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Abstract— Real-time control of a physical system necessitates controllers to the PDE controllers. In [2], it was shown that
controllers that are low order. In this paper, we compare two | QG balanced truncation followed by a central controller
balanced truncation methods as a means of designing low order design for the low order model could yield a robust enough

compensators for partial differential equation (PDE) systems. 0 . -
The first method is the application of balanced truncation to the controller to handle the lost dynamics in truncation. In this

compensator dynamics, rather than the state dynamics, as was investigation, we instead focus on the two approaches out-
done in [1]. The second method, LQG balanced truncation, lined above: (1) balancing and truncating the LQG compen-
applies the balancing technique to the Riccati operators ob- sator directly, and (2) computing a reduced LQG controller
tained from a specific LQG design. We discuss snapshot-based using an LQG balanced truncated model.

algorithms for constructing the reduced order compensators ) .

and present numerical results for a two dimensional convection The f'rSt, ste.p for both ,Of_ t.hese. meth.ods IS to compute

diffusion PDE system. an approximation to the infinite dimensional compensator.
Then, the two balanced truncation methods are applied

I. INTRODUCTION to this controller to yield low order compensators. Much

Practical methods that can be used to reduce the size r&cent research has focused on algorithms for large-scale

a controller designed for an infinite dimensional system ("r]natrlx equations and model reduction problems for large-

particular, a partial differential equation system) have bee cale systems resulting from the discretization of infinite

the focus of much research of the last decade. A challengqu“er?SIOnaI sys_tems (se(_a, €.g. [8], [9] and the references
ntained therein). In this work, we use snapshot-based

developing a method that preserves properties of the clos&f & o
ping P prop r?Egonthms to construct approximations to the PDE controller

loop system and does not discard important dynamics in t .
reduction process. In this paper, we compare two reductid"wd the reduced order models. The algorithms used here are

methods that first compute a converged approximation glatled tcil'[h?sef_p_rtopg_sed b_y W:Icoxtand Peraire [10] and
the compensator for the infinite dimensional system, an owley [11] for finite dimensional systems.
then reduce the compensator. Both methods apply balanced II. THE MODEL PROBLEM

truncation but in different ways. The first method applies it To study the effects of balancing the compensator and

to the Gramians for the compensator system; this meth ch balancing, we consider the model problem given by
was proposed for finite dimensional systems by Yousuff an .

Skelton in [1]. The second method, LQG balancing, applie% convection diffusion equation with Eonconstant convection

balancing to the solutions of the Riccati equations. Althougﬁoejl?entzlover. th? spak';lal domaih= [0,1] x [0,1]. The

these methods have been known for some time, only thrTé0 €l problem is given by

second appears to have significant theory developed in the = i(w,, +wy,) —c1(x, y)we — ca(@, y)wy, +b(z, y)u(t),

context of control design for infinite dimensional systems | o » )

[2], [3], [4]. The first method has been formally appliedW'th Dirichlet boundary conditions on the bottom, right, and

to an infinite dimensional system in control of nonlineafoP Walls:

convection in [5]. The second method has been applied o, 2 0) =0, w(t,1,y)=0, w(t z,1)=0,

PDE systems in [6], [7]. Although there are many aspects

to consider in the comparison of such designs, we begin tideNeumann boundary condition on the left walll:

investigation in this paper by considering the methods as wa(t,0,) = 0

applied to a two dimensional convection diffusion system. T ’
The weakness of many model reduction techniques whemd initial condition

applied to systems that are modeled by partial differential

equations (PDEs) is that there are typically gaps in what w(0, 2,y) = wo(2,y).

can be proven with regard to convergence of computegystem measurements are taken of the form

This work was supported in part by the Air Force Office of Scientific —
Research under grant FA9550-07-1-0540. n(t) o c(a,y)w(t,z,y) de dy.



