an operator of arbitrary 

degree.
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2. Unifiers.

Wc define a substitution pair to be an ordered pair (v,l) and is usually written as 

Vi- t, where v is a variable and / is a term. A substitution is then defined to be a set 

of substitution pairs {v, ♦- /„ v2 <- t2, ..., v„«- /„} such that each v, occurs exactly once 

in the n-tuple (vlt v2, ..., vj. We say that a substitution a is applied to a term t, 

usually written as simply to, whenever for every v, <- t, e o we simultaneously replace 

all occurrences of v, in t with For example, consider the substitution

o = {x ■*-a, y  * -b + x) and the term t = (x+ y) — x. Applying a to t gives

to =  (a + (b + x)) — a.

Whenever we have two substitutions, ct, and o2, we obtain their composition, 

o{o2, by the following:

<j\02 = {V[ «- tto2 | v, <- t, e a,} U {v, *- | (v, t, e o2 and V(vy- <- tj) e ox vl ^  vy)}

The desired consequence of this definition is that (tox)o2 = In other words, we

get the same result from composing two substitutions and then applying the 

composed substitution as we do from applying the individual substitutions one after 

the other. Whenever no variable occurring in either side of a substitution pair of o, 

occurs in either side of a substitution pair of o2 we say that a, and o2 are variable 

disjoint. For variable disjoint substitutions oxo2 = o2o„ and thus, order of 

composition has no effect.

Whenever a substitution o satisfies the equation /, = t2o we say that a is a 

matching substitution or simply a matcher for terms /, and t2. We also say that /, is an 

instance of t2. Suppose that r, — x  + 0 and t2 = a + 0, then o — {x <- a} is a matcher 

for /, and t2. Whenever a substitution o satisfies the equation txo = t2o we say that a 

is a unifying substitution or simply a unifier for r, and t2. For example, when q = x + 0 

and t2 — a + y  o =  {x*-a, .y<-0} is a unifier for r, and t2. For variable disjoint
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terms it should be clear that a matcher is always a unifier, but a unifier is not always 

a matcher. Matchers and unifiers are sometimes referred to as one-way unifiers and 

two-way unifiers, respectively.

We now point out that unifiers are not necessarily unique. For example, 

<7, = {«<-jc + a, v <^y + b) and o2 — [u <- z + a, x  *- z, v *- w + b, y *- w} are both 

unifiers for /, = (or + a) + (y + b) and t2 = u + v Clearly there are an infinite number of 

unifiers which follow the form of o2, as z and w can be replaced by any valid terms 

and the result is still a unifier. We say that a substitution a2 is an instance of another 

substitution iff there exists a third substitution o3 such that o2 = <j,<t3. Note that in 

our last example o2 is an instance of a,. This is easily seen using

a3 = {jc *- z, y  *- w). We say that cr, is more general than a2 whenever a2 is an 

instance of <?,. We define a substitution 6 to be a most general unifier for terms t, and 

t2 whenever all other unifiers of t, and t2 are instances of d.

A variable renaming substitution is a substitution of the form

{x, *-yu x2 *-y2, ..., xn where all of the jc,s arc disjoint variable names and all of 

the yts are also disjoint variable names. Two substitutions, a, and o2, are said to be 

the same modulo variable renaming whenever there exists variable renaming 

substitutions 0, and d2 such that o2 = o1dl and o, = o202. Robinson proved in 

C/?<?65] that a most general unifier, when it exists, is unique modulo variable 

renaming.

The process of finding matchers is called matching. The process of finding 

unifiers is called unification. When the terms being unified are variable disjoint, as 

will always be the case in the completion theory which follows, it is easy to see that a 

procedure which performs unification can be used to perform matching. If wc treat 

all of the variables in one of the terms as constants then the unifier generated by 

unification is also a matcher. Because of this close conceptual connection between
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the two processes we will focus our discussion of matching and unification algorithms 

on the problems of unification.

3. Equational Theories.

An equation is an ordered pair of terms ( / ,r ) ,  usually written as / = r. An 

equational theory, E, is a set of equations. If E is an equational theory, then 

Ec = {r = l \ l = r e E}. For an equational theory E wc define the one step 

E-equality relation, == , on pairs of terms as follows:

5 = / iff there exists (1) an equation / = r e £ u P ,

(2) a node n e l)om(s), and

(3) a substitution 0 

such that sjn = Id and t = sC« «- rd^\.

The E-equality relation, = , is then defined to be the reflexive, symmetric, 

transitive closure of ==, which is clearly an equivalence relation. Whenever an 

E-equality relation satisfies the property 5 = t =>J[_m <- s ]  =J{_m <- t~\ for all terms 

f  s, and te  T(V,F), then the E-equivalence relation is said to be compatible with the 

term structure for T{V,F). The E-equivalence class for a term t, [ r ] £, is defined by 

[t~\E = {i | 1 e T(V,F) and s = /}. When = is an equivalence relation which is also 

compatible with the term structure for a set of terms, then the Ii-equivalence class is 

said to be an E-congruence class. Suppose that we have E = {x  ~f-y = y  + jc}. We can 

show that a + b = b + a using x  + y  = y  + x as /=  r ,  c as n, and {x«- a, y * -b } as cr. 

Similarly, we can show that

[a  + (b + c)]£ = {a + (b + c), a + (c + b), (b + c) + a, (c -I- b) + a}.

E-membership for sets, eE, is defined by s eES iff there exists a s' such that s = s' and 

s' e S. Thus, using E from the previous example, we would say that
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b + a eE {a, b, a + b}. Finally, we define E-equality for substitutions, o and o', by 

o = o' iff p e o implies p eEo' and p' e o' implies p' eEo.

The following lemma states that E-equality is preserved under the application of 

substitutions, or equivalently, that E-equality is compatible with the application of 

substitutions:

Compatibility Lemma CP5813- Suppose s, t e T(V,F), 6 is a substitution, and E is 

an equational theory. If s = t, then s6 = tO.

The problems of matching and unification are easily redefined in the presence of 

equational theories. We say that a substitution is an E-matcher for terms /, and t2 

whenever a satisfies the equation f, = t2a. The process of finding such substitutions 

we call E-matching. Likewise, we say that o is an E-unifier for /, and t2 whenever it 

satisfies the equation txo = t2o. The process of finding E-unificrs is called 

E-unification. Whenever r, = t2o we also say that r, is an E-instance of t2. A 

substitution o, is said to be an E-instance of another substitution o2 whenever there 

exists a third substitution o2 such that at =  o2oy We indicate by i£0  the set of all 

substitutions which are E-instances of substitutions in the substitution set, 0 .

The problem of E-unification has been studied for many different equational 

theories. The existence of a most general E-unifier which is unique modulo variable 

renaming does not generally hold for E-unification. For example, when we have the 

equational theory E=  {x + y — y  + jc} it is easy to see that both

cr, = {.*• <— c -f d, y  <— a, z *— 6} and o2 = {x a + b, y «- c, z <— d] are E-unifiers for

terms — x  + (y> + z) and t3 = (a + b) + (c + d), yet neither o, nor o2 are variable 

renaming E-instances of the other. When E contains only the associative law 

(x+y) -F z — x  + (y + z) it has been shown that there may be an infinite set of such 

unique E-unifiers for two terms CS/813- Because of these complications the following
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general properties are defined for E-unification algorithms which produce a set £  of 

E-unifiers for terms /, and t2: [5/79] 

finiteness: | £ | <, oo.

completeness: V0 such that t f  = t20 (3a e £ and a substitution t such that 6 = or).

(All possible E-unifiers are E-instances of some E-unifier in £). 

minimality: For no Oj e £ is ot = aft where 0 ¥= {}.

(No E-unifier in £  is an E-instance of another E-unifier in £).

The counterpart to a most general unifier for E-unification is the existence of a 

finite, complete, and minimal set of E-unifiers. Finiteness and completeness are the 

most important properties since we can never finish producing E-unifiers without 

finiteness and we cannot be sure that we have found general forms for all possible 

E-unifiers without completeness. Minimality can always be obtained from finiteness 

and completeness by post-processing the set of E-unificrs and throwing out those 

which are E-instances of others. This post-processing is very costly, thus an 

algorithm which avoids producing redundant unifiers is often important for reasons of 

efficiency. A summary of known finite, complete, and minimal E-unification 

algorithms is given in [5/79].

A system consisting of a set, one or more n-ary operations on the set, and one 

or more relations on the set is defined to be an algebraic structure [771775]. When all 

of the relations on the set can be defined by equations we will call this an equational 

algebraic structure. In this research we will be particularly interested in equational 

algebraic structures defined by the set T{V,F) and an equational theory A where there 

exists another equational theory E such that E <5 A and a finite and complete 

E-unification algorithm exists for E. We will focus particularly on structures where E 

contains associative, commutative, and identity laws (A Cl equational theories), 

associative and commutative laws {ACequational theories), commutative laws 

(C equational theories), and where E contains no laws {empty equational theories ).
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4. Rewriting Relations.

A rewrite rule is an ordered pair (X, p), usually written X -* p, which may be 

applied to an arbitrary term t as follows: if there exists a position m e Dom(t) and a 

substitution a such that //m — Xa, then the resulting term, t' , is given by t[m  pa~\. 

We say that t rewrites to f .  The idea is that X and p are equivalent and we have 

substituted one for the other. Note that a is a matcher for X and tjm and may be 

found via any matching algorithm. The application of a rewrite rule is sometimes 

called a substitution rule of inference. This is the same process we use when we draw 

the conclusion "Mary is sick today" from the statements "John's wife is sick today" 

and "Mary is John's wife".

A reduction is a special rewrite rule where it is understood that p is in some 

sense simpler than X. When t rewrites to f  via a reduction we say that / reduces to t '. 

Reductions are precisely the same as the demodulators introduced in the demodulation 

process of Wos \_Wo67\ When a reduction is applied to a term t, the new version of 

t is equivalent to and yet simpler than the original i. For example, when we apply the 

reduction e*x -*■ x  to the term t = a*(e*b) using m -  2 and a = {x«- b) the resulting 

term t' =  a*b is simpler than the original t. When no reduction in a reduction set R 

can be used to reduce a term t we say that / is irreducible by R. An irreducible term is 

sometimes called a normal form  or terminal form of the term from which it has been 

derived. We use the notation rf* to indicate a term which has been derived from t by 

zero or more applications of reductions from R and is now a terminal form relative to 

R.

A conditional reduction is a reduction of the form I f  C Then X —> p. The 

condition, C, normally involves the same variables and operators as X -* p and is 

evaluated after the matching substitution is found. If the condition holds the 

reduction is applied as usual, otherwise the process is aborted. For example, the
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reduction I f  x ± 0 Then x*x~1 -> 1 can be used to prevent rewriting with a substitution 

which sets jc to zero, thus preventing division by zero. The most commonly studied 

conditional reductions are reductions where C is of the form 

/[ = «, and t2 = u2 and... and tn — un [5/^86, 0 8 7 ] .  In most cases the presence of the 

condition on the reduction arises out of the semantics of the problem, just as in our 

example the semantics of the division process clearly demands that we not divide by 

zero. In this research we will introduce a new type of conditional reduction where the 

conditions are of a slightly different form and arise more from the syntax of the 

problem, rather than the semantics.

A set of rewrite rules, R, can be used to define a binary relation on the set of
Rterms. The rewriting relation R, written as -♦ , is the set of ordered pairs (/„ t2) such

Rthat r, rewrites to t2 using some rewrite rule from R. We write /, -*■ t2 to indicate 
r *(/,, t2) e -*■. We use the notation to indicate the reflexive, transitive closure of

R R
->. Thus tx -* t2 means that we can move from /, to t2 using zero or more applications 

of -*•. We also define E-rewriting relations, often called rewriting modulo E, by 

altering the rewriting definitions to account for an equational theory, E. This 

generally can be viewed as rewriting between two different E-congruence classes.

Three rewriting relations which have been used extensively in the study of
K R.E R/E

completion procedures and which will be used in this research are ->, -» , and -+ . 

These arc defined as follows:

/, t2 iff X -* p e R, m e Dom{tx), txlm = Xa, and t2 =  [_m <- per]
X,p,a,m

/j t2 iff X -* p e R, m e Dom{tx), t jm  = Xo, and t2 =  *- p a ]
p, a, m

RjE r R E
tx -* t2 iff 3 f',, t 2 such that = f x -* f 2 = t2
I'P.o t,P,<r
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The first relation, , is the standard rewriting relation which is used when the
R E

equational theory is empty. The second relation, A , is a limited form of rewriting 

modulo E which is easily implemented via E-matching. If we use the notation = to 

indicate an E-equality relation where each = step takes place at or below m, then an
R.E

equivalent alternate definition for -> is

r,e . £ r
/, -» i2 iff X -* p e R, m e Dom{t{), and 3 such tha t /, = —» t2

X y p yo ^m X t p t a , m

RJE
The third relation, -» , is the most general form of rewriting modulo E and is used

R E
more in proofs of the theory than in implementations. The difference between A and
RfE . .-* is sometimes very subtle. Suppose that R contains the single reduction 

( — x) + jc -> 0 and E is an AC equational theory. Then the term = (a + b) + ( —b)
R/E A C  Rcan be rewritten via -> using the sequence r, = a + (( —b) + b) -* a -t- 0. The term f,

H Ecannot be rewritten at all via A because there does not exist a position m e Dom(/1) 

and a substitution a such that t j m ^  ((—x) + x)o. It should be clear from the 

definitions that

B. UNIFICATION ALGORITHMS

Because the concepts of matching, E-matching, unification, and E-unification all 

play a central role in the development of completion procedures we present a brief 

summary of matching and unification algorithms in this section. We will focus on 

unification and E-unification since the matching problems are simpler instances of 

these. For our purposes, we are interested in unification relative to empty, C, AC, 

and ACI equational theories. We must also consider terms which involve various 

operators, each of which may be associated with a different one of these equational 

theories.
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1. Standard Unification.

We will refer to unification relative to the empty equational theory as standard 

unification or S-unifcation. This type of unification has also been called Robinson 

unification, after its founder, and Null-E unification [Ma88]. A variation on 

Robinson's algorithm is given in Figure 2. Robinson C#<?65] proved that the 

standard unification algorithm will always terminate, returning the most general 

unifier if it exists, and failure otherwise.

Procedure S-Unify (/„ t2, L)

Case

1: /, = t2 => Return L

2: /s-Far(;,) => If f, occurs in t2 
Then Return 0 
Else Return U,eE o0{tl *- t2}

3: Is- Var(t2) => Return S-Unify(t2, tu E)

4: Complex(fj) and Complex(t2) and Length(/,) = Length(t2) and 
tx.root — t2.root=> For each m e Fdom{tx) do

E : = U,tE S-Unifyi(tJm)o,(tJm)o,{o}) 
End For 
Return I

5: Otherwise => Return 0 

End Procedure S-Unify

Figure 2. Standard Unification Algorithm

The following examples illustrate the algorithm:

Example 1: Suppose we want to unify the terms P(a, x, fix)) and P[y, b, z). All of 

the unification algorithms which we present make use of an initial unifier set, L, with
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which the final unifier set must be consistent. This is actually only needed for the 

recursive calls. All of the presented unification algorithms also return their result in 

the form of a set of unifiers, even though for standard unification this set can contain 

at most one element. The unifier set {4>} represents the single unifier with no 

substitution pairs. We will begin all top level calls using this value for £. The unifier 

set <j) will be returned when no unifier is possible. We begin this example with the 

call S-UniJy(P(a, x, J{x)), P[y, b, z), This call is handled by Case 4 which

generates the following recursive calls:

(1) S-Unify{a, y, {</>}): Case 3 generates S-Unifyiy, a, {</>}) which returns {{y<- u}}.

(2) S-Unify{x, b, {y <— a}): Case 2 returns {{y *- a, x «- A}}.

(3) S-Unify{f[b), z, \y <- a, x  <- &}): Case 3 generates S-Unify{z, J[b), {y«- a, x  «- b}) 

which returns {{y *- a, x «- b, z <—j{b)}} via Case 2.

Example 2: Suppose we want to unify x  and J{x). We begin with the call 

S-Unify(x, J{x), {<£}). This is handled by Case 2, where /, is found to be a variable 

occurring in t2. Thus the unification fails and returns 4>.

2. Commutative Unification.

The commutative unification, or C-unification, algorithm given here is due to 

Siekmann C-S/79]. Let C-Permute(t) be the set of all possible terms which may be 

formed by permuting the operands of all of the commutative operators in t. For 

example, let /  be a commutative operator and let r, ~j{aj[b,c)). This gives 

C-Permute^) = {J{aJ{b,c)), J{aJ{c,b)), J[f[b,c),a), J{f[c,b),a)}. Siekmann pointed out 

that an obvious solution to the C-unification problem for terms r, and t2 is to perform 

S-unification for all possible pairs from C-Permute^) x C-Permute(t2). Siekmann 

showed that this approach is finite and complete, though not minimal. In fact, this 

approach is very inefficient.



20

This led Siekmann to modify the obvious solution as follows: Let C-Oprs(t) be 

the number of occurrences of commutative operators in term t. First order the terms 

such that C-Oprs{tx) > C-Oprs(t2). Then perform S-unification for each pair from 

{/,} x C-Permute(t2), with the slight modification that two terms be considered as 

identical whenever they are C-equal. These modifications greatly improve 

performance over the obvious solution, while maintaining finiteness and 

completeness. The algorithm is still not minimal, however. The complete 

C-unification algorithm is given in Figure 3.

Procedure C-Unify (/j, t2, Z)

If C-Oprs(t2) > C-Oprs(t,)

Then /, , /:  = Swap(tit t2)

Return U« &J— W S-Unify(tu s, Z)

End Procedure C-Unify

Figure 3. Commutative Unification Algorithm

The following example illustrates the use of C-Unify:

Example 3: Suppose we want to unify J[a, x) and fty, J[z, a)), modulo

commutativity. We begin with the call C-Unify{/[a, x), f[y, f[z, a)), {0}). The terms 

are already properly ordered, thus permutations are found by

C-Permute{f[y, J{z, a))) =  [fly, J[z, a)), j\f[z, a), y ), J[y, Aa , z)), /[/|>, z), y)}.

This results in the following calls to S-Unify:

(l) S-UnifyiAa, x), f y ,  A*t «)). {«/>}) returns {{y * -a, x<~A^, «)}}



21

(2) S-Unifyifa, x), J[f[2, a), y), {</>}) fails and returns 4>

(3) S-Unify[f[a, x), J\y, j[a, z)), {</>}) returns {{y<r- a, * < -/> , z)}}

(4) S-Unify(f{a, x), J[f[a, z), y), {$}) fails and returns 4>

Thus C-Unify returns { \y «- a, x *~J{z, a)}, {y <- a, x  *~J{a, z)} }.

3. Associative/Commutative Unification.

In this section we will jointly address both AC-unification and AC I-unification. 

We first examine the problem of ACI-unification for two terms which have the same 

root ACI operator. We then consider the problem of ACI-unification of two terms 

which do not have the same root ACI operator. Finally, we show how AC-unifiers 

can be generated from ACI-unifiers.

a. ACl-Unification: Same Root Operator. The algorithm presented here is due 

to Stickel CSr81]. Before beginning the ACI-unification process, terms are flattened 

according to the method described earlier in this chapter. Those terms which contain 

operands which are not variables are then converted into terms with only variables as 

operands, introducing new variables where necessary and recording the substitution 

necessary to undo this change at a point later in the process. This process, called 

variable abstraction, is illustrated in the following example: Suppose we want to 

ACI-unify the terms J[xlt a) and Jlyuyi) w here/is an ACI operator with identity e, jt, 

and y { are variables, and a is a constant. Performing variable abstraction we generate 

the new variable xlt and the new variable only terms, J[x„ jr2) and f[y\,yx). We record 

the substitution o, = {jc2 <- a) for later use.

We now address the case of ACI-unification for two terms which begin with the 

same ACI operator and contain only variables in the scope of that operator. Stickers 

algorithm is as follows:

(1) Eliminate common operands.
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(2) Form an equation from the two terms where the coefficient of each variable in 
the equation is equal to the multiplicity of the corresponding variable in the 
term.

(3) Generate all non-negative integral solutions to the equation, eliminating all 
those solutions composable from other solutions.

(4) Associate a new variable with each solution. These will be called the introduced 
variables.

(5) Assemble a single unifier composed of assignments to the original variables 
with as many of each new variable as specified by the solution element in the 
sum associated with the new variable and the original variable. Zero 
components in the solution represent an assignment to the identity.

Resuming our example, we now apply the above algorithm to our variable only 

terms J{xu x2) andyfo.y,):

(1) There are no common operands to remove for this example.

(2) The equation to be solved is x, + x2 = 2yv The class of equations which arise at 
this step is called the class of homogeneous linear diophantine equations. An 
algorithm for finding the basis of solutions for such equations is given bv Huet

(3) The basis of solutions is:

Solution *1 *2 y\ jq + Xi 2y, New Variable
l 0 0 0 0 0 Zi
2 0 2 1 2 2 Z2
3 1 1 1 2 2 Z3
4 2 0 1 2 2 24

(4) The introduced variables, z„ are shown in the table above.

