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A Snapshot Algorithm for Linear Feedback Flow

Control Design

Benjamin T. Dickinson∗ and Belinda A. Batten†

Oregon State University, Corvallis, OR, 97331

John R. Singler‡

Missouri University of Science and Technology, Rolla, MO 65409

The control of fluid flows has many applications. For micro air vehicles, integrated flow
control designs could enhance flight stability by mitigating the effect of destabilizing air
flows in their low Reynolds number regimes. However, computing model based feedback
control designs can be challenging due to high dimensional discretized flow models. In this
work, we investigate the use of a snapshot algorithm proposed in Ref. 1 to approximate the
feedback gain operator for a linear incompressible unsteady flow problem on a bounded
domain. The main component of the algorithm is obtaining solution snapshots of certain
linear flow problems. Numerical results for the example flow problem show convergence of
the feedback gains.

I. Introduction

Controlling fluid flows has many potential applications. For example, robust feedback control of the air
flow around micro air vehicles could lead to enhanced flight performance, stability, and maneuverability.
Recent research has shown that a linear feedback controller (or a nonlinear extension thereof) has the
potential to delay or even eliminate the onset of turbulence (e.g., see Refs. 2–11). Furthermore, there is
evidence that it is beneficial to use a linear feedback controller as a nominal stabilizing controller, which is
then extended to further treat nonlinear effects (see, e.g., Refs. 12–15).

In this work, we consider the problem of computing an optimal feedback control law for a linear in-
compressible flow problem on a bounded domain. The spatial discretization of flow problems often leads
to a very large system of equations. Standard algorithms to compute the feedback control gain are only
feasible for small systems of equations. Much recent research has focused on solving the resulting large-scale
matrix equations (see, e.g., Ref. 16 and the references therein), however there are still many difficulties and
open questions. First, approximating discretization matrices needed for existing numerical algorithms can
be difficult (if not impossible) to extract from existing simulation code. Also, the incompressibility condition
requires special numerical methods. Little is known about how such methods affect the convergence of ex-
isting control gain algorithms as the computational mesh is refined. Furthermore, there is no known method
to adaptively refine the mesh to ensure accuracy.

An alternate approach to computing feedback control laws for distributed parameter systems is to first
reduce the model and then solve the resulting low order matrix equation to construct the feedback gain.
Proper orthogonal decomposition is a model reduction procedure that has been used for this purpose (see,
e.g., 12, 15, 17–20), however there are no known guarantees of accuracy or convergence for feedback gain
computations.

We investigate the use of a snapshot algorithm proposed in Ref. 1 to approximate the feedback gain
operator for a linear flow problem. The algorithm is related to snapshot-based balanced model reduction
methods proposed by Wilcox and Peraire21 and Rowley22 for finite dimensional systems. The main com-
putational cost of the algorithm is computing solution snapshots of linear unsteady flow problems. These
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computations can be performed with existing software and one can also take advantage of existing techniques
such as special discretization schemes, domain decomposition methods, adaptive mesh refinement, and par-
allel algorithms. Also, since the algorithm is based on simulation data, we bypass the potential difficulty of
extracting matrices from existing simulation code.

The snapshot algorithm is also similar in spirit to computing feedback gains for infinite dimensional
control problems using the Chandrasekhar equations (see, e.g., Refs. 23–26), which are a nonlinear system
of differential equations whose solution approaches the gain when integrated to steady state. In contrast,
the snapshot algorithm considered here computes the gain using a sequence of linear differential equations
arising from the Lyapunov equations in the Newton-Kleinman iteration for the relevant operator Riccati
equation. As discussed in Ref. 27, it can be difficult to compute the gain accurately when integrating the
Chandrasekhar equations to steady state; therefore, we expect that the snapshot algorithm discussed here
may be preferable for many problems. We note however that the Chandrasekhar equations have been used
to compute feedback gains for linear flow problems (see, e.g., Ref. 23); also, they can be used to provide a
good stabilizing initial guess for the Newton-Kleinman iteration.27

The remainder of this work proceeds as follows. We begin by describing the linear unsteady flow control
problem. In Section III, we discuss the snapshot algorithm to compute the feedback gain and its implemen-
tation for the flow problem. We then present numerical results in Section IV, and close with conclusions and
avenues for future work.