We assume the convection coefficient$z, y) andcs(z,y)  where the asterisk’) denotes the Hilbert adjoint operator.
are bounded, and we assume the functignsy) andc(z, y) Once the gains are computed, a difficulty with the im-
are square integrable ovex. plementation of this control law is that one must solve the
We chose this model problem to investigate the feasinfinite dimensional linear differential equation for the state
bility of using the two compensator reduction methods foestimater.(¢) in (1) in real time. Therefore, model reduction
linearized incompressible fluid flow problems. This modeis required to create a controller that is implementable in real
problem shares similarities to linear flow problems, but isime.
a simpler testing platform. In anticipation of using such Both model reduction methods considered below will
controller reduction techniques on more complex problemgyroduce reduced order compensators of the form
we use special numerical methods to compute the reduced
order compensators. u(t) = —Krag(t), c(t) = Acac(t) + Fry(t),  (4)
For the snapshot algorithms below, we require an abstract

formulation of the problem. Briefly, this can be done advherez( isavectorinR”, andK,, A.,, andF, are matrices
follows. Let X be the Hilbert spacd.?(Q) of square inte- of dimensionsn xr, rxr, andr x p, respectively. To simulate

grable functions defined over the domdinwith standard the performance of the low order compensator, we apply it to
inner product(f,g) = [, f(2,y)g(x,y)dzdy and norm the original system (without the disturbance for simplicity)

Ifll = (f, f)'/2. Define the convection diffusion operator© 0btain the closed loop system
[Aw](z,y) = p(wee + Wyy) — LWy — Cowy, Z7(¢) F.C A xn(t) |’

c c

(®)

Roughly, functions inD(A) are twice differentiable and with appropriate initial data. Simulating this system is one
satisfy the above boundary conditions. Defiile R — X  way to gain insight into the performance of the low order
andC' : X — R by [Bu)(z,y) = b(z,y)u andCw = (w,c).  controller in regulating the PDE.

In this way, the PDE system can be written as the infinite

dimensional system B. Balanced Model Reduction for PDEs

w(t) = Aw(t) + Bu(t), w(0)=wp, y(t)= Cuw(t), Both of the controller reduction methods studied in this
paper use the standard balanced realization, coupled with

where the dot denotes a time derivative. _ : . S :
truncation. Balancing was applied to finite dimensional sys-

lll. BACKGROUND tems in [12], [13] and to infinite dimensional systems in [14],

We now discuss control design and model reduction for EL5]. It is typically used in the context of the state equations
general infinite dimensional system on the premise that a good low order approximation to the
#(t) = Ax(t) + Bu(t) + Dw(t), y(t) = Cz(t), system can be obtained by eliminating any states that are

difficult to control and to observe. In particular, the balancing
holding over a Hilbert spac&’. We assume the operatdr:  transformation balances the Gramians for the state-space
D(A) C X — X generates &)-semigroup, and the control system. In LQG balanced realization, balancing is applied to
input operatorB : R™ — X, the disturbance input operator the solutions of the control and filter Riccati equations. The
D : R™ — X, and the observation operatof : X — RP?  method was established for systems of ordinary differential
are all bounded. equations in [16], [17], [18]. Opmeer and Curtain have
A. Control Design for PDEs extended these results to PDE systems in [2], [3], [4].
We note that there is a restriction to the structure of
- the system that must be imposed in order to apply LQG
J= / IEz(8)]|? + lu(t)||? dt, balan_cjng that is somewhat impractical in certain situations.
Specifically, the measured output and controlled output op-
where the controlled output operatér : X — R? is also erators must be identical; = E, and the actuator input
bounded. Under certain assumptions, the solution to th@nd disturbance operators must be identiéal= D. The
problem is the feedback control law given by authors are unaware of results that exist that remove those
. requirements, and that level of specificity of the character of
ult) = —Kae(t),  ie(t) = Aexe(t) + Fy(t), (1) input and outputs limits the applicability of the method.
where

K =B, F=PC*, A.=A-BK-FC,

and the bounded operatofb: X — X andP : X — X . .
are the solutions of the control and filter algebraic Riccati W& now describe snapshot algorithms to compute feed-
equations (ARES) back gains and balanced reduced order models for infinite

. . . dimensional systems over a separable Hilbert sp@osith
AT+ 1IA - IBB"Il + E"E = 0, (2 inner product’-, -) and corresponding noriz|| = (z, z)/2.
AP + PA* — PC*CP+ DD* =0, (3) We assume the inner product is real-valued for simplicity.

