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Abstract— Real-time control of a physical system necessitates
controllers that are low order. In this paper, we compare two
balanced truncation methods as a means of designing low order
compensators for partial differential equation (PDE) systems.
The first method is the application of balanced truncation to the
compensator dynamics, rather than the state dynamics, as was
done in [1]. The second method, LQG balanced truncation,
applies the balancing technique to the Riccati operators ob-
tained from a specific LQG design. We discuss snapshot-based
algorithms for constructing the reduced order compensators
and present numerical results for a two dimensional convection
diffusion PDE system.

I. I NTRODUCTION

Practical methods that can be used to reduce the size of
a controller designed for an infinite dimensional system (in
particular, a partial differential equation system) have been
the focus of much research of the last decade. A challenge is
developing a method that preserves properties of the closed
loop system and does not discard important dynamics in the
reduction process. In this paper, we compare two reduction
methods that first compute a converged approximation to
the compensator for the infinite dimensional system, and
then reduce the compensator. Both methods apply balanced
truncation but in different ways. The first method applies it
to the Gramians for the compensator system; this method
was proposed for finite dimensional systems by Yousuff and
Skelton in [1]. The second method, LQG balancing, applies
balancing to the solutions of the Riccati equations. Although
these methods have been known for some time, only the
second appears to have significant theory developed in the
context of control design for infinite dimensional systems
[2], [3], [4]. The first method has been formally applied
to an infinite dimensional system in control of nonlinear
convection in [5]. The second method has been applied to
PDE systems in [6], [7]. Although there are many aspects
to consider in the comparison of such designs, we begin the
investigation in this paper by considering the methods as
applied to a two dimensional convection diffusion system.

The weakness of many model reduction techniques when
applied to systems that are modeled by partial differential
equations (PDEs) is that there are typically gaps in what
can be proven with regard to convergence of computed
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controllers to the PDE controllers. In [2], it was shown that
LQG balanced truncation followed by a central controller
design for the low order model could yield a robust enough
controller to handle the lost dynamics in truncation. In this
investigation, we instead focus on the two approaches out-
lined above: (1) balancing and truncating the LQG compen-
sator directly, and (2) computing a reduced LQG controller
using an LQG balanced truncated model.

The first step for both of these methods is to compute
an approximation to the infinite dimensional compensator.
Then, the two balanced truncation methods are applied
to this controller to yield low order compensators. Much
recent research has focused on algorithms for large-scale
matrix equations and model reduction problems for large-
scale systems resulting from the discretization of infinite
dimensional systems (see, e.g., [8], [9] and the references
contained therein). In this work, we use snapshot-based
algorithms to construct approximations to the PDE controller
and the reduced order models. The algorithms used here are
related to those proposed by Wilcox and Peraire [10] and
Rowley [11] for finite dimensional systems.

II. T HE MODEL PROBLEM

To study the effects of balancing the compensator and
LQG balancing, we consider the model problem given by
a convection diffusion equation with nonconstant convection
coefficients over the spatial domainΩ = [0, 1] × [0, 1]. The
model problem is given by

wt = µ(wxx +wyy)−c1(x, y)wx−c2(x, y)wy +b(x, y)u(t),

with Dirichlet boundary conditions on the bottom, right, and
top walls:

w(t, x, 0) = 0, w(t, 1, y) = 0, w(t, x, 1) = 0,

a Neumann boundary condition on the left wall:

wx(t, 0, y) = 0,

and initial condition

w(0, x, y) = w0(x, y).

System measurements are taken of the form

η(t) =
∫

Ω

c(x, y)w(t, x, y) dx dy.



We assume the convection coefficientsc1(x, y) andc2(x, y)
are bounded, and we assume the functionsb(x, y) andc(x, y)
are square integrable overΩ.

We chose this model problem to investigate the feasi-
bility of using the two compensator reduction methods for
linearized incompressible fluid flow problems. This model
problem shares similarities to linear flow problems, but is
a simpler testing platform. In anticipation of using such
controller reduction techniques on more complex problems,
we use special numerical methods to compute the reduced
order compensators.

