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Abstract. In this paper, we prove a range and existence theorem for mul-
tivalued pseudomonotone perturbations of maximal monotone operators. We
assume a general coercivity condition on the sum of a maximal monotone and
a pseudomonotone operator instead of a condition on the pseudomonotone op-
erator only. An illustrative example of a variational inequality in a Sobolev
space with variable exponent is given.

1. Introduction

We are concerned in this paper with a range and existence theorem for mul-
tivalued pseudomonotone perturbations of maximal monotone operators and its
corollaries. In the theorem, as in Theorem 2.1, [7] and Theorem 6.1, [8], we
assume a coercivity condition on the sum of a maximal monotone and a pseu-
domonotone operator rather than on the pseudomonotone operator solely (cf. e.g.
[1, 4, 3, 9, 10, 13, 14]). As consequences, we obtain improvements and unifications
over a number of theorems in which various types of conditions were assumed, for
example, in Theorem 5.2 and Corollary 5.2 of [10], where the coercivity condition
was assumed on the pseudomonotone operator only or a linear growth (from below)
of the pseudomonotone operator. We also obtain as corollaries existence theorems
for variational inequalities containing multivalued pseudomonotone operators. As
an illustrating example for the abstract results, we study the existence of solutions
to a variational inequality in a Sobolev space with variable exponent.

2. Main theorem

Let X be a reflexive Banach space with norm ‖ · ‖, dual X∗, dual norm ‖ · ‖∗,
and dual pairing 〈·, ·〉. We shall use “⇀” for the weak convergence in X and “⇀∗”
for the weak∗ convergence in X∗. This different notation is only for clarity and is
not essential since the weak and weak∗ convergences are the same in X∗. Assume
A,B : X → 2X

∗
are multivalued operators from their corresponding domains D(A)

and D(B) into the subsets of X∗. As usual, R(A) denotes the range of A. We
shall use the definitions of maximal monotone and multivalued pseudomonotone
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operators together with their properties as presented in [4, 10, 13], etc. Their
definitions are included here to avoid confusion.

Definition 2.1. (a) A mapping A : X → 2X
∗
is called monotone if

〈u∗ − v∗, u− v〉 ≥ 0, for all (u, u∗), (v, v∗) ∈ Gr(A),

where Gr(A) := {(w,w∗) ∈ X ×X∗ : w∗ ∈ A(w)} is the graph of A.
A monotone mapping A is called maximal monotone if the graph of A is a

maximal subset of X × X∗ with respect to the set inclusion partial ordering of
X ×X∗.

(b) A mapping B : X → 2X
∗
is called pseudomonotone if

(i) B(u) is closed, bounded, and convex for all u ∈ D(B);
(ii) B is upper semicontinuous from each finite-dimensional subspace of X

to X∗ with the weak topology;
(iii) {un} is a sequence in X and {u∗

n} a sequence in X∗ such that un ⇀ u,
u∗
n ∈ B(un), ∀n ∈ N, and lim supn→∞〈u∗

n, un − u〉 ≤ 0, then for each v ∈ X there
exists u∗(v) ∈ B(u) such that lim infn→∞〈u∗

n, un − v〉 ≥ 〈u∗(v), u− v〉.

In the sequel, we use the notation BR(0) = {u ∈ X : ‖u‖ < R} for the open

ball centered at 0 with radius R, BR(0) = {u ∈ X : ‖u‖ ≤ R} for the closed ball
centered at 0 with radius R, and SR(0) = {u ∈ X : ‖u‖ = R} for the corresponding
sphere.

Our main result is the following theorem.

Theorem 2.2. Let A : D(A)(⊂ X) → 2X
∗
be a maximal monotone operator,

B : D(B) = X → 2X
∗
be a bounded multivalued pseudomonotone operator, and

L ∈ X∗. Assume there exists u0 ∈ X and R ≥ ‖u0‖ such that D(A) ∩ BR(0) �= ∅
and

(2.1) 〈ξ + η − L, u− u0〉 > 0,

for all u ∈ D(A) with ‖u‖ = R, all ξ ∈ A(u), η ∈ B(u). Then the inclusion

(2.2) A(u) +B(u) � L

has a solution, i.e., L ∈ R(A+B).

Proof. The proof is divided into several steps.

Step 1. We prove that given any u0 ∈ X, there exists a continuous, strictly increas-
ing function f : [0,∞) → [0,∞) such that f(0) = 0, lim

r→∞
f(r) = +∞, and for some

M ≥ 0,

(2.3) inf
η∈B(u)

〈η, u− u0〉 ≥ −f(‖u‖)−M, ∀u ∈ X.

In fact, for r ≥ 0, put f1(r) = sup{‖η‖∗ : η ∈ B(u), ‖u‖ ≤ r}. By the boundedness
of B, f1(r) ∈ [0,∞), ∀r ∈ [0,∞). Moreover, from its definition f1 is increasing on
[0,∞) and

(2.4) ‖η‖∗ ≤ f1(‖u‖), ∀u ∈ X, η ∈ B(u).