We consider the control objective to minimize the cost

IV. SNAPSHOTALGORITHMS FORFEEDBACK GAINS
AND BALANCED MODEL REDUCTION



A. Snapshot Algorithms for Feedback Gains This representation leads to the following snapshot algo-
To begin, we consider the computation of the feedbackthm.

gain operatorK = B*II, wherell : X — X is the Snapshot algorithm [21], [22] to approximate Sz,

solution of the algebraic Riccati equation (2). We assum&here S solves the Lyapunov equation (7)

the operators3 : R™ — X andC' : X — R” are bounded 1) Compute an approximation" (¢) of the solutionz(t)

and finite rank. The assumptions éhandC' imply that the of the differential equation (9).
operators must take the form 2) Replacez(t) with 2 (¢) in the integral representation
m of Sz in (8) and approximate the integral (by quadra-
Bu=Y ubj, Cx=[(z,c1),...,(x,¢)]", ture or some other method).
7=1 It [;° 12N (t) — 2(t)||*dt — 0, then the resulting approxi-
for some vectordy,...,b,, andci,...,c, in X (see [19, mation converges t&x [22].

Theorem 6.1]). For simplicity we focus on the case of a The approximate solution™ (¢) of the differential equa-
single input and single output; i.ex = 1 andp = 1; the tion (9) need not be stored to approximate. Instead, a time
algorithms are easily modified far > 1 andp > 1. As with  stepping method can be used to approximate the differential
most large-scale algorithms for control and model reductioaquation and the approximation to the integral can be updated
computations, the snapshot algorithms requirandp to be  while simultaneously integrating the differential equation.
relatively small. For example, using a piecewise linear approximation(tg

For the casen = 1, we haveBu = bu whereb is a vector in time leads to the trapezoid rule to time step the differential
in X. This assumption implies that the feedback operatasquation and the following approximation to the integral.
K : X — R given by K = B*II has the representation
Kz = (z,k), wherek = IIb is a vector inX known as a
functional gain. This representation holds sidger = (z, b)
and thereforeKx = B*lx = (Ilz,b) = (x,1Ib), sincell
is self-adjoint. Below, we concentrate on approximating this
functional gain. (I — AtA™/2)zp1 = (I + AtA™/2)z,,

We first apply a Newton-Kleinman iteration as modified
by Banks and Ito [20] to obtain a sequence of Lyapunov
equations of the form

(A— BK,;)*S; + Si(A— BK;) + EfE; =0,  (6) [Sz]ns1 = [Sz]n + At[(z, 2p41)/3 + (2, 20) /6] 2041

whereK; is theith approximation taK, Eyz = [Koz, Cx]T +At[(x, 2n11)/6 + (2, 21) /3] 2.

with K the initial guess, and?; = K; — K;_; for i >  This updating procedure can be stopped when the norm
1. To advance to the next iteration, we need to computef the update toSz (unscaled byAt) is below a certain

K, = B*S; and thenK;; = K; — B*S; for i > 1. In the tolerance. We note that we used a constant time step for
same manner as above, these operators can be represesiegblicity; this is not necessary in general.

as follows: K;z = (x,k;), wherek; = Spb and k; 1 = For the Lyapunov equations arising in the modified
k;—S;bfori > 1. Therefore, in each iteration we do not needNewton-Kleinman iterations (6), note that* in the Lya-

to compute the entire Lyapunov soluti¢h), we only need punov equation (7) is replaced oyt — BK;)*. Thus, in the

the productS;b. We compute this product using a snapshotrapezoid snapshot algorithm, we must invert operators of the

