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Twelfth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A., October 18-19, 1994 

Buckling Behaviour of Cold-Formed Thin-Walled 
Members by Spline Finite Strip Analysis 

J.Lindner* & Y.L.Guo** 

Abstract: Local,distortional and overall buckling (including overall flexural buck

ling and overall flexural-torsional buckling) behaviour of cold-formed thin-walled 

columns is presented which is based on an inelastic spline finite strip analysis. 

The columns are loaded centrally at the ends. The increment of yield stresses in 

the corner area due to cold-forming work, together with a more real stress-strain 

curve of material, that exhibits continuous strain hardening for the stress above 

the proportional limit of material, are involved in the analysis. The cold-formed 

section is divided into two different types of strips, one is a flat plate strip on the 

central part of the plates while the other is a cylinderical shell strip at the corner 

area. The circular corner effect, which is formed during the manufacture process, 

is taken into account in the computer programme. A lot of numerial results are 

obtained, which reveal that the inelastic distortional buckling behaviour is very 

important. 

1. Introduction 

According to the traditional buckling. theory, the buckling modes of thin-walled 

members are divided into two different types: local buckling and overall buckling 

(including flexural buckling, torsional buckling, and flexural-torsional buckling). 

The interaction buckling, however, often takes place in thin-walled members. 

In general, the interaction buckling of thin-walled members are classified into two 

different types according to whether the post local buckling strength of plates 

is taken into account. They are called as bifurcation interaction buckling and 

ultimate interaction buckling, respectively. The first is the interaction buckling 

where two or more buckling modes interact and take place in the form of cou

pling buckling simultaneously or nearly simultaneously. Often tllls interaction 

is known as distortional buckling. It is evident that the buckling load of the 
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distortional buckling is less than the buckling loads of all independent buckling 

modes which participate in the interaction between or among them. The second 

is the interaction buckling where the plate elements do go into post local buckling 

range. This situation often takes place for thin-walled members which have larg

er width-thickness ratios of plates and a medium slender ratio of the member. 

In other words, this situation occurs only when the local buckling load of the 

member is less than the overall buckling load of the member. This paper deals 

with the bifurcation interaction buckling, or distortional buckling in cold-formed 

thin-walled columns. 

In this study the local buckling, distortional buckling and overall buckling be

haviour (including flexural buckling and flexural-torsional buckling) of cold

formed thin-walled columns is presented in the inelastic range. A typical stress

strain curve of material for cold-formed section, which exhibits a continuous strain 

hardening for the stress above the proportional limit of material, is adopted and 

a flow theory of plasticity is employed in the analysis. In addition the varia

tion of 'yield stress over the cross section and the circular corner effect due to 

col~-forming work during the manufature process are taken into account in the 

coputer programme. To this purpose a kind of cylinderical shell strip is developed 

to model the circular corner effect on the corner area. 

The theoretical analysis is based on the spline finite strip method which has been 

developed by Fan & Cheung (1) for the stress analysis of shell structure and by Lau 

& Hancock (2) for the buckling analysis of plated structures. The most advantage 

of the s})line finite strip method that it can automatically predict the lowest buck

ling load corresponding to some interaction buckling mode and some independent 

buckling modes, generally from local buckling through distortional buckling into 

overall buckling wit'h increasing lengths of member. If the finite strip u'tethod is 

used, the number of buckling waveshape has to be continuously adjusted until 

the lowest buckling load is reached. In addition, the spline finite strip methQd 

can apply to any internal and external boundary conditions (including different 

boundary conditions at the end sections of column) and arbitrary loading types, 

while the finite strip method only applies to simply supported boundary condi

tion. Meanwhile the spline finite strip method can greatly save computer storage 

and computational effect compared with the finite element method. 
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2. Theoretical Analysis 

2.1 Material Properties of Cold-Formed Section 

Due to the cold-forming effect during the manufacture process, the yield stresses 

at the corner area are considerably higher than at the central part of the section. 

It has been shown by Key & Hancock (3) and Lindner &Aschinger (4) that, at the 

highly hardening comer area, the measured yield stresses are significantly greater 

than those on the flat part of each plate, and almost show a sudden variation at 

the transition from the corners to the flat plates. Therefore, a block distribution 

of the yield stresses is assumed in the analysis, as shown in Fig.1a. The yield 

stress at the comer area depends on the yield stress and the ultimate strength 

of the virgin material, as well as the bending radius at the corner. An empirical 

formula developed by Karren (5) is given in equation (1). 

(1) 

where 

fb fb 2 
Be = 3.69 fy - 0.819(f) -1.79 

fb 
m = 0.192 fy - 0.068 

In the above expressions, fye =yield stress at the corner area; fb =ultimate 

strength of the virgin material; fy =yield stress of the virgin material; r =bending 

radius at the corners; t =thickness of flat plate. 