Let f2 be a continuous, strictly increasing function from [0,∞) to [0,∞) such that

(2.5) f1(r) ≤ f2(r), ∀r ∈ [0,∞),
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and lim
r→∞

f2(r) = ∞. The function f2 can be simply constructed as a piecewise

linear function as follows. Let a0 = 1 + sup{f1(r) : r ∈ [0, 1]} and

an = 1 +max{an−1, sup{f1(r) : r ∈ [n, n+ 1]}} for n = 1, 2, . . . .

We define f2 by f2(t) = an if t ∈ {0, 1, 2, . . . } and f2(t) is linear in the interval
[n, n+1] for all n ∈ {0, 1, 2, . . . }. It is clear from this construction that f2(r) → ∞
as r → ∞.

For u ∈ X with ‖u‖ ≤ ‖u0‖ and for any η ∈ B(u), we have from (2.4) and (2.5)
that

(2.6) |〈η, u− u0〉| ≤ ‖η‖∗(‖u‖+ ‖u0‖) ≤ f1(‖u‖)(2‖u0‖) ≤ 2f2(‖u0‖)‖u0‖.
For u ∈ X with ‖u‖ ≥ ‖u0‖ and for η ∈ B(u), as in the above estimate, we have

(2.7) |〈η, u− u0〉| ≤ 2f2(‖u‖)‖u‖.
Hence, for all u ∈ X, all η ∈ B(u),

(2.8) |〈η, u− u0〉| ≤ f(‖u‖) +M,

with M = 2f2(‖u0‖)‖u0‖ ≥ 0 and f(r) = 2rf2(r) (r ≥ 0). It is clear that f is
continuous and strictly increasing from [0,∞) into itself, f(0) = 0, and f(r) → ∞
as r → ∞. Also, (2.3) is an immediate consequence of (2.8).

Step 2. Let α be a positive number (the choice of α is given in the next step). Let
us define

(2.9) g(t) = 2αtf(2αt), t ∈ [0,∞),

with f given in Step 1. We see that g(t) is also a continuous, strictly increasing
function from [0,∞) into itself with g(0) = 0 and g(t) → ∞ as t → ∞. We construct
in this step a continuous, strictly increasing, convex function Φ from [0,∞) into
itself such that Φ(0) = 0 and

(2.10) [Φ(r)− Φ(s)](r − s) ≥ g(|r − s|)−M0, ∀r, s ∈ [0,∞),

for some constant M0 (independent of r and s). We first define a sequence {bn}
inductively as follows. Let b0 = 0, b1 = g(3) + b0 + 1 = g(3) + 1, and in general,

(2.11) bn+1 = 1 +max{2bn − bn−1,max{bk + g(n+ 3− k) : k ∈ {0, 1, . . . , n}}}.
We define the function Φ(t) (t ∈ [0,∞)) by Φ(n) = bn for all n ∈ {0, 1, 2, . . . }, and
Φ(t) is linear on each interval [n, n+ 1] (n = 0, 1, 2. . . . ). Since 0 ≤ bn < bn+1 and
bn+1 − bn > bn − bn−1 for all n, Φ is continuous, strictly increasing, and convex
from [0,∞) into itself. Clearly Φ(0) = 0 and since bn+1 ≥ bn + 1, ∀n, we see that
Φ(t) → ∞ as t → ∞.

Let r, s ≥ 0 and assume without loss of generality that r ≥ s. First, let us
consider the case where r − s ≥ 2. There are unique n,m ∈ {0, 1, 2, . . . } such that

(2.12) n ≤ s < n+ 1 and m ≤ r − s < m+ 1.

We have m ≥ 2 in this case. It follows from (2.12) that r ≥ n+m and therefore

(2.13) Φ(r) ≥ Φ(n+m) and Φ(s) < Φ(n+ 1).

Since n+m ≥ n+ 2, we have from (2.11) that

bn+m > bk + g(n+m+ 2− k), k ∈ {0, 1, . . . , n+m− 1}.
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With k = n+ 1 ≤ n+m− 1, we have

Φ(n+m) = bn+m > bn+1 + g(m+ 1) = Φ(n+ 1) + g(m+ 1).

Hence, from (2.13), we obtain

[Φ(r)− Φ(s)](r − s) ≥ Φ(r)− Φ(s) ≥ Φ(n+m)− Φ(n+ 1) ≥ g(m+ 1) ≥ g(r − s).

We have shown that

(2.14) [Φ(r)− Φ(s)](r − s) ≥ g(|r − s|) ≥ g(|r − s|)− g(2),

for all r, s ∈ [0,∞) with |r− s| ≥ 2. If |r− s| ≤ 2, then g(|r− s|) ≤ g(2), and since
Φ is increasing,

(2.15) [Φ(r)− Φ(s)](r − s) ≥ 0 ≥ g(|r − s|)− g(2).

From (2.14) and (2.15), we get (2.10) for all r, s ∈ [0,∞) with M0 = g(2)(≥ 0).

Step 3. Since X is reflexive, there exists a norm ‖ · ‖0 on X such that X and X∗

are strictly convex under ‖ · ‖0 and its corresponding dual norm ‖ · ‖0∗. Let α ≥ 1
be such that

(2.16) α−1‖u‖ ≤ ‖u‖ ≤ α‖u‖, ∀u ∈ X,

and let Φ be the function constructed in Step 2 with this α. From Proposition 2.3,
[12], there exists a (unique, single-valued) duality mapping Q : (X, ‖ ·‖0) → (X∗, ‖ ·
‖0∗) associated with Φ, that is,

(2.17) 〈Q(u), u〉 = ‖Q(u)‖0∗‖u‖0,
and

(2.18) ‖Q(u)‖0∗ = Φ(‖u‖0), ∀u ∈ X.

