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Eleventh International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A., October 20-21, 1992 

LATERAL BUCKLING OF SINGLY SYMMETRIC BEAMS 

Teoman Pekoz i 

ABSTRACT 

General solutions for the elastic lateral buckling moment of 
singly symmetric sections are studied. The studies include the 
effect of the location of the load on the section as well as the 
effect of moment gradients on the lateral buckling moment. Design 
provisions are outlined for the case of moment gradients. 

BACKGROUND 

Singly symmetric sections are used frequently as beams or beam
columns in aluminum and cold-formed steel structures. The 
studies presented here were carried out to develop design 
provisions for aluminum members. However, the general approach 
for calculating elastic lateral buckling moment is applicable to 
steel as well. Some typical members for which the general subject 
is relevant are shown in Fig. 1. 

Lateral buckling of singly symmetric sections has been studied by 
many researchers. The design approach presented here is for the 
most part based on the work of these researchers. The results of 
these studies were simplified for design, and a design approach 
was developed for the case of varying moment along the span. 

Clark and Hill [1960] present a solution for the lateral buckling 
of singly symmetric sections under a variety of loading 
conditions. 

Pekoz [1969] and Pekoz and winter [1969] have studied the lateral 
buckling of singly symmetric sections under eccentric axial 
loading. These studies include lateral buckling of singly 
symmetric sections subjected to linearly varying moments. various 
end conditions are accounted for. 

Kitipornchai, et al [1986], give an analysis of buckling of 
singly symmetric I-beams under moment gradient. It is seen in 
this reference and in Pekoz [1969, pages 59-62] that the use of 
moment gradient correction factor Cb may give grossly erroneous 

i Professor, Cornell University, Ithaca, New York. 
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results for unsymmetric sections subjected to a moment gradient 
that causes reverse curvature. 

An interesting study on the lateral buckling of singly symmetric 
I-Beams is presented by Wang and Kitipornchai [1986]. The 
coefficients given in their paper are included in the design 
recommendations developed here. 

GENERAL SOLUTION 

Based on the elastic torsional-flexural buckling theory, Clark 
and Hill [1960] derive an equation for the lateral buckling of 
singly symmetric beams bending in the plane of symmetry. This 
expression also considers the location of the laterally applied 
load with respect to the shear center. With a slight change in 
notation, their equation can be written as follows: 

Eq. 1 

In the above equation 

u 

j 

full cross-sectional area 
C1 and C2 

coefficients to be taken as discussed below 
torsional warping constant of the cross-section 
modulus of elasticity 
shear modulus 

Eq. 2 

Eq. 3 

Eq. 4 

distance from the shear center to the point of application 
of the load. 
moment of inertia of the section about the y axis 
torsion constant 

Eq. 5 
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effective length for twisting 
~ can be taken conservatively as the unbraced length. If 
warping is restrained at one end it can be taken as .8 ~. 
If warping is restrained at both ends it can be taken as .6 
~. 

I = .II 2+I 2+y 2 Eq. 6 
o V x y 0 

polar radius of gyration of the cross-section about the 
shear center. 

r 
Yradii of gyration of the cross-section about the centroidal 
principal axes 

Sc section modulus for the extreme compression fiber for 
bending about the x-axis 

y - coordinate of the shear center 

In calculating the section properties, as well as the parameter 
g, it is essential to use a proper and consistent axis 
orientation. Equation 1 assumes that the centroidal symmetry axis 
is the y-axis and bending is about the x-axis. The y-axis is 
oriented such that the tension flange has a positive y
coordinate. The value of g is to be taken as + when the load is 
applied directed away from the shear center and - when the load 
is directed toward the shear center. When there is no transverse 
load (pure moment cases) g = O. The orientation of the axes and 
the cross-sectional notation are illustrated in Fig. 2. 

Kitipornchai, et al. [1986] show that for singly symmetric I 
sections j can be approximated as 

Eq. 7 

In this equation I~ is the moment of inertia of the compression 
flange, Ix and Iy are the moments of inertia of the entire 
section about the x- and y-axes and d f is the distance between 
the flange centroids or for T-sections d f is the distance between 
the flange centroid and the tip of the stem. In a conversation, 
Dr. John Clark pointed out that when the areas of the compression 
and tension flanges are approximately equal, j can also be 
approximated by -Yo' 

DETERMINATION OF Cb FOR DOUBLY SYMKETRIC SECTIONS 

The moment gradient in the span or the unbraced segment is 
usually accounted for by multiplying the critical moment for the 
uniform moment case by a factor designated as Cb • The following 



98 

expression is used in the AISI [1989, 1991] and the AISC [1986] 
Specifications: 

Cb =l. 75+1. 05( :~)+O. 3( :~r ~2. 3 Eq. 8 

in this equation Ml is the smaller and ~ the larger bending 
moment at the ends of a laterally unbraced length, taken about 
the strong axis of the member. The ratio of end moments, Md~, 
is positive when Ml and ~ have the same sign (reverse curvature 
bending) and negative when they are of opposite sign (single 
curvature bending). When the bending moment at any point within 
an unbraced length is larger than that at both ends of this 
length, and for members subject to combined axial load and 
bending moment Cb is to be taken as unity. 