Trapezoid snapshot algorithm [22] to approximateS«z,
where S solves the Lyapunov equation (7)
1) Approximate the solution of the differential equation
(9) with the trapezoid rule:

wherel is the identity operator.
2) Update the approximation t§z:

algorithm below. form A;— B, K, whereA; = I—-AtA*/2, B, = —AtK}/2
Consider a general infinite dimensional Lyapunov equatioand K, = B*. To compute(4, — B;K,)" 'z we use the
A*S + SA+C*C =0, @) Sherman-Morrison-Woodbury formula (see, e.g., [23]):

—1 -1 -1 —1 -1
where we assumé€' : X — R is given byCz = (z, ¢) with (A=BK)2=(I+A"B(I-KA"B) K)A "z

S XB It is well known that the solutiort : X — X is B gpapshot Algorithms for Balanced Model Reduction
given by Next, we consider snapshot algorithms for constructing

Sz = / ettCrCetadt. balanced reduced order models for infinite dimensional linear

0 systems. We consider two related model reduction prob-
lems: standard Lyapunov balancing and LQG balancing. As
mentioned above, we do not balance the uncontrolled linear

* system here; rather, we balance and truncate the compensator.

Su _/O (w, 2(1))2(1) dt, (8) The snapshot algorithm for balanced model reduction of
a system governed by ordinary differential equations was
proposed by Rowley in [11]. We extended his algorithm to
the class of linear infinite dimensional systems considered in
2(t) = A*z(t), z(0)=c. (9) this work in [24]. The snapshot algorithm for LQG balancing

Using the above representation ©f it can be shown [21],
[22] that the solution may also be represented by

wherez(t) = e?" !¢ is the solution of the infinite dimensional
linear differential equation



is an adaptation of Rowley’s work, and it appears that it ha&s is well known, these Riccati equations can be rewritten
not been proposed elsewhere. as

For a linear system (A= BE)*TI+TI(A — BK) + K*K + C*C = 0,
z(t) = Az(t) + Bu(t), y(t) = Cz(t), (10) (A—FC)P+PA-—FC)*+ FF*+ BB* =0,

balancing involves Gramian&z and Le, which are the whereK = B*II and F = PC*. Now we proceed as above

solutions to the infinite dimensional Lyapunov equations With the representation dfl and P as the solution of these
Lyapunov equations.

ALp+ LpA"+BB" =0, A'Lc+LcA+C"C=0. We again assum@&u = bu and Cx = (z,c), whereb
andc are vectors inX. ThenKz = (z,k) and F'y = fuy,
wherek = IIb and f = Pc are the functional gains. Once
we computek and f, we proceed as above and expréks
and P in the form

We again assume for simplicity thd&u = bu and Cx =
(z,c) for vectorsb andc in X. As above, the solutions to
these Lyapunov equations are given by

Lpo= [ @u@u@d. Lor= [ @as0d = | a0+ @)z
0 0 0

wherew(t) = e'b and z(t) = e tc satisfy the differential Pr = / (z, w1 (8)wi (t) + (@, wa(t))wa(t) dt,
equations 0

where
w(t) = Aw(t), w(0) = b, 2(t) = A*2(t), 2(0) = ¢. (11)

4(t) = (A= BEK)*z1(t), z(0) =k, (12)
In finite dimensions, the balanced realization can be 2(t) = (A— BK)*z(t), 2(0) =c, (13)
computed using the eigenvalues and eigenvectors of the Wi (t) = (A — FCYwon (), wi(0) = f, (14)

product of the Gramians¢ L. Rowley recognized that the .
eigendecomposition for the finite dimensional problem could wa(t) = (A — FC)ws(t), w1(0) =0b. (15)

be approximated using a variation of the proper Orthogonﬂpproximate the above integrals with quadrature:
decomposition. In the infinite dimensional case, this can also - -

be done as follows. N = N
Iz = r,2:)Z;, Px= T, Wi )W,
Approximate the Gramians with quadrature: Z( 3)% Z( k)

j=1 k=1
1 o where now the “vectors? andw contain weighted snapshots
~ T — 2 ‘ N = A ) ) : )
Lpr =~ Ly = ZO‘J‘ (@, w(t;))w(ty) = Z(m,w])wj, of the solutions of the differential equations (12) and (13),
anl izl and (14) and (15), respectively.
Lex ~ L= Bz 20t)zt) = (¢, 5) 5k, Snapshot algorithm for LQG balanced model reduction
¢ kz::l g kz::l of the linear system (10)

1) Approximate the feedback gaids = B*II and F' =
PC*, wherell and P solve the AREs (2) and (3),
for example, using the snapshot algorithm outlined in
Section IV-A.

