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Abstract— In this paper we present a model for a rubber
plate with piezoceramic actuators to represent a bioinspired
flexible wing. Using a Galerkin based finite element approx-
imation to the system, we compute a linear quadratic based
tracking control for piezoelectric actuators placed along both
leading and trailing edges. Using these piezoceramic devices, we
demonstrate the effectiveness of model based feedback control
in achieving a desired wing tip position; this modified shape is
analogous to aircraft roll moment generation via wing twist.

I. INTRODUCTION

One recent area of research in micro air vehicle (MAV)
control is concerned with morphing wing structures rather
than using traditional control surfaces for maneuvers. Mor-
phing for flight control was first utilized on the Wright Flyer
in 1903. Cables were attached in a way to allow the pilot
to twist the wings to achieve a desired configuration. Due to
power requirements of actuators to change the shape of the
wings, wing morphing methods were largely abandoned [1].
Recently, flexible and morphing wing research and technol-
ogy has renewed interest, and promises to greatly enhance
performance of aircraft [2], [3]. A continuous morphing de-
sign can achieve a greater variety of desired wing shapes and
more precise camber control while simultaneously reducing
friction and discontinuities introduced by traditional actua-
tors such as rudders and flaps. For instance, A rigid wing
design experiences performance drops for low Reynolds
number regimes (Re < 105), whereas a flexible wing benefits
overall aerodynamic performance through mechanisms such
as passive shaping [4], [5]. Many recent studies indicate that
a variety of performance gains can be made by allowing an
airfoil to deform in flight, see for example, [6]–[9]. Munday
and Jacoby [10], among others, demonstrated that separation
could be reduced significantly by oscillating the camber of
an airfoil, as compared to a static wing at the same angle of
attack.

Standard aircraft control surfaces achieve sufficient control
authority for flight of larger aircraft, but have substantially
reduced effectiveness for MAVs. Wing morphing has the
potential to enhance MAV performance by adapting the
wing shape to specific environments [2] and increase ma-

neuverability by using continuous wing shape change rather
than standard discrete control surfaces [11]. Although many
morphing designs have been proposed, very few have been
tested in MAVs [12].

Abdulrahim et al. [12] and Stanford et al. [13] directly
applied a few very basic wing morphing techniques and
demonstrated that a wing made out of a flexible material
can be morphed with little power, but with great benefit
to performance. Interestingly, these morphing and camber
control methods are all actuation schemes available to bi-
ological flyers [14]–[16]. Achieving morphing and camber
control in a continuous, unobtrusive goal of incorporating
smart materials into flexible MAV designs [17]. It has been
shown that hubs, hinges, and cables create discontinuities
over the wing surface which can lead to airflow separation
[18].

Bae et al. [19] demonstrated camber control of a flexible
wing using piezoelectric actuation. However, their study, like
most that deal with piezoelectric control, was limited to
larger unmanned air vehicles. Very little work has been done
on wing morphing with smart materials, at least at the 15-30
cm wingspan scale, which is the topic of this work.

Our long range goal is to construct a closed loop system of
a membrane wing with smart actuators and hair cell sensors
studied extensively by Dickinson [20]–[22] to sense flow
over the wing. The overall aerodynamic properties under a
variety of flow conditions would be studied, particularly how
camber changes affect flight performance. In this paper, we
present a cantilevered thin plate with piezoceramic actuators
strategically placed along the spanwise direction such that
plate (wing) tip twist is possible by activating the actuators
out of phase. We then consider the closed loop tracking
performance of the system in response to prescribed initial
conditions and external forcing. Specifically, the work entails
achieving a desired state like that shown in figure (1(b)),
which is very similar to the twisting wing MAV of [12],
[13]. It is our hypothesis that achieving wing tip twist
using smart materials will allow for greater control over
aerodynamic maneuvers and is also a needed investigation
into utilizing smart materials as aerodynamic loading sensors



and estimators.

A. Model Derivation

The inspiration for our investigations comes from a bat’s
ability to change the camber of and morph its wing through
muscles embedded in the skin. Specifically, the bat wing
is composed of an anisotropic membrane surface (skin)
stretched over a network of bones with muscles to control
flapping and maintain tension during flight (see Figure 1a).
We begin our work with a model of a wing segment
constructed of a cantilevered thin plate surrounded by a thin
sections of a material of greater modulus of elasticity on
the edges, excluding the free (wing tip) edge. This model
assumes the stiffer edge frame supports the more flexible
inner domain under prestrain, such that linear elasticity
theory applies.