II. Problem Description

We consider the control of an unsteady Stokes flow in a lid driven cavity with an open bottom. The
equations of motion are given by

vt = −∇p+ µ∆v + b u(t), ∇ · v = 0, (1)

where v = [v1(t, x, y), v2(t, x, y)]T is the flow velocity vector, p = p(t, x, y) is the pressure, b = [b1(x, y), b2(x, y)]T

is a given control distribution function, and u(t) is a scalar control input. We consider the following boundary
and initial conditions

v1 = 1, v2 = 0 on Γt × (0, T ],
v = 0 on Γl,r × (0, T ],

−p n+ µ
∂v

∂n
= 0 on Γb × (0, T ],

v(0, x, y) = v0(x, y) in Ω,

(2)

where Ω is the unit square [0, 1]× [0, 1], and Γt, Γl, Γr, and Γb denote the top, left, right, and bottom walls
of Ω. Also, n denotes the outward normal to the boundary.

The goal of the control is to bring the state (v, p) to an equilibrium state, (V, P ), faster than would occur
in the uncontrolled system. We assume the equilibrium state (V, P ) is a solution of (1), and we define the
velocity and pressure fluctuations by (v′, p′) = (v − V, p − P ). Making this change of variables transforms
the above Stokes flow system (1) and (2) to the following “fluctuation” Stokes equations

v′t = −∇p′ + µ∆v′ + b u(t), ∇ · v′ = 0, (3)

with boundary and initial conditions

v′ = 0 on Γ× (0, T ],

−p n+ µ
∂v′

∂n
= 0 on Γb × (0, T ],

v′(0, x, y) = v′0(x, y) in Ω,

(4)

where Γ is the union of Γt, Γl, and Γr.

II.A. An Abstract Formulation

For the control problem and algorithm considered below, we place the above fluctuation Stokes problem in
an abstract form. Our presentation follows Ref. 28, which considers the Dirichlet problem. See Ref. 29 for
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variational formulations of the related Navier-Stokes equations with both Dirichlet and outflow boundary
conditions.

First, we define the function spaces relevant to the problem. Let L2(Ω) be the Hilbert space of square
integrable vector-valued functions over Ω with standard inner product

(f, g) =
∫

Ω

f(x, y) · g(x, y) dx dy,

and corresponding norm ‖f‖ = (f, f)1/2. DefineX to be the Hilbert space of weakly divergence free functions
(with the above L2 inner product and norm) given by

X =
{
f ∈ L2(Ω) : ∇ · f = 0 in Ω, f ·n = 0 on Γ

}
.

Also let Hm(Ω) be the Hilbert space of functions in L2(Ω) with m distributional derivatives that are all
square integrable. Finally, let V be the Hilbert space

V =
{
f ∈ X : f ∈ H1(Ω), f = 0 on Γ

}
,

with inner product (f, g)V =
∑

(∇fi,∇gi) and norm ‖f‖V = (f, f)1/2
V .

Now we place the fluctuation Stokes system (3) and (4) in a variational form. Taking the inner product
of the fluctuation Stokes equations (3) with any vector ϕ in V gives

∂

∂t
(v′, ϕ) = −µ(v′, ϕ)V + (b, ϕ)u(t).

This can be derived by integrating by parts as follows:

−(∇p, ϕ) + µ(∆v′, ϕ) =
∫

∂Ω

(
−pn+ µ

∂v′

∂n

)
·ϕ dx dy + (p,∇ ·ϕ)− µ(v′, ϕ)V = −µ(v′, ϕ)V .

The boundary integral is zero since ϕ is zero on Γ and due to the boundary condition on Γb in Eq. (4); the
term (p,∇ ·ϕ) must also be zero since ϕ is in V and therefore must be divergence free.

Define the operator A : D(A) ⊂ X → X as follows:

Af = g if (g, ϕ) = −µ(f, ϕ)V for all ϕ ∈ V .

Here, the set D(A) consists of all functions f in V so that Af is in X. Roughly, for f ∈ D(A), Af is the
projection of µ∆f onto X, and functions in D(A) are twice differentiable, divergence free, and satisfy the
boundary conditions of the fluctuations Stokes problem. The control input operator B : R → X is defined
by

[Bu](x, y) = b(x, y)u.

With these operators, the above fluctuation Stokes system (3) and (4) can be written abstractly as the
following differential equation over the Hilbert space X:

ẇ(t) = Aw(t) +Bu(t), w(0) = w0, (5)

where w(t) = v′(t, ·, ·) is a function in X for each t.

II.B. The Control Problem

Now we consider a specific control objective, namely to find u ∈ L2(0,∞) that minimizes the cost function

J =
∫ ∞

0

[Dw]2(t) + u2(t) dt, (6)

where w(t) satisfies the abstract fluctuation Stokes system (5). Here, the controlled output operator D :
X → R is defined by Dw = (w, d), where d is a state weighting vector in X.