2) Compute approximate solutions of the differential
equations (12)-(15).

where{a?} and{3}} are quadrature weights corresponding
to the sets of quadrature poirts; } and{t }, w; = a;w(t;),
and z; = (;z(t;). The approximate Gramians can then be
factored asL}y = PP* and Lj? = Q*Q, where the
operatorsP : R™ — X and@ : X — R"™ are defined

by 3) Form the matrixI', whereI';; = (Z;,w;) and the
n weighted snapshots; and z; are as above.
Pa = Zaﬂf)iv Qr =[(2,21), ..., (2, 2n,)]". 4) Compute the singular value decompositionfof
- M, 0][Vy
The eigenvalues and eigenvectors Igf! L'y can then be [ =UMV" = UQ]{ 01 0} {V}] = MLV
computed using the singular value decomposition'of= o . _
QP, which is anny xn; matrix of inner products of weighted where M, € R*** is diagonal and invertibles =
snapshots withij entriesT;; = (%;,@;). For the remaining rank(T"), UpUy = Iy = V'Vi, and I, is the identity
details of the algorithm, including the case of multiple inputs __ Matrix in R#<*. _ _
and outputs, see [24]. 5) Chooser < rank(T"), and form the ﬂrs_tr primary and
For LQG balancing, the procedure is similar although ~ dual LQG balanced POD modes defined by
we must now solve Riccati equations instead of Lyapunov [o1, cor ]t = M2V,

equations. In finite dimensions, the balancing transformation [ " }T — MV2pEs
is given by the eigenvalues and eigenvectors of the product Lo " e

of the solutiondI and P of the Riccati equations (2) and (3), where M,., U,., andV,. are truncations of\/;, U;, and
where we assum& = D andC = E as discussed above. 1.



6) Use the modes to form the matrices in the reduced

order model:
Ar = [(Agj )] € R™, 4
Br = [(bﬂl}lﬂ S RTX13 3
C. = [(@j?c)}eRlxra
2
It is straightforward to extend this algorithm to multiple
inputs and outputs. Convergence theory for the balancing 1 y
algokrlthms is underway and will be the subject of future (1) ,U
work. A TN
05 T
V. NUMERICAL RESULTS ' = 0.5
For our numerical experiments with the model problem y 0o x
outlined above, we chose = 0.05, convection coef-
ficients ¢;(z,y) = —xsin(2nz)sin(nmy) and co(z,y) =  Fig. 2. Approximate observation functional gajitz, y) computed using
—ysin(rx)sin(27y), control input function b(z,y) = the snapshot algorithm with¢ = 0.01 and 41 equally spaced finite element
g g : . nodes in each coordinate direction.
S5sin(mz) sin(wy) if « > 1/2 and b(z,y) = 0 otherwise,
observation functione(z,y) = 5, and initial condition
wo(z,y) = 5cos(ma/2) sin(my). Figure 3 shows approximations to the Hankel singular val-

For the snapshot algorithms, we used standard piecewiges of the compensator system computed using the balancing
linear finite elements for the spatial discretization. For thenapshot algorithm wittA¢ = 0.01 and various equally
functional gain computations, we first computed functionaspaced finite element grids. Many of the larger Hankel sin-
gains foru = 0.1 (using a Newton iteration withi, = 0)  gular values are essentially converged on the coarse21
and then used these as initial guesses in the Newton iteratioode grid. Further refinement in space caused the smaller
for 4 = 0.05. In a similar fashion, we note that one couldvalues to converge, however this is not needed since these
use the result of one Newton iteration as the initial guessglues are not required to reduce the compensator. Also,
in another Newton iteration with a finer spatial grid (seefurther refinement in time produced little change. Figure
e.g., [25]) or time step for the snapshot algorithm. We usedl shows similar approximations to the LQG characteristic
the trapezoid rule for the time discretizations required in thealues of the system computed using the LQG balancing
snapshot balancing algorithms. snapshot algorithm. The LQG values do not converge as