It is known (cf. Proposition 2.1, [12]) that Q is a monotone operator withD(Q) = X
and

(2.19) 〈Q(u)−Q(v), u− v〉 ≥ [Φ(‖u‖0)− Φ(‖v‖0)](‖u‖0 − ‖v‖0), ∀u, v ∈ X.

From (2.18), Q is a bounded mapping; moreover, Q is hemicontinuous on X. Ac-
cording to Proposition 2.5, [12], Q is a (single-valued) bounded pseudomonotone
mapping from X to X∗ with D(Q) = X. Let u0 be a fixed element in D(A). Let
u, v ∈ X. If ‖u‖ ≥ 2α2‖v‖, then from (2.19) and (2.9)-(2.10), ‖u‖0 ≥ 2‖v‖0 and
thus

〈Q(u)−Q(v), u− v〉 ≥ g(‖u‖0 − ‖v‖0)−M0

≥ 2α(‖u‖0 − ‖v‖0)f [2α(‖u‖0 − ‖v‖0)]−M0.

Since ‖u‖0 − ‖v‖0 ≥ 1
2‖u‖0, by (2.16) and the increasing monotone property of f ,

we have the following estimate:

(2.20) 〈Q(u)−Q(v), u− v〉 ≥ α‖u‖0f(α‖u‖0)−M0 ≥ ‖u‖f(‖u‖)−M0

(if ‖u‖ ≥ 2α2‖v‖).

Step 4. Let L ∈ X∗. Let R be a positive number such that D(A)∩BR(0) �= ∅ and

let IR = IBR(0) be the indicator functional of the closed ball BR(0):

IR(u) =

{
0 if u ∈ BR(0),

∞ if u �∈ BR(0).
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IR is a convex, lower semicontinuous, proper functional from X to [0,∞] with

D(IR) = BR(0). Its subdifferential ∂IR : D(∂IR) → 2X
∗
is a maximal operator

with domainD(∂IR) = D(IR) = BR(0). Thus, D(A)∩[D(∂IR)]
◦ = D(A)∩BR(0) �=

∅, which implies that A + ∂IR is a maximal monotone operator and moreover
D(A+ ∂IR) = D(A) ∩BR(0) is a bounded set.

Let Q be constructed in Step 3. For ε ∈ (0, 1) (being fixed in this step), we
consider the inclusion of finding

(2.21) u ∈ D(A+ ∂IR)(= D(A) ∩BR(0))

such that

(2.22) (A+ ∂IR)(u) + (B + εQ)(u) � L,

that is, finding u satisfying (2.21) and ζ ∈ (A+ ∂IR)(u) and η ∈ B(u) such that

(2.23) ζ + η + εQ(u) = L.

Note thatB+εQ is a (multivalued) bounded pseudomonotone operator with domain
D(B + εQ) = X. We prove that (2.23) (i.e. (2.22)) has a solution. Let u1 be any

(fixed) element of D(A) ∩BR(0). We check the following coercivity condition:

(2.24) inf
μ∈(B+εQ)(u)

〈μ, u− u1〉
‖u‖ → ∞ as ‖u‖ → ∞.

In fact, let u ∈ X with ‖u‖ ≥ max{2α2‖u1‖, 2ε−1} and ξ ∈ B(u), μ = η + εQ(u) ∈
(B + εQ)(u). We have from (2.20) with v = u1 that

〈Q(u)−Q(u1), u− u1〉 ≥ ‖u‖f(‖u‖)−M0.

Hence,

(2.25) 〈Q(u), u− u1〉 ≥ ‖u‖f(‖u‖)−M0 − ‖Q(u1)‖∗
(
1 +

1

2α2

)
‖u‖.

It follows from (2.3) and this estimate that

〈μ, u− u1〉 = 〈η, u− u1〉+ ε〈Q(u), u− u1〉

≥ −f(‖u‖)−M + ε‖u‖f(‖u‖)− εM0 − ε‖Q(u1)‖∗
(
1 +

1

2α2

)
‖u‖

≥ (ε‖u‖ − 1)f(‖u‖)−M −M0 − ‖Q(u1)‖∗
(
1 +

1

2α2

)
‖u‖

≥ ε

2
‖u‖f(‖u‖)−M −M0 − ‖Q(u1)‖∗

(
1 +

1

2α2

)
‖u‖.

Thus, for all u ∈ X with ‖u‖ ≥ max{2α2‖u1‖, 2ε−1}, for all μ ∈ (B + εQ)(u), we
have

〈μ, u− u1〉
‖u‖ ≥ ε

2
f(‖u‖)− ‖Q(u1)‖∗

(
1 +

1

2α2

)
− M +M0

‖u‖ .