(a)

(b)

Fig. 1. (a) Bat wing schematic and (b) twisting cantilevered plate system
with two piezoceramic actuators

The bat wing membrane is highly anisotropic and varies
up to 1000:1 in spanwise vs chordwise stiffness [23]. The
system used in this work was chosen to be orthotropic, with
stiffness less in the chordwise and greater in the spanwise
direction (see table I). Material parameters were chosen to
that the interior of the plate is a rubber-like pre-strained
material undergoing small deflections and the beam support
is aluminum. This allows for large spanwise edge deflection
while still satisfying thin plate model criteria.

Detailed derivations of of the model of an orthotropic plate
can be found in a variety of textbooks on thin plate theory
such as [24]. Following standard stress analysis methodology,
balancing moment and shear forces, we obtain the standard
orthotropic plate model, where it is assumed that one sums
the contributions of all the piezoceramic patches. Here we
have written the equation to include the contribution from

TABLE I
MATERIAL PARAMETERS

Plate/Beam Patch

L(m) .60 .3

W (m) .15 .0375

h(m) .0005/.005 .003

Ex(GPa) .1 28.6

Ey(GPa) 1.0/69 28.6

νx, νy .3 .3

CD(N ms) 1.4e−4 1.4e−4

ρ(kg/m3) 1000 5300

d31(m/v) n/a 290e−12

the ith patch using formulae from [25].

ρhwtt − (Mx)xx − (My)yy − (Mxy)yx − (Myx)xy

= f̂n(t) +
[
((My)pz)yy + ((Mx)pz)xx

]
i
, (1)

where

Mx = Dx (−wxx − νywyy) + C (−wtxx − νywtyy) +

[Dpz (−wxx − νywyy) + Cpz (−wtxx − νywtyy)]χi(x, y)

My = Dy (−wyy − νxwxx) + C (−wtyy − νxwtxx) +

[Dpz (−wyy − νxwxx) + Cpz (−wtyy − νywtxx)]χi(x, y)

Mxy = G [−2wyx] +Gpz [−2wtyx] +

CG [−2wyx] + CGpz [−2wtyx]χi(x, y)

Myx = G [−2wyx] +Gpz [−2wtyx] +

CG [−2wyx] + CGpz [−2wtyx]χi(x, y)

(My)pz =
Epzd31

4hpz(1 − νpz)

(
4

(
h

2
+ hpz

)2

− h2

)
Vi(t)

(Mx)pz =
Epzd31

4hpz(1 − νpz)

(
4

(
h

2
+ hpz

)2

− h2

)
Vi(t),

Dx =
Ex h

3

12(1 − νxνy)
Dpz =

2Epz a3

3(1 − ν2
pz)

Dy =
Ey h

3

12(1 − νxνy)

G =
Exh

3

24(1 + νx)
Gpz =

Epza3

3(1 + νpz)

C =
cD h

3

12(1 − νxνy)
Cpz =

2cDpz a3

3(1 − ν2
pz)

CG =
cDh

3

24(1 + νx)
CGpz =

cDpza3

3(1 + νpz)
,

and

χi(x, y) =

{
1 x1 ≤ x ≤ x2 , y1 ≤ y ≤ y2

0 otherwise
(2)



represents a step function describing the position of the
piezoceramic on the plate.

Multiplying equation (1) by test functions φ(x) and in-
tegrating by parts (or applying the divergence theorem in
component form, found in [26]) we arrive at the weak form
of the plate equation. After application of relevant boundary
conditions we arrive at∫

Ω

[
((ρphwtt − f̂n(t))φ− (Mx)φxx

− (My)φyy − (Mxy)φyx − (Myx)φxy

+ [((My)pz)φyy + ((Mx)pz)φxx]i
]
dΩ = 0. (3)

II. FINITE ELEMENT APPROXIMATION

To form the Galerkin finite element approximation for this
system, we make the substitution,

w(t, x, y) ≈
N∑
i=1

zi(t)φi (x, y),

into the weak form equation of the system (3). We choose
the shape functions φ to be bicubic B-splines on a rectan-
gular mesh. Substituting these terms into equation (3) and
simplifying yields

Mz̈ + Cż +Kz = B̂u(t) + F̂ (t),

where dots are used to indicate differentiation in time. This
is the finite element matrix approximation to the plate system
PDE. For a detailed derivation to a similar model, see [27].