For the snapshot algorithms below, we require an abstract
formulation of the problem. Briefly, this can be done as
follows. Let X be the Hilbert spaceL2(Ω) of square inte-
grable functions defined over the domainΩ with standard
inner product(f, g) =

∫
Ω
f(x, y)g(x, y) dx dy and norm

‖f‖ = (f, f)1/2. Define the convection diffusion operator
A : D(A) ⊂ X → X by

[Aw](x, y) = µ(wxx + wyy)− c1wx − c2wy,

Roughly, functions inD(A) are twice differentiable and
satisfy the above boundary conditions. DefineB : R → X
andC : X → R by [Bu](x, y) = b(x, y)u andCw = (w, c).
In this way, the PDE system can be written as the infinite
dimensional system

ẇ(t) = Aw(t) +Bu(t), w(0) = w0, y(t) = Cw(t),

where the dot denotes a time derivative.

III. B ACKGROUND

We now discuss control design and model reduction for a
general infinite dimensional system

ẋ(t) = Ax(t) +Bu(t) +Dw(t), y(t) = Cx(t),

holding over a Hilbert spaceX. We assume the operatorA :
D(A) ⊂ X → X generates aC0-semigroup, and the control
input operatorB : Rm → X, the disturbance input operator
D : Rn → X, and the observation operatorC : X → Rp

are all bounded.

A. Control Design for PDEs

We consider the control objective to minimize the cost

J =
∫ ∞

0

‖Ex(t)‖2 + ‖u(t)‖2 dt,

where the controlled output operatorE : X → Rq is also
bounded. Under certain assumptions, the solution to this
problem is the feedback control law given by

u(t) = −Kxc(t), ẋc(t) = Acxc(t) + Fy(t), (1)

where

K = B∗Π, F = PC∗, Ac = A−BK − FC,

and the bounded operatorsΠ : X → X andP : X → X
are the solutions of the control and filter algebraic Riccati
equations (AREs)

A∗Π + ΠA−ΠBB∗Π + E∗E = 0, (2)

AP + PA∗ − PC∗CP +DD∗ = 0, (3)

where the asterisk (∗) denotes the Hilbert adjoint operator.
Once the gains are computed, a difficulty with the im-

plementation of this control law is that one must solve the
infinite dimensional linear differential equation for the state
estimatexc(t) in (1) in real time. Therefore, model reduction
is required to create a controller that is implementable in real
time.

Both model reduction methods considered below will
produce reduced order compensators of the form

u(t) = −Krx
r
c(t), ẋr

c(t) = Acrx
r
c(t) + Fry(t), (4)

wherexr
c is a vector inRr, andKr, Acr, andFr are matrices

of dimensionsm×r, r×r, andr×p, respectively. To simulate
the performance of the low order compensator, we apply it to
the original system (without the disturbance for simplicity)
to obtain the closed loop system[

ẋ(t)
ẋr

c(t)

]
=

[
A BKr

FrC Acr

] [
x(t)
xr

c(t)

]
, (5)

with appropriate initial data. Simulating this system is one
way to gain insight into the performance of the low order
controller in regulating the PDE.

B. Balanced Model Reduction for PDEs

Both of the controller reduction methods studied in this
paper use the standard balanced realization, coupled with
truncation. Balancing was applied to finite dimensional sys-
tems in [12], [13] and to infinite dimensional systems in [14],
[15]. It is typically used in the context of the state equations
on the premise that a good low order approximation to the
system can be obtained by eliminating any states that are
difficult to control and to observe. In particular, the balancing
transformation balances the Gramians for the state-space
system. In LQG balanced realization, balancing is applied to
the solutions of the control and filter Riccati equations. The
method was established for systems of ordinary differential
equations in [16], [17], [18]. Opmeer and Curtain have
extended these results to PDE systems in [2], [3], [4].

We note that there is a restriction to the structure of
the system that must be imposed in order to apply LQG
balancing that is somewhat impractical in certain situations.
Specifically, the measured output and controlled output op-
erators must be identical,C = E, and the actuator input
and disturbance operators must be identical,B = D. The
authors are unaware of results that exist that remove those
requirements, and that level of specificity of the character of
input and outputs limits the applicability of the method.