A more general expression for c b being considered for inclusion 
in the AISC Specification is 

Eq. 9 

where 

MMAX absolute value of maximum moment in the unbraced beam 
segment 

MA absolute value of moment at quarter-point of the unbraced 
beam segment 

MB absolute value of moment at mid-point of the unbraced beam 
segment 

Me absolute value of moment at three-quarter-point of the 
unbraced beam segment 

The AISI Specifications [1989, 1991] have provisions for lateral 
buckling of singly symmetric sections. For bending about the 
symmetry axis (x-axis is axis of symmetry oriented such that the 
shear center has negative x-coordinate.) the following equation 
is given: 

Eq. 10 

For bending centroidal perpendicular to the symmetry axis the 
following formula is given 

Eq. 11 
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where 

Eq. 12 

In this formula C, is + 1 for moment causing compression on the 
shear center side of the centroid and -1 for moment causing 
tension on the shear center side of the centroid. The factor Cw 
is to be calculated using 

Eq. 13 

The expression for l/Cw gives very close results to those 
obtained using the expression for Cb • The basic difference is the 
upper limit of 2.3 for Cb • 

A comparison of equations 8, 9 and 13 is illustrated in Fig. 3. 
While all equations agree well above M1/M2 = - 0.25, equation 13 
differs significantly with the other two equations at values of 
less than - 0.25. This difference needs to be considered further, 
particularly for singly symmetric sections. The principal 
advantage of equation 9 over 8 is the ability of equation 9 to 
estimate Cb values accurately for most nonlinear moment gradient 
cases such as for beams with lateral loading. 

DETERMINATION OF Cb FOR SINGLY SYMMETRIC SECTIONS 

The application of the Cb factor to singly symmetric sections in 
the same manner as for doubly symmetric sections has been shown 
to be very unconservative in certain situations by Kitipornchai, 
et al [1986]. They show clearly that this is the case with plots 
such as given in Fig. 4. They have considered unsymmetric I 
sections, however similar results are expected for other singly
symmetric open sections. The unconservative results arise if the 
Cb factor is applied to the critical moment determined for the 
case of larger flange in compression, ML , when it is possible 
that somewhere in the unbraced segment the smaller flange may be 
subject to compression. 

Parameters appearing in Fig. 4 are 

K= Eq. 14 

Eq. 15 
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Eq. 16 

The factor m shown in the figure is the same as Cb • Namely, 

Eq. 17 

M. is the elastic lateral buckling moment for the given moment 
gradient, Mo is elastic lateral buckling moment for uniform 
moment. 

The curve designated "Equation 6" is plotted using Eq. 8 for Cb 

except for the upper limit of 2.56. 

single curvature Cases 

It is seen in Fig. 4 and other similar figures in Kitipornchai, 
et al [1986] that for single curvature cases, nam.ely for M1/M2 
less than zero, it is satisfactory to modify the lateral buckling 
moment for equal end moments through the use of coefficients Cb , 

C1 and C2 except when p is less than 0.1. For values of pless 
than 0.1 it appears reasonable to take Cb = 1. 

The expressions for Cb , C1 and C2 for some special cases are given 
in Wang and Kitipornchai [1986]. The expressions given below are 
somewhat simplified versions of the ones given in the reference. 
These expressions are valid for single span, simply supported 
beams with singly or doubly symmetric sections bent in the plane 
of symmetry. 

a. uniformly distributed load over the entire span 

Cb = 1.13, C1 = 0.46, C2 = 0.53 

b. One concentrated load placed at aL from one of the ends of 
span 

Cb = 1.75-1.6a(1-a) Eq. 18 

Eq. 19 

Eq. 20 

When a = O. 5: Cb 0.55, C2 0.40 
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c. Two concentrated loads placed symmetrically at aL from each 
end of span 