Under certain assumptions, the solution to the above LQR problem is given by the feedback control law

u(t) = −K w(t), K = B∗Π, (7)

where Π : X → X is the minimal, nonnegative definite, self-adjoint solution of the algebraic Riccati equation

A∗Π + ΠA−ΠBB∗Π +D∗D = 0. (8)

Here, the asterisk (∗) denotes the Hilbert adjoint operator.
In this work, we focus on computing the feedback gain operator K : X → R.
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III. Computational Approach

We now describe the snapshot algorithm to compute feedback gains for infinite dimensional systems. We
provide a description of the snapshot algorithm in a general infinite dimensional setting and then provide
implementation details for the current problem.

III.A. A Snapshot Algorithm for Feedback Gains

Consider the approximation of the feedback gain operator K = B∗Π, where Π : X → X is the solution
of the algebraic Riccati equation (8). We consider the following general framework. Let X be a Hilbert
space X with real-valued inner product (·, ·) and corresponding norm ‖x‖ = (x, x)1/2. Assume the operator
A : D(A) ⊂ X → X generates a C0-semigroup, and the control input operator B : Rm → X, and the
controlled output operator D : X → Rp are both bounded and finite rank.

The assumptions on B and D imply that the operators must take the form

Bu =
m∑

j=1

ujbj , Dx = [ (x, d1), . . . , (x, dp) ]T ,

for some vectors b1, . . . , bm and d1, . . . , dp in X (see [30, Theorem 6.1]). For simplicity we focus on the case
of a single input and single output, i.e., m = 1 and p = 1; the algorithms are easily modified for m > 1 and
p > 1. As with most large-scale algorithms for feedback control gain computations, the snapshot algorithms
require m and p to be relatively small.

For the case m = 1, we have Bu = bu where b is a vector in X. This assumption implies that the
feedback operator K : X → R given by K = B∗Π has the representation Kx = (x, k), where k = Πb
is a vector in X known as a functional gain. This representation holds since B∗x = (x, b) and therefore
Kx = B∗Πx = (Πx, b) = (x,Πb), since Π is self-adjoint. Below, we concentrate on approximating this
functional gain.

We first apply a Newton-Kleinman iteration as modified by Banks and Ito27 to obtain a sequence of
Lyapunov equations. The solutions to the Lyapunov equations are then approximated using a snapshot
algorithm. The details are as follows.

Modified Newton-Kleinman iteration27 for the algebraic Riccati equation (8)

1. Chose an initial guess K0 so that A−BK0 generates an exponentially stable C0-semigroup.

2. Compute K1 = B∗S0, where S0 solves the Lyapunov equation

(A−BK0)∗S0 + S0(A−BK0) +K∗
0K0 + C∗C = 0.

3. For i = 1 until convergence, compute Ki+1 = Ki −B∗Si, where Si solves the Lyapunov equation

(A−BKi)∗Si + Si(A−BKi) + E∗i Ei = 0, (9)

and Ei = Ki −Ki−1.

This algorithm is a reformulation of the standard Newton-Kleinman iteration, which is known to converge
with a quadratic rate for the class of infinite dimensional problems considered here.31

In the above modified Newton-Kleinman iterations, we need to compute K1 = B∗S0 and Ki+1 = Ki −
B∗Si for i ≥ 1. In the same manner as above, these operators can be represented as follows: Kix = (x, ki),
where k1 = S0b and ki+1 = ki − Sib for i ≥ 1. Therefore, in each iteration we do not need to compute
the entire Lyapunov solution Si, we only need the product Sib. We compute this product using a snapshot
algorithm below.

Consider a general infinite dimensional Lyapunov equation

A∗S + SA+ C∗C = 0, (10)

where we assume C : X → R is given by Cx = (x, c) with c ∈ X. It is well known that the solution
S : X → X is given by

Sx =
∫ ∞

0

eA∗tC∗CeAtx dt.
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Using the above representation of C, it can be shown1,32 that the solution may also be represented by

Sx =
∫ ∞

0

(x, z(t))z(t) dt, (11)

where z(t) = eA∗tc is the solution of the infinite dimensional linear differential equation

ż(t) = A∗z(t), z(0) = c. (12)

This representation leads to the following snapshot algorithm.
Snapshot algorithm1,32 to approximate Sx, where S solves the Lyapunov equation (10)

1. Compute an approximation zN (t) of the solution z(t) of the differential equation (12).

2. Replace z(t) with zN (t) in the integral representation of Sx in (11) and approximate the integral (by
quadrature or some other method).