(5) The single ACI-unifier for the variable only terms may be read from the 
columns of the above table and is given by

° 2  =  {*1 *~ ~A Z3> Z4, 24). x 2 * ~ A Z 2. z 2> 23). J'l * - A z 2, z 3 > 24)}-

For terms which are not variable only terms, we must now reconcile the unifier 

from the variable only terms with the substitution recorded during the variable 

abstraction step. All possible reconciliations must be considered. It is at this point 

that our single unifier from the variable only case may give us a set of unifiers. For 

our example we must reconcile a, and ov Combining x2 a and x2 z2, z3) yields

za«- e and z3 <- a. Since there are no other variables replaced in <j , we may quit and
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apply the result of the reconciliation to a2, giving us the single unifier 

{.x, z4, z4), x2 <- a,y, *-J[a,z4)}. As the variable x2 does not appear in either of

the original terms to be unified, it may be dropped, giving us a final unifier of 

{ * 1  *~Aa' Z4, Z4), y 1

It is important to note that if there had been other substitution pairs in <7, in the 

previous example, we would have needed to continue reconciling the reconciliations. 

For example, AC 1 -unifying J[x,a) and j[b,b) yields exactly the same problem as the 

previous example after variable abstraction, except that er, = {jc2 <- a, y t <- b}. In this 

case the reconciliation of cr, and o2 proceeds as follows:

(1) Combining x2 <- a and x2 <-J{z.2, z2, z3) yields z2 <- e and z3 <- a.

(2) Combining y, «- b andj>, *-J[z2, z3, z4) yields three possibilities:
(a) z2 b, z3 *- e, zt *~ e
(b) Zj e, z3 4 -  b, z4 4 -  e
(c) z2 4 -  e, z3 4 -  e ,  z4 4 b

(3) Reconciling (2a) with (1) fails because z2*- e and z2*~ b conflict.
Reconciling (2b) with (1) fails because z3<- a and z3<- b conflict.
Reconciling (2c) with (1) fails because z3 4 -  a and z3 4 -  e conflict.

(4) As no possibility from (2) will reconcile with (1), no ACI-unifier is possible. 

Figure 4 summarizes Stickers ACI-unification algorithm for terms with the same root 

operator. This algorithm is shown to be finite, complete, and minimal whenever there 

are no other operators imbedded in the terms CS/81,Fa84].

b. ACI-Unification: Different Root Operators..

Because of the identity equation, ACI-unification is possible between two terms 

which have different root operators. This can only happen when at least one of the 

root operators is an ACI operator which appears in a very special context. Suppose 

we have the terms r, = x  + (a*b) and t2 = (u*v), where + and * are ACI operators with 

identities 0 and 1, respectively. It is possible to collapse the outer level of f, by 

applying the substitution {x*-0} and then moving to another member of the
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Procedure ACI-Unify-Same (r„ t2, £)

/„ t2: — Eliminate-Common{tx, t2)

For each (sx, .y2) e Make-ACI-Pairs(tx, t2) do 

E : = S-Unify(sxo, j2<7,{ct})

Fnd For 

Return £

End Procedure ACI-Unify-Same

Procedure Make-ACI-Pairs (/„ f2) 

su m, : = Multiplicities^ ,) 

s2, m2: = Multiplicities(/2) 

bx,b2: = Basis(mu m2, tl.rooi)

Return {(5, b) | s, e 5, and b, e bx} U {(s, b,) | s, e s2 and b, e b2)

End Procedure Make-ACI-Pairs

Notes:

Eliminate-Common{x + y  + a, a + b) returns = x + y  and t2 = b 

Multiplicities^ 4- y  + a + y  + a) returns s =  (jc, y, a) and m = (1, 2, 2)

Basis((\, 1), (2), + ) returns (z3 +  z4 + z4, z2 + z2 + z3), (z2 + z3 + z4) (see example)

Figure 4. AC I-Unification: Same Root Operator

resulting ACl-congrucncc class, namely (a*b). At this point we have effectively 

removed + as the root operator of the term and replaced it with *, which can now 

match the root operator of tv It is easy to see that this can only happen when all or
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all but one of the first level operands of an ACI operator are variables. If all of the 

first level operands are variables and there are n first level operands, then the term 

may be collapsed n different ways, with each variable unifying with r2. When all but 

one of the first level operands are variables, the only possible unification is to set all 

the variables to the identity and then ACI-unify the remaining operand with r2. When 

the two terms are rooted with different operators, both of which are ACI, the 

collapsing process must be attempted in both directions. For our example, collapsing 

t2 allows both u and v to unify with all of r,. Mayfield's algorithm for ACI-unification 

which handles two terms with differing root operators is given in Figure 5. The 

finiteness and completeness of this algorithm are addressed in

Procedure ACI-Unify (r„ r2, X)

{Assumes that one or both terms have an ACI operator at the root} 

Case

1: r, = r2 => Return X

2: Is-Var(t,) => If r, occurs in t2 
Then Return $
Else Return U«i;<To{r1 r2}

3: Is- Var(t2) => Return ACI-Unify(t2, tu X)

4: Is-ACI(tvroot) => Return ACI-Unify-DifJ[tx, t2, X)

5: - iIs-ACI{t2.root) => Return ACI-Unify-Diff[t2, tx, X)

6: tvroot t2.root =» Return ACI-Unify-Diff{tu t2, X)U
A Cl-Unify-Di/J[t2, /„X)

7: Otherwise =» Return ACI-Unify-Same(/„ t2, X)

End Procedure ACI-Unify

Figure 5A. ACI-Unification Algorithm
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Procedure ACI-Unify-DifT (/,, t2, L)

{Assumes t2.root is an ACI operator, + , with identity /} 

{Assumes /, is either simple or has a different operator} 

n \ — | Fdom(t2) |

/ : = /  + /+ ...  + / {n identities}

L ': = 4>

For j  : — 1 to n do

Z ':=  Z' 1/ S-Unify{fu t2,Y)

End For 

Return £'

End Procedure ACI-Unify-DifF 

Figure 5B. ACI-Unification: Different Root Operators

c. AC-Unification via ACI-Unification.

Stickel C^r8l] also suggests a method for generating AC-unifiers from 

ACI-unifiers. To do this we begin by treating the AC operators as if they were ACI 

operators and generating a complete set of ACI-unifiers. We then substitute the 

identity for introduced variables in all possible combinations in the right hand side of 

substitution pairs for each ACI-unifier. This is subject to the restriction that no 

unifier is retained which assigns one of the original variables to the identity. Suppose 

the operator /  had been an AC operator in the previous example where we 

ACI-unified J\xu a) and yij'i.J'i)- The ACI-unifier for these terms was
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{*i «-./(«**), yx <-y(a,z4)}. The only remaining introduced variable is z4. We can 

now either substitute the identity for z4 or leave z4 alone, giving

{ {*1 a, y\ «- a), {jtj 4,z4), ^  }

as the complete set of AC-unifiers for our terms.

The AC-unification algorithm described is given in Figure 6. This algorithm is 

shown to be finite and complete in C Wi%7~],

Procedure AC-Unify (r„ t2, L)

E :=  ACI-Unify^, t2, 2)

For each a e E do

Z : = Kars(cr) — Varsity) — Kars(/2)

{Let i be a temporary identity for ty.root} 

a : = {{z «- /} | z e Z}
For each y e 2‘ do

If {v +- t) e (<7y)l' => t i 

Then S ' : = £ ' U (ay)|/

End For 

End For

End Procedure AC-Unify

Figure 6. AC-Unification Algorithm
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4. Combining E-Unification Algorithms.

Because of the nature of the algebraic systems over which we wish to find 

complete sets of reductions, we must deal with E-unification for two terms which 

contain various operators, each associated with its own equational theory. For 

example, we might want to E-unify the term x  + (( — y)*z) with b*( —J[u,v)), where + 

is an ACI operator, * is an AC operator, /  is a C operator, and — is an empty E 

operator.

Yellick CYe85j has developed a framework for combining unification algorithms 

for equational theories which are both confined and regular. All of our candidate 

equational theories meet her definitions of these criteria except those which are ACI. 

These fail because the identity law is not confined. Mayfield [A/a88] has developed 

an interleaving of empty E, C, AC, and ACI unification which is a variation on the 

Yellick model. The basic approach of this method is that a top level E-unification 

procedure classifies the type of unification problem based on the type of operators at 

the roots of the two terms to be E-unified. After classification a call is made to the 

appropriate specialized E-unification routines which then make recursive calls back to 

the top level for the E-unification of any lower level operands. Figure 7 gives 

Mayfield's interleaved E-unification algorithm. This method is believed to be finite 

and complete for the interleaving of these four equational theories.
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Procedure E-Unify (/„ t2, E)

{This handles 0, C, AC, and ACI equational theories}

Case

1: Simple^) and Simple(t2) => Return S-Unifyitxt2Z)

2: Simple(/,) => If Is-ACI{tvroot)
Then Return ACI-Unify{tu t2, E)
Else Return S-Unify(tu t2, E)

3: Simple(t2) => Return E-Unify(t2, E)

4: ls-C(tvroot) and Is-C{t2.root) => Return C-Unify(rf, t2, E)

5: h-AC{tvroot) and h-AC{t2.root) => Return AC-Unify(tlt r2, E)

6: ls-ACI(tvroot) and Is-ACI{t2.root) ==> Return ACI-Unify{tx, t2> E)

7: Otherwise =» Return S-Unify{tx, t2, E)

End Procedure E-Unify

Note: This requires that S-Unify and ACI-Unify-Same be modified 
to call back to E-Unify, rather than to S-Unify

Figure 7. Interleaved E-Unification Algorithm
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III. COMPLETE SETS OF REDUCTIONS

Building on the definitions and concepts presented in the previous chapter, we 

now focus our attention more specifically on the theory of complete sets of 

reductions. We begin this chapter by giving formal definitions related to 

completeness. We then discuss the application and benefits of complete sets of 

reductions in the context of automated theorem proving. Finally, we review major 

contributions from the literature relative to the theory of generating complete sets of 

reductions.

A. DEFINITIONS

The universal word problem is the problem of deciding whether or not two 

arbitrary algebraic terms arc equal with respect to a given equational theory. This 

problem has been shown to be undecidable in the general case. We will address a 

class of instances where it is decidable.

R .A rewriting relation, —►, is said to be noetherian or finitely terminating if no
. R J? Rinfinite descending chain /, -* t2 r3 -* ... exists. When a noetherian rewriting relation 

is applied to a term t until it can be applied no more, the resulting irreducible term 

is called a terminal form or normal form of t, written as f|*. Clearly there may be 

more than one terminal form for /, however, all such forms are computable whenever 

R is noetherian.

We say that a rewriting relation -♦ on terms T(F,V) has the Church-Rosser 

property whenever for all terms /„ t2 e T(F,V), f, =  t2 implies that there exists another
R R

term r3 e T\F, V) such that /, /3 and t2 -> ty An alternate way of stating this concept
R Ris to say that equivalent terms have a common rewriting under -*. Whenever -* is a 

noetherian rewriting relation which satisfies the Church-Rosser property, the set R is
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called a complete set o f reductions. It is easy to see that whenever R is a complete set 

of reductions, each term has a unique terminal form. Suppose /, and t2 are two terms 

which are equivalent under the E-equality relation generated by R. By the finite 

termination property of R we can find terminal forms r,].* and f2j*. Clearly these 

terminal forms are equivalent under R, and thus, by the Church-Rosser property they 

must have a common rewriting. But since they are terminal forms, they cannot be 

rewritten, thus they must already be identical. We call these unique terminal forms 

canonical forms. An equivalent alternate definition of completeness is that R is 

complete whenever /, = t2 => /,].* = fiJA

B. USING COMPLETE SETS OF REDUCTIONS

Before examining the manner in which complete sets of reductions are generated, 

let us examine our motivations for generating them in the first place. We first 

address how they may be used and then the efficiency benefits which they bring.

I. Applications.

We now point out that the existence of a complete set of reductions implies a 

solution to the universal word problem for the relevant domain. In order to 

determine whether or not two terms are equivalent with respect to a given equational 

theory for which a complete set of reductions exists, we simply find the canonical 

forms for each term and compare them. If the canonical forms are identical, then the 

terms are equivalent, otherwise they are not. This constitutes a decision procedure 

for the word problem. Because of the strength of this property, complete sets of 

reductions may be used as (1) canonical simplifiers, (2) the basis for proving 

theorems, and (3) an augmentation for other proof techniques.
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When a theorem to be proved is of the form /, = t2 where a complete set of 

reductions exists for the algebraic system, A, then we can prove or disprove the 

theorem by deciding the word problem as described above. Even when a theorem to 

be proved is not of the form f, = t2, and another inference technique must be used to 

attempt a proof, a complete set of reductions may be very useful. For example, 

suppose we are using the resolution rule of inference C/?o65] to attempt a proof of 

the theorem P in a system where we have among the axioms a rule such as 

IF Q(ti) THEN P. Suppose further that the resolution mechanism has just generated 

the clause Q(t2) where r, and t2 are not unifiable. Now if a complete set of reductions 

can be used to reduce f, to and i2 to t'2 where t'l and t \  will unify, then the 

resolution mechanism can conclude P. Thus a complete set of reductions can be used 

to augment resolution and similarly any other inference technique.

Hullot [//u80D has catalogued several problem domains for which complete sets 

of reductions have been found, thus making them candidates for these applications.

2. Efficiency Benefit.

The primary advantage of using a complete set of reductions in automated 

theorem proving is one of efficiency. It is theoretically possible to prove with 

resolution anything which can be proved by applying a complete set of reductions. It 

is also often possible to prove these same results using incomplete sets of rewrite rules 

and/or reductions. Yet none of these other techniques can compete with complete 

sets of reductions in terms of efficiency.

One of the greatest gains in efficiency over resolution comes by virtue of the fact 

that complete sets of reductions are rewrite rules and thus are more suited for dealing 

with the equality relation. Soon after Robinson introduced the concept of resolution, 

it was realized that resolution is very inefficient when it comes to dealing with the
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equality relation. Siebert [S/68] pointed out early on that proof procedures for logic 

systems with equality suffer greatly when they must treat equality as any other binary 

relation, with axioms added to give it desired properties such as reflexivity, symmetry, 

transitivity, and equality under argument substitution. Similarly, Robinson and Wos 

[W R69] stated that the intermediate debris generated in applying equality axioms 

with resolution generate increasingly larger generations of useless offspring, polluting 

the search space badly. They conclude that a substitution rule of inference, or rewrite 

rule, tends to be more convergent. We might say that rewrite rules, which in essence 

have the equality axioms built in to the inference mechanism, seem to capture the 

semantics of the equality relation whereas resolution has only a syntactic level 

encoding of the equality relation.

The application of a complete set of reductions provides the greatest gains in 

efficiency over resolution and the application of incomplete reduction sets in the area 

of the search mechanism. These gains in efficiency come from the completeness 

property. Whereas resolution, rewrite, and reduction inference mechanisms must 

expand their search trees in some breadth first fashion in order to be able to 

guarantee that they will not miss a proof, applying a complete set of reductions 

completely eliminates the need for a search tree. Since every path through the tree 

leads to the exact same canonical form, the search tree collapses to a linear path, with 

every step producing a result that is guaranteed to be closer to the final solution. 

Thus the reductions may be applied in any order. This elimination of a complicated 

search results in a greatly simplified algorithm for applying a complete set of 

reductions, while at the same time significantly reducing both the time and space 

needed for execution.

A simple example will serve to illustrate the efficiency gains which we have 

discussed. For this example we use the complete set of ten reductions generated by 

Knuth and Bendix [/TT70] for group theory to prove a simple identity. The
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reductions are used first as a reduction set and then together with equality axioms in 

a resolution system. The Interactive Theorem Prover, ITP, from Argonne Labs 

[0L84] was used for both runs. The problem was to prove the identity 

{e*a)~i*(a*e) = (e-1) 1.

When ITP was given this problem using only demodulation (application of 

reductions), it was able to find the solution by way of applying five reductions and 

making 64 attempted term matches. When ITP was given this same problem plus the 

necessary equality axioms, using full binary resolution, weighting strategies, 

subsumption, and the set of support strategy, it generated 123 clauses and attempted 

17,585 unifications before finding an eight step proof of the identity. Here the 

combined effects of dealing poorly with the equality relation and having to expand 

the search tree can clearly be seen.

Note that these gains are multiplied every time we use a complete set of 

reductions, whereas the cost of generating a complete set of reductions is a one time 

charge. Once we have a complete set of reductions for a given algebraic system we 

need never generate it again, yet we can use it over and over as we attempt to prove 

theorems relative to the domain of the given algebraic system.

C. GENERATING COMPLETE SETS OF REDUCTIONS

We now address the process whereby a complete set of reductions may be 

generated. We refer to such procedures as completion procedures. We will see that 

each of the completion procedures presented is actually a very slight generalization of 

another type of procedure, a procedure which tests a given set of reductions for 

completeness. Because of this researchers have generally approached the problem of 

developing a completion procedure by first developing testable conditions which 

imply completeness. Keeping this in mind we now review what we believe to be the
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more important contributions from the literature relative to the development and 

generalization of completion procedures. The research which we will present in 

subsequent chapters will build on concepts developed in each of these earlier works.

1. Knuth-Bendix Completion Procedure.

In 1967 Knuth and Bcndix presented an algorithm for determining

whether or not a given set of reductions is complete and a procedure which may be 

able to complete an incomplete set of reductions. Their theory centers around the 

development of testable properties which imply the finite termination and 

Church-Rosser properties, thereby implying completeness.

a. Testing the Finite Termination Property.

The method used by Knuth and Bendix to establish the finite termination 

property is to establish a weighting function and thereby an ordering relation on the 

set of all terms to be considered. Suppose wc can define a weighting function which 

assigns a positive integer weight to any term which we wish to consider and that we 

can show that the weight of a term strictly decreases each time a reduction is applied. 

Since the weight of a term can never be at or below zero, there can only be a finite 

number of applications of the rewrite rules before we reach a terminal form. Let W(t) 

be a function which gives the weight of term t. The key here is defining the weighting 

function in such a way that the weight of a term strictly decreases each time a 

reduction is applied. This requirement can then be shown whenever W{A) > IV(p) for 

all reductions in the reduction set and the following two properties are provided by 

the ordering relation:

(1) W(tt)> W(t2) => W(tlo)>  for all substitutions a. (Ordering is preserved

under the application of substitutions.)
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(2) > W(t2) => W{J[....tl...)) > W(J[...t2...)). (Terms differing only by a subterm

have their ordering determined by the ordering of their differing subterms.) We 

say that the weighting function is compatible with the term structure.

Recalling that a reduction is applied to a term t = t\_m <— AaJ producing a new term 

t' = r£m <- pa3, we can see that, given > JV{p), then JV(Ao) > W(po) by (1) and 

l¥(t) > IV(t') by (2). Thus applying the reduction will always decrease the weight. 

Knuth and Bendix go into great detail in their paper to define one such ordering 

relation and prove that it has the stated properties for terms of a certain structure. It 

is important to note, however, that any ordering relation with the required properties 

will suffice.

The ordering relation provides us with a way of testing for the termination 

property. The test for termination is really quite simple. Once we have a weighting 

function which meets the required properties, all we need to do is verify that 

W(A)> W{p) for every A -* p e R. If every reduction passes this test, then the finite 

termination of is assured.

b. Testing the Church-Rosser Property.

In order to explain the test for the Church-Rosser property we will first present 

a scries of new properties which imply this property. The following discussion docs 

not follow precisely the same path as the original Knuth-Bendix paper, however, we 

believe it makes more clear the important steps leading up to the same point.

A rewriting relation, -» , is said to be confluent if for all terms t, q, and
R R R

t2 e T(F, V) t ^  /, and t A. t2 => there exists a term r3 e T(F, V] such that r, A r3 and
A

t2 tr This definition is illustrated in Figure 8.
RIt is easy to show that a noetherian rewriting relation -» has the Church-Rosser 

property iff -A has the confluence property. See Bundy for a simple proof of
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this. Terms r, and t2 are said to conflate whenever they have a common rewriting as 

in Figure 8.

We say that a rewriting relation, -», is locally confluent if for all terms t, /, and
R R *t2 e T(F, V) t -* tx and t -* t2 => there exists a term t3 e T(F, V) such that r, -+ t} and

R

t2 -> t3. Note that this definition differs from the definition of confluence only in that
Rr, and t2 are each derived from t via a single application of ->. This definition is 

illustrated in Figure 9.

Figure 9. Local Confluence
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It can be shown that finite termination and confluence imply local confluence. This 

was proposed by Newman in 1942 and proved in full generality by Huet in 1977 using 

a technique called noetherian induction C//«8l]. Bundy [2?w83] also has a nice 

summary of this proof.

Tracing back the chain of properties, we now see that the properties of finite 

termination and local confluence will assure us that we have a complete set of 

reductions. While the terms Church-Rosser, confluence, and local confluence do not 

appear in the original Knuth-Bendix paper, the result that termination and local 

confluence imply completeness is precisely the same concept which is expressed as the 

"lattice condition" in Theorem 4 of that paper. It is the property of local confluence 

which allowed Knuth and Bendix to design an algorithm to test a set of reductions for 

completeness.

