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Correspondence 

Applications of the Upside-Down Normal Loss Function 

David Drain and Andrew M. Gough 

Abstract- The Upside-Down Normal Loss Function (UDNLF) is a 
weighted loss function that has accurately modeled losses in a product 
engineering context. The function’s scale parameter can be adjusted 
to account for the actual percentage of material failing to work at 
specification limits. Use of the function along with process history allows 
the prediction of expected loss-the average loss one would expect over a 
long period of stable process operation. Theory has been developed for the 
multivariate loss function (MUDNLF), which can be applied to optimize 
a process with many parameters-a situation in which engineering 
intuition is often ineffective. Computational formulae are presented for 
expected loss given normally distributed process parameters (correlated 
or nncorrelated), both in the uuivariate and multivariate cases. 

I. INTRODUCTION 
Loss functions quantify the relationship between process perfor- 

mance and manufacturing yield [1]-[SI. When applied along with 
knowledge of process variation and unit production costs, one can 
derive the manufacturer’s economic cost of process variation. This 
paper illustrates applications of the upside-down normal loss function 
(UDNLF)-a loss function we have found to accurately model 
losses in a real manufacturing situation, and which has desirable 
mathematical properties enabling easy prediction of average losses 
due to typical manufacturing variation. 

11. THE UDNLF 

A. The UDNLF Defined 

The UDNLF is one minus a scaled normal probability density 
function, with mean ‘r and variance X2,  defined by the following 
formula 

where 

7 = process parameter target 

X = scale factor. 

The UDNLF is zero at the target, and asymptotically approaches 
one. It thus avoids a disadvantage of quadratic loss functions: 
unrealistic values far from the target. 

The scale factor adjusts the penalty for deviation from the target: 
a large X indicates that the process can tolerate relatively greater 
deviation from the target. X can be empirically determined, or it can 
be set to some predetermined fraction of the parameter specification 
range. Lacking better information, a pragmatic choice is to set X to 
42.5% of the specification range. In this case, the loss when a process 
parameter is at a specification limit is about 50% (corresponding to 
step function loss in the same situation). 
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B. Example: Loss Due to Equipment Variation from Target 

The etch rate of a polysilicon etcher has a target of 25 &s and 
specification limits of 22 and 28 &sec. Analysis of historical data 
established that about 50% of etched die will fail when the process 
is centered at either specification limit; the scale factor X is therefore 
chosen as 0.425 times the specification range of 6 A, so X = 2.55. 

C. Example: Symmetric Fit to Yield Data 

A new microcontroller product exhibited low yield at hot temper- 
ature in its initial manufacturing runs. Examination of the failing die 
uncovered a speed path in a subcircuit of the device that would cause 
functional failures if slow transistors were manufactured. The length 
( L )  of the MOSFETs’ polysilicon gates was suspected to have the 
greatest effect on transistor speed; this was verified in an experiment 
which allowed polysilicon CD’s to vary about their target (1.60 pm) 
from 1.15 pm to 1.90 pm. 

A nonlinear regression model was used to fit a UDNLF to the 
resulting losses 

LUDN(Z I 7, = L M ~ ~  + (yMaX - L M , ~ )  [I - e-*] + E (2) 

where 

z = poly CD variable (pm) 
T = Process target poly CD (pm) 

X = fitted shape parameter (pm) 

= minimum expected loss (constant, die/wafer) 

YM,, = maximum possible product 

wafer yield (constant, die/wafer) 

E = error term of regression. 

7 was fixed at the process target and X was fit by the regression. 
For the microcontroller data, the function 

LUDN(Z I 1.60, A) = 38 + (538 - 38) [1 - e - ( z - ~ ~ ~ O ) ’ ]  (3) 

was fit using nonlinear regression software. The regression deter- 
mined the best fit with X = 0.1851, resulting in the function 

- z - 1  60)’ 

LUDN(Z I 1.60,0.1851) = 38+ (538- 38) [1 - e  A ( n . 1 8 5 1 ) 2 ] .  (4) 

This function is shown graphically in Fig. 1 .  