Figures 1 and 2 show approximations to the functionajuickly and further refinement in space and time produced
gains k(z,y) and f(x,y) computed using the modified change in most of the values. However, the larger values are
Newton algorithm with the trapezoid snapshot algorithm. Weonverged and only these are used to construct the reduced
used At = 0.01 for the time step and 41 equally spacedorder compensator. Again, adaptive time stepping algorithms
finite element nodes in each coordinate direction. Furthenay be advantageous to use for these computations.
refinement in space and time produced little change in the
approximations. We note that it may be desirable to use an 10°

O 21x21grid

8%, 41 x 41 grid
5 ® x 81 x 81 grid
107 ¢ 5 |
“ Bg
12 ®
-10 R
10 20
8 Q
Q
BBX
107 el
4 OO X
CooBsssee
0 RN 107 :
1 3 AN 0 5 10 15 20 25 30

W
1\ R%“‘“\\\\\»

Fig. 3. Approximate compensator Hankel singular values computed using
y 0o X the snapshot algorithm witth¢ = 0.01 and 21, 41, and 81 equally spaced
finite element nodes in each coordinate direction.

Fig. 1. Approximate control functional gaik(x,y) computed using the ; _
snapshot algorithm witlA¢ = 0.01 and 41 equally spaced finite element To compare the two approaCheS to reducmg the com

nodes in each coordinate direction. pensator, we computed th&? norm of the solution of

the controlled system. The uncontrolled system is stable,
adaptive time stepping algorithm and this will be exploredhowever the solution tends to zero very slowly. The norm
in future work. of the uncontrolled solution &t= 20 is approximately0.1.
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Fig. 4. Approximate LQG characteristic values computed using the
snapshot algorithm wittA¢ = 0.01 and 21, 41, and 81 equally spaced
finite element nodes in each coordinate direction.

(7]

Both reduced order controllers (with zero initial data for the g
compensators) drive the solution to zero at a much faster rate.
We choser = 4 states in each reduced order compensato['g]
and found that the norm of the solution @at= 5 of each [10]
closed loop system is on the orderléf*. Integrating longer

in time showed that the controller constructed using LQ%l]
balancing drove the solution to zero slightly faster than the
controller constructed by balancing the compensator. 1

Although the performance of the two controllers was ver)[/ z
similar, we note that the LQG balanced reduced model
was more computationally demanding to construct, and 3]
also converged at a slower rate. This is likely due to
the fact that the snapshot algorithm required approximafe4]
solutions of the differential equations (13) and (15), whose
initial conditions ¢(x,y) and b(z,y)) are not “smooth” in (15
the sense that they are not twice differentiable functions
satisfying the boundary conditions of the governing PDE1'16]
Computing the reduced order controllers is done “offline
and so computation time may not necessarily be an issue.
However, accurately computing the reduced controller may’]
be essential to guarantee controller performance. Therefore,
it appears more care may be required to construct the LQ@]
balanced reduced controller. This may be especially true P1f9]
more complex problems.

[20]

V1. CONCLUSIONS ANDFUTURE WORK [21]

We believe that model reduction based on these afe?]
proaches following robust control design as demonstrated %13]
[2] holds much promise. Both reduced controllers performe
well on the model problem. A simple comparison showed thp4]
controllers gave similar performance; further investigation is
required to give a more thorough comparison of the reduced
controllers. Other future work includes further developmenps]
and analysis of the snapshot algorithms for the controller
construction, and comparison of other types of reduced
controllers for PDE systems.
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