IV. SNAPSHOTALGORITHMS FORFEEDBACK GAINS

AND BALANCED MODEL REDUCTION

We now describe snapshot algorithms to compute feed-
back gains and balanced reduced order models for infinite
dimensional systems over a separable Hilbert spaceX with
inner product(·, ·) and corresponding norm‖x‖ = (x, x)1/2.
We assume the inner product is real-valued for simplicity.



A. Snapshot Algorithms for Feedback Gains

To begin, we consider the computation of the feedback
gain operatorK = B∗Π, where Π : X → X is the
solution of the algebraic Riccati equation (2). We assume
the operatorsB : Rm → X andC : X → Rp are bounded
and finite rank. The assumptions onB andC imply that the
operators must take the form

Bu =
m∑

j=1

ujbj , Cx = [ (x, c1), . . . , (x, cp) ]T ,

for some vectorsb1, . . . , bm and c1, . . . , cp in X (see [19,
Theorem 6.1]). For simplicity we focus on the case of a
single input and single output; i.e.,m = 1 and p = 1; the
algorithms are easily modified form > 1 andp > 1. As with
most large-scale algorithms for control and model reduction
computations, the snapshot algorithms requirem andp to be
relatively small.

For the casem = 1, we haveBu = bu whereb is a vector
in X. This assumption implies that the feedback operator
K : X → R given byK = B∗Π has the representation
Kx = (x, k), wherek = Πb is a vector inX known as a
functional gain. This representation holds sinceB∗x = (x, b)
and thereforeKx = B∗Πx = (Πx, b) = (x,Πb), sinceΠ
is self-adjoint. Below, we concentrate on approximating this
functional gain.

We first apply a Newton-Kleinman iteration as modified
by Banks and Ito [20] to obtain a sequence of Lyapunov
equations of the form

(A−BKi)∗Si + Si(A−BKi) + E∗i Ei = 0, (6)

whereKi is theith approximation toK, E0x = [K0x,Cx]T

with K0 the initial guess, andEi = Ki − Ki−1 for i ≥
1. To advance to the next iteration, we need to compute
K1 = B∗S0 and thenKi+1 = Ki − B∗Si for i ≥ 1. In the
same manner as above, these operators can be represented
as follows:Kix = (x, ki), where k1 = S0b and ki+1 =
ki−Sib for i ≥ 1. Therefore, in each iteration we do not need
to compute the entire Lyapunov solutionSi, we only need
the productSib. We compute this product using a snapshot
algorithm below.

Consider a general infinite dimensional Lyapunov equation

A∗S + SA+ C∗C = 0, (7)

where we assumeC : X → R is given byCx = (x, c) with
c ∈ X. It is well known that the solutionS : X → X is
given by

Sx =
∫ ∞

0

eA∗tC∗CeAtx dt.

Using the above representation ofC, it can be shown [21],
[22] that the solution may also be represented by

Sx =
∫ ∞

0

(x, z(t))z(t) dt, (8)

wherez(t) = eA∗tc is the solution of the infinite dimensional
linear differential equation

ż(t) = A∗z(t), z(0) = c. (9)

This representation leads to the following snapshot algo-
rithm.

Snapshot algorithm [21], [22] to approximate Sx,
where S solves the Lyapunov equation (7)

1) Compute an approximationzN (t) of the solutionz(t)
of the differential equation (9).

2) Replacez(t) with zN (t) in the integral representation
of Sx in (8) and approximate the integral (by quadra-
ture or some other method).

If
∫∞
0
‖zN (t) − z(t)‖2 dt → 0, then the resulting approxi-

mation converges toSx [22].
The approximate solutionzN (t) of the differential equa-

tion (9) need not be stored to approximateSx. Instead, a time
stepping method can be used to approximate the differential
equation and the approximation to the integral can be updated
while simultaneously integrating the differential equation.
For example, using a piecewise linear approximation toz(t)
in time leads to the trapezoid rule to time step the differential
equation and the following approximation to the integral.