In Ref. 1 it is shown that if
∫∞
0
‖zN (t)− z(t)‖2 dt→ 0, then the resulting approximation converges to Sx .

The approximate solution zN (t) of the differential equation (12) need not be stored to approximate Sx.
Instead, a time stepping method can be used to approximate the differential equation and the approximation
to the integral can be updated while simultaneously integrating the differential equation. For example, using
a piecewise linear approximation to z(t) in time leads to the trapezoid rule to time step the differential
equation and the following approximation to the integral.

Trapezoid snapshot algorithm1 to approximate Sx, where S solves the Lyapunov equation
(10)

1. Approximate the solution of the differential equation (12) with the trapezoid rule:

(I −∆tA∗/2)zn+1 = (I + ∆tA∗/2)zn,

where I is the identity operator.

2. Update the approximation to Sx:

[Sx]n+1 = [Sx]n + ∆t[(x, zn+1)/3 + (x, zn)/6]zn+1

+∆t[(x, zn+1)/6 + (x, zn)/3]zn.

This updating procedure can be stopped when the norm of the update to Sx (possibly unscaled by ∆t) is
below a certain tolerance. We note that we used a constant time step for simplicity; this is not necessary in
general.

For the computations presented below, we used a “stabilized” trapezoid rule33,34 which starts with two
backward Euler steps and continues with the standard trapezoid rule. For the two backward Euler steps, we
updated Sx as follows:

[Sx]1 = ∆t(x, z1)z1, (I −∆tA∗)z1 = c,

[Sx]2 = [Sx]1 + ∆t(x, z2)z2, (I −∆tA∗)z2 = z1.

III.B. Implementation Details for the Stokes Control Problem

To use the above snapshot algorithm to approximate the solution of the Lyapunov equations (9) arising in
the modified Newton iteration for the Riccati equation, we must approximate differential equations of the
form

ż(t) = (A−BK)∗z(t), z(0) = z0.

We now present details on approximating the solution of this differential equation in the context of the above
Stokes problem. Approximating the solution can be done using a variety of methods; here, we first discretize
in time using the trapezoid rule and then discretize in space using a mixed finite element method.

For the above Stokes problem, A is the Stokes operator, B is the control input operator given by Bu = bu
for b ∈ X, and K is of the form Kx = (x, k) for some k ∈ X. Since A = A∗, we have (A−BK)∗ = A−K∗B∗,
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where K∗u = ku and B∗x = (x, b). Therefore, the above abstract differential equation is a representation of
the following partial differential equation

zt = −∇q + µ∆z − k(z, b), ∇ · z = 0, (13)

with boundary conditions

z = 0 on Γ, − qn+ µ
∂z

∂n
= 0 on Γb. (14)

As described above, we use the trapezoid rule for the time integration to obtain

[I − (∆t/2)(A−BK)∗] zn = [I + (∆t/2)(A−BK)∗] zn−1,

where zn ≈ z(tn). This can be rewritten as

(As −BsKs) zn = [I + (∆t/2)(A−BK)∗] zn−1,

where As = I − (∆t/2)A∗, Bs = −(∆t/2)K∗
i , and Ks = B∗. Then

zn = (As −BsKs)−1g, g = [I + (∆t/2)(A−BK)∗] zn−1.

To compute this inverse, we formally apply the Sherman-Morrison-Woodbury formula (see, e.g., Ref. 35):

(As −BsKs)−1g = (I +A−1
s Bs(I −KsA

−1
s Bs)−1Ks)A−1

s g.

Since B∗x = (x, b) and K∗u = ku, the above inverse can be computed once we approximate A−1
s g and

A−1
s k. Thus, we need to solve the problems Asyi = fi, for i = 1, 2, where f1 = g and f2 = k. In the context

of the above Stokes problem, these abstract steady problems take the form

yi −
∆t
2

(
−∇pi + µ∆yi

)
= fi, ∇ · yi = 0, (15)

with boundary conditions

yi = 0 on Γ, − pin+ µ
∂yi

∂n
= 0 on Γb, (16)

where f2 = k, and f1 = g is given by

f1 = g = [I + (∆t/2)(A−K∗B∗)] zn−1 = zn−1 +
∆t
2

(
−∇qn−1 + µ∆zn−1 − k(zn−1, b)

)
. (17)

Here, qn−1 ≈ q(tn−1) and q = q(t, x, y) is the pressure in the above PDE (13) and (14).
For the spatial discretization of the above steady problems, we used a mixed formulation. The approx-

imate pressures will be constructed in the Hilbert space X0 = L2(Ω) of scalar-valued square integrable
functions. The approximate velocities will be in the Hilbert space of vector-valued functions V0 defined by

V0 =
{
f ∈ H1(Ω) : f = 0 on Γ

}
.