The problem that remains is in showing that a set of reductions is locally 

confluent for a possibly infinite set of terms. It is in the design of a test for local 

confluence that Knuth and Bendix brought real insight to the problem. Rather than 

attempt to develop a test which operates on a possibly infinite set of terms, they 

developed a test which operates on the finite set of reductions which can be applied 

to those terms. This, is very similar to the manner in which Robinson moved from 

examining interactions among an infinite number of instantiations of a set of rules to 

examining the interactions among a finite number of rules themselves when he 

developed the concepts of resolution and unification

Knuth and Bendix observed that local confluence can only be an issue when the 

reductions allow a term to be rewritten in more than one way. Suppose we have a 

term i which can be rewritten into /, by r, and into t2 by rv They noted that cither (1) 

r, and r2 apply to totally different subterms of t, or (2) one rewritten subterm is 

entirely enclosed in the other rewritten subterm. (The fact that a term can be
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represented as a tree prevents two subterms of the same term from overlapping each 

other only partially.)

In the first case r, may still be applied to t2 to get t3 and r2 may still be applied to 

/, to get t3, thus local confluence is preserved. In the second case the analysis is more 

involved: application of one rule may prevent the application of the other. Knuth 

and Bendix observed, however, that in this case there must be some subterm 

t/m — ,̂<7, and some subterm /l,o jn  = X2a2. When rx and r2 (and thus ai and a2) are 

variable disjoint it can be shown that there exists a position ri e Dom(XJ such that 

X3ajn  = (XJn')au giving {XJri)axa2 — X2ala2 and ct,ct2 is a unifier for XJn' and X2. This 

means that it is possible to find a most general unifier, 0, for XJn' and X2.

Furthermore, we can determine what the resulting terms /, and t2 will look like
Rafter r, and r2 have been applied. By the definition of -» we know that

A = *- Pi<b3 anc* t2 = l[m *- Xxa ^n  *- p2a2~\~\. Clearly f, and t2 are conflatable

when their subterms tjm  = p,er, and tjm  = Xxa ^ n  <- p2a2~\ are conflatable. Noting 

that tjm  = plolo2 and tjm  = Pil) \̂ 2̂ when r, and r2 are variable disjoint, it is

clear that tjm  = pxaxa2 is an instance of c, = p,0 and tjm  = (^,[V <- p2l)o lcr2 is an 

instance of c2 = (^,[V <- Pi\)Q where 0 is the most general unifier of XJrt' and X2, as 

described above. It follows that tjm  and tjm  are conflatable whenever c, and c2 are 

conflatable. Although the term does not appear in the original Knuth-Bendix paper, 

the pair < c„ c2 > has generally been called the critical pair of the Knuth-Bendix 

algorithm.

We can now detect all situations of this type by attempting to unify all of the 

subwords of all with all other ^s in the set of reductions. (This is called the 

"superposition" process in the Knuth-Bendix paper.) When the unification of XJn 

with X2 succeeds yielding a unifier, 0, we can then form the critical pair 

< p,0, <- pj\d  > . For example, when Xx -+ p, is (x*y)*z -* jr*(g*z) and >i2 -» p2 is
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u~'*u e, the subterm (jr*y) of X{ unifies with X2 yielding 6 — {x *- t r \  y  u). This 

gives the critical pair < (x*(y*z))d, (e*z)6 > , or, after applying the substitution, 

< (u~l*(u*z)), e*z > .

This now provides a method for testing a terminating set of reductions for local 

confluence. For every pair (r„ r2) e R x R the critical pairs are found as described 

above. Then for each critical pair < cu c2 > we compute the terminal forms c j*  and 

c2l R. If the terminal forms are identical, then the pair is conflatable, otherwise it is 

not. If all critical pairs conflate, then local confluence is assured and the reductions 

form a complete set.

c. A Completion Procedure. The algorithm described for testing a set of 

reductions for completeness suggests a procedure for possibly extending an 

incomplete set of reductions to make it complete. Suppose we are testing a critical 

pair < c,, Cj > , formed from the reduction set R, for conflatability by comparing 

terminal forms c,!* and c2i R, and we find that these terms arc not identical. By the 

very nature of the critical pair process we know that c,]* and c2i R are clearly 

equivalent with respect to the equational theory represented by R. If these 

non-conflating terms can be ordered properly so as to preserve the finite termination 

property, then we can form a new reduction, either c,lfi -> c2|*  or c2[R -» c,l*, 

depending on which terminal form has greater weight according to the term weighting 

function. Adding this new reduction "forces" the confluence of the troublesome 

critical pair. If, however, neither term has more weight than the other according to 

our ordering relation, we cannot make the pair conflatable and we must terminate 

with failure. Of course, every time wc add a new reduction to R we introduce the 

possibility of new critical pairs and thus the process must be repeated until on a 

single pass all critical pairs are found to conflate without the addition of any new 

reductions. The critical pair step is often called the inference step of the completion
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process because it is out of that step that new reductions arc generated which bring 

the set of reductions closer to completeness.

With the addition of new reductions there is also the possibility that some of the 

old reductions are no longer needed to have a complete set. After a new reductions is 

added to R, for all old reductions A -» p, A and p can be reduced to their terminal 

forms by the set of reductions /? — {>! -»p}. If and p i ^ 1̂  are identical then

A p is not needed to retain completeness and may be deleted from R. This 

simplification step is not necessary, but may be used to generate a minimal complete 

set of reductions.

The Knuth-Bendix completion procedure given in Figure 10 is an adaptation of 

one given by Musser and Kapur

Procedure Completion {R)
Repeat 

R ':=  R
For each < c,, c2 > e U<, ,)eRxK Crideal-Pairs(p, q) do 

Ifc ,iR# c 2i«
Then

Case
W{cdR) > fF(c2i*): R := R U (c.i* -  c2l«}
W(c2!*) >  R : = R U {c2l* -♦ c, j*}
Otherwise Halt with Failure 

End If
{R may be simplified here, if desired}

End For 
Until R = R'

End Procedure Completion

Procedure Critical-Pairs (A, -+ p,, X2 -» p2)
Return
{ < p,cr, p2a >  I o = S-Unify(jl„ A2)} 1)
{ < pKo,(X\[m <— p23)<t > | meSdomiXi), and a — S-Unify{XJm, A2)} U
{ < (X2i_m <- p2a > | m e Sdom(X2), m=£ t, and a = S-Unify{Xu XJm)}

End Procedure Critical-Pairs

Figure 10. A Knuth-Bendix Completion Procedure
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There are three possible outcomes from this completion procedure: (1) it may halt 

after finding a complete set of reductions, (2) it may halt with failure because a 

non-conflatablc pair cannot be ordered to form a new reduction, or (3) it may find 

critical pairs and add new reductions on every iteration, thus never halting. When the 

procedure fails because of an ordering problem it may be possible to try again with 

another term weighting function. Because any ordering relation which meets the 

properties stated earlier will suffice, it is often possible to find a different ordering 

relation which properly orients the offending pair. Then we may start over at the 

beginning of the procedure.

Knuth and Bendix were able to generate complete sets of reductions for some 

small algebraic systems using this procedure. The most notable of these is the system 

for a free group w'here they were able to start with a set of three equations and 

generate a complete set of ten reductions. The complete proof of correctness for the 

Knuth-Bendix completion procedure was given by Huet in 1977 \_Hu% 1 ].

It is interesting to note that the Knuth-Bendix completion procedure can be 

thought of as one instance in the general class of of critical pair completion procedures 

which includes many other well known procedures, such as Euclid's algorithm. See 

Buchberger CBu853 for an interesting comparison of the Knuth-Bendix procedure to 

other procedures in this class.

2. Peterson-Stickel E-Completion Procedure.

As we pointed out in the introductory chapter, the Knuth-Bendix completion 

procedure is able to generate complete sets of reductions for a limited number of 

algebraic systems. Completion procedures based on the original Knuth-Bendix theory
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are not able to handle any algebraic system whose definition includes a commutativity 

axiom because these axioms cannot be oriented to form a reduction. Thus the finite 

termination property cannot be maintained. Peterson and Stickel C^S8l] were able 

to overcome this limitation of completion procedures by splitting the equational 

axioms of an algebraic system into two sets: (1) equations which are incorporated in 

the matching and unification processes needed to apply reductions and compute 

critical pairs, and (2) equations which form the basis of the reduction set to be 

completed. This type of completion procedure has come to be called an E-completion 

procedure where E is the set of equations built into the matching and unification 

processes. Wc first review the features which set this theory apart from the 

Knuth-Bendix theory, and then present the E-completion procedure itself.

a. E-Unification and E-Matching Approach.

The most significant feature of the Peterson-Stickel E-completion procedure is 

the use of E-unification to compute critical pairs and E-matching to apply reductions. 

The combined effect of these two operations is that single inferences within the 

completion procedure are actually performed on entire E-congruence classes of terms, 

rather than just on single terms. Two E-equal terms are treated as if they are the 

same term and there is never any reason to rewrite a term into an E-cqual term. 

Thus when we have an algebraic system with an unorientable axiom such as 

commutativity, building that axiom into the unification and matching processes 

prevents us from having to handle it as a reduction. This means that the 

Peterson-Stickel theory is applicable to entire classes of algebraic systems which 

cannot be addressed with the Knuth-Bendix theory.

Not only does this method of computing over E-congruence classes open up 

entire new problem domains for completion procedures, it provides a more general 

and more efficient manner for dealing with some equations which were handled as
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reductions under the Knuth-Bendix theory. The associative law is an example of such 

an equation. Peterson and Stickel point out that, although it can be oriented as a 

reduction, some generality is lost in the process. Furthermore, when associativity and 

commutativity are built into E together, the E-congruence classes become even larger, 

allowing a single inference to cover more cases, resulting in greater efficiency.

The primary requirements for the Peterson-Stickel theory are (1) the existence of 

a finite and complete unification algorithm for the equational theory E, and (2) the
R E

finite termination property for the rewriting relation -*. Peterson and Stickel show 

that the existence of such an E-unification algorithm implies the existence of an 

E-matching algorithm and a decision procedure for E-equality, each of which are also 

required by the theory. An additional requirement is that the equations of E all 

contain exactly two occurrences of each variable, one on the left and one on the 

right.

b. E-Completeness and E-Compatibility.

In the Peterson-Stickel theory, an E-complete set o f reductions is defined to be a 

set of reductions R such that for all pairs of terms /, and t2, rt =£ t2 => /,].*•* = t2[R-E. 

This generalization of the earlier definition of completeness says that R is E-complete 

when terms which are equivalent with respect to the entire algebraic system reduce to 

terminal forms in the same E-congruence class.

R.E
A set R of reductions is said to be E-compatible if whenever /, -*■ t2, there exist a 

node m e Oom(f,), terms t\, t'2, a substitution a, and a reduction 2 -» p e R such that
R.E

tjm  — la  and t2 = t \  t \  = r,[[m Pa~\-

If r, = ylj —► p, and r2 = X2-*p2 are two reductions from R then 

E-Critical-Pairs{ru r2) is defined to be the set of all pairs < ( A , C m  p2])u, p,<j > such 

that m e Sdom(X,)t o e E-Unifiers(XJm, A2). Note that E-critical pairs are computed
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just like the critical pairs of the Knuth-Bendix theory, with the exception that 

E-unification is used in place of unification and multiple critical pairs may arise from 

one overlap because there is one pair per E-unifier.

E-Completeness Theorem: CPS81]

Let R be an E-compatible set of reductions and let -* be a rewriting relation satisfying 

the finite termination property. Then R is E-complete iff for every critical pair 

< c„ c2 > e q)eR,RE-Critical-Pairs(p, q) c,J* = c2j*.

In other words, E-completeness relies on the confluence of E-critical pairs modulo 

E-equality. The major problem with the E-completeness theorem is that R must be 

known to be E-compatible.

c. E-Compatibility and Extensions.

The following theorem presents sufficient conditions for E-compatibility. 

E-Compatibility Theorem: CTS81]

Suppose E is an equational theory whose equations are linear and non-erasing and that 

R is a set of reductions. Suppose also that whenever 1—r e E  (or r =  / e £), 

Al -» p, e R, m e  Sdom(l) but m=L c, and a e E-Unify(ljm, /!,), it follows that there exist
R.E

A2 -» p2 and a substitution y such that /Cm <- >1,] = i 2y and /[m <- p ,] —> p2y, then R is 

E-compatible.

At this point we focus on the class of problems where E is an AC equational 

theory. Tor equations such as the commutative law, E-compatibility is satisfied 

immediately since there is no m e Sdom(l) such that m A e. For the associative law 

equations, Peterson and Stickel showed how to extend the set R to satisfy the 

E-compatibility requirements.
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An AC extension relative to E of a reduction k -* p, where + is an AC operator 

in E which is the root of k, is a new reduction v + k -> v + p where v is a variable such 

that Ears(k -+ p). Define R‘EC to be the union of R and the set of all reductions 

which are AC extensions relative to E of reductions in R.

Extension Theorem: []/,581]

Let E be an AC equational theory and R be a set o f reductions. Then R°£ is 

E-compatible.

This theorem states that we can maintain E-compatibility for AC theories by 

adding AC extensions for each reduction. Recall from the definition of AC 

extensions that they only exist when the root operator of the left side of a reduction 

is an AC operator. Putting this result together with the previous result that 

E-compatibility together with confluence modulo E-equality of E-critical pairs yields 

an E-complete reduction set leads to a modified version of the Knuth-Bendix 

completion procedure which is sufficient to perform AC-completion.

d. An AC-Completion Procedure.

Figure 11 presents an adapted version of the Peterson-Stickel AC-completion 

procedure. Using an implementation of this procedure, Peterson and Stickel were 

able to generate AC-complete reduction sets for a number of algebraic systems, 

among them commutative groups, commutative rings, and distributive lattices 

[P S 82J
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Procedure AC-Completion (CP)
R R :  =  <j>
While (RR U CP) =£ 4> do

R, RR : = Pry-To-Conflate-Pairs(R,RR,CP)
If RR*<f>
Then (r„ r2) : = "smallest" member of RR 

RR : — RR — {(/■„ r2)}
CP: = AC-Critical-Pairs(ru r2)

End While 
Return R

End Procedure AC-Completion

Procedure Try-To-Conflate-Pairs 
While CP A 0 do

(s = t ) : ="smallest" member of CP
CP : = CP — {(s = r)}
If.vl^V i l* -F
Then r: = Form-Reduct ion(s[R-E,

R ,R R :=  Add- Reduction^,R,RR)
R, RR : = Simplify-R(R,RR)

End While 
Return R, RR

End Procedure Try-To-Conflate-Pairs

Procedure AC-Critical-Pairs ->• pu X2 -* p2)
Return

{ < p lo , p 2o >  | o e  AC-Unify(Xu X2)} \J
{ < Pt<7,(/l,Cm p23)<* >  I meSdom(Xt), m ^ c ,
and a e AC-Unify(XJm, J.2)} U 

{ < (/i20  *- P2cr > \ m e Sdom(X.2), m A e,
and a e AC-Unify(Xu XJm)}

End Procedure AC-Critical-Pairs

Figure 11 A. Peterson-Stickel AC-Completion Procedure - Part 1

3. Jouannaud-Kirchner E-Completion Procedure.

Jouannaud and Kirchner [_JKS6] generalized the Peterson-Stickel theory,

lessening the requirements slightly and providing a different approach to the problems

of E-compatibility and extensions. Maintaining a high degree of generality toward

the implemented rewriting relation, they developed all of their theoretical results using
r e

a rewriting relation -» which is free to be any rewriting relation satisfying the
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Procedure Form-Reduction (s, /)
Case IV(s) > W(t): Return s -*■ /

W(t) > W(s): Return t -* s 
Otherwise Halt with Failure 

Hnd Procedure 1'orm-Reduction

Procedure Add-Reduction (r,R,RR)
R := Ru{ q  ] qe  {r}?}
RR : = RR U {(<7, q') j q e {r}£ and q' e R} 
Return R, RR

End Procedure Add-Reduction

Procedure Simplify-R
For each r e R do

If r i (*-«).£ 4  r
Then RR : = RR — {(q,q’) | q e {r}f and q' e 

R: = R - { q  \ qe  {r}|'} £
If, for = X -> p, X i=- p
Then r : = Form-Reduction(A, p)

R, RR : = Add-Reduction{r ,R,RR) 
R, RR : = Simplify-R(R,RR)

Return R, RR 
End Procedure Simplify-R

Figure 11B. Peterson-Stickel AC-Completion Procedure - Part 2

R R ^  R/Einequality -> £  -> . We now present a brief summary of their theory,

highlighting the points where their theory differs from that presented previously.

a. Confluence and Coherence.

The properties of confluence and local confluence are formulated in terms of ->

as follows. A pair (/,, r2) is RE-confluent modulo E, denoted r,|,r2 iff there exist terms A, 
re re

and l'2 such that /, t2 *-♦ t\, and /', = t'2. Rh is confluent modulo E i(T for all terms 
re r£

t, f„ and t2, t *-> q, and / *-» t2 =» /,|/2. RE is locally confluent modulo E with R iff for all 

terms t, /„ and t2, t -*• /„ and t -*• t2 =» r,|/2.
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In place of the E-compatibility property of Peterson and Stickel, Jouannaud and 

Kirchner introduce the notion of coherence. Confluence and coherence are two 

instances of the same general concept: that a term may be mapped into two different 

forms (possibly by two different relations) and that these two forms may be brought 

back together by another relation. They define coherence and local coherence
re

formally as follows: RE is coherent modulo E iff for all terms t, tu and t2, t /„ and
/. pet — t2 =* /, j/r  R1 is locally coherent modulo E iff for all terms /, and t2, t /,, and

/ = t2 => /, J./2. Thus confluence addresses the case where a term is pulled apart via two
r e  . . .

applications of -*■ and coherence addresses the case where a term is pulled apart via
r e

-> and E-equality. This comparison is illustrated in Figure 12.

The E-critical pairs defined in our discussion of the Peterson-Stickel 

E-completion procedure must now be further distinguished as confluence critical pairs 

to distinguish them from coherence critical pairs. Coherence critical pairs are 

computed in exactly the same manner as confluence critical pairs except that a 

reduction X -* p and an equation / = r play the roles of J, -* p, and X2 p2. Following 

much the same pattern as the original Knuth-Bendix theory, the local confluence and
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local coherence properties will be reduced to the confluence of their critical pairs, 

respectively. The notions of confluence and coherence, playing similar roles, provide 

the core of the Jouannaud-Kirchner E-completion theory.

b. Church-Rosser Properties.

RuER is defined to be Church-Rosser modulo E iff for all terms /, and t2, /, = t2 =>
RfE R/E0 *

there exists a term t3 such that /, -* t3 and t2 -> t3. The following theorem highlights 

the roles of confluence and coherence in achieving this property.

E-Church-Rosser Theorem: C J 0 6 ]

I f  the rewriting relation -> satisfies the finite termination property, then the following 

properties are equivalent:

(1) R is RE Church- Rosser modulo E.

(2) RE is confluent modulo E and RE is coherent modulo E.

(3) RE is locally confluent modulo E and RE is locally coherent modulo E.

(4) for all terms /, and t2, /, *= t2 iff r,|*£ = /2|*£.

We now give the main theorem of the Jouannaud-Kirchner paper, in a slightly 

simplified form. Their theory allows, for purposes of efficiency, the separation of the 

set R into two sets, L and N, such that all of the reductions in L satisfy the 

requirement that no variable appears more than once in the left side of a reduction. 

It is permissible under their theory, however, to have such rules in N. We will 

simplify matters by leaving all of the reductions in R for our purposes, treating R as 

their N.

E-Church-Rosser Decidability Theorem: [7AT86]

Assume an equational theory E such that a finite and complete unification algorithm 

exists for E and E-congruence classes are finite. Let R be a set o f reductions such that
R/E
-» satisfies the finite termination properly. R is RE-Church-Rosser modulo E iff:
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(1) all confluence critical pairs < c„ c2 > in ^^E-Critical-Pairsip, q) are R/E 

confluent modulo E.

(2) for any coherence critical pair < c,, c2 > in Uire)sRxEE-Critical-Pairs(r,e) there exists a
r e

term c'2 such that c2 —► c'2 and < c,, c'2 > is R/E confluent modulo E.

The proofs of these last two theorems are based on multiset induction, a special case 

of the noetherian induction technique used in Huet's proof of the original 

Knuth-Bendix theory.

Note that the E-compatibility property of Peterson and Stickel has been 

replaced by the confluence of coherence critical pairs and that the linearity and 

non-erasing requirements for E have been replaced by the single requirement that E 

generate finite congruence classes.

c. Generalized Extensions.

In the Jouannaud-Kirchner theory, the concept of an extended reduction is 

improved in two ways over extensions as presented in the Peterson-Stickel theory. 

First, rather than systematically adding extensions for every reduction whose left side 

is rooted with an AC operator, Jouannaud and Kirchner examine the coherence 

critical pairs of a reduction with the equations of E. Only when there is a pair which 

will not conflate do they add an extended reduction to R. They call this the concept 

of dynamic extensions. Secondly, they generalize the concept of AC extensions such 

that they can generate an extension for any reduction, no matter what the equational 

theory may be. Suppose that the reduction X -* p and the equation / = r produce a 

coherence critical pair which does not conflate when l/m and X are E-unified. They 

show that the new reduction l[_m * -X/\-+l\_m *-p]  is an extension which will 

conflate the troublesome pair. This does not depend on / = r being part of an AC 

equational theory, as in the Peterson-Stickel theory.
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4. Kaplan-Rcmy Completion for Conditional Reductions.