In general, the stress-strain curve of cold-formed material, as shown in Fig.1b, 

exhibits continuous strain hardening for the stress above the proportional limit of 

material to fully yielding. Chajies and Fang (6) have proposed that it is reason

able to introduce the tangential modulus expression for the hot-rolled members 

developed by Bleich (7) into the cold-formed members. From tlns expression a 

dimensionless stress-strain curve, as shown in Fig.1 b, is derived as follows (8): 

(2) 



in which 

u 
U=-

fy 

€ 
€=

€y 
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It is assumed that the yield stress at the corner area has the same form as shown 

in Fig.lb. However, all parameters used in equation (2) should be replaced by 

those corresponding to the materials at the co;t"ners, and that the proportional. 

limit of material at the corners takes the same times as the fye relative to fy, or 

. f~ = fpfye/ fy· 

2.2 Spline Finite Strip Formulation 

2.2.1 Spline Finite Strip Displacement Function 
The general theory and application of the spline finite strip method have been 

described by Fan & Cheung (1) for the stress analysis of shallow shells and by 

Lau & Hancock (2) for the buckling analysis of plated structures. However, in this 

study, a combination of flat plate strips and cylinderical shell strips, as shown 

in Fig.2a and 2b, is used to model the cold-formed section columns, as shown in 

Fig.la. 

A typic spline finite strip with four equal sections is expressed as fellows: 

1 
<I>i = 6h3 

0, x:::; Xi-2 

(x - Xi-2)3, Xi-2:::; x :::; Xi_I 

h3 + 3h2(x - Xi_I) + 3h(x - Xi_I)2 - 3(x - Xi_I)3, Xi_I:::; X :::; Xi 

h3 + 3h2(Xi+I - x) + 3h(Xi+I - X)2 - 3(Xi+I - X)3, Xi:::; X :::; Xi+I 

(Xi+2 - X)3, Xi+I:::; X:::; Xi+2 

0, Xi+2:::; X 

The spline displacement functions for u,v and w along longitudinal direction of 

the member are thus expressed as a linear combination of (m + 3) local B3 spline 



233 

Amended Boundary Local B3-spline Functions 

Boundary Conditions <1>-1 <1>0 <1>1 

j(xo) # O,j'(xo) # 0 <1>_1 <1>0 - 4<1>_1 <1>1 - 0.5<1>0 + <1>-1 

j(xo) = 0, f'(xo) # 0 Eliminated <1>0 - 4<1>_1 <1>1 - 0.5<1>0 + <1>_1 

j(xo) = 0, f'(xo) = 0 Eliminated Eliminated <1>1 - 0.5<1>0 + <1>_1 

j(xo) # 0, f'(xo) = 0 Eliminated <1>0 <1>1 - 0.5<1>0 + <1>_1 

functions, and are given hy 

m+1 

j= LQi<1>i (3) 
,=-1 

where m is the numher of sections along the length of the memher, and Qi(i = 

-l,O,l, ... ,m,m + 1) are coefficients depending on the interpolation function 

across the transverse direction of a strip. 

It is assumed that for the in-plane displacements u, v in the y. direction a linear 

polynomial interpolation is chosen while for the out-plane flexural displacement 

w, a cuhic polynomial interpolation is taken to ensure the deflection and rotation 

continuities. Due to the location property of the spline function, it is easy to 

satisfy any prescrihed houndary conditions, even different houndary conditions 

at the same end section hy only changing three local spline functions at each 

end of the column. The amended local houndary spline functions are listed in 

the Tahle. Based on the ahove consideration, the displacement components (u, v, 

and w) are defined as: 

{J} = [N][<1>]{5} (4) 

where 

{J} = [u, v, wf 

[ N, 
0 0 0 N2 0 0 ;J [N]= ~ N1 0 0 0 N2 0 

0 N3 N4 0 0 Ns 
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{5} = [{Ui}, {Vi}, {Wi}, {Bi}, {Uj}, {Vj}, {Wj}, {Bj}f 

Nl = 1- (!) N2 = ! 
b b 

N3 = 1- 3(~)2 + 2(~)3 N4 = y[l- 2(~) + (~)2J 

2.2.2 Inelastic Stresses-Strains Relation 
The general stress-strain relationship for the in-plane· and out-plane deformations 

is written by the following form: 

{u} = [D){e} 

in which 

[D) = [ [DnMJ 0 ] 
~[D~J 

El 
ell = --

I- VlV2 

(5) 