Since f(r) → ∞ as r → ∞, this estimate immediately implies (2.24). We have
verified that A + ∂IR and B + εQ satisfy the conditions of Theorem 5.2, [10] (see
also similar results such as Theorem 3.2 in [9], Theorem 7 in [4], or Theorem 2.12
in [13]). According to that theorem, (2.23) (or equivalently, (2.22)) has at least one
solution u ∈ D(A+ ∂IR).
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Step 5. Let R be as in Step 4. For each ε ∈ (0, 1), let u = uε ∈ D(A + ∂IR) be

a solution of (2.23), that is, uε ∈ D(A) ∩ BR(0) and there are ζε ∈ (A+ ∂IR)(uε)
and ηε ∈ B(uε) such that

(2.26) ζε + ηε + εQ(uε) = L (in X∗).

The set {uε : ε ∈ (0, 1)} is a subset of BR(0) and is thus bounded in X. From the
boundedness of B and Q, we see that {ηε : ε ∈ (0, 1)} and {Q(uε) : ε ∈ (0, 1)} are
bounded subsets of X∗. As a consequence of (2.26), the set {ζε : ε ∈ (0, 1)} is also
bounded in X∗.

In view of the reflexivity of X, there exist a sequence {εn} ⊂ (0, 1), εn → 0+ (as
n → ∞) and u ∈ X, ζ, η ∈ X∗ such that

uεn ⇀ u (weakly) in X,(2.27)

ζεn ⇀∗ ζ, ηεn ⇀∗ η (weak∗) in X∗.(2.28)

The rest of the proof in this step follows the same lines as those in Theorem 5.2
and Corollary 5.2 in [10] and is presented here for the sake of completeness. Since
{〈ζεn , uεn − u〉} and {〈ηεn , uεn − u〉} are bounded sequences in R, by passing to
subsequences if necessary, we can assume that

(2.29) 〈ζεn , uεn − u〉 → χ1, 〈ηεn , uεn − u〉 → χ2 as n → ∞.

As εnQ(uεn) → 0 in X∗ and 〈L, uεn − u〉 → 0, it follows from (2.26) that

(2.30) χ1 + χ2 = 0,

and thus either χ1 ≤ 0 or χ2 ≤ 0. Assume first that χ1 ≤ 0. We see from (2.29)
that lim sup〈ηεn , uεn〉 ≤ lim〈ηεn , u〉 = 〈η, u〉. Since B is pseudomonotone, this limit
together with (2.27) and (2.28) implies that

(2.31) η ∈ B(u),

and lim〈ηεn , uεn〉 = 〈η, u〉, i.e., χ1 = 0, and thus χ2 = 0, which in view of (2.29)
means that

lim〈ζεn , uεn〉 = lim〈ζεn , u〉 = 〈ζ, u〉.
Invoking Proposition 2.2(b) of [10], we see that this limit, together with (2.27)-
(2.28) and the maximal monotonicity of A+ ∂IR, implies that

(2.32) u ∈ D(A+ ∂IR) and ζ ∈ (A+ ∂IR)(u).

It follows from (2.26) that

(2.33) ζεn + ηεn + εnQ(uεn) = L, ∀n.
By passing to the weak∗ limit in (2.33) and taking into account (2.28), (2.31), and
(2.32), we see that u is a solution of the inclusion

(2.34) (A+ ∂IR)(u) +B(u) � L.

Now assume that χ2 ≤ 0. We have lim sup〈ζεn , uεn〉 ≤ lim〈ζεn , u〉 = 〈ζ, u〉.
Using again Proposition 2.2(b) in [10], we obtain from this limit, (2.27), (2.28),
and the maximal monotonicity of A + ∂IR that (2.32) holds in this case as well.
Furthermore, lim〈ζεn , uεn〉 = 〈ζ, u〉. This shows that χ2 = 0 and thus χ1 = 0 thanks
to (2.30). From the above arguments, we have again (2.33) and u is a solution of
(2.34).
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Step 6. We have shown from Step 1 to Step 5 that for each R > 0 such that
D(A) ∩ BR(0) �= ∅, the inclusion (2.34) has a solution u = uR ∈ D(A + ∂IR)(=

D(A) ∩ BR(0)); that is, there are uR ∈ D(A) ∩ BR(0), ζR ∈ (A + ∂IR)(uR), and
ηR ∈ B(uR) such that ζR + ηR = L. Moreover, ζR = ξR + lR with ξR ∈ A(uR) and
lR ∈ ∂IR(uR). The above equation gives

(2.35) lR = L− ξR − ηR,

which implies that

IR(v)− IR(uR) ≥ 〈lR, v − uR〉 = 〈L− ξR − ηR, v − uR〉, ∀v ∈ X.

Since IR(uR) = 0, we have

(2.36) 0 ≥ 〈L− ξR − ηR, v − uR〉, ∀v ∈ BR(0).

Let u0 ∈ X be as in the assumption of Theorem 2.2. For all R such that R ≥ ‖u0‖
and BR(0) ∩D(A) �= ∅, letting v = u0 in this inequality yields

〈ξR + ηR − L, uR − u0〉 ≤ 0.