Moving in a slightly different direction, we now present a brief look at the 

theory of completion for a set of conditional reductions. We address this because the 

completion process presented in later chapters turns out to be E-completion of 

conditional reductions. Although the conditions which arise in this research are 

somewhat specialized to our problem, they do maintain enough generality as to be 

similar to the conditions of other researchers.

Kaplan and Remy [A7?87] address the standard completion problem, without 

respect to an equational theory, for conditional reductions of the form

If«, = v, and u2 — v2 and ... and un = vn Then X -» p.

In order to apply one of these reductions, a term matching substitution o is found 

between X and the term to be reduced. If this match is successful, then a is applied to 

the condition and a check is made to see if the condition holds. In their theory this 

evaluation involves applying the reductions recursively to the terms of the condition; 

in our case it will not. Aside from this difference, our conditions will be used in the 

same manner.

Kaplan and Remy define a steady conditional rewriting system to be one in which 

the variables in the condition and in p also all appear in X. A contextual critical pair 

is defined to be a critical pair of the same form as the Knuth-Bendix critical pair, with 

an associated critical context which is the result of applying the unifier used to 

produce the critical pair to the conjunction of the conditions from each of the 

reductions involved in the critical pair. A contextual critical pair is then said to be 

feasible iff the critical context holds. This leads to the following theorem.
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Church-Rosser Theorem for Conditional Rewriting Systems: CA7?87]

Given a steady conditional rewriting system R, —*• is locally confluent, and thus confluent, 

iff for every feasible contextual critical pair <c,,c2> with critical context C,

= c2o[R for all substitutions o which cause the critical context to hold.

Although the form and manner of application of our conditional reductions will 

be slightly different, we will build on the concept of subjecting critical pairs to the 

conditions of both involved reductions. We will also apply this concept to coherence 

critical pairs as we blend the theory of E-completion with the theory of completion 

for conditional reductions.
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IV. TERMINATION VIA CONDITIONAL REDUCTIONS

A. INTRODUCTION

Much of the work in term rewriting relative to an equational theory, E, has
R/E R,E R/E

involved the use of the -» and -> rewriting relations. In general, -*• has been used to
R E

develop theoretical results and some form of -+ has been used in computer programs 

which implement those theories. Both of these are rewriting relations between 

elements of congruence classes generated by the equational theory and have been 

shown to terminate when the equational theory generates finite congruence classes, 

such as those generated by an AC equational theory. When we move to equational 

theories which generate infinite congruence classes, such as those generated by an 

ACI equational theory, however, we may lose the termination property for both of 

these rewriting relations.

The fact that we may lose termination when rewriting relative to an ACI 

equational theory is significant for two reasons. In the first place, most theoretical 

results related to establishing that a set of reductions is complete relative to an
. R/Eequational theory depend on the termination of -* . Jouannaud and Kirchner 

[7^86] develop the theory of completing a set of reductions relative to an equational
R/E

theory provided the equational theory generates finite congruence classes and -* 

terminates. In the same work it is also noted that a significant open problem in this 

area is the generalization of the completion theory to handle equational theories 

which generate infinite congruence classes. Bachmair and Plaistcd C#P873 generalize 

the previous work, removing the requirement of finite congruence classes, but still
R/E

requiring the termination of -* . This generalization does not help, however, if the
R/E

termination of -» is lost for equational theories which generate infinite congruence 

classes. In what follows we will demonstrate that this is often the case. The second
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reason for the significance of the loss of termination is quite simple. Aside from any 

theoretical results relating to completeness, reductions can still be very useful for 

simplifying expressions. This usefulness is severely limited, however, if the 

implemented rewriting relation must deal with the possibility of infinite chains.

R,E
Recall from Chapter 2 that -»

R ,E
't

R/E
and are defined such that

<m

and

Note that R,E

R I E  ,r r  E  , R  , El\ h lf f  l\ ~ 11 -* 1 2 — t2 ■

, thus if contains infinite chains will contain them also.
R,E R/E

The following example demonstrates that ->• and -» termination can, in fact, both be

lost when rewriting relative to an ACI equational theory.

Let R contain the reduction — (-* + y) -> ( — •*) + ( —y) and let E be the ACI 

equational theory for + . Then the term ( —a) can be rewritten as

( - a)  = - ( «  + 0) A ( —a) + ( —0) = — (a + 0) + ( —0) $  (( -a) + ( -0)) + ( -0 ) = ...

R E
When rewritten as an A chain we have

( —a) ( —a) + ( —0) -> (( —a) + (  — 0)) + ( — 0) -* ...

R,E R/E
Clearly both -» and contain infinite chains in this example. It is very easy to find 

many other similar examples where termination is lost for ACI equational theories 

and for other equational theories which generate infinite congruence classes.

In order to develop any theory for rewriting relative to an ACI equational 

theory, we must first develop a rewriting relation which is provably terminating. In
R/E

the following we develop a generalization of the -» rewriting relation for rewriting
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relative to ACI equational theories and establish the criteria under which its 

termination is guaranteed.

B. PRELIMINARIES * 1

R/E
Before we develop the termination criteria for -♦ , we must first introduce two 

other concepts which will be used in the proofs of termination. These are the 

concepts of core elements and properties of weighting functions.

1. Core Elements.

We now define the notion of a core element of a congruence class generated by 

an ACI equational theory. We will say that a term t is a core element of [r]xc/ if t is 

in normal form with respect to the rewriting relation where / is the set of 

reductions of the form x + 0 -» x  and AC is the set of associative and commutative 

laws for each ACI operator, + , in the equational theory. The rewriting relation used
R E

here is precisely the same as -V with I playing the role of R and AC playing the role 

of E. We will write t[' to mean the normal form of t with respect to Note that /  

is by itself a complete set of reductions with respect to AC, thus all core elements of 

[ tlua  are AC-equal to each other. Clearly this means that there are a finite number 

of terms in the core for any congruence class generated by an ACI theory. 

Furthermore, given any term of finite size, we can easily find the associated core 

element.

For example, consider the ACI congruence class which contains the terms 

o + b, (a + b) + 0, (a + 0) + b, b + (0 + a), (a + 0) + (0 + b), (0 -f- 0) + (b + a),

([(a + b) + 0) -(- 0), ... The core for this congruence class contains only the two terms 

a + b and b + a.
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2. Weighting Function Properties.

R/E
As is usually the case, our proof of termination for the -> rewriting relation will 

be based on the use of a weighting function, W, such that W(t) gives the weight of 

any term t. We will depend on the following six properties for W:

W l: V t W{t) > 0

W2: i is an identity for an ACI operator in E => Vr W(t) < W(t) 

wy. j  = / => kV(s) = W({)

WA: fV(s) > W(t) »  W(Tim  «- s]) > ^ (7 tm  /])

1̂ 5: > ^(r) and 9 is any substitution =» W(s9) > IV(td)

W6: t/m = s, for some m e Dom(t) => < IV(t)

These properties have been shown for a number of weighting functions. Since 

weighting functions are usually dependent on the actual operators allowable in s and 

/, we will assume that such a W exists. The required properties can then be 

demonstrated when the sets R and E have been given, making known the allowable 

operators for s and t. For problems which involve the ACI operators + and * and 

the unary operator —, the complexity measures of Lankford [_Lal9^[ have been 

shown to meet the required properties.

Another possible approach to this problem would have been to develop a new 

weighting function which handles some of the problems which we encounter when 

dealing with infinite congruence classes. For instance, we could have attempted to 

develop a weighting function which assigns the same weight to all members of an 

ACI congruence class. In doing this, however, we would lose property fV5, which 

seems to be more useful than the suggested property. Our present approach, 

therefore, is to work with weighting functions similar to those which have already 

been developed by those working with finite congruence classes under AC theories.
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C. R/E TERMINATION

RIE
In this section we establish sufficient conditions for the termination of . The 

basic approach is to demonstrate criteria under which the weight of a term strictly
R/E

decreases on every -» step. We first present and prove a theorem which indicates
R/E

these requirements. This result is then used to redefine the notion of -» rewriting.

1. Termination Theorem.

In order to accomplish our goal in this section we begin by proving a group of 

lemmas which allow us to reduce the problem to that of classifying the substitution 

involved in the rewriting. Necessary terminology and functions will be defined along 

the way.

The following property of ACI congruence classes was mentioned informally in 

our previous discussion of core elements. We state it more formally here for reference 

in a later proof.

Lemma 1: If t A= s, r j7 = s],7-

Proof: This is a direct consequence of the definition of [' and the fact that I is by 

itself a complete set of reductions with respect to AC. □

We now show that coring a term can never increase its weight.

Lemma 2: For every term, t, JF(/!0 < W{t).

Proof: It will suffice to show that if s is obtained from t by one application of an 

identity law, then IF(s) < W(t). We assume without loss of generality that the identity 

law is jc + 0 -»0, for some ACI operator + . There must be some m e Dom(t) such 

that t/m = u + 0 for some term u, and s = /[m «- By W6, W(u) < W(u + 0), and 

by W4, tV(s) = W(tlm  «]) < IF(r[m <-(« + 0)]) = W(t). □
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The next lemma makes it clear that we can preserve ACI-equality when we 

substitute equals for equals on both sides of the equality, provided that the subterm 

being replaced is in the same context in each term, relative to the ACI theory. This 

contextual requirement is assured by the added condition that the subterm occurs 

exactly once in each side. It is easy to see that the lemma is not true without this 

contextual requirement.

Lemma 3: Given terms t and f ,  a constant c, and positions x e dom(i) and 

x' e dom(i’) such that l\_x «- <0 A= t'{_x' *- cX c =£ ident(a) for any ACI operator a 

in E, and c occurs in neither t nor t', then for any term s, t[_x «- sH =* /'C*' <- /] . 

Proof: Since we are given that /Qjc <— c] *= t'[_x' <— c], this means that there exists a 

sequence of terms / [ jc  <- c] = /, =' t2 =' ... A= t„ = / '[* ' c], where =' is used to

mean a single application of one of the ACI equations. Since none of these 

equations can eliminate or duplicate c it follows that there is exactly one occurrence 

of c in each tt. This means that a corresponding sequence of steps with each c 

replaced by j can be used to demonstrate that /£* <- x] /'[■*' *- □

We now establish the existence of a core term which is similar enough in 

structure to a given term that we can replace a subterm in each with ACI-equal terms 

and preserve ACI-equality. This lemma will provide the backbone for the proof of 

our main theorem in this section.

Lemma 4: Given a term, t, and a position, x  e dom{t), then there exists a core term, 

f , and a position, jc' e dom(t'), such that for any term s, /£•*■ <- *= f'C*' sJ/X

Proof: Let f  — (r[x *- c3)i' where c is a special constant not previously appearing in
ACI

t and c A ident{a) for any ACI operator a in E. The special constant c will serve as a 

marker to mark position jc  in / and allow the determination of the corresponding 

position in /' after the coring process has taken place. Clearly the rewriting relation
I A C

can move the position of c during the coring process, however, it can neither 

eliminate nor duplicate c since the AC equations can only serve to permute terms and



60

the I reduction can only eliminate identities, which c is not. Thus there must be one 

and only one position x' e dom(t') such that t'jx' = c. We know that 

/[x  <- c] (/[x ♦- since i '  preserves ACI-equality. But (/Cjc ■«— cU)X/ = /' by 

definition, and since / '/x '= c, we now have /[x  <- c] A= t'[_x' *- c]. Since c occurs 

exactly once on each side of this equation, we can apply Lemma 3 and substitute any 

term 5 for the marker giving / [ jc +- 5] A= / '[x ' <- s]. Finally, we can core s on one 

side since coring preserves ACI-equality and we have / [ jc «- s] / '[ jc' «- -sJ/D- □

It is important to note that the term 5 can be changed arbitrarily after /' and x' 

have been found. This will allow us to find /' for a given / and then change the 

substituted subterm without having to find another / — /' pair.

Our next lemma will be used later to establish that, under the conditions which
R/E

we will assume, —► cannot replace a subterm which is E-equal to an identity.
ACI

Lemma 5: If then /]/ A ident(a) for any ACI operator a in E.

Proof: Assume t[‘ =;. ident(a). This implies that t[‘ = ident(a) by Lemma I since 

both are core terms. Then by W3 we have W(ideru{a)) = IT(/|0- But this together 

with the given hypothesis allows us to conclude that W(ident(a)) > which

contradicts W2. Thus the assumption that t[' A= ident(a) must be false. □

The following lemma presents another result which will be needed in the proof 

of our main theorem. This shows that coring the subterm inserted into a cored term 

is equivalent to coring the resulting term, provided that the inserted subterm does not 

collapse down to an identity.
ACI

Lemma 6: If y  e dom{t[r) and s]/ #  ident(a) for any ACI operator a in E, then

Oi'Cr <- = /i'L y «- 4 'J -
I jiC

Proof: Clearly /J/Jjj *- sj.1]  is in normal form with respect to -*• unless = idenl{a) 

for some ACI operator a in / j '  which has s]/ in its scope. Since we are given that 

s i ' it ident{a) for any ACI operator a in E, this cannot be the case. Thus
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/J/Qy *- = (rj7Q> <- jtX7])!7* which is equal to (tl'Cy *- s]) j.7 by the definition of

i 7. □

Given a substitution a = {x,«- /„ x2 «- r2, ..., x„ <- /„} and a term r, we can split <7 

into two disjoint portions by defining functions Si and S2 as follows:

S,(a, /) = {(.x;. <- /,) | (jc, <- /,) e <7 and x( is in the scope of an ACI operator,

a, in t and /, = Ident{a), the identity for a.}

S2(cr, t) = a — S,(ct, t)

Clearly, if a, = S,(a, t) and a2 — S2(a, t) then ct = ct, U <72 = axar Our main theorem will
R/E

show that the termination of -* is dependent only on the S, portion of the term 

matching substitution which is used to apply each reduction. In order to show that 

the Sj portion of a substitution plays the vital role in this process, we will first 

consider the role of the S2 portion.

Lemma 7: Consider a substitution o and a term t. Let o2 = S2(a, /) and define a cored 

substitution, a[', by

° l ! = {(*; *- hi1) I C*i h) e <*}.

then (fCT2)l/ = (rlO <r2iC

Proof: The only way these terms can differ is if o2j,7 can introduce a context for the 

application of I 7 into causing not to be a core term while (ro2)j.7 is clearly

a core term. This cannot happen, however, because if the context for j 7 had been in 

t, it has already been eliminated and if t*= Ident(a) where x, is in the scope of an ACI 

operator, a, in/, then (x, <-/,)<£ <7217 by definition of E2. □

As the final piece which we will need in order to prove our main theorem for 

this section, we now define the restricted substitution set, 0 ( i  -+ p), as follows:

0(yl -> p) = {0 | 0 — {x, <- Ident(aJ, ...xn «- Ident(an)}, where
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n > 0,

each a, is an ACI operator,

each x, is a variable in X which is in the scope of a„ and

mx<,)[‘) < ^((pa)io).

We now state and prove our main result: that -» must terminate when the 

conditions for each rule, represented by 0(>i -* p), are enforced.

Termination Theorem:
RjE

If the reduction t s is allowed to take place only when a iE@(X -*• p), then the 

rewriting relation -*• must terminate.

Proof: It will be sufficient to show that, under the given conditions, ^(tfO > W(sl‘).

If /, -*■ t2 -U ... is an infinite sequence of -U reductions, then t,!', /2i ;, ... is an infinite

sequence of terms whose weights get strictly smaller, but this is impossible by Wl.
«//■

We proceed as follows: By the definition of t s , there exist terms /' and s' such

that
E . R ,

t = 1 r t . s
Since t = t[ \  it follows that

/' R-►J, y>, a
RBy the definition of , there exists m e Dom{f) such that tJjm = Xa and 

o '= /'[m  <-p<j]. By Lemma 4 there exists a core term t" and a position 

rri e Dom(t") such that for every term u,

(1) /'Cm<-u] = t"[_rri *- u j7].

Let o, = /l) and o2 = 'L1(o,X). From the definitions ofS , and S2 it is clear that

a = o,o2. From the definition of E-equality for substitutions, it follows that 

a = cr1| /o2. Since for each (x, <- /,) e o, the definition ofL, gives that /< = Ident(a), it 

follows that t \ '  — Ident(aj. From the given condition, a £ i^©^. -+ p), we see that 

-> p), giving
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w w i o  =

> mp°>  1010 

= m(p°i) 10

by Lemma 1 and W3 

by the definition of 0(2 —> p) 

by Lemma 1 and W3,

> w i p i n ’* io

= ^ ( M iO

by Lemma 7

by W5

by Lemma 2

by Lemma 1 and W3

by definitions of D, and £2.

Now Lemma 5 assures us that (Act)!7 cannot be an identity. We conclude that

W(i io  = W(i'i o

= ^ (r"C m '^ (2 CT)i7])

> ^ ( / ''[ /n ^ '(p u ) l7])

>  < -  ( pct) ! 7] ) ] . 7)

= ^((r'[m<-p(73)i0

= W{s’l  0

= ^(slO

by Lemma 1 and W3 

since t'/m — Xa 

by (1) above 

by Lemma 6 

by W4 

by Lemma 2

by (1), Lemma 1 and W3 

since s' = i'\_m <- pa] 

by Lemma 1 and W3. □

2. A Generalization of R/E.

R/E
We now propose to redefine the notion of -*■ rewriting as follows:

RjE F  R F

h t f .*  '2 lf f  h = t'\ xrp,a ^2 = h  and a $ -* p)

R/ E
Note that the conditional version of -» can be thought of as a generalization of the

R/E
normal definition of -* . All that is required is to have "empty" conditions on

R/F.
reductions of the normal -» variety. When viewed as such, any theory developed
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around conditional reductions subsumes a similar theory developed around the usual
R/E

unconditional reductions. Hereafter we will use -» to refer to this generalization. 

Peterson et al. CP#87] present a procedure for testing the completeness of a set of 

reductions relative to an ACI equational theory, based on the conditional version of
R/E R/E

the -» rewriting relation presented above. It was assumed in that study that -> did 

terminate, subject to the conditions, and the main proofs were based on that 

assumption. Our termination result thus collaborates that assumption. In the 

following chapter we will develop a procedure for completing a set of reductions 

relative to an ACI equational theory, using the generalized conditional rewriting 

relation.

D. APPLYING THE TERMINATION THEOREM 

1. Calculating Conditions.

We new describe a simple procedure for calculating the conditions which are 

needed for each reduction in order to satisfy the termination property. Recall from 

the previous section that the conditions for each reduction are represented by the 

restricted substitution set ©(A -> p) which is defined by:

0(A -* p) = {o j a = {x, «- Idendjx,), ...x„«- Ident{a„)}, where

n >  0,

each a, is an ACI operator,

each x, is a variable in X which is in the scope of oc„ and

m w )  <-

We begin by finding the set /(i), where I(t) is given by

/(/) = {(x <- Ident(a)) | x is a variable in t in the scope of an ACI operator, a}.
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The set 7(>l) then forms the basis of identity substitution pairs from which all possible 

members of 0(A -> p) will be generated. We then generate potential substitutions, 

P(X), where P(t) is given by

Clearly, the powerset, 2'w, generates all possible combinations of identity substitution 

pairs. We must discard any substitution which assigns more than one identity to the 

same variable, however, because these are not valid substitutions. Finally, we test 

each member, o, of P(A) to see whether or not lF((A<T)fr) < W ^pa)^. If the test 

succeeds we place a in 0(A -»p), otherwise we do not.

Example 1: The following example illustrates how the preceding procedure is applied
R/E

to a set of reductions to ensure —► termination when E is an ACI equational theory. 

Consider the following set of reductions where + is an ACI operator and — has none 

of the ACI properties:

For each of the examples which we present in this section we will use the weighting 

function W(r) which is defined as follows:

lY ({-x)) = 2 + 2*W(x)

For R1 the only variable in the scope of an ACI operator is x. The corresponding 

ACI operator is + and the corresponding identity is 0. This gives /(A) — {x«- 0} and 

P(2) — {</>, {x<-0}}. Using these substitutions for a, we find that Vcr

P(t) — {y \ y e  and y  is a valid substitution}.

Rl: x  + ( — jc)  -> 0

R2: — ( — x) -* x

R3: ~ {x+ y)  -  ( - x )  + { -y )

W(constant) — 2 

W(x*y) = W{x)* W(y)

W{yariable) = 2 

W{x+y)= W( jc)+  fV(y) + 5
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W(Xalr)> Wipol*), thus no restrictions are needed for Rl. R2 has no variables in 

the scope of ACI operators, giving I{X) -  P(X) = 0(R2) = <f>. Thus R2 must only 

satisfy the property IV(X) > IV(p), which it does. R3 has variables x and y  in the 

scope of the ACI operator + with the corresponding identity 0. This gives 

I(X) — {x <- 0, y  <- 0}, and P(X) — {<f>, {x <-()}, {y<-0}, (x «- 0, y  «- 0}}. Calling 

these substitutions au a2t <r3, and aAl respectively, we find that W{Xa[r) < tV(pai') for 

all substitutions a = a, except a — av Thus 0(R3) becomes {a2, a3, <r4}. Since aA is an 

instance of a2 and <j3, however, any substitution which is an E-instance of cr4 will also 

be an E-instance of a2 and ct3. Because of this we will get the same result with ©(R3) 

= {<r2, or3} as with 0(R3) = {a2, er3, cr4}. For the sake of simplicity we will use the 

more concise form. We now have the restrictions 0(R1) = <f>, 0(R2) =  <)>, and
R/E

0(R3) = { {x <- 0}, {y <- 0} }. Equivalently, the set of reductions which guarantees 

termination can be represented as the set of conditional reductions given below:

Rl: * + ( -* )  -» 0

R2: -  ( -  x) -> x

R3: If x #  0 andy¥* 0 then — (jr+.y) -+ ( —x) + ( —y)

This set has been shown to be a complete set of reductions for abelian groups relative 

to the ACI equational theory for + .