E2 
C22= --

I- VIV2 
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In the elastic range, EI = E,VI = V2 = v,Gt = E/2(1 + v). In the inelastic 

range the material property coefficients as formulated by Handelman and Prager 

(9) according to the flow theory of plasticity are given by: 

(2v-1)k+1 
VI = . 2 

2[(2v - l)k + 1] 
V2 = 3k + 1 

k= Et 

E 

and the material property coefficients as conducted by Bijlaard (10) according to 

the deformation theory of plasticity in the inelastic range are given by: 

E - 4 E 
2 - 3k(1 + e) + 1 t 

(2v-l)k+1 
VI = 2 

2[(2v - l)k + 1] 
V2 = 3k(1 + e) + 1 



G _ 1 
t- [2(I+v)+3elkEt 

E 
e= --1 

E. 
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where E is the modulus of elasticity, Et the tangent modulus of material, E. the 

secant modulus of material, which are determined from the stress-strain curve of 

material, and v Poisson's ratio of elasticity. 

For the trilinear stress-strain model (perfect elastic plastic material with linear 

strain hardening), the material properties are based on the results derived by 

Handelman and Prager (9) with the tangent shear modulus, Gt , being modified 

according to Lay (11) in order to be applicable for the tirlinear stress-strain curve 

of material. It is assumed that for the tangent modulus in the yield plateau the 

same value is taken as the hardening range with a hardening modulus Est instead 

of zero. These material properties, which are based on a derivation from the flow 

theory of plasticity, have been used by Dawe and Kulak (12) for local buckling 

analysis of hot-rolled sections and by Bradford (13) for inelastic local buckling 

analysis of fabricated I-beams with uniform bending. The amened tangent shear 

modulus is given as fellows: 

G - 4 E 
t - 4k(1 + v) + 1 t 

2.2.3 Stiffness Matrix and Geometric Stiffness Matrix 
For a cylinderical shell strip the relationship between strains and displacements 

in the geometric linear theory of shell are expressed by 

au 
€x = ax (6) 

(7) 

Substituting equation (4) into (6) and (7) gives a relationship relating {€} to {8} 

as fellows: 

{€} = [B]{8} (8) 
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where 

[Bl= 

Nl[~~l 0 0 0 N2[~;1 0 0 0 

0 N;[~21 ;N3[~51 ;N4[~61 0 N~[~41 ;N5[~71 ;N6[~81 
N{[~11 Nl[~;l 0 0 NM~31 N2[~~1 0 0 

0 0 -N3[~5"1 -N4[~6"1 0 0 -N5[~7"1 -N6[~8"1 

0 ;N;[~51 -N3"[~51 -N4"[~61 0 ;NH~41 -N5"[~71 -N6"[~81 

0 :Nd~;l -2N~[~~1 -2N~[~~1 0 :N2[~~1 -2Na~~1 -2N~[~~1 

Using the variation principle with respect to the strain energy given by 

(9) 

one can get the stiffness matrix 

[Kl = DBf[D][BldA 

If only considering the axial stress and shear stress acting on the four edges of 

a strip, the increment of potential energy of membrance stresses (CT", and CT",y) 

resulting from both flexural buckling deformations and in-plan buckling deforma

tions are given by: 

For the flat plate strip, the strain energy resulting from the stress CTy , which is 

given by equation (11), is also added to the equation (10). 

(11) 

By using the variation principle with respect to {5} 

(12) 
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one can obtain the geometric stiffness matrix: 

[G] = [G]". + [G]". + [G]" •• (13) 

where 

[G]". = - L([N][<I>'WNx[N][<I>']dxdy 

[G]"y = - L ([N'][<I>WNy [N'][<I>] dxdy 

[G]" •• = -2 L([N] WWNxy [N'][<I>] dxdy 

2.2.4 Matrix Transformation 
Before forming the global stiffness matrix and geometric stiffness, the stifness 

matrix and geometric stiffness of a strip in the local coordinate system should be 

transformed into the global coordinate system. This transformation is described 

in Fig.2c. If {~} represents nodal displacements of the strips in the global coor-

dinate system the transformed relationship is given by 

{8} = [R]{~} (14) 

where 

[R]= [[~I] [~2] ] 

[ [II 
0 0 

[U [R,I ~ : 
[GI] [SI] 

-[SI] [GI ] 
0 0 

[1] 0 0 0 

[R2] = 
0 [G2] [S2] 0 

0 -[S2] [G2] 0 

0 0 0 [1] 
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In the above expressions the [I] is unit matrix, and [Gj ], [Sj](i = 1,2) are diagonal 

matrices, in which the diagonal elements are equal to Gj = cosf3j, Sj = sinf3j( i = 
1,2), respectively. For a flat plate strip it is evident that [G1] = [C2] = [G], [SI] = 
[S2] = IS]. 