Then, for R satisfying (2.1), since uR ∈ D(A), we must have ‖uR‖ �= R and thus
uR ∈ BR(0). This implies that ∂IR(uR) = {0} and hence lR = 0, which, together
with (2.35), shows that u = uR satisfies the inclusion (2.2) and completes our
proof. �

In the next result, we present several sufficient conditions for the coercivity
condition (2.1), some of which appeared in various existence and range theorems
(cf. e.g. [1, 2, 9, 10, 11, 12, 14], etc.).

Corollary 2.3. Let A and B be as in Theorem 2.2. Under one of the follow-
ing sufficient conditions for (2.1), the inclusion (2.2) has a solution, that is, L ∈
R(A+B).

(a) There exist u0 ∈ X and R ≥ ‖u0‖ such that D(A) ∩BR(0) �= ∅ and

inf
u∈D(A)∩SR(0),ξ∈A(u),η∈B(u)

〈ξ + η − L, u− u0〉 > 0,

(b) ∃u0 ∈ X : lim inf
‖u‖→∞,u∈D(A)

(
inf

ξ∈A(u),η∈B(u)
〈ξ + η − L, u− u0〉

)
> 0,

(c) ∃u0 ∈ X : lim sup
R→∞

(
inf

u∈D(A),‖u‖=R,ξ∈A(u),η∈B(u)
〈ξ + η − L, u− u0〉

)
> 0,

(d) ∃u0 ∈ X : lim
‖u‖→∞,u∈D(A)

(
inf

ξ∈A(u),η∈B(u)
〈ξ + η − L, u− u0〉

)
= ∞,

(e) ∃u0 ∈ X: lim inf
‖u‖→∞,u∈D(A)

(
inf

ξ∈A(u),η∈B(u)

〈ξ + η, u− u0〉
‖u‖

)
> ‖L‖∗,

(f) ∃u0 ∈ X: lim inf
‖u‖→∞,u∈D(A)

(
inf

ξ∈A(u),η∈B(u)

〈ξ + η, u− u0〉
‖u‖

)
= ∞,

(g) ∃u0 ∈ X: lim sup
R→∞

(
inf

u∈D(A),‖u‖=R,ξ∈A(u),η∈B(u)

〈ξ + η, u− u0〉
R

)
> ‖L‖∗,

(h) ∃u0 ∈ X: lim
‖u‖→∞,u∈D(A)

(
inf

ξ∈A(u),η∈B(u)

〈ξ + η, u− u0〉
‖u‖

)
= ∞.

Remark 2.4. (a) The existence of a function similar to f in Step 1 in the proof of
Theorem 2.2 has been shown for quasibounded operators in Lemma 2.1 of [7].
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(b) Theorem 2.2 above does not imply Theorem 2.1, [7], since the latter is
about quasibounded, densely defined generalized pseudomonotone operators. On
the other hand, Theorem 2.1, [7], does not contain Theorem 2.2 here since condition
(2.1) above is on a sphere, which could be small or large, rather than on a region
outside a ball as in condition (∗) in Theorem 2.1, [7]. Furthermore, condition (2.1)
is on L only for it to belong to the range of A+B rather than on a set S to obtain
S ⊂ R(A+B) and intS ⊂ intR(A+B) as in the conclusion of Theorem 2.1, [7].

Based on a new degree theory for sums of maximal monotone and densely defined
operators of class (S̃+), conditions were given in Theorem 6.1 of [8] on the sum T+C
for the existence of zeros of that sum which are very natural and verifiable (see also
Theorems 6.2 and 5.8 in [8]). One of the conditions is a Leray–Schauder condition,
and the other is its inner product counterpart, which is similar to condition (2.1)
above. Theorem 6.1 in [8] and Theorem 2.2 here are again not contained in each
other since the operator T in Theorem 6.1 of [8] is monotone with domain containing
a dense subspace and C is a single-valued generalized pseudomonotone operator.
As is seen later, one of our main interests here is in variational inequalities in which
the maximal monotone operators are given by subdifferentials of convex functionals
whose effective domains are usually not dense subsets of X.

(c) Condition (h) is the most restrictive among those in Corollary 2.3. In many
particular cases of single-valued mappings and/or without one of the two compo-
nents ξ and η, it is usually referred to as a coercivity condition.

(d) Corollary 2.3 with condition (h) improves and unifies both Theorem 5.2 and
Corollary 5.2 of [10] in several ways. For example, as seen below, this allows us
to include the case of variational inequalities as a particular case of Corollary 2.3
or Theorem 2.2. Note that the definition of pseudomonotone mappings in [10] is
in fact that of everywhere defined generalized pseudomonotone mappings (cf. [4]).
However, due to the boundedness assumption, the two definitions are equivalent.

Also from the Corollary 2.3(h), we see that condition (a) in Corollary 5.2, [10],
can be completely eliminated. This elimination of that condition in Corollary 5.2
of [10] is particularly relevant in applications to partial differential equations, since
the operators in such equations or related variational inequalities do not generally
have a linear growth from below. Furthermore, u0 is not assumed to be in the
domain D(A) of A (see Theorem 5.2 in [10]).

Note that Corollary 5.2 in [10] does not imply Theorem 5.2 there. However, with
the improvement made above (by eliminating Condition (a) in Corollary 5.2, [10]),
Corollary 2.3(h) (and thus Theorem 2.2) here implies Theorem 5.2 in [10]. In fact,
suppose the hypothesis of Theorem 5.2 in [10] is fulfilled; that is, suppose there
exists u0 ∈ D(A) such that

(2.37) lim
‖u‖→∞,u∈D(A)

(
〈η, u− u0〉

‖u‖

)
= ∞.