The preceding example suggests a better procedure for computing 0(2 —> p). 

When X contains at least one variable there will always be substitutions in P(X) which 

are instances of other substitutions in P(X) because the powerset of /(X) will contain 

members which are supersets of other members. For instance, as shown above, 

P(*+y) = {</>,{x«-0},{y*-0},{x*-0,y«-0}}. Calling these substitutions a„ a2, o3, 

and aAt respectively, it is clear that a2, er3, and <r4 are supersets of o, making them 

instances of a„ and <r4 is likewise an instance of both a2 and u3. This suggests that we 

generate and test the elements of the powerset from the smallest to the largest. If an
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element p of P(X) is placed in 0(2 -*• p) then no larger element q of P(2) which is a 

superset of p need even be tested as to whether or not W((Aq)I7) < ^ ((m UO- The 

test would indicate that q should be added to 0(2 -* p), but we know that we can 

leave it out. Because of the manner in which the substitutions are used, this clearly 

will not change the effect of 0(2 -*■ p) but will speed up its calculation while 

automatically providing the restrictions in the most concise form. An interesting 

result of the process is that 0(2 -» p) — <f> represents a reduction with no restrictions 

while 0(2 -*■ p) = {4>} represents a reduction which is always restricted, since every 

substitution is an instance of the empty substitution.

Example 2: In this example we will calculate restrictions using the procedure just 

described, so as to obtain minimal restrictions. Consider the following set of 

reductions:

R4: + z) -* (x*y) + (**z)

R5: x*0 -> 0

R6: -*• ~ ( x*y)

For R4, 7(2) = {jc 1, y * - 0, z <- 0} and when we generate the powerset elements

from the smallest to the largest we find that the singleton sets {x *- l}, {y «- 0}, and 

{z «- 0} are all added to 0(/l -+p). No larger members need be tested as all larger 

members are supersets of at least one of these sets. For both R5 and R6 we find 

7(2) = {><- 1}, P(A) = {<(>, {x*-l}}, and 0(2 -> p) = {x*- 1}. Viewing these 

restrictions as conditional reductions we now have:

R4: If jc 1 andy A 0 and z^O  then x*(y + z) -* {x*y) + (x*z)

R5: Ifx?fe 1 thenx*0 -> 0

R6: I fx #  1 thenjc*(-y) -* — (x*y)



68

The set {Rl, R2, R3, R4, R5, R6} has been shown to be a complete set of 

reductions for commutative rings with unit elements relative to the ACI equational 

theory for + and *.

Example 3: As a final example let us examine a reduction which leads to a more 

complicated set of restrictions. Consider the following reduction which is an 

absorbtion law from the definition of a distributive lattice:

R7: x + (x*y) -+ x

1{X) = {x<-0, x*-  1, .y<-0, y*r- 1}. Note that ^<-0 must be included because, 

under identity substitution and coring, it is possible for y  to appear in the scope of 

the + operator. P(A) with elements listed from smallest to largest is {$, {x <— 0}, 

{x<-l}, {y 0), {x«-0, >’<—0}, {x<-0, yx-1}, {x * 1, y  * 0},

{x<- 1, y  «- 1}}. Note that several members of 2,w were discarded because they were 

not valid substitutions. Of the remaining substitutions, only (x <-0, y< -l}  and 

{x< -l,y< -0}  are placed in 0(2 -> p). This restriction differs from the previous 

examples in that it allows for either x or y to take on an identity, but prevents both x 

and y  from taking on identities at the same time. Represented as a conditional 

reduction, R7 now becomes:

R7: If —i((x =  0 and_y = 1) or (x = 1 andy» = 0)) then x + (x*y) -*• x,

or, equivalently,

R7: If (x ^  0 or.y t6 1) and (x ^  1 ory  ¥= 0) then x + (x*y) -> x.

2. Rewriting Strength.

Have we weakened the original rewriting relations by adding the conditions in 

the above examples? No, we have not. In Example 1 the most general form of a 

critical pair which could have been conflated by R3 before the conditions but cannot
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be conflated by R3 after the conditions must be < — (/ + 0), ( —/) + ( -0 ) > or

< — (0 + /), ( —0) + ( —/) > . It is easy to see that Rl can be used to conflate all such 

pairs since ( —/) + ( —0) = ( — /) + ((—0) + 0) ^  ( — /) + 0 = — (/ + 0). Thus, taken 

together, the rewriting power of {Rl, R2, R3} has not been weakened by the 

introduction of the conditions needed for termination.

Likewise, in Example 2 we see that the most general form of pairs which could 

have been conflated by R4 were it not for the conditions must be either

< 1 *(y + z), 1 *y + 1 *z >  , < jr*(0 + z), jr*0 + x*z > , or < jr*(y + 0), x*y + jc*0 > . 

The pair < l*(y + z), l*g + l*z> conflates trivially since 1 *{y + z) = l*g + l*z. The 

other two pairs are easily conflated via R5 since x * 0  + x*z -* 0 + jc* z  = jr*(0 + z). 

As before we see that, taken together, the rewriting power of the entire reduction set 

has not been weakened by the conditions.

Finally, we see that in Example 3 the restriction on R7 only prevents its 

application to a pair of the general form < 0 + (0*1), 0 > or < 1 + (1*0), 1 > , which 

conflate trivially since 0 + (0*1) = 0 and 1 + (1*0) = 1. Thus the restriction only 

prevents its application when its application was not needed in the first place. These 

examples indicate that the conditions needed for termination may not weaken the 

rewriting strength of a reduction at all, and that when they do another reduction in 

the same set may still provide the same functionality as that which was removed. In 

such cases termination is achieved while the set of reductions as a whole loses no 

rewriting strength. -*■.

3. Implementing the Rewriting Relation.

R/E .
Since —► is a very general form of a rewriting relation between congruence

R/E
classes generated by an equational theory, it is clear that the conditions which give -» 

termination also give the termination of many less general rewriting relations. For
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. . , . , , R RIB ,instance, any rewriting relation -» such that - + £ - » £ - >  must terminate under
R/E

these same conditions. This is important because the -> rewriting relation is not 

conveniently implemented in a computer program, especially when E generates
r£infinite congruence classes. We have found it useful to implement -» for an ACI 

equational theory, E, as follows:

r e  r e  t

h x^ a h iff h t' 2 ^  t f l  = h, and a $ i£0 ( i  -♦ p).

R /?/£
This rewriting relation is in the range between -+ and -> and is very easy to 

implement. The conditions which give termination arc enforced as a simple 

modification to the ACI term matching routine. The term matching routine receives 

a term, a pattern, and the conditions. Whereas the normal ACI term matching would 

return the first substitution which matches the pattern to the term, the modified 

routine returns the first such match which does not violate the conditions. If no such 

match can be found, the term and pattern are considered not to match.

The rewriting relation we have described is actually a rewriting relation from a 

core element of one congruence class to a core element of another congruence class. 

When rewriting with in this manner, we begin with a core element, but we are allowed 

to leave the core during the ACI-matching step before we apply the reduction. We 

then push the result back down to the core.
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V. ON ACI-COMPLETION

A. INTRODUCTION

The goal of this chapter is to generalize the theory of E-completion to enable 

the presentation of an ACI-completion procedure. In doing so we achieve three of 

the four benefits achieved by earlier generalizations: (1) the enhanced pattern 

matching process will be more akin to the human process since identity elements are 

the root of the problem in the mathematical theory and they are easily dealt with by 

the human mathematician, (2) increased step size for equality inferences results in 

smaller search trees, shorter proofs, and smaller reduction sets, (3) insight is provided 

into related problems, particularly the problem of E-completion for other equational 

theories which generate infinite congruence classes. We do not increase the problem 

domain for the universal word problem, however, because we have not found a 

complete set of reductions via ACI-completion for any algebraic structure not already 

handled via AC-completion.

The basic approach of this work will be to build around the generalized -U 

rewriting relation presented in Chapter 4. This rewriting relation has been shown to 

terminate when H is an ACI equational theory. Because it is a generalization of the
R/E . .
-» rewriting relation used in previous E-completion procedures such as 

[7^86, 5P87], we cannot assume their E-completion results, but must develop our
R/E

ACI-completion procedure to match the new definition of -» .
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B. CONDITIONAL REWRITING DEFINITIONS

Before proceeding to the ACI-completion theory, we first define conditional 

versions for each of the standard rewriting relations which we will use. As mentioned 

previously, each standard rewriting relation can be thought of as an instance of its 

conditional counterpart, with all of the conditions being empty. For terms t and s,
ft

we will say that t -+ 5 iff there is a reduction X -* p e R, m e  dom(t), and ai, p, a, m

substitution o such that

a  i eO ( X  -► p), 

t/m = Xcf, and 

s = rCm <— per].

The restriction a  ̂ /,.(-)(X -► p) is the only difference between our relation and the 

usual definition of -X- . The procedure for calculating ©(A -* p) is given in Chapter 4. 

We will say that t -* s iff there is a reduction X -> p e R, m e  dom(t), and a
X, p, 0, m

substitution a such that

a $ ieQ(X -* p), 

tjm = Xa, and 

5 = t\_m *— pa].

Equivalently, we may state this definition by

R,E
t  s
X,p,a, m

iir t = f  
< >»,

R

p, v* fn
s.

Finally, we define the rewriting relation -+ by

RjE
t -> S 
i, p, a X, p, a

E
=  S.

Except for the conditions, these rewriting relations are just like their counterparts 

which are defined in Chapter 2. It is shown in Chapter 4 that all three of these
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conditional rewriting relations satisfy the termination property when E is an ACI 

equational theory.

C. TESTING ACI-COMPLETENESS

The material presented in this section is a summary of material presented in 

and much of it is taken verbatim from that source. The work done by 

Peterson ct al. is closely related to this work and lays the essential groundwork for the 

remainder of this paper. We summarize only necessary results here, omitting the 

proofs.

1. E-Church-Rosser Property.

The theoretical basis for this section is a general E-Church-Rosser theorem 

similar to that of CJ/f86]|, using similar notation which we now review. Let S be a 

set. Let = be a symmetric relation on S and let = be its reflexive, transitive, closure. 

Let R (or - i ) be a relation on 5 and R/E be the relation = o o = , which must be 

well-founded. Let rj* be a normal form obtained from t using the well-founded 

relation R. Let R ' (or ) be the set {(/>, q) i {q,p) e R}. Let ==E be the relation

= u U <- , and let =E be the reflexive, transitive, closure of ==E. Finally, let
r ERE (or -*•) be any relation which satisfies the inequality R £  RE SE R/E. We now 

make the following definitions:

Definition 1: RE is E-Complete means

/ - £ / iff sIrE = t[RE.

We will use the notation < s *= t>  throughout this paper to represent critical pairs, 

rather than the traditional notation < s , t > . This will serve as a reminder that the
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process of forming a critical pair generates two terms whose normal forms must be 

brought together in order to achieve E-completeness.
• » EDefinition 2: RE is locally coherent modulo E if whenever t = s and t -* f,, it follows 

that there is a term .v, such that s s, and /, and .v, have a common —► successor.
Ah

Definition 3: RE is locally confluent modulo E if whenever / -> t, and t —* t2, it follows
R/E

that r, and t2 have a common -» successor.

E-Church-Rosser Theorem: [P.B87]

The following two statements are equivalent:

(1) RE is E-complete.

(2) RE is locally coherent and locally confluent modulo E.

2. Local Coherence Property.

We now state a characterization of local coherence for our conditional rewriting 

relation.

Local Coherence Theorem:

The following two statements are equivalent:

(1) R, E is locally coherent modulo E.

(2) Whenever l — r e E (or r= l eE) ,  2 —» p e R, m e sdom(l) but m =£ e, and 

a e E-Unify(l/m, 2) a tj<£i£©(2 -> p), it follows that 3« 3 ro -* u and lo\_m <— paJ 

and u have a common successor.

We will say that 2 -*■ p coheres with 1= r when (2) above holds for all 

appropriate values of m and a.

Based on the Local Coherence Theorem we can implement the following test for 

local coherence: First find all / = r, 2 -♦ p, m, and a which satisfy the conditions of
R E

(2) of the theorem. Then test each ra for -> reducibility. If some ro is not reducible
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then coherence fails. If ro is reducible by -* using some X' -* p', o', and m', then the 

coherence critical pair

< lo\_m «- pa] R=E ro£m' <— p'o'] >

R/E
can be reduced to normal form via -». If both sides are identical in some normal 

form, then coherence succeeds, otherwise coherence fails.

When the set E is an ACI equational theory, which is our interest in this 

research, the test for local coherence can be further simplified by the following 

observations:

(1) All reductions cohere with the identity laws. This is true because for an arbitrary 

identity law, x + 0 = 0, the only m satisfying (2) of the theorem is the one such 

that Ijm — 0, thus o e E-Unify(X, 0). This means that Xo = 0, however, it is shown 

in Chapter 4 that Xo = 0 ==> a e i£0(T -*• p) by the definition of 0(2 -*• p) and 

necessary properties of the weighting function.

(2) All reductions cohere with the commutative laws. This is true because when 1= r 

is a commutative law there is no m satisfying m e sdom{[) and m =£ c.

(3) If X -* p w + X' -> w 4- p' where w $ Vars(X' -» p') then X -* p coheres with the 

associative law for -f . This is proved in CTZ187] under the added assumption 

that iv $ fars(0(^ -+ p)). From the calculation procedure given for 0(A -* p) in 

Chapter 4, however, we can show that the conditions assumed here imply that 

w Vars{(d{X -* p)). The essence of this observation is that reductions which have 

already been extended for a given ACI operator automatically cohere with the 

associative law for that operator.

Since coherence with the identity and commutative laws is automatic and 

extensions give coherence with the associative laws, the procedure for assuring 

coherence for an ACI equational theory simplifies to the following: for each
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reduction X p e R together with the associative law for each ACI operator + in X 

perform the coherence test described above. If the test fails we can then replace 

X -* p with its extension, w + X -» w + p such that w £ Vars{X -» p), and coherence will 

be assured.

R/E
Because the Local Coherence Theorem only requires a common -♦ successor, wc 

are allowed to flatten and/or core the terms after the coherence critical pair has been 

formed, during the process of finding normal forms. This is because the E-equality
R/E

steps involved in the flattening and coring processes together with the -* reductions
R/E

still form a rewriting relation which is consistent with the definition of -*• . It is very 

important, however, that this flattening and/or coring not take place until after the
R.E

coherence critical pair has been formed because the theorem calls for ro to be ->
R/E . . .

reducible and flattening and/or coring ro too early results in a test for -*• reducibility
R.E .

instead. In actuality, we usually use the rewriting relation —► together with flattening 

and coring to produce normal forms which are tested for E-cquality, because this is
R/E

much easier to implement than the more general rewriting relation -* . Clearly this is
. */•£■still a valid process as long as we use a rewriting relation which is contained in —► .

3. Local Confluence Property.

We now state a characterization of local confluence based on our conditional 

rewriting relation.

Local Confluence Theorem: C/>̂ 87]

If R,E is locally coherent modulo E, then the following two statements are equivalent.

(1) RE is locally confluent modulo E.

(2) Whenever 2, -* p, e R, X2-> p2e R, m e and a e E-Unify(XJrn, X2) a

a $ i£0 (2, -* p,) and a £ i£0 (2j -» p2), it follows that 2,<7[ wi *- p2o\1 and p,a have
R/E

a common -* successor.
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Based on the Local Confluence Theorem we can implement the following test 

for confluence: First ensure that local coherence is satisfied. This is done using the 

procedure described with the Local Coherence Theorem. In the case of an ACI 

equational theory we know that we will be able to satisfy coherence by extending 

reductions where needed, as pointed out above. The next step is to generate all of the 

confluence critical pairs

i r  R v E<  A}o\_m <— p2o J = P\0 >

for which the hypotheses of (2) above are satisfied. Both sides of the critical pair are
R/E

then reduced to normal forms via -+ and compared. If the normal forms are 

identical, the pair conflates, and the test for confluence succeeds, otherwise it fails.
R,t:

Again we remark that it is sufficient to compute normal forms via -» together with 

flattening and/or coring, with a final check for E-equality.

4. An Algorithm to Test ACI-Completeness.

Figure 13 presents an algorithm which applies the Local Coherence Theorem 

and the Local Confluence Theorem together with the the coherence results relating 

specifically to ACI equational theories to test a set of reductions for 

ACI-completeness. This algorithm has been implemented in a computer program and 

has verified several sets of reductions to be ACI-complete. The ACI'Completion 

procedure presented in the final section of this paper will be a generalization of this 

algorithm.

The function E-Unify may be any finite E-unification algorithm which returns a 

complete set of E-unifiers for the given terms, such as the one presented in Chapter 2. 

The function ACI-Operators needs to return all of the ACI operators which appear in
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the given term. The functions Vars and Sdom are both defined in Chapter 2. The 

restricted substitution function © is described in Chapter 4.

Procedure Test-ACI-CompIeteness (R)
For each X -» p e R do

For each + e ACI-Operators(X) do 
a:=  (jr -f (y + z) = (x + j>) + z)
If 3(s = /) e Coherence-Critical-Pairs{a, X -* p) b sJ.*/£ ^  t l RIE 
Then R : = /? — {2 -> p}

R : = /? U {m> + 2 -+ w + p}, w £ Vars(2 -*• p)
Fnd I ;or

End For
£

If 3(5 = r) e Û q)iR̂RConfluence-Critical-Pairs{p,q) 3 s lR/E¥= t[R'E 
Then Return Failure 
Else Return Success 

End Procedure Test-ACI-Completeness

Procedure Coherence-Critical-Pairs (/ = r, X -*■ p)
Return {(ra = pa) | a e E-Unify(l, 2), a £ z£0(2 p)}

U {(ra = (l\_m <- p])a) | a e E-Unify(ljm, X), a $ i^{X -> p), 
/n e Sdom(l), and /n e}

U {((2[m <- r])<r = pa) \ a e E-Unify(l, X/m), a £ ifl^X -> p), 
m e Sdom(2), and

End Procedure Coherence-Critical-Pairs

Procedure Confluence-Critical-Pairs (2, -*■ p„ X2 -» p2)
Return {(p,a = p2a) | a e E-Unify{Xx, 22), a $ ik0(2, -> pt), 

and a £ ijX){X2 -* p2)}
U {(p,cr = (2,[m «- P2])<7) I e E-Unify(XJm, X2), a $ z^(2, -+ p,), 

a £ i j ) ( X 2 - *  p2), m e Sz/om(2,), a n d m f t )
U {((22[ >  <- p,J)a =  P2ct) | a e E-Unify(Xu XJm), a $ z^(2, p,),

a ^ t£0(22 -> p2), m e Sdom(22), and m #  e}
End Procedure Confluence-Critical-Pairs

Figure 13. An algorithm to test ACI-Completeness
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D. ACI-COMPLETION CONSIDERATIONS

As we develop an ACI-completion procedure based on the test for 

ACI-completeness presented in the previous section we will first address three areas 

where the ACI-completion procedure differs from previous E-completion procedures. 

These differences arise because we are focusing specifically on an ACI equational

theory and because we are working with the conditions needed for termination of the
*/£ . . . .-* rewriting relation.

1. Identity Substitution Inference.

The first concept peculiar to ACI-completion which we would like to address is 

what we have called identity substitution inference. By the Compatibility Lemma given 

in Chapter 2 we know that if / R= r is a valid equation, then for any substitution, a, 

la =£ ro is also a valid equation. We are only interested in the case where a is a 

substitution which replaces one or more variables in / and/or r with an identity. 

Having made the identity substitutions we then core each side, still preserving 

(R U £)-equality, and obtain a new equation, (lo)^ =£ (ro)]/.

An application of identity substitution inference is found in the processing of 

confluence critical pairs. When a confluence critical pair is found which will not 

conflate via the existing R and no orientation can be found to use the pair as a 

reduction, identity substitution inference may be helpful in resisting failure. Similar 

to other failure resistance schemes which delay the processing of a troublesome pair, 

hoping to be able to handle it after other pairs have been processed and more 

reductions have been added to R CFG84], we put the problem pair aside for later 

processing. Rather than simply going on to other pairs before coming back to the 

problem pair, however, we first try the rule of identity substitution inference. This is
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an application of the idea that learning something is better than learning nothing at 

all.

Suppose we have a critical pair, < / = r > which will neither conflate nor orient 

to form a reduction. Suppose further that we can find an identity substitution, a, 

such that the new equation, (la)\! R= (ro) | f, is orientable as a reduction. Then we 

can add the new reduction to R, possibly increasing our chances of conflating the 

problem pair when we come back to it. In fact, it may be the case that the reduction 

formed by the identity substitution inference is immediately able to conflate the 

critical pair from which it was generated. The hope that identity substitution and 

coring will produce an orientable equation from an unorientable one is based on the 

possibility that some variable which is replaced by an identity may occur in a different 

context on one side of the equation than it does on the other, causing one side to 

"collapse" more than the other.