2.2.5 Solution of the Eigenvalue Problem 
After the global stiffness matrix and geometric stiffness matrix are formed, the 

eigenvalue problem, which is concerned with the detennination of local, distor

tional and overall buckling loads and corresponding modes, is presented by 

{[K]- '\[G]Hll} = {OJ (15) 

In the inelastic range the critical state correspondes to ,\ = 1. In this study an 

iteration procedure is used to determine the lowest eigenvalue and corresponding 

eigenvectors. To tllls purpose the above equation is then transformed into the 

following form: 

{[Ktl[G]- ~[I]Hll} = {OJ (16) 

The iteration gives the highest value of 1/,\, or the lowest ,\. 

3. Numerical Results 

As the first example, the effect of the circular corner on the buckling behaviour 

is investigated theoretically, and shown in Fig.3. The angle section column un

der Ulllform compression is selected where the column is simply supported at the 

ends. It is evident from the figur~ that the buckling stress of the,column increases 

with the bending radi\ls of the corner. 

As the second example as shown in the FigA, two different strips, namely cylin

derical shell strips and flat plate strips, are used, respectively, to analyse a shallow 

shell subjected to uniform compression in the longitudinal direction of the shell. 

The shallow shell is considered as an assembly of a number of flat plate strips 

when using flat plate strip. The boundary conditions at the four edges of the 
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shell are described as fellows: u =free,v = w = 0,8w/8y = O. When the radius 

of the shell is increased the difference between both results calculated by using 

the :flat plate strip and cylinderical shell strips, respectively, becomes smaller and 

smaller. When the radius of the shell approaches infinity the buckling stress is 

equal to the buckling stress of the :flat plate ,denoted by 0"0. 

Fig.5 shows a relationship between the buckling stress and the length of the 

column with a hat section and under uniform compression. Three thicknesses 

of the plate are selected, namely t = 0.lcm,0.2cm and 0.3cm. The bound

ary conditions take u =free,v = w = 0,8v/8x i= 0,8w/8x i= 0,8v/8y i= 
0, 8w/8y i= 0, at x = 0, L, respectively. The geometric dimensions are 

bw = lOcm, btlbw = 0.25, bl/bj = 0.5. The material propexties are fy = 

24kN/cm\fp = 16kN/cm2 ,E = 2.1 x lO4 kN/cm2 , and v = 0.3. The computa

tional results corresponding to the thickness of the plate t = O.lcm almost fully 

fall within the elastic range. The four different buckling modes, namely unsym

metric local buckling mode, symmetric local buckling mode, distortional buckling 

mode, and :flexural- torsional buckling mode, are descxibed in the Fig.6, which 

correspond to different lengths of the columns, namely L = Scm, lOcm, 75cm and 

120cm. It was found that the interaction action is more serious when the local 

buckling load and the overall :flexural-torsional buckling load are almost iden

tical. The computed results for the plates with the thicknesses of 0.2cm and 

0.3cm reveal the distorsional buckling involvs in the inelastic range. Therefore 

the inelastic distortional buckling behaviour is very important for the column 

with intermedium slender ratio and with intermedium width thickness ratios of 

the plates fonning the column. Fig.7- also gives the computed results of the col

umn with the same shape as Fig.6 but with different dimensions. It is seen that 

the distorsional buckling of the columns with plate thicknesses of t = 0.15cm and 

2.5cm, both falls within the inelastic range. 

4. Conclusions 

A spline finite strip computer pragranlllle has been presented for analysing the 

local buckling, distorsional buckling and overall buckling of cold-formed tltin

walled columns in the elastic and inelastic range, respect.ively. The corner ef

fect has been taken into account in the analysis. The computed results has 

revealed that inelastic distorsional buckling behaviour is very import.ant for the 
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column with intermedium slender ratio and with intermedial width thickness ra

tios of the plates forming the column. The further theoretical investigation to 

the cold-formed thin-walled columns with eccentric loading and the cold-formed 

thin-walled beams with combined loadings of axial compression, transversely con

centrated loads, and unequal end moments, is under the way. 
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Figure 1: (a) Assumed yield stress distribution; (b) Stress-strain curves 
of cold-formed materials 
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Figure 3: Effect of corner radius on buckling stress 
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Figure 4: Comparison of flat plate strip results with cylinderical shell 
strip results 
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Length of member (em) 

Figure 5: Buckling stress vs length curves of cold-formed columns under 
uniform compression 
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Figure 6: Buckling modes corresI)onding to curve (1) on the figure 5 
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Figure 7: Buckling stress vs length curves of cold-formed columns under 
uniform compression 
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