Trapezoid snapshot algorithm [22] to approximateSx,
where S solves the Lyapunov equation (7)

1) Approximate the solution of the differential equation
(9) with the trapezoid rule:

(I −∆tA∗/2)zn+1 = (I + ∆tA∗/2)zn,

whereI is the identity operator.
2) Update the approximation toSx:

[Sx]n+1 = [Sx]n + ∆t[(x, zn+1)/3 + (x, zn)/6]zn+1

+∆t[(x, zn+1)/6 + (x, zn)/3]zn.

This updating procedure can be stopped when the norm
of the update toSx (unscaled by∆t) is below a certain
tolerance. We note that we used a constant time step for
simplicity; this is not necessary in general.

For the Lyapunov equations arising in the modified
Newton-Kleinman iterations (6), note thatA∗ in the Lya-
punov equation (7) is replaced by(A−BKi)∗. Thus, in the
trapezoid snapshot algorithm, we must invert operators of the
formAs−BsKs, whereAs = I−∆tA∗/2,Bs = −∆tK∗i /2
andKs = B∗. To compute(As − BsKs)−1z we use the
Sherman-Morrison-Woodbury formula (see, e.g., [23]):

(A−BK)−1z = (I +A−1B(I −KA−1B)−1K)A−1z.

B. Snapshot Algorithms for Balanced Model Reduction

Next, we consider snapshot algorithms for constructing
balanced reduced order models for infinite dimensional linear
systems. We consider two related model reduction prob-
lems: standard Lyapunov balancing and LQG balancing. As
mentioned above, we do not balance the uncontrolled linear
system here; rather, we balance and truncate the compensator.

The snapshot algorithm for balanced model reduction of
a system governed by ordinary differential equations was
proposed by Rowley in [11]. We extended his algorithm to
the class of linear infinite dimensional systems considered in
this work in [24]. The snapshot algorithm for LQG balancing



is an adaptation of Rowley’s work, and it appears that it has
not been proposed elsewhere.

For a linear system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (10)

balancing involves GramiansLB and LC , which are the
solutions to the infinite dimensional Lyapunov equations

ALB + LBA
∗ +BB∗ = 0, A∗LC + LCA+ C∗C = 0.

We again assume for simplicity thatBu = bu andCx =
(x, c) for vectorsb and c in X. As above, the solutions to
these Lyapunov equations are given by

LBx =
∫ ∞

0

(x,w(t))w(t) dt, LCx =
∫ ∞

0

(x, z(t))z(t) dt,

wherew(t) = eAtb andz(t) = eA∗tc satisfy the differential
equations

ẇ(t) = Aw(t), w(0) = b, ż(t) = A∗z(t), z(0) = c. (11)

In finite dimensions, the balanced realization can be
computed using the eigenvalues and eigenvectors of the
product of the GramiansLCLB . Rowley recognized that the
eigendecomposition for the finite dimensional problem could
be approximated using a variation of the proper orthogonal
decomposition. In the infinite dimensional case, this can also
be done as follows.

Approximate the Gramians with quadrature:

LBx ≈ Ln1
B =

n1∑
j=1

α2
j (x,w(tj))w(tj) =

n1∑
j=1

(x, w̃j)w̃j ,

LCx ≈ Ln2
C =

n2∑
k=1

β2
k(x, z(tk))z(tk) =

n2∑
k=1

(x, z̃k)z̃k,

where{α2
j} and{β2

k} are quadrature weights corresponding
to the sets of quadrature points{tj} and{tk}, w̃i = αiw(ti),
and z̃i = βiz(ti). The approximate Gramians can then be
factored asLn1

B = PP ∗ and Ln2
C = Q∗Q, where the

operatorsP : Rn1 → X andQ : X → Rn2 are defined
by

Pa =
n1∑
i=1

aiw̃i, Qx = [ (x, z̃1), . . . , (x, z̃n2) ]T .

The eigenvalues and eigenvectors ofLn1
C Ln2

B can then be
computed using the singular value decomposition ofΓ =
QP , which is ann2×n1 matrix of inner products of weighted
snapshots withij entriesΓij = (z̃i, w̃j). For the remaining
details of the algorithm, including the case of multiple inputs
and outputs, see [24].