Let ξ0 be a fixed element of A(u0). We have for any ξ ∈ A(u),

〈ξ + η, u− u0〉 = 〈ξ − ξ0, u− u0〉+ 〈η, u− u0〉+ 〈ξ0, u− u0〉
≥ 〈η, u− u0〉+ 〈ξ0, u− u0〉.

Hence,

〈ξ + η, u− u0〉
‖u‖ ≥ 〈η, u− u0〉

‖u‖ − ‖ξ0‖∗
(
1 +

‖u0‖
‖u‖

)
,
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which means that (2.37) implies condition (h) of Corollary 2.3; i.e., Corollary 2.3(h)
generalizes Theorem 5.2, [10] and also Theorem 3.2, [9].

(e) The boundedness of B can be somewhat relaxed to other boundedness as-
sumptions such as (pm4) in [9].

We consider now some further corollaries of the above results related to vari-
ational inequalities. Assume K �= ∅ is a closed, convex subset of X and ψ :
X → R ∪ {∞} is a proper, convex, and lower semicontinuous functional such that
K ∩ D(ψ) �= ∅. It follows that φ = ψ + IK : X → R ∪ {∞} is also a proper,
convex, and lower semicontinuous functional with D(φ) = D(ψ) ∩K and thus ∂φ
is a maximal monotone operator from X into 2X

∗
. Note that when K = X, we

have φ = ψ. Applying Theorem 2.2 to the case where A = ∂φ yields the following
corollary.

Corollary 2.5. Let L ∈ X∗ and assume there exist u0 ∈ X and R > ‖u0‖ such
that

D(∂φ) ∩BR(0) �= ∅
and

(2.38) 〈ξ + η − L, u− u0〉 > 0,

for all u ∈ D(∂φ) with ‖u‖ = R, all ξ ∈ ∂φ(u), all η ∈ B(u). Then there exist
u ∈ D(∂φ)(⊂ D(φ) = K∩D(ψ)) and η ∈ B(u) that satisfy the variational inequality

(2.39) 〈η − L, v − u〉+ ψ(v)− ψ(u) ≥ 0, ∀v ∈ K.

Condition (2.38) has the following particular case, which is closer to the coerciv-
ity conditions usually appearing in existence theorems for variational inequalities.

Corollary 2.6. Let L ∈ X∗ and suppose there exist u0 ∈ D(ψ)∩K and R > ‖u0‖
such that

D(∂(ψ + IK)) ∩BR(0) �= ∅
and

(2.40) 〈η − L, u− u0〉+ ψ(u) > ψ(u0),

for all u ∈ D(ψ) ∩K with ‖u‖ = R, all η ∈ B(u). Then the variational inequality
(2.39) has solutions.

We note as above that condition (2.40) has in its turn several sufficient conditions
such as:

lim inf
‖u‖→∞,u∈D(ψ)∩K,η∈B(u)

[〈η − L, u− u0〉+ ψ(u)] > ψ(u0),(2.41)

lim inf
‖u‖→∞,u∈D(ψ)∩K,η∈B(u)

[〈η − L, u− u0〉+ ψ(u)] = ∞,(2.42)

lim inf
‖u‖→∞,u∈D(ψ)∩K,η∈B(u)

〈η, u− u0〉+ ψ(u)

‖u‖ > ‖L‖∗,(2.43)

or, more restrictively,

(2.44) lim inf
‖u‖→∞,u∈D(ψ)∩K,η∈B(u)

〈η, u− u0〉+ ψ(u)

‖u‖ = ∞.

Under one of the above conditions from (2.41) to (2.44), the variational inequality
(2.39) has solutions. Note that condition (2.44) is usually referred to as a coercivity
condition for (2.39).
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Remark 2.7. (a) In the particular case where K = X and condition (2.44) is taken
into account, we obtain Corollary 5.3 in [10] without the extra growth condition
assumed there.

(b) Corollaries 2.5 and 2.6 show that we can derive existence theorems for varia-
tional inequalities containing multivalued pseudomonotone operators as direct con-
sequences of our existence results for pseudomonotone perturbations of maximal
monotone operators without following a parallel, independent path as in Section 4
of [9].

3. An example

Let us conclude our discussions with a simple example to illustrate the above
abstract theorems. The example is on a variational inequality in a Sobolev space
with variable exponent. Let Ω be a bounded region in R

N (N ≥ 1) with sufficiently
smooth boundary ∂Ω. Let p be a function in C(Ω) such that p− = min{p(x) : x ∈
Ω} > 1 and let Lp(·)(Ω) and W 1,p(·)(Ω) be respectively the Lebesgue and first order
Sobolev spaces with variable exponent p(·). The norms on Lp(·)(Ω) and W 1,p(·)(Ω)
are given by

‖u‖Lp(·)(Ω) = inf

{
k > 0 :

∫
Ω

∣∣∣∣u(x)k

∣∣∣∣
p(x)

dx ≤ 1

}
(u ∈ Lp(·)(Ω))

and

‖u‖ = ‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖|∇u|‖Lp(·)(Ω) (u ∈ W 1,p(·)(Ω)).