The following example illustrates how identity substitution inference may be 

used to resist failure during the ACI-completion process. Let K be the ACI 

equational theory for + and let the initial set R of reductions contain only the single 

reduction

Rl: x + y + (  — y)-»x.

Noting that this reduction passes the test for local coherence, we move to the test for 

local confluence. Forming confluence critical pairs of Rl with itself we obtain the 

following pairs:

PI

P2

P3

P4

< x + y  = x -f-y >

< — (x + y) + y  + z =* — (x f  w) + w + z > 

< x + _ y R=̂ £ —  ( —  ( z  +  x )  +  z  +  w )  +  w +  y ; >

PI and P2 obviously conflate without applying any reductions. The pair P3, however, 

does not conflate since the sides are not E-equal and the only reduction, Rl, cannot
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be applied. Furthermore, it is clear from the form of each side that any weighting 

function which weights all variables equally will assign the same weight to both sides 

of the pair, preventing us from orienting the sides to form a reduction. At this point 

we put P3 aside for later processing and see if we can gain anything from the rule of 

identity substitution inference. Applying the substitution a — {w *- 0} to both sides 

of the pair and coring the result we get the new pair

P5: < — (x + y) + y + z R= ( — x) + z > .

This pair is now orientable as a reduction giving us

R2: - ( j r+ ^ )+ j/  + z -^ ( - j r )  + z

which is added to R. Recalling that we have set the pair P3 aside for later processing, 

we note that P3 will now conflate since both sides rewrite to ( — x) + z using R2. 

Thus we have gained enough information from the identity substitution inference to 

completely handle the P3 pair.

Another application of identity substitution inference is the removal of 

unnecessary variables from reductions. Suppose that we have generated the critical 

pair

P6: < x + - ( - y ) = E x + y > ,

the pair will neither conflate nor reduce further by the present R, and the weighting 

function assigns a greater weight to the left hand side of the pair. We could, of 

course, form the reduction

R3: jt + - ( - y ) - + j r + j '.

If we note, however, that the reduction 

R4: - ( - y ) - * y

will also conflate the pair P6, then we can simply apply the rule of identity 

substitution inference to the critical pair using the substitution a = {jc 0} and form 

the reduction R4 instead. Furthermore, it is easy to verify that R4 will pass all the
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tests for local coherence for any ACI equational theory. In other words, the 

completion process was about to generate a reduction with an unneeded variable.

The procedure just described can easily be generalized. Before forming a 

reduction X -> p from a non-conflating critical pair p, find the largest identity 

substitution a such that (Xo) |/  -» (po)l' will conflate p. Add the smaller reduction 

(Xo)[1 -> (pa)l1 to the reduction set instead of X -> p. The significance of removing 

these extraneous variables before the reduction is formed is that this helps to keep 

down the number of variables involved in the ACI-unification and ACI-matching 

processes as well as the number of overlappings involved in computing critical pairs. 

We have observed considerable savings of both time and space during the 

ACI-completion process using this method.

2. Satisfying Coherence.

From the E-Church-Rosser Theorem we have seen that both local confluence 

and local coherence are needed to have an E-complete reduction set. Local 

confluence has always been the central issue of completion and E-completion 

procedures up to this point. If confluence pairs do not conflate, new reductions are 

formed and added to the reduction set. No reduction is ever removed from the 

reduction set unless some combination of the other reductions provides duplicate 

functionality. This guarantees that the reduction set can only increase in rewriting 

strength during the completion process, and that the final reduction set will have the 

capability of conflating all critical pairs which were generated at any point during the 

completion process. We propose to address the local coherence property by 

processing coherence critical pairs in precisely the same manner in which confluence 

critical pairs are normally processed.
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When a reduction is added to the reduction set we simply compute all coherence 

critical pairs between that reduction and the equational theory, placing these new 

critical pairs on the list with any outstanding confluence and/or coherence critical 

pairs. If the program halts, we will know that all confluence pairs of the final 

reduction set and all coherence pairs of the final reduction set have already been 

conflated. Thus both properties are satisfied and the reduction set is L-complete.

This completely avoids using the concept of extended reductions. In turn, this 

also eliminates the need for protection schemes which must be used to ensure that the 

form of an extended reduction is not altered in such a way as to lose the coherence 

property and to ensure that a reduction which is needed for the coherence of another 

reduction is not deleted from the reduction set. We will address the issue of 

extensions and protection schemes more in the next chapter. It is interesting to note 

that most of the reductions which are formed as the result of processing coherence 

critical pairs in the manner suggested above are exactly the same as the extended 

reductions which come from the theory of extensions. The exceptions to this rule are 

precisely those cases where the extension would not function properly without the 

protection scheme. Of course, for those reductions which already satisfy the 

coherence property with respect to the equational theory, all coherence pairs will 

ultimately conflate without causing the addition of any new reductions.

3. Critical Pairs and Conditional Reductions.

There are two ways in which conditional reductions affect the processing of 

critical pairs. The first effect is found in the computation of the pairs themselves. As 

indicated by the Local Coherence and Local Confluence Theorems, critical pairs are 

affected by the conditions on both of the involved terms. Because the unifiers 

generated by overlapping the two terms must not violate the conditions of either 

term, many potential critical pairs are avoided.
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The second effect of conditions on the processing of critical pairs is seen in the 

processing of a confluence critical pair which does not conflate. In all previous 

completion and O-completion procedures, critical pairs which do not conflate are 

oriented, if possible, to form a new reduction which is added to R. Because of the 

conditions which may be required to maintain termination of the rewriting relation, 

however, we cannot simply orient the pair and add a reduction to R. Once we have 

determined an orientation of X -* p, we must compute the conditions which ensure 

termination, according to the procedure given in Chapter 4. These conditions are 

calculated in the form of a set of restricted substitutions, 0(^ -* p), such that no 

rewriting is allowed using X -> p and a term matching substitution which is an 

E-instance of a substitution in the restricted set. If 0(A -> p) is empty then we can 

simply add the new reduction to R and procede as most other E-completion 

procedures. If 0(>1 -+ p) is not empty, however, then we will handle the critical pair 

according to a method which we will call splitting a critical pair.

The concept of splitting a critical pair is based on the concept of proof by 

exhaustive cases. If we need to show that Vx P{x) is true, we know that this can be 

done by splitting the proof into exhaustive cases and then showing that the desired 

result holds for each case. For instance, if we are able to show that P(0) is true and 

that V x x ^ O  => P(x) is true, then we have shown that VxP(x) is true. A simple 

example illustrates how we can apply this to a critical pair. Suppose we have just 

generated the critical pair

P7: < jc*0*=0>

and it will not conflate via the current R. Orienting the sides by weight gives the 

reduction x*0 -> 0 and calculating the restricted substitutions gives 

0(>l -> p) = {x <- 1}. In conditional form this gives a potential reduction of

R5: If x  1 then x*0 -> 0.
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In order to satisfy the test for local confluence which is needed to have a complete set 

of reductions, however, we must show that the pair P7 conflates for all values of x. 

Clearly the reduction R5 will cause the pair P7 to conflate for all values of j c  except 

the case when x = 1. We thus split the critical pair into the reduction R5 and the new 

critical pair

P8: < l * 0 * - 0 >

which is formed by applying the substitution {jc ♦— I} to the P7 pair. The new pair, 

P8, represents the only instance of P7 not conflated by R5. This new pair must also 

be conflated before the reduction set is deemed to be complete. The hope is that the 

new pair will either conflate trivially (without the application of any reductions), 

conflate via other reductions in R, or orient to form yet another reduction. In this 

example the P8 pair conflates trivially because 1*0 = 0, showing us that R5, even with 

its restrictions, is sufficient to conflate the P7 pair.

The process of splitting a critical pair becomes slightly more complicated as the 

restricted substitution set grows in size. For example the critical pair 

P9: < - ( X + y ) ^ ( - * )  + ( - y ) >

gives 0(2 -*• p) = { { jc  <— 0},{y «- 0}}. As a conditional reduction we have

R6: If jc  0 and y=t 0 then — ( jc  +y) -> ( —  jc )  + ( —y).

In order to show that the P9 pair conflates in all cases we must show that it conflates 

for all values of x  and y. Clearly this can be done by showing that P9 conflates in the 

following three cases which exhaust the domain of jc and y.:

Case I :  jc  #  0 andy= t  0 

Case 2: j c  = 0 

Case 3: y  = 0

The P9 pair conflates for Case 1 via the conditional reduction, R6. 1*9 conflates for 

Case 2 and Case 3 if the critical pairs

P10: < -  (0 + y) *= ( -  0) + ( -.y) > , and
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PI I: < ~  ( j c  + 0) = ( — j c )  + ( — 0) > ,

respectively, conflate. P10 and Pll were formed by separately applying each of the 

substitutions in 0(2 -*• p) to P9. As before, the new critical pairs which arc split off 

of the original critical pair include all instances of the original which are not 

conflatable via the new conditional reduction.

Generalizing the previous examples gives us the following procedure for splitting 

a critical pair, p, which does not conflate: First we orient the sides of the pair and 

compute 0(2 -*• p) = {0,, 02, ..., 9n}. We then add the conditional reduction 

[0(2 -* p), 2 -» p ] to R and add the new critical pairs p0„ p62, ...,p0„ to the list of 

critical pairs which must be processed independently. The pair p must be conflated 

for all values of its variables, or equivalently, pa must conflate for all substitutions a. 

Clearly the new reduction will conflate pa for all substitutions a except those which 

are E-instances of some Qt. The pair p$„ however, represents the most general form 

of an instance of pa not handled by the new reduction. If all pairs p0, conflate then 

pa conflates for all substitutions a. Note that when ©(>1 -*• p) is empty no new critical 

pairs are formed, only a reduction. This is exactly the manner in which a 

non-conflating critical pair is handled in previous completion and E-completion 

procedures.

E. AN ACI-COMPLETION PROCEDURE

Figure 14 presents a procedure which attempts to complete a set of reductions 

modulo an ACI equational theory. This procedure is a generalization of the 

algorithm for testing ACI-completeness which was presented earlier. It follows the 

pattern of the AC-completion procedure presented in Chapter 3 with the following 

enhancements:

(1) failure resistance is built in according to the method of [FG84]

(2) identity substitution inference is added to the failure resistance mechanism,
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(3) the rewriting relation uses conditional reductions to maintain termination in the 

presence of infinite ACI congruence classes,

(4) coherence critical pairs are processed just as confluence critical pairs, without the 

use of extensions, and

(5) the process of splitting critical pairs is used to ensure confluence via conditional 

reductions.

In the completion procedure given in Figure 14 the following conventions are 

used: R is a set of conditional reductions; RR is that portion of R x R which has not 

been processed; CP is a set of critical pair equations; and D is a set of delayed critical 

pairs, pairs which have been put aside in order to avoid failure until all other pairs 

have been processed.

The top level procedure ACI-Completion implements the failure resistance layer. 

This routine is normally invoked with an empty R and the defining equations (other 

than the ACI equations) in CP. When the defining equations, E„ form a superset of 

another set of equations, E2, for which we have already found an ACI-complete set of 

reductions, we will invoke this procedure with the complete set of reductions for E2 in 

R and E, — E2 in CP.

The procedure Try-To-Complete-R is the normal E-completion layer. This 

procedure exhausts all of R x R before succeeding or giving up. The procedure 

Try-To-Conflate-Pairs exhausts the set of critical pairs before returning to the 

previous level. The procedure Try-To-Form-Reduciion implements the concepts of 

resisting failure via identity substitution inference, and failure resistance via the 

delaying of a critical pair. This procedure returns an oriented reduction if one can be 

derived from the pair, and possibly a critical pair whose processing should be delayed 

as long as possible, indicating the original pair did not orient to form a reduction.
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Procedure ACI-Completion (R, CP)
Repeat

R', CP : — Try-To-Complete-R(R,CP) 
Until R' = R 
If CP = 4>
Then Return Success, R 
Else Return Failure 

Find Procedure ACI-Completion

Procedure Try-To-Complete-R (R, CP)
RR, D : = <f), <f)
While {RR U CP)¥=4> do

R, RR, D ': = Try-To-Conflate-Pairs(R.RR.CP) 
D : = DUD'
URR¥=<))
Then (r„ r2): — "smallest" member of RR 

RR:= R R -{ (ru r2)}
CP : = Confluence-Critical-Pairs(ru r2) 

End While 
Return R, D

End Procedure Try-To-Complete-R

Procedure Try-To-Conflate-Pairs (R, RR, CP)
D:= 4>
While CP #  4> do

(5 = /): = "smallest" member of CP 
CP ■ = C P -{(s  = t)}
I f s |* '£ *  t i R >E
Then r,d: = Try-To-Form-Reduction(slR,E, r |R/£)

D : = D u{d)
If r 7̂  (f)
Then R,RR,CP: = Add-Reduction(r,R,RR,CP) 

R,RR,CP: = Simplify-R(R,RR,CP)
End While 
Return R, RR, D

End Procedure Try-To-Conflate-Pairs

Figure 14A. An ACI-completion procedure - Part 1

The procedure Add-Reduction adds the condition to the oriented pair, adds 

critical pairs representing instances of the original which are not handled by the 

conditional reduction, and adds all of the coherence critical pairs formed from the
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reduction and any relevant associative law. The procedures Add-Reduction and 

Simplify-R are used to keep the set R completely inter-reduced during the completion 

process. These procedures also keep RR current with R.

The procedures Coherence-Critical-Pairs and Confluence-Critical-Pairs are 

exactly the same as defined in Figure 13, page 78. The functions ACl-Operators, 

Vars, and Sdom are also the same as those presented in Figure 13. The function 

AC-Operators returns AC operators, just as ACl-Operators returns ACI operators. 

The weighting function W and the restricted substitution function 0  are both 

described in Chapter 4.

As with other completion procedures, this procedure may halt after finding an 

ACI-complete set of reductions; halt with failure after finding a non-conflating critical 

pair which cannot be oriented, even after all other potential critical pairs have been 

processed; or continue indefinitely adding new reductions to R. This procedure has 

been implemented in a computer program which has found ACI-complete reduction 

sets for a number of algebraic structures. Several of these will be presented in the 

next chapter.

The ACI-completion procedure presented in Figure 14 is not only able to 

perform E-completion relative to ACI equational theories, but also for empty, C, and 

AC equational theories as well as any combination of these. All that is necessary is 

that the procedure E-Unify return a finite and complete set of E-unifiers and that we 

are able to compute terminal forms via E-matching with respect to the desired 

equational theories. We point out that for empty and C equational theories there will 

be no coherence critical pairs, and for AC equational theories the only coherence 

critical pairs will be those from the associative law, just as those for ACI equational 

theories. Note that this is already handled in the Add-Reduction procedure. The 

conditions on the reductions will always be empty when a reduction has no ACI
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Procedure Try-To-Form-Reduction (s, t)
Case tV(s) > W(t):

Return s -* t, <p 
W(i) > fV(s):

Return t -* s, <p 
W{t) = W(s):

If 3(5' -► /') e {(sri' -» rriO I H'(srl') > PV(trlf) 
and V(x «- I) e z, i is an identity} 

Then Return s’ -* (5 = /)
Else Return tp, {s = t)

End Procedure Try-To-Form-Rcduction

Procedure Add-Reduction (>t -► p, R, RR, CP) 
r : =  (6(A-*p), X p)
R : = R U {r}
RR : = RR U {{r, r') \ r' e R}
CP: = CP U {(X = p)r I t  e Q{X -> p)}
zl : =  {(jc -F (y +  z) =  (jc + y ) +  z) | +  e ACI-Operators(X) U z!C-Oymm?rs(/i)} 
CP:= CP U UacACoherence-Critical-Pairs(a,r)
Return R, CP 

End Procedure Add-Reduction

Procedure Simplify-R (R,RR,CP)
For each r e R do

If r
Then RR : = RR — {(r, r’) \ r' e R)

/? :=  R -{r}
R, RR, CP : = R, RR, CP)
R,RR,CP: = Simplify-R{R,RR,CP)

End For
Return R, RR, CP 

End Procedure Simplify-R

Figure 14B. An ACI-completion procedure - Part 2

operators, but this is permissible since they are often empty even when reductions do 

have ACI operators. Thus, with no changes, this one procedure not only provides 

E-completion for a new class of equational theories, but also for these important 

classes of equational theories which have been addressed by earlier researchers. We 

will demonstrate this generality in the upcoming chapter.
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VI. RESULTS OF AN IMPLEMENTATION

The ACI-completion procedure given in the previous chapter has been 

implemented in a computer program. This program is written in Common LISP as 

described by Steele QS/84] and has been run successfully under a number of different 

hardware and software configurations including a DEC Microvax II, a XEROX 1109, 

a Symbolics, and an IBM PC-RT. Those interested may obtain a copy of the 

program in machine readable form by contacting the author through the Computer 

Science Department, at the University of Missouri-Rolla. The purpose of this 

chapter is twofold. First we discuss important aspects of the program 

implementation which are not spelled out by the ACI-completion procedure g iv e n  

previously. Secondly, we present some of the complete sets of reductions which have 

been generated by this program.

A. IMPLEMENTATION NOTES * 1

The following details of program implementation seem worthy of separate 

discussion: (1) the data structures used, (2) the implementation of the E-matching 

algorithm, (3) a method for dealing with term symmetry, (4) the use of extended 

reductions, and (5) the user interface. Each item has been selected because of its 

significance to the overall understanding and/or usage of the program. We now 

discuss each in turn.

1. Data Structures.

Constants, variables, and operators are represented by LISP atoms. Variables 

are distinguished from constants and operators by the value of the property 

VARIABLE on the LISP property list for the atom. For variables this property will 

have a value of T, for all other atoms the value will be NIL. Simple terms are
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constants and variables. A complex term is represented as a list in prefix form, i.e. 

the first element of the list is always the operator. For example, the term x  + ( — x) 

would be represented by the list (+  x ( — jc)). AC and ACI operators result in 

flattened terms, i.e. (+  (+  a b) c) is represented as (+  a b c), where + becomes 

an operator of varying degree.

The equational theory associated with an operator will be indicated by assigning 

a value of T to one of the properties C, AC, or ACI on the property list for the 

atom. If the C property is set to T the associated equational theory is understood to 

be the commutative theory for that operator. Likewise, T for the property AC 

indicates an associative/commutative equational theory and T for the property ACI 

indicates an associative/commutative/identity equational theory. No more than one 

of these properties should be set to T. All properties not set to T  should be set to 

NIL. If all three of these properties are set to NIL the associated equational theory 

is empty. For an ACI operator, one additional property, IDENTITY, holds the value 

of the identity which is associated with the operator. For example, if + is an ACI 

operator with identity 0, the LISP function (GET ' + 'ACI) should return T and the 

LISP function (GET ' + 'IDENTITY) should return 0. Using the LISP property 

list to encode the associated equational theory makes this information readily 

available to any routine which needs to make use of it.

Substitutions are represented as lists of variable term pairs such that the LISP 

CAR of the pair gives the variable and LISP CDR of the pair gives the term. 

Because of this a substitution of a simple term for a variable results in a LISP dotted 

pair, while the substitution of a complex term for a variable results in a normal list 

whose second element is the primary operator for the term. For example, the 

substitution {x *- a, y  *- (b + z)} would be represented as the list ((x.a) (y + b z)). 

The LISP atom NIL represents the empty substitution.
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Because the restricted substitution set for a reduction never changes, we 

calculate 0(2 -*■ p) according to the procedure given in Chapter 4 and store it with the 

reduction when the reduction is formed. This makes the restrictions available without 

calculation at any point where they are needed. A conditional reduction is thus 

represented as a list of three items: the restricted substitution set, the left hand side, 

and the right hand side. The unconditional reduction ( — ( — x)) -* x would be stored 

as (NIL ( -  ( — x)) x) where NIL indicates there are no restricted substitutions. 

The conditional reduction

If x ^  0 and y  ^  0 then — (x +y) -* ( — jc) + ( — y) 

is stored as the list

( ( ( (x .O ) )  ( O . o ) ) )  ( -  ( +  x y ) )  (  +  ( -  X)  ( -  y ) )  ).

Critical pairs and the defining equations for the algebraic structure which arc 

not part of the equational theory are simply stored as lists of two items: the left hand 

side and the right hand side. Because these are equations and not reductions, 

however, there is no real significance as to which term is on which side. For example, 

the critical pair x + ( — 0  + •*)) =£ ( — y) could be stored as either the list 

( (+  x ( — ( + y  x))) ( —y) ) or its reverse.

All sets are represented as lists where the order is not significant. Thus the set 

{a, b, c} may be any permutation of the list (a b c). The empty set is always 

represented by NIL. The set data structure is used to represent the reduction set (/?), 

the unprocessed portion of R x R {RR), critical pair equations {CP), and delayed 

critical pairs (£>).

2. E-Matching with Conditional Reductions.

Because most completion and E-completion procedures spend over ninety 

percent of their run time applying reductions in order to conflate critical pairs, it is
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essential that we have an efficient algorithm for this operation. Within the process of 

applying a single reduction the dominant operation with respect to time usage is the 

process of finding a matcher between the reduction and the term to be reduced.