D. Expected Loss 
Expected loss is the average loss one would observe from a stable 

process over a long period of operation, so it can be a critical piece of 
information when making process change decisions affecting process 
targets or variability. 

To compute expected loss, one also needs the probability density 
function of the manufacturing variable (z) under study. Expected loss 
is then computed by evaluating the integral of the product of the loss 
function and the probability density function. 

If the actual process parameter distribution and a realistic loss 
function are given, expected loss can be determined by numerical 
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Fig. 1. Symmetric UDNLF fit to yield loss data with X = 0.1851. Note 
how the loss function gradually approaches the constant value of 538, which 
is the number of die printed on each wafer. 

integration. However, it is usually reasonable to assume the process 
parameter is normally distributed with mean p and standard deviation 
4, and with this simplifying assumption, expected loss can be 
determined analytically as follows 

This formula can predict the loss due to typical manufacturing 
variation, assess the damage caused by a drift from the target, estimate 
losses due to an increase in variance, and quantify the economic 
consequences of process changes. 

Example: In the case of the microcontroller above, substituting 
the scale factor and Poly CD target (1.60) and standard deviation 
(0.0835) into ( 5 )  results in an expected loss of 0.0885. This value is 
then transformed with the same linear transformation used in fitting 
the UDNLF to the yield data, resulting in an expected loss of 82.2 
die/wafer. These results agree with actual losses, which had a median 
value of 81 die/wafer over one quarter’s production. 

111. THE MULTIVARIATE UDNLF 
The UDNLF can also be applied to processes with more than one 

important process parameter. 

A. The Multivariate Upside-Down Normal Loss Function De$ned 

for n parameters is defined as follows 
The Multivariate Upside-Down Normal Loss Function (MUDNLF) 

where x and T are n x 1 column vectors, and L is an n x n scaling 
matrix relating deviation from target to loss for all n parameters. 
As defined here, L must be symmetric and positive dejnite: L is 
symmetric if it remains the same when its rows and columns are 
interchanged (L = L*); L is positive definite if xTLx > 0 for 
all nonzero column vectors x. These requirements may not actually 
be necessary for the definition of a reasonable loss function; they 
were chosen because they give the function desirable mathematical 
properties. 

Off-diagonal elements of L are used to account for interaction 
effects of process parameters-those cases where the deviation of 
two factors simultaneously produces a different effect than would be 
expected from the individual factor effects alone. 

-3.0 -1.5 0.0 1.5 3.0 
ExFm4JE 

LDSS -------- 0.05 O B  0.35 
0.85 0.80 ~ 0.95 

Fig. 2. 
(MUDNLF) with synergistic process parameters. 

Contour plot of multivariate upside down normal loss function 

The elements of , L  are easily interpreted when written in a 
form similar to the covariance matrix of the multivariate normal 
distribution 

[ A I M  A1A2E1 A; ’ (7) 

Parameters on the diagonal scale losses due to individual parameters; 
parameters off the diagonal indicate synergy or antagonism of loss 
when both parameters vary from target. Positive off-diagonal ele- 
ments (E  positive) mean that losses are lower than would be expected 
when the two factors vary simultaneously in the same direction. 

As an example, consider a hypothetical lithography process in 
which focus and exposure are represented by the MUDNLF with 
L as follows 

= [;:;;23 ;:;;;;I = [Aly2c Ay]. (8) 

This choice of L corresponds to a case where the loss due 
to variation of focus (alone) at the specification limits is 50%. 
Specification limits for focus are 412.0 pm, so 

A1 = 0.425 . 4 = 1.70. 

The similar loss for exposure is 90% at the specification limits of 
f3.5 m.T, so 

Xz  = 0.233. 7 = 1.6310. 

The choice of 6 = 0.65 indicates that losses are less when the two 
parameters vary in the same direction than when they vary in different 
directions. This MUDNLF takes the shape shown in the contour plot 
of Fig. 2. 

For a real process, the loss definition matrix could be based on 
empirical observations, experiments, or simulations. 