For LQG balancing, the procedure is similar although
we must now solve Riccati equations instead of Lyapunov
equations. In finite dimensions, the balancing transformation
is given by the eigenvalues and eigenvectors of the product
of the solutionsΠ andP of the Riccati equations (2) and (3),
where we assumeB = D andC = E as discussed above.

As is well known, these Riccati equations can be rewritten
as

(A−BK)∗Π + Π(A−BK) +K∗K + C∗C = 0,
(A− FC)P + P (A− FC)∗ + FF ∗ +BB∗ = 0,

whereK = B∗Π andF = PC∗. Now we proceed as above
with the representation ofΠ andP as the solution of these
Lyapunov equations.

We again assumeBu = bu and Cx = (x, c), where b
and c are vectors inX. ThenKx = (x, k) andFy = fy,
wherek = Πb and f = Pc are the functional gains. Once
we computek and f , we proceed as above and expressΠ
andP in the form

Πx =
∫ ∞

0

(x, z1(t))z1(t) + (x, z2(t))z2(t) dt,

Px =
∫ ∞

0

(x,w1(t))w1(t) + (x,w2(t))w2(t) dt,

where

ż1(t) = (A−BK)∗z1(t), z1(0) = k, (12)

ż2(t) = (A−BK)∗z2(t), z1(0) = c, (13)

ẇ1(t) = (A− FC)w1(t), w1(0) = f, (14)

ẇ2(t) = (A− FC)w2(t), w1(0) = b. (15)

Approximate the above integrals with quadrature:

Πx =
n1∑

j=1

(x, z̃j)z̃j , Px =
n2∑

k=1

(x, w̃k)w̃k,

where now the “vectors”̃z andw̃ contain weighted snapshots
of the solutions of the differential equations (12) and (13),
and (14) and (15), respectively.

Snapshot algorithm for LQG balanced model reduction
of the linear system (10)

1) Approximate the feedback gainsK = B∗Π andF =
PC∗, where Π and P solve the AREs (2) and (3),
for example, using the snapshot algorithm outlined in
Section IV-A.

2) Compute approximate solutions of the differential
equations (12)-(15).

3) Form the matrixΓ, where Γij = (z̃i, w̃j) and the
weighted snapshots̃wj and z̃i are as above.

4) Compute the singular value decomposition ofΓ:

Γ = UMV ∗ = [U1 U2]
[
M1

0
0
0

][
V ∗1
V ∗2

]
= U1M1V

∗
1 ,

whereM1 ∈ Rs×s is diagonal and invertible,s =
rank(Γ), U∗1U1 = Is = V ∗1 V1, and Is is the identity
matrix in Rs×s.

5) Chooser < rank(Γ), and form the firstr primary and
dual LQG balanced POD modes defined by

[ϕ1, . . . , ϕr ]T = M−1/2
r V ∗r w̃,

[ψ1, . . . , ψr ]T = M−1/2
r U∗r z̃,

whereMr, Ur, andVr are truncations ofM1, U1, and
V1.



6) Use the modes to form the matrices in the reduced
order model:

Ar = [ (Aϕj , ψi) ] ∈ Rr×r,
Br = [ (b, ψi) ] ∈ Rr×1,
Cr = [ (ϕj , c) ] ∈ R1×r,

It is straightforward to extend this algorithm to multiple
inputs and outputs. Convergence theory for the balancing
algorithms is underway and will be the subject of future
work.

V. NUMERICAL RESULTS

For our numerical experiments with the model problem
outlined above, we choseµ = 0.05, convection coef-
ficients c1(x, y) = −x sin(2πx) sin(πy) and c2(x, y) =
−y sin(πx) sin(2πy), control input function b(x, y) =
5 sin(πx) sin(πy) if x ≥ 1/2 and b(x, y) = 0 otherwise,
observation functionc(x, y) ≡ 5, and initial condition
w0(x, y) = 5 cos(πx/2) sin(πy).