Note that unlike the function space V considered in Section II.A, the vector-valued functions in the space
V0 are not required to be weakly divergence free.

The above steady problem (15) and (16) can be formulated weakly as follows: Find yi ∈ V0 and pi ∈ X0

such that
(yi, φ)− ∆t

2
(
(pi,∇ ·ψ)− µ(yi, φ)V

)
= (fi, ψ), (∇ · yi, χ) = 0,

for all ψ ∈ V0 and all χ ∈ X0. Here, (·, ·) denotes the scalar-valued or vector-valued L2 inner product, and
(·, ·)V denotes the V inner product defined in Section II.A. Also, recall f2 = k, and for f1 = g we reformulate
(f1, ψ) weakly using Eq. (17) as follows:

(zn−1, ψ) +
∆t
2

(
(qn−1,∇ ·ψ)− µ(zn−1, ψ)V − (k, ψ)(zn−1, b)

)
.

The above variational problems were discretized with the Taylor-Hood finite element pair. This finite
element pair satisfies the inf-sup condition, is second order accurate in the velocity variables, and is first
order accurate in the pressure variables.
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IV. Numerical Results

For the numerical experiments of the Stokes flow problem we set µ = 1 and applied control to the bottom
half of the domain in the horizontal velocity component by taking

b1(x, y) =

100, for y ≤ 0.5

0, otherwise
, and b2(x, y) ≡ 0.

In the performance index, the state weight function d was also applied to the bottom half of the domain:

d1(x, y) = d2(x, y) =

5, for y ≤ 0.5,

0, otherwise.

All computations were performed in FreeFem++, a free two-dimensional finite element package available
online.36 The cavity domain was discretized with a uniform triangulation containing 32 elements in each
coordinate direction. This corresponds to 4225 and 1089 nodes in the velocity and pressure grids for a total
of 9539 degrees of freedom. We set the time step size to ∆t = 10−4. The tolerance for convergence of the
modified Newton-Kleinman algorithm and the snapshot Lyapunov solution were both set to 10−4. For the
initial Newton iteration, we chose initial guess K0 = 0.

Six Newton iterations were required for convergence of the functional gain. The number of time steps
required for the corresponding snapshot Lyapunov solution is listed in Table 1.

Table 1. Lyapunov iteration number and time steps for convergence of corresponding Lyapunov solutions

Lyap. Iter. Time Steps

1 1426
2 302
3 368
4 279
5 33
6 2

Figures 1 and 2 contain contour plots of the functional gain for the horizontal and vertical velocity
components, respectively. We demonstrated the convergence of the functional gain by repeating the above
experiment on a grid of 64 elements in each coordinate direction (for a total of 37507 degrees of freedom)
with a time step of 10−5. The resulting functional gain changed on the order of 10−2 by measure of the
global relative norm.
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Figure 1. Functional gain for horizontal velocity, k1
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Figure 2. Functional gain for vertical velocity, k2
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We note that the small time step was likely required due to the nonsmooth nature of the functions b
and d. An adaptive time stepping algorithm may be advantageous to use for these computations. This will
be considered in future work. Also, numerical experiments on a less complex partial differential equation
control problem showed that the computational speed could be improved with a good initial guess K0 to the
Newton-Kleinman iteration.37 One can use the result of one Newton iteration as the initial guess in another
Newton iteration with a finer spatial grid (see, e.g., Ref. 38) or time step for the snapshot algorithm. Also,
as mentioned in the introduction, the Chandrasekhar equations can also be used to provide an initial guess.

V. Summary

We determined the feedback control gain operator for a linear incompressible flow problem using a snap-
shot Lyapunov equation solver in conjunction with a modified Newton-Kleinman iteration for the operator
Riccati equation. The main computational cost of this approach was the numerical approximation of solu-
tions of linear unsteady flow problems. With a sufficiently refined grid and time step, the algorithm produced
a converged functional gain for the linear flow problem.

This preliminary work was intended as a proof-of-principle for computing control operators for linear
flow problems without using matrix approximations of the infinite dimensional operators. In future work
we will consider the performance of the closed loop system. Preliminary numerical experiments show that,
as expected, the solution of the closed loop system is regulated to the equilibrium flow faster than the
uncontrolled system. Other remaining problems are to consider control inputs on the boundary, include
sensor measurements, and develop robust low order feedback controllers for the linearized Navier-Stokes
equations.
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