1+2.8a 3 

2Cb • 2 
--s~n 1ta 
a1t 2 

Reverse Curvature Cases 

Eq. 21 

Eq. 22 

Eq. 23 

It is seen in Fig. 4 that when M1/M2 is greater than zero, the 
use of Cb factor, without considering the singly symmetric nature 
of the section, can give very inaccurate results. A singly 
symmetric section can have two critical moments that can be 
significantly different from one another. For a singly symmetric 
I section, the critical moment when the larger flange is in 
compression, ML, can be several times that when the smaller 
flange is in compression, Ms. If the maximum moment in the span 
occurs at a section with the large flange in compression and the 
Cb factor is applied to ML then the critical moment calculated 
may be several times the actual critical moment. For open 
sections such as lipped C sections as shown in Fig. 1, ML is for 
the case when compression is on the shear center side of the 
centroid, and Ms for the case when tension is on the shear center 
side of the centroid. 

Some reverse curvature cases are illustrated in Figs. 5 and 6 • 
In Fig. 5, if the top flange is the smaller flange and M~occurs 
at a section with smaller flange in compression, the appl~cation 
of the Cb factor Mg to determine the critical moment would give 
conservative results. This is because in each case, the larger 
flange is subjected to compression in a part of the span and the 
actual critical moment is larger than CbM,. 

If the top flange is the larger flange in Fig. 5, and M~occurs 
at a section with the large flange in compression then 
determining the critical moment as ~ML would be unconservative 
because the presence of a segment with a smaller flange in 
compression would lead to a lower actual critical moment. A lower 
bound to the lateral buckling moment at the end with the smaller 
flange in compression can be found assuming the moment gradient 
in the beam as shown in Case 2 of Fig. 6. The lower bound is 
obtained because it is assumed that throughout the entire span 
the smaller flange is subjected to compression and the moment 
varies from zero to the value of the maximum moment that is 
present in the portion of the span with the smaller flange in 
compression. 
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The application of the coefficients Cb, C1 and C2 to end moment 
cases can be demonstrated for the four beams shown in Fig. 6. If 
the top flange is the smaller flange, the Cb factor can be 
applied to Ms conservatively in each case. The resulting lateral 
buckling moments are required to be larger than the actual 
applied maximum moments. 

If the top flange is the larger flange, the Cb factor cannot be 
applied to ML conservatively in Cases 3 and 4 without checking to 
see if a lower lateral buckling moment is possible, due to the 
fact that over a portion of the beam the smaller flange is in 
compression. A lower bound to the buckling moment for the case 
with the smaller flange in compression over a portion of the span 
can be found by assuming that the smaller flange is subjected to 
a moment distribution as shown for Case 2 with the small flange 
in compression. 

For Case 3 in Fig. 6 with the smaller top flange, Cb for the 
actual moment distribution can be computed and applied to Ms and 
compared with M2. The moment at the end with M1 does not need to 
be checked. 

In summary, Cb can be determined as usual for all cases except 
when M~produces compression on the larger flange and the 
smaller flange is also subjected to compression in the unbraced 
length. In this case, the member need also be checked at the 
location where the smaller flange is subjected to its maximum 
compression. At that location CbMS should be larger than the 
actual moment. Load and resistance factors or factors of safety 
need to be .taken into consideration in this comparison. 

DETERMINATION OF C1 AND Cz 

Values of C1 and C2 are given above for some cases. For doubly 
and singly symmetric sections subjected to a linear variation of 
moment along the span or in the unbraced segment C1 is equal to 
zero. For other variations there are no theoretically obtained 
values available except for the special cases listed above. For 
these variations, unless more accurate values are available it 
appears reasonable to take C1 = 1. 

For doubly symmetric sections j = 0, thus C2 is not needed. For 
singly symmetric sections, when moments vary linearly between the 
ends of the unbraced segment C2 =1. For other variations there 
are no theoretically obtained values available except for the 
special cases listed above. For these variations, as pointed out 
in a conversation by Dr. LeRoy Lutz, it may be reasonable to 
interpolate between the values given for the special cases and 
the linear moment case. 

8 
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SUMMARY AND CONCLUSIONS 

A general design procedure for calculating lateral buckling 
moments of singly symmetric beams has been developed. 
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Beam 

Mom, diag, 

ds= ilBeam 

~ C 
L-___ ----':::"...~ Mom, 

d i a 9 , 

Fig. 5 Beam and Moment Diagram Examples 
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Case 1: 

M 
Mom, diag, 

Beam Case 2: 

M2~ 
Mo m, d i a 9 , 

Cf=------4i- Be am Case 3: 

Mom, diag, 

M 1 

Beam Cas e 4 

Mom, diag, 

M 

Fig. 6 Beam and Moment Diagram Examples 
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