For the snapshot algorithms, we used standard piecewise
linear finite elements for the spatial discretization. For the
functional gain computations, we first computed functional
gains forµ = 0.1 (using a Newton iteration withK0 = 0)
and then used these as initial guesses in the Newton iteration
for µ = 0.05. In a similar fashion, we note that one could
use the result of one Newton iteration as the initial guess
in another Newton iteration with a finer spatial grid (see,
e.g., [25]) or time step for the snapshot algorithm. We used
the trapezoid rule for the time discretizations required in the
snapshot balancing algorithms.

Figures 1 and 2 show approximations to the functional
gains k(x, y) and f(x, y) computed using the modified
Newton algorithm with the trapezoid snapshot algorithm. We
used∆t = 0.01 for the time step and 41 equally spaced
finite element nodes in each coordinate direction. Further
refinement in space and time produced little change in the
approximations. We note that it may be desirable to use an
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Fig. 1. Approximate control functional gaink(x, y) computed using the
snapshot algorithm with∆t = 0.01 and 41 equally spaced finite element
nodes in each coordinate direction.

adaptive time stepping algorithm and this will be explored
in future work.
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Fig. 2. Approximate observation functional gainf(x, y) computed using
the snapshot algorithm with∆t = 0.01 and 41 equally spaced finite element
nodes in each coordinate direction.

Figure 3 shows approximations to the Hankel singular val-
ues of the compensator system computed using the balancing
snapshot algorithm with∆t = 0.01 and various equally
spaced finite element grids. Many of the larger Hankel sin-
gular values are essentially converged on the coarse21× 21
node grid. Further refinement in space caused the smaller
values to converge, however this is not needed since these
values are not required to reduce the compensator. Also,
further refinement in time produced little change. Figure
4 shows similar approximations to the LQG characteristic
values of the system computed using the LQG balancing
snapshot algorithm. The LQG values do not converge as
quickly and further refinement in space and time produced
change in most of the values. However, the larger values are
converged and only these are used to construct the reduced
order compensator. Again, adaptive time stepping algorithms
may be advantageous to use for these computations.
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Fig. 3. Approximate compensator Hankel singular values computed using
the snapshot algorithm with∆t = 0.01 and 21, 41, and 81 equally spaced
finite element nodes in each coordinate direction.

To compare the two approaches to reducing the com-
pensator, we computed theL2 norm of the solution of
the controlled system. The uncontrolled system is stable,
however the solution tends to zero very slowly. The norm
of the uncontrolled solution att = 20 is approximately0.1.
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Fig. 4. Approximate LQG characteristic values computed using the
snapshot algorithm with∆t = 0.01 and 21, 41, and 81 equally spaced
finite element nodes in each coordinate direction.

Both reduced order controllers (with zero initial data for the
compensators) drive the solution to zero at a much faster rate.
We choser = 4 states in each reduced order compensator
and found that the norm of the solution att = 5 of each
closed loop system is on the order of10−4. Integrating longer
in time showed that the controller constructed using LQG
balancing drove the solution to zero slightly faster than the
controller constructed by balancing the compensator.

Although the performance of the two controllers was very
similar, we note that the LQG balanced reduced model
was more computationally demanding to construct, and it
also converged at a slower rate. This is likely due to
the fact that the snapshot algorithm required approximate
solutions of the differential equations (13) and (15), whose
initial conditions (c(x, y) and b(x, y)) are not “smooth” in
the sense that they are not twice differentiable functions
satisfying the boundary conditions of the governing PDE.
Computing the reduced order controllers is done “offline”
and so computation time may not necessarily be an issue.
However, accurately computing the reduced controller may
be essential to guarantee controller performance. Therefore,
it appears more care may be required to construct the LQG
balanced reduced controller. This may be especially true of
more complex problems.

VI. CONCLUSIONS ANDFUTURE WORK

We believe that model reduction based on these ap-
proaches following robust control design as demonstrated in
[2] holds much promise. Both reduced controllers performed
well on the model problem. A simple comparison showed the
controllers gave similar performance; further investigation is
required to give a more thorough comparison of the reduced
controllers. Other future work includes further development
and analysis of the snapshot algorithms for the controller
construction, and comparison of other types of reduced
controllers for PDE systems.
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