For simulation and control purposes, we write this system
in first order state space form with initial condition as

ż = Az +Bu(t) + F (t), z(0) = z0 (4)

where

A =

 0 I

−M−1K −M−1D

 (5)

B =

 0

M−1B̂

 , F =

 0

M−1F̂

 . (6)

III. CONTROL METHODOLOGY

We begin with the model in equations (4) - (6)

ż = Az +Bu(t) + F (t), z(0) = z0.

Making the substitution x = z − zd, where zd is the desired
function to track, we obtain

ẋ = Ax+Bu(t) + F (t) + (Azd − żd),

x(0) = z(0) − zd(0).

Since the matrix A, the functions zd, and żd are known, the
problem then becomes one of driving the tracking error x to
zero. Thus the problem statement is summarized as: given

the known disturbance d(t), find the control u∗(t) such that
u∗ = min

u
J(u), where

J =

∫ tf

0

xTQx+ uTRu,

subject to the constraints

ẋ = Ax+Bu+ F (t) + d

d = Azd − żd

x(0) = z(0) − zd(0).

The Differential Ricatti Equation (DRE), and a matrix
equation for feed forward signal b must be solved to obtain
the optimal control law u(t),

−Π̇ = ΠA+AT Π − ΠBR−1BT Π +Q (7)

b =
(
A−BR−1BT Π

)−T
Πd, (8)

Equation (7) is the general solution for Π(t). Setting Π̇ =
0 yields the steady state regulator problem, in which the
optimization time interval is infinite; this process yields the
algebraic Ricatti equation (ARE),

0 = Π̄A+AT Π̄ − Π̄BR−1BT Π̄ +Q,

where Π̄ denotes the steady state solution for Π(t). Thus the
control problem for the finite element system is written

ẋ(t) = Ax(t) +Bu(t) + F (t) + d(t)

d(t) = Azd(t) − żd(t)

u(t) = −R−1BT Π̄x(t) −R−1BT b(t),

where b(t) is the solution to equation (8).

IV. NUMERICAL RESULTS

For numerical experiments, two patches were assumed to
be perfectly bonded to the beam support structures on the
outer edges of the membrane. These patches extend from
x1 = .15m to x2 = .35m along the beam as shown in
Figure 1(b). A mesh consisting of Nx and Ny nodes in
the x and y directions respectively, yields 2(NxNy + 2Ny)
states in the system as a result of three free and one
cantilevered edges. Three meshes were used in the numerical
experiments to test convergence of the results, corresponding
to (Nx, Ny) = (9, 33), (17, 65), (33, 129) nodes. In the
following subsections, we show functional gains that define
the control law and tracking simulations in the presence of
external forcing. A discussion of functional gains can be
found in [25], [27]–[29].

A. Control Gains and Convergence

In all computations, R = 1e−5 was used. Control func-
tional gains were calculated using the equation

[kb kv]T =

K 0

0 M

−1

KT
c , (9)

where kb and kv are the bending and velocity gains, respec-
tively, and Kc = R−1BT Π̄. To compute control functional



gains, the state weight Q was chosen to emphasize the track-
ing performance along the free edge (y = 0). Specifically,

Q =

diag(qi)K 0

0 M

 , (10)

with qi = 1e5 for i = 1, ...Nx and zero otherwise.
Convergence of the bending and velocity gains was ver-

ified for two patches along the spanwise plate edges as
illustrated in Figures 2(a)-2(b). The patches were chosen
to be one half of the plate length (30cm) and (3.75cm) in
width such that they lie directly upon the finite element mesh
nodes for the chosen mesh refinements. In figures 3(a)-4(b)
the gains for the leading edge patch are plotted for grid
resolutions 9×33 and 17×65 nodes corresponding to 8×32
and 16× 64 square elements; the gains from the finest mesh
did not differ significantly from those shown here. The gains
for the trailing edge patch are perfectly symmetric with those
for the leading edge shown here.
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Fig. 2. (a) Geometry and mesh for node numbers (Nx, Ny) = (9, 33)
and (b) for (Nx, Ny) = (33, 65) with plate in red, beam in black and
piezoceramic actuators in green

Notice the location of the dominant features of the plots
coincides with the location of the patch. As the number of
elements gets larger, the surface plot features tend to the
edge of the patch, becoming less two dimensional in support.
Results such as these will be used to place sensors for the
closed loop investigations of camber control, e.g. [28], [29].