B. The Multivariate Normal Distribution 

As in the one-parameter case, it is often reasonable to assume 
process parameters have a normal distribution; however, since multi- 
ple parameters are involved, one must apply the multivariate normal 
distribution. The multivariate normal probability density function has 
the following form 

n 1  - l ( Z - p ) T M - l ( z - p )  
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where 

x = a n x 1 column vector of variables 

M = a (positive definite, symmetric) covariance matrix 

p = an n x 1 column vector of means 

n = the number of variables 

C. Expected Loss With MUDNLF 
The expected loss from a MUDNLF defined by L, and a multi- 

variate normal process parameter distribution defined by p and M, 
with target r, is given by 

This closed-form solution for expected loss has even greater utility 
in the multivariate case than it does for univariate loss functions 
because engineering intuition is often ineffective for multivariate 
problems. 

IV. CONCLUSION 

We found that actual losses can be predicted by the UDNLF. The 
loss function is easily adaptable to multivariate cases, even when 
process variables are correlated and losses are the result of synergy 
or antagonism between those variables. Loss functions can be used 
in process design and optimization by aligning losses with process 
parameter distributions in a way which minimizes expected loss. 
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Minimum Inventory Variability Schedule 
With Applications in Semiconductor Fabrication 

Shu Li, Tom Tang, and Donald W. Collins 

Abstruct- A typical semiconductor wafer fab contains many differ- 
ent products and processes, some with small quantities, competing for 
resources. Each product flow can contain hundreds of processing steps 
demanding production time of the same resource many times during 
the flow. When this re-entry requirement is compounded with multiple 
product flows, short interval scheduling becomes important. Scheduling to 
reduce variations and to balance the whole wafer production line becomes 
a very complex issue. 

We investigate in this paper a new scheduling policy called minimum 
inventory variability scheduling (MIVS). This scheduling policy can 
significantly reduce the mean and variance of cycle-time in semiconductor 
fabs. 

The conclusions are based on the real world implementation in two 
major semiconductor fabs since 1990, and a simulation study of a 
much simplified hypothetical re-entrant network to capture the nature 
of semiconductor manufacturing. A discrete event simulation model was 
used to compare MIVS with five different popular dispatching policies 
(FIFO, SNQ, LNQ, RAN, and CYC) practiced in wafer fabrication 
environments. The results gained on two factory floors and the simulation 
model indicate that dispatching policies have a significant impact on 
performance. The simulation results show that the MIVS dispatching 
policy demonstrated a percentage improvement over all other tested 
dispatching policies. 

I. SCHEDULING IN SEMICONDUCTOR FABRICATION 
A typical semiconductor fabrication flow for a single product is 

a highly re-entrant process. Each product flow requires the same 
equipment resource (e.g., photolithography, resist clean, diffusion, 
LPCVD, ion implant, sputtering, CVD, and PECVD) many times 
before completion of its production cycle. Furthermore, the problem 
is much more severe in pilot production lines, as many different 
flows and technologies (e.g., CMOS, BiCMOS, Bipolar, TMOS, 
smartMOS, RF, and semiconductor sensors) with small quantities 
compound the resource sharing problems. In fact, many factories use 
simple scheduling rules such as FIFO or due date first scheduling 
disciplines. However, experience and some common sense may 
disagree with these traditional scheduling rules. For example, a 
machine ( M I )  supplies two types of jobs (52 and 53) to two 
different downstream machines (Mz and M s ) ,  respectively. Job 52 
is processed by machines M I  and M2 and job J3 is processed by 
machines M I  and M3. Suppose M I  has both J Z  and 53 available to 
choose from at a given time. J2 is ahead of J3 in the queue. But at 
this particular time, M2 is down and has an inventory of Jz’s in its 
queue. On the other hand, M3 is available. It makes sense to run 53 
first. It is exactly this observation in real fabs that motivated us to 
investigate different scheduling policies. 

The result of this paper was first applied in a large semiconductor 
fab in 1990, and subsequently applied to two R&D pilot wafer fabs 
in 1992. This paper is a more detailed treatment of early publications 
by Li [5 ] ,  [6],  and Tang [ll]. The materials were also covered by Li 
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