Lp(·)(Ω) and thus W 1,p(·)(Ω) are separable and reflexive Banach spaces. Let
[W 1,p(·)(Ω)]∗ denote the dual of and 〈·, ·〉 the dual pairing between W 1,p(·)(Ω) and
[W 1,p(·)(Ω)]∗. Assume Γ is a measurable subset of ∂Ω with positive (surface) mea-
sure and let

W
1,p(·)
Γ (Ω) = {u ∈ W 1,p(·)(Ω) : u|∂Ω(x) = 0 for a.e. x ∈ Γ},

where u|∂Ω is the trace of u on ∂Ω (it is known that u|∂Ω ∈ Lp(·)(∂Ω); cf. [5]).

W
1,p(·)
Γ (Ω) is also a separable reflexive Banach space with the norm ‖ · ‖ restricted

to W
1,p(·)
Γ (Ω). We shall be able to define an equivalent norm on W

1,p(·)
Γ (Ω) thanks

to the following Poincaré inequality for that space.

Lemma 3.1. There exists C0 > 0 such that

(3.1) ‖u‖Lp(·)(Ω) ≤ C0‖ |∇u| ‖Lp(·)(Ω), ∀u ∈ W
1,p(·)
Γ (Ω).

Inequality (3.1) can be proved by following the same lines as in the proof of the
regular Poincaré inequality in Sobolev spaces with variable exponents (i.e. when Γ =
∂Ω) presented in Theorem 7 of [6]. We just notice that by using the bootstrapping
argument in that theorem, we can reduce the proof of (3.1) to the corresponding

inequality in L1(Ω) and W 1,1
Γ (Ω) = {u ∈ W 1,1(Ω) : u|∂Ω = 0 a.e. on Γ}, which is a

classical result.
Let h ∈ W 1,p(·)(Ω) and let K be a closed convex subset of the linear manifold

h+W
1,p(·)
Γ (Ω) = {h+ w : w ∈ W

1,p(·)
Γ (Ω)}

= {u ∈ W 1,p(·)(Ω) : u(x) = h(x) for a.e. x ∈ Γ}.
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Assume A : Ω × R
N → R is a Carathéodory function that satisfies the following

conditions:

(3.2) |A(x, ξ)| ≤ a1(x) + b1|ξ|p(x)−1, for a.e. x ∈ Ω, all ξ ∈ R
N ,

with a1 ∈ Lp′(·)(Ω) (p′(·) is the Hölder conjugate of p(·)) and b1 > 0,

(3.3) [A(x, ξ)−A(x, ξ′)] · (ξ − ξ′) ≥ 0, for a.e. x ∈ Ω, all ξ, ξ′ ∈ R
N ,

and there are a2 ∈ L1(Ω) and b2 > 0 such that

(3.4) A(x, ξ) · ξ ≥ b2|ξ|p(x) − a2(x), for a.e. x ∈ Ω, all ξ ∈ R
N .

Also, we assume that L ∈ [W 1,p(·)(Ω)]∗ and f : Ω × R → R is a Carathéodory
function. We are interested here in the variational inequality:
(3.5)⎧⎨

⎩
∫
Ω

A(x,∇u) · (∇v −∇u)dx+

∫
Ω

f(x, u)(v − u)dx ≥ 〈L, v − u〉, ∀v ∈ K,

u ∈ K.

Let us prove the following existence theorem for (3.5).

Theorem 3.2. Assume f has the following growth condition:

(3.6) |f(x, u)| ≤ a1(x) + b1|u|p
∗(x)−1,

for a.e. x ∈ Ω, all u ∈ R, where b1 ≥ 0 and a1 ∈ L(p∗)′(·) (p∗(·) is the Sobolev
conjugate of p(·) and (p∗)′(·) is the Hölder conjugate of p∗(·)). Moreover,

(3.7) f = g + h,

where g, h : Ω× R → R are Carathéodory functions such that

(3.8) g(x, ·) is nondecreasing from R to R,

for a.e. x ∈ Ω, and h has a “sublinear” growth:

(3.9) |h(x, u)| ≤ a2(x) + b2|u|q(x)−1 (a.e. x ∈ Ω, all u ∈ R),

where b2 ≥ 0, q ∈ C(Ω) with 1 ≤ q− ≤ q+ < p−, and a2 ∈ Lq′(·) (where q− =
inf{q(x) : x ∈ Ω} and q+ = sup{q(x) : x ∈ Ω}).

Then, the variational inequality (3.5) has solutions.

Proof. Let A,G,H,F : W 1,p(·)(Ω) → [W 1,p(·)(Ω)]∗ be defined by 〈A(u), v〉 =∫
Ω

A(x,∇u) · ∇vdx, 〈G(u), v〉 =
∫
Ω

g(x, u)vdx, 〈H(u), v〉 =
∫
Ω

h(x, u)vdx, and F(u)

= G(u) +H(u), for all u, v ∈ W 1,p(·)(Ω). Then, A,G,H,F are bounded and con-
tinuous on W 1,p(·)(Ω). With the above notation, we note that (3.5) is the same as
the inequality

〈(A+ F)(u)− L, v − u〉+ IK(v)− IK(u) ≥ 0, ∀v ∈ K,

which is equivalent to the inclusion

(3.10) (A+ F + ∂IK)(u) � L.