The E-matching routine used in our program is largely due to Peterson \_Pe88], 

who developed an efficient E-matching routine relative to empty and ACI equational 

theories, for reductions with conditions of the type we have defined. We have 

extended Peterson's routine to handle E-unification relative to C and AC equational 

theories. The distinguishing features of this E-matching routine are:

(1) It has the generality to handle empty, C, AC, and ACI equational theories with 

very little separate code for each class of equational theories.

(2) No diophantine equations are ever generated or solved. Because we only need a 

single matcher and not a complete set of matchers, it is not necessary to deal with 

this subproblem which adds a great deal of complexity and time usage to the AC 

and ACI unification processes.

(3) Conditions on reductions are exploited to the fullest extent possible. When a 

matcher is being developed, all paths which would result in a matcher which 

violates the conditions on the reduction are pruned as soon as they are 

encountered. No time is wasted developing a matcher which cannot be used 

because it violates the condition.

(4) Natural constraints are exploited to a large extent. For example, if there are 

constants or operators in the pattern which do not appear in the term to be 

matched, the match fails immediately. This simple test is performed before a 

match is partially developed, only to discover that it cannot be completed. 

Another example deals with the number of occurrences of variables in the 

pattern. If we have a pattern such as x + x + y  then we know immediately that 

either x  must take on the identity or there must be some subterm in the term to 

be matched which occurs an even number of times. This concept generalizes for
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any number of occurrences of variables in the pattern. Several other constraints 

such as these arc used to increase the efficiency of the li-matching routine.

Since the terms we are trying to conflate contain variables, we must create the 

illusion that the variables in the term to be matched are actually constants, but only 

while the match is taking place. To do this we first rename the variables of the term 

to make them disjoint from the variables of the pattern. We then use a technique 

which we call locking the variables. This technique capitalizes on the use of the LISP 

property list to identify variables. As pointed out above, a variable is distinguished 

from a constant by the value of the VARIABLE property on the property list for the 

constant or variable name. We lock a variable by setting the VARIABLE property to 

NIL and setting a new property, LOCKED, to /'. After the matching process has 

taken place we can then unlock the variable by setting VARIABLE to T and 

LOCKED to NIL.

3. Dealing with Term Symmetry.

One observation that we have made from running the completion procedure and 

examining the critical pairs produced is that many of the critical pairs which are 

generated are redundant. The source of this redundancy is term symmetry. Mayfield 

[A/a88] has a complete discussion of term symmetry and its effect on both unifiers 

and critical pairs. For our purposes it will suffice to say that two critical pairs /, = r, 

and l2 r2 are symmetric to each other whenever there is a substitution o such that a 

is a variable renaming substitution and (/,©r,) = (/2©r2)a, where © is a commutative 

operator not appearing in any of the terms /„ rlf l2, or r2. For example, the pairs 

PI: < x + ( — z) +>> =£ y  + z + x + ( -  z) + ( — z) > and 

P2: <  u -f- v +  ( — w )= E v +  ( — w) +  ( — w) +  u +  w >  

are symmetric since the substitution a = {u*-x, v*-y, w*- z) gives P\ = P2o, and 

a is clearly a variable renaming substitution. Mayfield shows that whenever p, and p2
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are symmetric critical pairs (1) p, conflates via R iff p2 conflates via R, and (2) when 

neither pair conflates they will yield the same reduction modulo variable renaming 

and modulo E. Based on these two results it is clear that only one of the symmetric 

pairs need be processed. The other may be discarded before attempting conflation 

with no effect on the completion procedure. We have seen that as many as three 

fourths of the critical pairs generated by ACI-unification can be discarded due to 

symmetry. Mayfield has developed a test which determines whether or not two terms 

are symmetric. The cost of using the test is usually much smaller than attempting to 

conflate the redundant critical pairs.

4. Using Extensions.

Although we have shown in Chapter 5 that we do not need the concept of 

extended reductions in order to perform E-completion, we may still want to consider 

using them. Our implementation of the ACI-completion procedure given in Chapter 

5 demonstrated that, while not essential, extensions often add to the efficiency of the 

AC and ACI completion processes. Once a coherence critical pair is encountered 

which will not conflate, a reduction may be extended and the remaining coherence 

critical pairs may be discarded without further processing. The extension guarantees 

that they will conflate. Because of the efficiency gain which this produces, we have 

retained the use of extensions in our E-completion program.

When a reduction needs to be extended relative to an ACI operator, we simply 

add the needed extension variables to the original reduction. For example, if A -» p 

needs to be extended for both ACI operators + and *, we replace it with the extended 

reduction m * ( v  t 2 )  h » ( v  h  p). Clearly this one reduction provides the functionality 

of the three reductions A -* p, v + A -* v + p, and u*A -* u*p since u and v may each 

take on an identity and collapse away. Peterson et al. [Pfi87] showed that such an 

extended reduction will cohere with the associative laws for both ACI operators +



97

and *. When a reduction needs to be extended relative to an AC operator, we retain 

the original reduction intact and add one new reduction for each AC operator. This 

is precisely the method of Peterson-Stickel Cf’S&l] and is necessary because the 

extension variables cannot collapse away.

If the extended reductions were left in the form just described, coherence would 

be guaranteed, as we have pointed out. Unfortunately, we would also like to keep the 

reduction set inter-reduced at all times during the completion process. We normally 

simplify a reduction to be added to R by the other reductions in R before making the 

addition, and we check after adding a reduction to see if any of the old reductions 

either conflate or simplify via the new R. When the extended form of a reduction has 

just the right form, it is possible that this simplification may move the extension 

variable and remove the ability of the extended reduction to provide coherence. 

Consider the case when we are adding a reduction such as jc*0 x*y -* jc*y for 

coherence, and the set R contains the distributive law x*(y + z) -> x*y + x*z. The 

reduction to be added needs to be extended to satisfy coherence with the associative 

law for *. However, after extension the new reduction v*(jc*0 + x*y) -* v*x*y 

simplifies via the distributive law giving v*jc*0 + v*jc*g -*■ v*x*y. This new reduction 

does not satisfy the coherence property with the associative law for *. For this 

reason, other researchers have enforced protection schemes which protect certain 

extended reductions from simplification and/or deletion during the completion 

process.

We have chosen to avoid treating extensions differently than other reductions 

and to avoid any sort of protection schemes by simply ignoring this potential problem 

during the completion process. This creates the possibility that our program may halt 

with what should be a complete set of reductions when, in fact, it is not. This 

situation is easy to detect, however, by running a coherence check on the final set of 

reductions. If all reductions satisfy the coherence property, then the reduction set is
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actually complete. If they do not satisfy coherence, then it is not. In our experience 

the program has never found a potentially complete set of reductions which was not 

complete. This holds in spite of the fact that our program has encountered the 

situation described above where the distributive law potentially destroyed the 

coherence property. As long as the troublesome reduction does not make it into the 

final complete set of reductions this will never cause a problem.

5. User Interface.

The purpose of this section is to briefly describe the user interface for the 

ACI-completion program. The program is designed to be executed from within a 

Common LISP environment. We will describe only the LISP functions needed to 

define the equational theory for each operator, define the remainder of the algebraic 

structure, and invoke the completion procedure.

As explained earlier in the section on data structures, the equational theory for 

each operator is maintained on the LISP property list for the operator. The following 

LISP functions arc designed to define the equational theory for an operator: 

(MAKE-C operator), (MAKE-AC operator), and (MAKE-ACI operator identity). 

For example, (MAKE-ACI ' + 0) defines + as an ACI operator with identity 0. 

This means that the laws (x+y) + z = Jf + (y + z), x + j '= y  + x, and x + 0 = 0 are 

understood to be associated with this operator and that ACI-unification and 

ACI-matching may be used whenever +  is encountered. For AC and C theories the 

equational theory is specified in a similar manner, with the exception that no identity 

is specified. An operator which is not defined to be ACI, AC, or C is assumed to be 

associated with the empty equational theory, and standard unification and matching 

are used.
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That part of the definition of the algebraic structure which is not defined in the 

equational theories for the operators is normally defined via critical pair equations in 

the variable CP which is passed to the completion procedure. Each equation is 

defined as a list of two items, as described above in the section on data structures. 

Let us suppose that we want to define the structure of an abelian group. First, we 

define + to be an ACI operator using the MAKE-ACI function. We then define a 

single equation CPI to be the additive inverse law, jc  + ( — x) = 0, using the statement 

(SETQ CPI '( ( + jc  ( —  jc) )  0) ). Since this is the only additional equation needed 

to complete the definition of the abelian group, we next create the set CP of 

equations using (SETQ CP (LIST CPI)).

Whenever the definition of the structure being defined is a superset for the 

definition of another structure for which we already have an E-complete set of 

reductions, we may define the variable R as the complete set of reductions for the 

substructure and leave the equations which define the substructure out of CP. For 

example, a commutative ring with unit element is defined by the associative, 

commutative, and identity laws for + and *, the additive inverse law for + , and the 

distributive law for * over + . If we already have a complete set of reductions for an 

abelian group, which is a substructure of the ring, we may put the complete set of 

reductions for the group in R, and only the distributive law in CP. The reductions 

are each defined by a list of the form ( ®(d -* p) X p ). For example, we might 

define the first reduction by (SETQ Rl '( NIL (+  jc  y  ( — y)) jc  )). When all of 

the reductions have been defined in this manner, the complete reduction set R is 

defined by (SETQ R (LIST Rl R2 ... )).

Because the data structure calls for variables to be distinguished from constants 

and operators by the VARIABLE property on the property list, each variable in CP 

and R must be flagged as such. To facilitate this we adopt a naming convention for 

variables. Our naming convention is that all atom names beginning with the letters s
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through z will be considered to be variables. The ACI-completion procedure will 

begin by marking the property list for variables according to the naming convention 

and then standardizing the variable names such that they become xl, x2, ,..., xn 

according to their first occurrence moving from left to right across R and then CP. 

This is done in order to facilitate the process of keeping the variables of a term which 

is being reduced disjoint from the variables of the reduction set which is being applied 

to it.

After the sets R and CP have been defined as above, the AC'I-completion 

procedure is invoked by the LISP function (ACI-COMPLETION R CP). If a 

complete set of reductions is found this function will return the reduction set. If the 

procedure fails it will return NIL. Pertinent data relating to the program's progress 

will be output along the way.

B. RESULTS

We now present examples which show the results of running the 

ACI-completion program for several different algebraic structures. The first group of 

examples demonstrates that the program is able to generate ACI-complete reduction 

sets. The second group of examples serves to demonstrate that sufficient generality 

has been maintained to handle some other equational theories which are subsets of 

ACI theories. All of the examples presented were run on an IBM PC-RT with ten 

megabytes of main memory, using LUCID COMMON LISP under the AIX 

operating system. All examples were run using the same program, with the exception 

that a different weighting function was used for Example 7. Except where noted, the 

examples were run using the weighting function <w, which is defined as follows:

co^constant) = 2 

<i>i(A©y) r: co,(x) + co,(y) + 5 

wi((©*)) -  2 + 2*<o,(x)

(o^variable) = 2

w,(x +y) = o;,(x) + ^(y) + 5

<y,(( — x)) = 2 + 2*o),(x)



c'>i(*©.y) = 

U){(H{constant)) =  3 

ca,(//(x)) = 5 + <y,(x)

W](jf *y) =
(o x(H {variable)) = 3
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1. ACI-Complete Reduction Sets.

As pointed out in previous chapters, no prior E-completion theory or 

E-completion program has been able to generate or verify E-complete reduction sets 

for any equational theory which generates an infinite congruence class. The following 

examples of ACI-complete reduction sets illustrate that the theory presented in 

chapters 4 and 5 can be successfully implemented. Thus we demonstrate that the 

E-completion problem has been solved for a large subclass of equational theories 

which generate infinite congruence classes.

a. Example 1: Commutative groups. The program was given the additive 

inverse axiom x  + ( — jc)  = 0 as a critical pair equation along with the declaration that 

+ is an ACI operator with identity 0. It generated a complete set of reductions as 

follows:

Rl: u 4- v + ( — v) -*■ u from input equation

R2: I f  u  #  0 then v -f- ( — (w + u ) )  -I- u - *  v +  ( — w) from Rl with itself

Rl deleted

R3: ( — 0) -> 0 from Rl simplified

• R4: ( — ( — u)) -» u from Rl with itself

R5: u I ( -  (( - v) + w)) + ( -  (v + x)) -► m + ( -  ( jc + w)) from R2 with itself

R6: u + ( — (( — (v + w)) + j c ) )  + ( —  v) -» u + ( -  jc)  + w from R2 with itself

( ~  (( — u) + v)) -* ( — v) + u from R2 with itself

R5, R6 deleted

R8: I f  0 and  v # 0  then ( — (v + «)) -» ( — u) + ( — v) from R5 simplified
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R2, R7 deleted

• RIO: u + ( — v) + v -* u from R3 with R9

R3, R9 deleted

Thus an ACI-complete set of reductions for free commutative groups consists of R4, 

R8, and RIO. In all of our examples we will mark reductions retained in the final set 

with •. Note that Rl was generated as an extended form of the additive inverse law 

in order to satisfy coherence. Note also that many of the generated reductions have 

been generated as conditional reductions in order to maintain termination of the 

rewriting relation being used. Finally, we point out that Rl was removed from the 

set of reductions early in the completion process, but then reappeared as RIO near 

the end.

b. Example 2: Commutative rings with unit element. The program was given 

the ACI-complete set of reductions for free commutative groups as an initial R, the 

distributive axiom x*(y -F 2) = x*j> + x*z as a critical pair equation, and the 

declarations that + and * are ACI operators with identities 0 and 1, respectively. No 

inferences were attempted among the first three reductions. The program found a 

complete set of reductions as follows:

R l: u + v + ( — v) —► u given

• R2: ( — ( —«)) -» u given

• R3: I f  0 and v 0 then ( — (« + v)) -* ( — v) + ( —w) given

• R4: I f  u¥=0 and v ^  0 and 1
then (u+v)*w -» (w*u) + (w*v) from input equation

R5: I f  u A 1
then v + (w*u*x) + (w*u*0) -* v + (w*u*x) from condition on R4

R6: u + (( —v)*w) + (( — x)*w) + (w*v) + (w*y) +
(w*z) + (w+x) -*■ u + (w*z) + (w*y) from Rl with R4

R 9: u +  ( -  v) +  ( — w ) + v - »  u +  ( — w) fro m  R 2  s im p lif ie d

R7: u + ( — (v*0)) + ( — (v*w)) + ( —x) + ( - y)
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« +  ( -  M )  + ( - »  + (-* )

R8: u * (  —v)*0 —► u *0

• R9: I f  u=£ 1 th e n  u *0 —* 0

R5, R7, R8 deleted

RIO: u  +  (( — v)*w ) + (( —x)*u>) + (H>*y) + (v* y )  +
(w * x )  -*■ u  +  (w*y)

R6 deleted

R l 1: u  +  (( — i>)*w) + (vv»*v) + (w»*x) +  (w*y) -*• 
u  + (w*y) + (w*x)

RIO deleted

R12: u  + (( — v)*w) + (w*v) + (w*x) -> u  + (w*x)

R l ,  R l l  deleted 

R13: u  + (( — v)*w) + (w*v) ~> u  

R12 deleted

R id : u  +  ( -  (( -v)*w)) + ( -  (w*v)) + ( - x )  + ( - y )  -»
“ + ( -y) + ( ~x)

R15: I f u ^ h  1 th e n  v * ( — l) * u  - *  v * ( — u)

•RIO: l f u = £ \  th en  ( —v)+u -> ( — (u*t>))

R13, R14, R15 deleted

• R17: u  +  ( —v) + v -*■ u

from R3 with R5 

from R l  with R5 

from R l  with R5

from R6 with R9

from R6 with R9 

from RIO simplified 

from R9 with R12

from R3 with R13 

from R13 with itself 

from R13 with itself

from R13 simplified

The ACI-com plete set o f reductions consists o f  R2, R3, R4, R9, R16, and R17.

c. Example 3: Boolean rings. Following the pattern o f  Hsiang C//s85] we 

examined the boolean ring defined by the axioms

A l : x ® 0  = x  A 5 : x *x  =  x

A 2 :x ® y  = y ® x  A 6 : x * l = x

A3: (x® y)® z -  x® (y® z) A7: (x«y)*z = x*(y*z)

A4: x® ( — x) = 0 A8: x*(y®z) = x*j>®x*z
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where © is the EXCLUSIVE OR operator, * is the AND operator, 0 is false, and I is 

true. The theorems Tl: and T2: jr©jr = 0 are known consequences of the

axioms of the boolean ring. Hsiang has shown that a boolean algebra, for which 

there is no complete set of reductions, can be imbedded in a boolean ring by rewriting 

the formulae of the algebra in terms of only © and *. Thus one can obtain a 

canonical rewriting system for boolean algebras via a canonical rewriting system for 

boolean rings. In order to use the ACI-completion program on the boolean ring we 

began with A4, A5, A8 and T2 as critical pair equations in CP, and implicitly 

included Al, A2, A3, A6, A7 and Tl by declaring © and * to be ACI operators with 

identities 0 and 1, respectively. The program found a complete set of reductions via 

the sequence:

Rl: I f  uj= 0 and v=^0 then ( — (v©u)) -> ( — v)©( — u) 

• R2: I f  0 and v #  0 and w i=- 1

given

then w*(v@u) (w*v)©(w*w) given

R3: I f  ui= 1 then «*( — v) —> ( — (u*v)) given

R4: (_ (_ „ ) )  _  u given

R5: n©( —v)©v -v u given

• R6: I f  uj; 0 then u*0 -» 0 given

• R7: I f  1 then v*u*u —» v*u from input equation

• R8: I f  uj= 0 then v©u©w -> v from input equation

• R9: ( — u) -*■ u from R3 with R7

Rl, R3, R4, R5 deleted

The ACI-complete set of reductions for a boolean ring consists of R2, R6, R7, R8, 

and R9. This set is very similar to the AC-complete set found by Hsiang.
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d. Example 4: Group homomorphisms. The following gives a derivation of an 

ACI-complete set of reductions for a homomorphism from one abelian group into 

another. We began by placing in R the complete set of reductions for an abelian 

group over the operators ( + , 0, —) and the complete set of reductions for an abelian 

group over the operators (®, O', ©), where + and ® arc declared to be ACI 

operators with identities 0 and O', respectively. We then placed the additional 

defining equation H{x +y) = H(x)(&H(y) in CP and executed the program. No 

inferences were attempted among the first six reductions. A complete set was found 

as follows:

• Rl: u + v + ( —v) -* u given

• R2: ( — ( —u)) -  u given

• R3: I f  u 0 and v #  0 then ( — (u -f v)) -» ( — u) + ( —v) given

• R4: u©v©(©v) -*• u given

• R5: (©(©«)) -> u given

• R6: I f  u=£ O' and v ^  0' then (©(v©u)) -» (©v)®(©u) given

• R7: I f  uj= 0 and v =£ 0 then H{u + v) -* //(u)©//(v) from input equation

R8: u@//(O)0//(v) -♦ u@H{y) from condition on R7

R9: «©(©/7(0))©(©//(v))@(©w)©(©x) 
u©(©//(v))©(©x)@(©w) from R6 with R8

RIO: «©(©//(0))®//(v) u®H{v) from R4 with R8

• R ll: H(0) -v 0'

R8, R9, R10 deleted

from R4 with R8

R12: u@H{( -v))®H{(-w))@H(w)®H(x)@H(y)@ 
H(v) -» uSH(y)@H(x) from Rl with R7

R13: «© //((-»))© //((-w))®//(w)®//(x)®//(v) -  
u®II(x)

R12 deleted

from Rl 1 with R12

R14: u©//((-v))©//(v)©//(w)©f/(jc) -  u®H(x)®H(w) from Rl 1 with R12

R 13  d e le te d
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R15: « © //( ( -v))©//(w)©//(v) -♦ u @ I I ( w ) fro m  R 1 3  s im p lif ie d

R14 deleted

R16: «©//(( -v))@//(v) -♦ u from Rl 1 with R15

R15 deleted

R17: «© (© //(( - v ) ) ) © ( © / / ( v ) ) ® ( © w ) © ( © jc )  - >

u$(©.t)©(©iv)

• R18: //((-«)) -> (©//(«))

from R6 with R16

from R4 with R16

R16, R17 deleted

The ACI-complete set of reductions for a group homomorphism is thus R1-R7, R ll, 

and R18.

e. Example 5: Ring homomorphisms. Following the pattern of [F.S82], we 

also generated a complete set of reductions for a homomorphism from one 

commutative ring with identity into another. The setup for this problem was very 

much like the previous example. We gave the program the complete set of reductions 

for each of the rings ( +,0, — , *ji) and (©, O', © , © , 1') where + , ©  and ©  were

declared to be ACI operators with identities 0,1,0', and 1', respectively. The 

additional axioms H(x +y) = H(x)(&H(y) and H(x*y) = H(x)® H(y) were given as 

equations. No inferences were attempted among the first twelve reductions. The 

derivation of the complete set is as follows:

• R 1: u + ( -  v) 4- v -*• u given

• R2: ( — ( —u)) -* u given

• R3: I f  0 and v^O then ( — (u + v)) -> ( —w) + ( —v) given

• R4: I f  1 and v ^  0 and w ¥= 0
then u*(v + w) -» («*v) + (u*w) given

• R5: I f  uj=\ then u*0 -> 0 given

• R6: I f  u 4= 1 then u*( —v) -* ( — («*v)) given

• R7: «©(©v)©v -> u given
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• R8: (©(©«)) -  u given

• R9: I f  O' and v=£0' then (©(«©v)) -> (©u)©(©v) given

• RIO: I f  u¥= V and v =£0' and w ^  O' 
then u © ( r ® w )  -> ( « © v ) ® ( « © w ) given

•R ll:  I f  u ±  V then u®0' -> 0' given

•R12: I f  ui=Y then «©(©v) -* (©(«©v)) given

• R13: I f  u ¥= 1 and 1 then H(u*v) —» H(u)®H(v) from input equation

• R14: « © / / ( l ) © / / ( v )  -  u®H(v) from condition on R13

• R15: I f  u i=- 0 and v^O  then H(u+v) -» II(u)®H(v) from input equation

R16: «©//(0)©//(y) -  «©//(v) from condition on R15

R17: u®H(v)®H(w)®H{0) -> u®H{0) from R5 with R13

R18: u®H((—v))®H{w)®H(x) -* u®H(( — (jc* w * v) ) ) from R6 with R13

R19: u@{H{v)®H{w))®H{0) -+ u®{H(v)®H(w)) from R13 with R16

R20: u®(H{u)®II(w)®H(x))®H{0) 
a ® (II (v) © //(w) © //(x)) from R13 with R19

R21: w © ( / / ( 0 ) © v ) @ ( f / ( w ) © v ) © ( v © j c ) © ( v © y )  -* 
u®(H(w)®v)®(v®y)®(v®x)

R16 deleted

from R10 with R16

R22: w®(//(v)©//(w)@x)©(//(0)©jr)©(j:©^)©(jr©z) -» 
u©(//(v)©//(w)©x)©(;c©z)©(;t©j>)

R19 deleted

from R10 with R19

R23: «@(//(0)©v)©(//(w)©v)©(v©jr) -> 
u©(//(w)©v)©(v©;c)

R21 deleted

from R ll with R21

R24: n®(//(0)©v)©(//(w)©v) u®{H(w)®v) 

R23 deleted

from Rl 1 with R23

R25: m © ( © ( / / ( 0 ) © v ) ) © ( © ( / / ( i v ) © v ) )  -> «©(©(//(w)©v)) from R12 with R24

R26: « © ( / / ( v ) © / / ( w ) © ^ ) © ( / / ( 0 ) © jc)  - ►

u®(H(v)®H(w)®x) from R13 with R24

R22 deleted

R27: u©(tf(0)©//(v)©w)©(//(v)©w) -> u@(//(v)©w) from R14 with R24
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•  R29: H{0) ->  0'

R17, R20, R24, R25, R26, R27, R28 deleted

R30: «©//(( -v))©//(( -w))®//(w)©//(x)©//(»®
7/(v) -+ « © / / ( » © //(x)

R31: w@//((-v))©//((-w))®//(w)®//(x)©//(v) 
u@H(x)

R 3 0  d e l e t e d

R32: u@H((-v))®H(v)@H(w)@H(x) -+ u@H(x)®H(w) 

R31 deleted

R 3 3 : u®H((-v))®H{w)®H{v) -+ u@H(w)

R 3 2  d e l e t e d

R34: u®H{( -v))®//(v) u 

R 3 3  d e l e t e d

R35: u®//((-(v©w)))®(//(v)@//(w)) -+ u

R36: w®(//(( —v))©w)®(//(v)©w)©(u'©x)©(w©j') -» 
u®(w©y)©(w©x)

R 3 4  d e l e t e d

R37: «©//(( -  (v*w*x)))@(H(v)®H(w)®H(x)) -+ u

R38: w®(//(( -  (v*w)))©x)®(//(v)©//(w)©x)©(x©j/)© 
(x©z) -> u®(x©z)©(x©_y)

R35 deleted

R39: u®(//(( —v))©w)®(//(v)©M')®(w©x) -* u®(w©x) 

R 3 6  d e l e t e d

R40: «/©(//((-v))©w)®(//(v)©w) -> u 

R39 deleted

R41: «©(© («((-v))@w))©(©(//(v)@w)) -  u 

R42: u®(//(( — (v*w)))©x)®(//(v)©//(w)©x) -» u

R 28: « 0 ( © / / ( O ) ) ® / / ( v )  u ® H ( v )

from R7 with R24

from Rl with R15 

from R29 with R30

from R29 with R30

from R31 simplified

from R29 with R33

from R13 with R34 

from RIO with R34

from R13 with R35 

from RIO with R35

from Rl 1 with R36

from Rl 1 with R39

from R12 with R40 

from R13 with R40

R 3 8  d e le te d
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• R44: //(( -«)) -> (©//(m)) from R7 with R40

R18, R37, R40, R41, R42, R43 deleted

The ACI-complete set of reductions for the ring homomorphism problem consists of 

the 17 reductions R1-R15, R29, and R44. Note that the AC-complete set for this 

problem, as generated by previous E-completion procedures, contains 26 reductions.

R 43: « © ( / / ( (  -  l ) ) © / / ( v ) © w ) © ( / / ( v ) © w )  -► u  fro m  R 1 4  w ith  R 4 0

f. Example 6: Distributive lattices. For our final example of the generation of 

an ACI-complete set of reductions we consider the example of a distributive lattice 

with identities for the lattice meet and join operators. For this example, we started 

the program with critical pair equations representing the absorption laws for the 

lattice meet and join operators, and the distributive law which distributes a meet 

across a join. The meet operator fl was declared to be an ACI operator with identity 

U. The join operator U was declared to be an ACI operator with identity 0. The 

program found an ACI-complete set as follows:

Rl: I f  (u U or v + 0) and (u #  0 or v=^U) 

then w fl (u U v) n u -* wflw

R2: I f  (u=£ 4> or vj=U) and (u=£ U or v #  0) 
then wU(uflv)Uu-» wUw

• R3: I f  u=£ U and vj=U and w ^  1
then (u fl v) U w -» (u U w) fl (v U w)

R2 deleted

R4: I f  (u ^  U or v #  0 or w ± 0) 
and (m ^  0 or v ^  U or w ^  0) 
then x  fl (u U w U w) fl (u U w U v) -* x  fl (« U w)

Rl deleted

• R5: I f  uj= 0 then vUuUu -> vUu

R4 deleted

from input equation 

from input equation 

from input equation

from R2 simplified

from R4 with itself

• R6: I f  U or v ^  0) and (u =£ 0 or v #  U) 
then w fl (u U v) fl u -* w(lu from R4 simplified
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The ACI-complete set consists of the three reductions R3, R5, and R6. As seen in 

previous examples, one of the reductions which is in the final set is deleted near the 

beginning of the process and then reappears at the end. Because of this, we have 

found that ACI-completion problems sometimes run more efficiently if we do not 

keep R simplified at all points during the completion process. We can then perform a 

simplification on the final result.

2. Demonstration of Generality.

As pointed out in the last section of Chapter 5, the ACI-completion procedure 

presented is not only able to handle ACI equational theories, but is also able to 

handle empty, C, and AC equational theories as well. In order to demonstrate this 

point we now present examples of completion relative to one member of each of these 

classes of equational theories.

a. Example 7: Groups using standard completion. We were able to duplicate 

the group example from the original Knuth-Bendix paper [ 0 7 0 ] .  For this example 

we used the weighting function <o2 which is defined by:

co2(constant) = 3 a>2(variable) = 3

<*>2(x*y) = (cOjM  -  l)*w2l» &>j((x*v)-')= 2 + 5*(oj2(.r*y) + 5)

a>2( j r ‘) =  2  +  2 * co2(x )

This change of weighting function is necessary because the <u, weighting function 

gives the same weight to both sides of the associative law, which must be used as a 

rewrite rule in this problem. The weighting function was the only part of the 

program which was changed for this problem. The multiplication operator * was 

declared to be an operator with no associated equational theory. The following three 

group axioms were placed in CP:
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Al: e*x = x left identity

A2: jc_1*jc = e left inverse

A3: (x*y)*z = x*(y*z) associativity

The complete set of reductions modulo an empty equational theory was generated as

follows:

• Rl: e*u —► u from input equation

• R2: ir'*w -> e from input equation

• R3: (u*v)*w —* u*(v*w) from input equation

• R4: tr'*(M*v) -» v from R2 with R3

R5: e~l*u -* u from Rl with R4

R6: (w*v)_1*(u*(v*w)) ->• w from R3 with R4

R7: (e_1)_1*w -> u from R4 with R5

R8: (i r lY l*e —> u from R2 with R4

R9: (u ') ‘*v u*v 

R8 deleted

from R3 with R8

• RIO: u*e -* u 

R7 deleted

from R8 simplified

• Rl 1: e_1 —> e 

R5 deleted

from R2 with RIO

• R12: (tr1)1 u 

R9 deleted

from R9 with RIO

• R13: u*ir1 -> e from R2 with R12

• R14: u*(u_1*v) —> v from R3 with R13

R15: u*(v*(u*v) ■') -> e from R3 with R13

R16: w*(v*((u*v)_l*w)) —> w from R3 with R14

R17: u*(v*(w*(u*(v*w’))-1)) -» e from R3 with R15

R18: u*(u*v)_l -♦ v_l from R4 with R15

R 1 5  d e le te d



from R3 with R18
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R19: «*(v*(w*i/))~‘ -» (v*w)_I 

R17 deleted

R20: -♦ v~'*w

R16 deleted

• R21: -+■ ir'*v-'

R6, R18, R19, R20 deleted

from R3 with R18

from R4 with R18

The complete set of reductions consists of the ten reductions Rl, R2 , R3, R4. 

R10-R14, and R21. This is the same result found by Knuth and Bendix [ 0 7 0 ] .

b. Example 8: Latticoids using C-completion. For this example we generate a 

C-complete reduction set for a non-associative latticoid [5/67]]. This structure is a 

like an ordinary lattice, except that it has no associative property. It is relatively hard 

to come up with a structure which will yield a C-complete set of reductions. We have 

discovered that any structure with an associative or distributive law will cause the loss 

of the finite termination property in the presence of commutativity. For this example 

we gave the program the absorption laws for the meet and join operators, n and U , 

respectively. Both operators were declared to be commutative. The C-complete set 

was derived via the sequence:

• Rl: (u U v) f) u -» u from input equation

• R2: (u n v) U u -» u from input equation

• R3: u U u -+ u from Rl with R2

• R4: u f| u -*■ u from R1 with R2

• R5: («Uv)Uw-+ i/Uv from Rl with R2

• R6: (u fl v) fl « -* wflv from Rl with R2
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The C-compIctc reduction set consists of all six of the reductions generated. To our 

knowledge, this is the first time a complete set of reductions has been found for this 

particular structure.

c. Example 9: Commutative groups using AC-completion. As a final example 

we have duplicated the generation of an AC-complete set of reductions for 

commutative groups as is presented in [PS813. We declared -f to be an AC 

operator and defined CP to be the equations El: j c  + 0 = x, and E2: x  + ( — x) = 0. 

The program formed reductions from these equations and completed the reduction set 

as follows:

• Rl: m + 0 -» u

• R2: u + ( — v) + v —► u

• R3: ( - u) + u -► 0

• R4: ( -0) -> 0

• R5: ( - ( —«)) -  u

R6: u + ( — (v + w)) + w -» u + ( — v) 

R7: ( — (u + v)) + v -► ( — u)

• R8: (  -  (u + v )) ->  (  -u)  +  ( — v)

R6, R7 deleted

from input equation 

from input equation 

from input equation 

from Rl with R3 

from R2 with itself 

from R2 with itself 

from R2 with itself 

from R2 with R7

The AC-completc set consists of R1-R5 and R8. This is the same result found by 

Peterson and Stickel. Note that R2 and R3 both came from the same input equation, 

E2. R3 comes from E2 directly and R2 is the extended form of E2 which is necessary 

for coherence.
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3. AC I-Completion versus AC-Completion.

We are now able to perform a side by side comparison of both ACI-completion 

and AC-completion runs for the same algebraic structures. To generate the data for 

these comparisons we ran our E-completion procedure on the same algebraic 

structures for which wc generated ACI-complete reduction sets in Examples 1 

through 6. For each problem we changed the appropriate operators from ACI to AC 

and added the necessary equations to handle the identity properties as rewrite rules.

a. Step Size of Deductions.

It is interesting to compare the number of steps for a derivation of an 

ACI-complete reduction set to the number of steps for a derivation of an 

AC-complete reduction set for the same algebraic structure. Table I compares the 

number of inferences and related steps for our example problems. The uniformly 

smaller number of inferences required for ACI-completion still took us to essentially 

the same point as the corresponding AC-completion derivation. This clearly indicates 

that more distance was covered by each step, on the average. The same concept is 

also reflected in the smaller numbers of retained reductions. Since there are always 

fewer reductions in an ACI-complete set, each reduction must be able to do more, on 

the average, towards providing completeness. The consistently lower numbers seen in 

Table I reflect that the branching factor of the search space is indeed smaller when 

more is built into a single step. This is the result that we had hoped to see. 

Unfortunately, however, this does not automatically translate into a gain in efficiency. 

We address this issue in the following section.
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Table I. COMPARISON OF NUMBER OF INFERENCES, AC VERSUS ACI

Example
Problem

Inferences 
Made 

AC / ACI

Matches 
Attempted 
AC / ACI

Reductions 
Applied 

AC / ACI

Reductions 
Added 

AC / ACI

Reductions 
Retained 

AC / ACI
1 28 14 6588 4284 231 138 8 10 6 3
2 243 31 256256 71368 1668 1735 46 17 10 6
3 39 13 9401 2517 143 41 15 9 9 5
4 105 36 27852 14310 214 77 23 18 15 9
5 555 148 443983 309378 866 1193 62 44 26 17
6 68 8 71998 20377 892 1110 17 6 11 3

b. Efficiency.

Even though an ACI-completion run takes fewer logical steps than its 

AC-completion counterpart, the run times shown in Table II indicate that this does 

not directly give an increase in efficiency. For most of the problems the

AC-completion procedure runs in less time. This is especially true of the larger 

problems, where we had hoped that the exact opposite would happen. Examining the 

time spent in computing terminal forms we see that our ACI-completion procedure 

generally spent more time performing fewer attempted matches. We attribute this to 

the fact that ACI-matching is slower than AC-matching. We also see that, for the 

larger problems, the ACI-completion procedure spent considerably more time in the 

formation of critical pairs. Furthermore, only part of that difference can be 

attributed to ACI-unification, as reflected by the last column of Table II.

Table III gives some insight into what is going on in the formation of critical 

pairs. It seems that the AC-complction process generates far less redundant critical 

pairs. For the larger problems we often see that 75% of the critical pairs generated
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Table II. COMPARISON OF TIMES, AC VERSUS ACI

Run Times (in seconds)
Example
Problem

Total 
Time 

AC / ACI

Terminal 
Form 

AC / ACI

Critical
Pair

AC / ACI

Unifi
cation 

AC / ACI
1 53.9 56.2 25.9 38.8 17.6 8.5 12.6 4.0
2 1528 3044 1084 2017 116 737 82 316
3 51.7 40.1 23.6 27.8 6.4 2.2 2.4 1.3
4 141 144 79 67 30 43 26 19
5 2382 2872 1596 2114 116 226 78 92
6 414 1627 293 1142 68 435 35 245

by AC-completion are kept after the symmetry test. For ACI-completion, however, 

the program often spends a great deal of time generating a very large number of 

critical pairs, only to expend more time eliminating them via the symmetry test. For 

example, Table III shows that for the commutative ring problem of Example 2, 1381 

critical pairs were computed yet only 224, or 16%, survived the symmetry test. The 

other 84% were redundant. This suggests that we may make a real improvement in 

this portion of the run time if we are able to directly generate only the asymmetric 

critical pairs. This issue is addressed in [AYa88],
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Table 111. COMPARISON OF NUMBER OF CRITICAL PAIRS, AC VERSUS 

ACI

Example
Problem

Critical 
Pairs 

AC /ACI

Asymmetric
Pairs

AC / ACI

Percent 
Retained 

AC / ACI
1 132 63 93 38 70 60
2 625 1381 518 224 83 16
3 79 12 59 11 75 92
4 96 202 74 38 77 19
5 410 837 309 246 75 29
6 385 891 275 214 71 24
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VII. CONCLUSION

A. SUMMARY

We have demonstrated that the real problem in developing an E-completion 

procedure relative to an equational theory which generates infinite congruence classes 

is not primarily a problem of the si/c of the congruence classes, as had been 

suggested by previous researchers. We have shown that the real problem is that of
R/E

establishing the finite termination of the -> rewriting relation. We have developed a 

method which solves this termination problem for the class of ACI equational 

theories, proving its correctness and demonstrating its feasibility by way of our 

implemented computer program.

We have developed and implemented a theory of ACI-completion around our 

conditional rewriting relation, demonstrating that this approach is general enough to 

handle not only ACI equational theories, but equational theories addressed by earlier 

E-complction procedures as well. The new theory presented is in many ways simpler 

than previous theories, avoiding complicated reduction protection schemes during the 

E-completion process and potentially avoiding the use of extended reductions 

altogether.

As we had hoped, the new ACI-completion procedure takes fewer inferences to 

find a complete set of reductions than does its AC counterpart. It also retains fewer 

reductions in the final complete set. Contrary to our intuition, however, this 

produces a degradation, not a gain, in efficiency for the larger problems. It seems 

that we have lessened the number of inferences required to do the job, but increased 

the amount of work to perform a single inference, to the extent that any gains arc 

more than lost.
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The two changes that would be needed to remedy this problem arc certainly not 

easy to achieve. First, it will take ACI-matching and ACI-unification routines which 

are nearly equal in efficiency to their AC counterparts. This seems unlikely since the 

ACI problems seem inherently to involve more work. For example, when two terms 

have different root AC operators, the AC-matching routine can stop immediately 

with no match. When two terms have different root ACI operators, however, there 

may still be several paths which must be followed before the ACI-matching routine 

finds that there is no match. Secondly, the hope for an algorithm which will directly 

generate only the asymmetric critical pairs is a dim one because it will require an 

ACI-unification algorithm which generates only asymmetric unifiers. Such an 

algorithm would immediately give a minimal ACI-unification algorithm in the general 

case of mixed operators. This last problem has been an outstanding open problem 

for some time.

What all of this may be telling us is that for the problem of deciding how many 

axioms we should build into the equational theory for E-completion systems, the old 

saying "If some is good, then more is better." does not necessarily hold. Perhaps we 

are seeing that E should contain only the troublesome axioms which cannot be placed 

in R because they cause either a loss of termination, like commutativity, or a loss of 

generality, like associativity. Given that an axiom can be placed in cither E or R 

without creating problems, this research would indicate that it should be placed in R. 

An intuitive argument for this conclusion is that when an equational axiom is placed 

in R it is limited to use in only one direction. When it is placed in E it is undirected, 

and thus less constrained in its usage. It is impossible to know whether or not these 

conclusions are valid until other similar problems have been studied.
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B. FURTHER RESEARCH

As will) most research projects we have generated more questions than answers, 

leaving much to be addressed in the future. We consider the following to be the most 

interesting questions to be addressed:

(1) Can the methodology developed here to deal with one class of equational theories 

which generate infinite congruence classes be applied to other such classes? Can 

we handle equational theories containing idempotency and equipotency laws in a 

similar manner? We conjecture that this can be done. Better yet, can this 

approach be generalized further so that we may have a general E-completion 

procedure for equational theories, with no restrictions on the size of their 

generated congruence classes?

(2) Can the concept of using conditions to achieve finite termination be applied in 

other ways? For example, the abelian group problem might be solvable via a 

C-completion procedure, but the associative law leads to a loss of finite 

termination in the presence of the commutativity law. We believe it may be 

possible to attack this problem by generalizing our conditions, which are 

conditions on variables in reductions, to include conditions on operators in 

reductions.

(3) Can the theories of E-completion and completion for conditional reductions be 

completely blended together? We have demonstrated for a limited case that they 

can. It seems likely that they can in general. As part of this problem one must 

also address the issue of how we will mix both syntactic conditions, such as wc 

have used for finite termination, and semantic conditions, such as we find in the 

reduction I f  x  ¥= 0 then jr*jr* -> 1.

(4) Can we improve the efficiency of the ACI-completion procedure presented? 

Obviously the ACI-matching and ACI-unification algorithms are good places to 

start. We would especially benefit from a minimal ACI-unification algorithm for
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the general case of mixed operators. Better still would be an algorithm which 

efficiently generates only those unifiers which lead to asymmetric critical pairs, 

avoiding the expense of generating pairs which are also costly to discard. 

Another potential improvement would be the development of an ACI-unification 

algorithm which exploits the conditions on the reductions in much the same 

manner as the ACI-matching algorithm described. We also believe that it may be 

possible to build critical pairs which contain no extraneous variables, thus saving 

the cost of post-processing via identity substitution to eliminate them. Finally, 

wc see many opportunities for the exploitation of parallelism in the E-matching, 

E-unification, and E-completion processes. It may be possible, for example, to 

develop a parallel ACI-matching routine which is as efficient as its AC 

counterpart.

Each of these issues should be addressed.
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