B. Tracking with External Forcing

One set of simulations is presented here to demonstrate the
control effectiveness of a piezoceramic in camber control.
The simulations were obtained using the ODE23s stiff sys-
tem Runge-Kutta integration routine in Matlab. Parameters
used in this study are summarized in table I, and were held
constant for all simulations. Patch parameters were taken
from [30] and from online product parameter tables for
highly deforming piezoceramic materials.
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Fig. 3. (a) Bending gain for leading edge patch for (Nx, Ny) = (9, 33)
and (b) for (Nx, Ny) = (33, 65)
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Fig. 4. (a) Velocity gain for leading edge patch for (Nx, Ny) = (9, 33)
and (b) for (Nx, Ny) = (33, 65)

To test the efficacy of a piezoceramic patch system on a
plate to control wing twist in the presence of an external
forcing function, we used the desired shape function as
defined by the first mode shape of an Euler-Bernoulli beam,
interpolated between the spanwise edges of the plate. Specif-
ically, the desired position for the leading edge of the plate
is the positive first mode of an Euler-Bernoulli beam, while
the trailing edge is simply the same function with opposite
sign. The full desired position for the plate is the linear
interpolation of these two edges, thus the plate tip (wing
tip) edge is linear but making an angle of approximately
7.5 degrees with the horizontal. Fully achieving the desired
position for an overall aircraft angle of attack will in theory
result in roll moments very similar to that described in [12],
[13], and perhaps even greater so due to the continuous
change in angle of attack in the spanwise direction.



The external forcing used in the simulation is given by

f̂(t) =
1

2
(
1

2
cos(25πt) + 4 cos(45πt) + .4 sin(15πt) + ..

80 sin(90πt) − 60 cos(34πt) + .4 ∗ sin(17πt) + ...
1

2
cos(12πt) +

1

5
sin(15πt) + 90 sin(61πt)).

This function is not meant to capture any realistic physics at
this point, but rather to simply force the plate with both high
and lower frequency components to illustrate the problem at
hand. The force is not homogeneously distributed over the
plate, rather it is distributed using a function similar to the
desired state function, so that the maximum force occurs at
the free corner and zero force occurs along the leading and
clamped edges, with maximum force occurring at the free
corner of the trailing edge.

In Figures 5(a)-6(c) we see the result of applying the
aforementioned control methodology to this system. The
plate is twisted into the desired position, thereby achieving a
desired wing-top angle of attack (Figure 5(a)) as a result of
the prescribed control illustrated in Figure 5(b). The external
force is rejected except for the higher frequency components
as illustrated in Figure 6(b).

(a)

(b)

Fig. 5. (a) Final plate position (red) with desired (blue) and (b) control
input

Note the voltage applied illustrated in Figure 5(b), the
control required to maintain the desired position is at the

(a)

(b)

(c)

Fig. 6. (a) External pressure, (b) free corner positions for leading and
trailing edges and (c) Plate edge position in time with desired position
illustrated in black

realistic limit. While these results show that camber control
of the overall system position with a piezoceramic is pos-
sible, further design research should be completed to bring
required control effort to more realistic limits. Note also the
shape of the free edge shape (appearing sinusoidal in shape
in Figure 6(c)). It may be desirable to retain a linear shape for
the free edge; how this may be achieved will be investigated
in a later study.

V. CONCLUSION AND FUTURE DIRECTIONS

In this work, we showed that piezoceramic patches along
leading and trailing edges of a flexible rubber-like plate can



be used for steady state tracking control problems related to
wing morphing and camber. We computed control functional
gains corresponding to bending and velocity; results such as
these can and will be used for sensor placement. We demon-
strated a steady state tracking problem indicative of a wing
maintaining a certain camber during flight. This problem was
solved in the presence of an external periodic force. This
work demonstrates that the aerodynamic consequences of
this application of piezoceramics to flight systems has great
potential, especially for aircraft in the 1m wingspan range.

There are drawbacks to using piezoceramics as actuators
for MAVs, the most important of which is their very low
control authority. Placement of more patches may alleviate
this issue, as will the utilization of more flexible materials
along with further investigation into optimal placement of
actuators. The value of the control authority coefficient,
R, could also be adjusted to maximize the potential of
the piezoceramic device. Utilizing an experimental design
rather than solely finite element simulation and theoretical
parameters is an important next step in this research.

Immediate future work will include utilizing more patches
in the domain to increase control authority, consider differ-
ent types of smart material actuators, inclusion of sensors
and an estimator design, and potentially a physically more
meaningful external disturbance. This work will culminate
with the use of real fluid flow simulation data, as well as the
full fluid structure interaction problem.
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