It follows from (3.3) and (3.8) that A and G are monotone bounded operators on
W 1,p(·)(Ω) and from (3.9) that H is completely continuous there. Thus A + F is
pseudomonotone and bounded on W 1,p(·)(Ω). Since ∂IK is maximal monotone on
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that space, to apply the above existence theorem, we just need to check one of the
above coercivity conditions, namely, the following condition:

(3.11) 〈(A+ F)(u)− L, u− u0〉+ IK(u) → ∞ as ‖u‖ → ∞,

or equivalently,

(3.12) 〈(A+ F)(u)− L, u− u0〉 → ∞ as ‖u‖ → ∞, u ∈ K,

for some (fixed) u0 ∈ K. In fact, let u0 be any (fixed) element of K. As a
consequence of (3.1), there exists C1 > 0 such that ‖ |∇u| ‖Lp(·)(Ω) ≥ ‖u‖ for all

u ∈ W
1,p(·)
Γ (Ω). Let u ∈ K. Since u− u0 ∈ W

1,p(·)
Γ (Ω), we have

(3.13)

‖ |∇u| ‖Lp(·)(Ω) ≥ ‖ |∇(u− u0)| − |∇u0| ‖Lp(·)(Ω)

≥ C1‖u− u0‖ − ‖ |∇u0| ‖Lp(·)(Ω)

≥ C1‖u‖ − C2,

where C2 is a positive constant independent of u ∈ K. Combining (3.13) with (3.4),
we see that

(3.14)

∫
Ω

A(x,∇u) · ∇udx ≥ b2

∫
Ω

|∇u|p(x)dx− ‖a2‖L1(Ω).

Moreover, if u ∈ K and ‖u‖ is sufficiently large, then ‖ |∇u| ‖Lp(·)(Ω) > 1 and

(3.15)

∫
Ω

|∇u|p(x)dx ≥ ‖ |∇u| ‖p−
Lp(·)(Ω)

.

By (3.2) and Young’s inequality (with ε), we have

(3.16)

∣∣∣∣
∫
Ω

A(x,∇u) · ∇u0dx

∣∣∣∣ ≤
∫
Ω

a1|∇u0|dx+ b1

∫
Ω

|∇u|p(x)−1|∇u0|dx

≤
(

1

p− +
1

p′−

)
‖a1‖Lp′(·)(Ω)‖ |∇u0| ‖Lp(·)(Ω)

+ ε

∫
Ω

|∇u|p(x)dx+ C3(ε)

∫
Ω

|∇u0|p(x)dx,

where ε > 0 and C3(ε) > 0 depends on ε (and other constants, but not on u). On

the other hand, since g(x, ·) is nondecreasing and g(·, u0) belongs to L(p∗)′(·)(Ω),
we have

(3.17)

〈G(u), u− u0〉 ≥
∫
Ω

g(x, u0)(u− u0)dx

≥ −‖g(·, u0)‖L(p∗)′(·)(Ω)(‖u‖Lp∗(·)(Ω) + ‖u0‖Lp∗(·)(Ω))

≥ −C4‖u‖ − C5.

Also, it follows from (3.9) that

(3.18)

|〈H(u), u− u0〉| ≤
∫
Ω

(a2 + b2|u|q(x)−1)(|u|+ |u0|)dx
≤ ‖a2‖Lq′(·)(Ω)‖u0‖Lq(·)(Ω) + ‖a2‖Lq′(·)(Ω)‖u‖Lq(·)(Ω)

+b2(‖u‖q+Lq(·)(Ω)
+ 1)

≤ C6 + C7‖u‖q+ + C8‖u‖.
Lastly, we have

(3.19) |〈L, u− u0〉| ≤ ‖L‖[W 1,p(·)(Ω)]∗(‖u‖+ ‖u0‖).
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Combining (3.14) with (3.16)–(3.19) and ε = b2/2 in (3.16), we obtain, for all
u ∈ K with ‖u‖ sufficiently large,

〈A+ F − L, u− u0〉 ≥
b2
2

∫
Ω

|∇u|p(x)dx− C7‖u‖q+ − C9‖u‖ − C10.

From (3.15) and (3.13), we see that for such a function u,∫
Ω

|∇u|p(x)dx ≥ C
p−
1 ‖u‖p− − C11,

and thus,

〈A+ F − L, u− u0〉 ≥ C
p−
1 ‖u‖p− − C7‖u‖q+ − C9‖u‖ − C12.

Since p− > 1 and p− > q+, this estimate implies (3.12) (i.e. (3.11)) and our proof
is complete. �

Remark 3.3. Note that without the maximal monotone operator ∂IK , the pseu-
domonotone operator A+ F − L is not coercive on W 1,p(·)(Ω); that is, it does not
satisfy the coercivity condition

lim
‖u‖→∞

〈(A+ F − L)(u), u− u0〉
‖u‖ = ∞,

as usually assumed in existence theorems for pseudomonotone and maximal mono-
tone operators (cf. e.g. [9, 10, 4, 13], etc.).
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