
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Summer 1986

A semantic basis for parallel algorithm design A semantic basis for parallel algorithm design

Roger E. Eggen

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Eggen, Roger E., "A semantic basis for parallel algorithm design" (1986). Doctoral Dissertations. 612.
https://scholarsmine.mst.edu/doctoral_dissertations/612

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/612?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A SEMANTIC BASIS FOR PARALLEL ALGORITHM DESIGN

BY

ROGER EGGEN, 1947-

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

1986

ABSTRACT

As computing demands increase, emphasis is being
placed on parallel architectures- To efficiently use
parallel machines, software must be designed to take
advantage of these machines. This research concentrates
on an abstraction of algorithm design to permit the
expression of parallel programs. The abstraction
emphasizes thought about algorithms at a high level as
opposed to algorithm implementation at a statement level.
A model based on data flow allows algorithm expression
using flow diagrams. The model specifies operating system
requirements that support parallel programming at a module
level. Paths are used to carry data between modules.
Data enter modules through ports. Module activation is
triggered by the satisfaction of data availability
conditions. Continual module presence within the system,
dynamic activation criteria, and a high level of
programming distinguishes this model from other parallel
programming systems.

i i i

ACKNOWLEDGEMENT

The author wishes to give a special thanks to Dr.
John Metzner for his stimulating discussions and guidance
in this research. His role as major advisor provided
invaluable assistance during the development and writing
of this dissertation. These results would not have been
possible without his foresight and intuitive observations.

Appreciation is also extended to Dr. Arlan DeKock for
his assistance in procuring financial support from AMOCO
oil company and the Computer Science Department.

The efforts of Dr. Thomas Sager, Dr. Paul Stigall,
Dr. John Hamblen, Dr. Orrin Crosser and Dr. Daniel
St.Clair, as members of the advisory committee, are
gratefully appreciated.

Thanks are also extended to my family for their
support during this work.

1 V

TABLE OF CONTENTS

page
A B S T R A C T ... ii
ACKNOWLEDGEMENT .. iii
LIST OF I L L U S T R A T I O N S ix
I. INTRODUCTION 1

A. MOTIVATION - WHY DATA F L O W ? I
1. A NEED FOR P A R A L L E L I S M 1
2. WHAT IS DATA F L O W ? I
3. A SECOND APPLICATION OF DATA FLOW . . 4
4. NEED FOR PARALLEL ALGORITHM

DEVELOPMENT 5
5. CONTENT OF DISSERTATION 6

B. CURRENT RESEARCH 8
1. INTRODUCTION 8
2. PARALLEL ARCHITECTURES 9
3. LANGUAGE DEVELOPMENT 11
4. DATA FLOW M O D E L S 12

C. OVERVIEW - THE BASIC BUILDING BLOCKS . . . 15
1. I N T R O D U C T I O N 15
2. T E R M I N A L S 17
3. TERMINAL INTERFACE (T I) 17
4. INTERNAL PROGRAM ENVIRONMENT (IPE). . 18
5. D E V I C E S 23
6. APPLICATION PROGRAMMER TASKS 25

V

D. DESIGN DECISIONS - GOALS 26
1. VEHICLE A S P E C T S 26
2. A DIFFERENT C O N C E P T 28
3. Q U A L I T I E S 29
4. S U M M A R Y 31

II. THE DATA FLOW PROGRAMMING ENVIRO N M E N T......... 32
A. INTRODUCTION................................. 32
B. M O D U L E S 33

1. MODULE INTRODUCTION 33
2. MODULE E X A M P L E 37

C. P O R T S .. 41
D. P A T H S .. 46

1. F A N - I N 48
2. F A N - O U T 50
3. B R A N C H - O U T 53

E. T R I G G E R S 55
1. TRIGGER EXPRESSION 58
2. TRIGGER E X A M P L E 61

F. S U M M A R Y 66
III. OPERATING SYSTEM IMPLICATIONS 69

A. INTRODUCTION................................. 69
B. MESSAGE MANAGEMENT 69

1. G E N E R A L 69
2. B U F F E R I N G 70
3. DATA R E Q U E S T 72
4. D I R E C T O R Y 74

VI

5. MESSAGE COMPOSITION 75
C. MODULE SUSPENSION AND WAKEUP 76

1. REQUESTED SUSPENSION 76
2. SUSPENSION WITHOUT REQUEST 77
3. W A K E U P 77

D. MODULE REPLICATION BY THE OPERATING SYSTEM 78
1. G E N E R A L 78
2. USER ALLOWED R E P L I C A T I O N 79
3. PATH MODIFICATION..................... 82
4. SYSTEM SUPPORT OF REPLICATION 87
5. MODULE REDUCTION 89
6. LINEAR G R O W T H 89

B. TERMINAL INTERFACE 90
1. G E N E R A L 90
2. PRIVATE, SBMI-PRIVATE, PUBLIC

M E S S A G E S 91
F. D E V I C E S 95
G. OPERATING SYSTEM LEVELS 96
H. PROCESSOR ASSIGNMENT 97
I. S U M M A R Y 98

IV. PROGRAMMING IMPLICATIONS 101
A. INTRODUCTION................................. 101
B. REPLICATION BY THE P R O G R A M M E R 101

1. IDENTICAL FUNCTION REPLICATION . . . 102
2. ORDERED DATA S U P P L Y 104
3. REDUNDANCY REPLICATION 104
4. MODULE T E S T I N G 107

vii

109
109
109

113
115
116
116
117
121
121

126

132
132
133
134
138
138
141
141
144
144
145
147
147
149

NESTING
1. GENERAL
2. SPECIFICATION OF NESTING
3. ACTIVATION AND REPLICATION OF NESTED

MODULES
FILES ..
1. MODULES AS FILES
2. MODULE ASSOCIATED FILES
3. EXTERNAL FILES
COMMON MODULES
1. KEEP SORTED
2. MERGE
PROGRAM EXAMPLE - ORDER PROCESSING
PROGRAM
1. CUSTOMER VERIFICATION
2. CUSTOMER MASTER FILE
3. DISTRIBUTE
4. BACK ORDER MODULE
5. INVENTORY
6. CONSTRUCT SHIPPING LABEL
7. DAILY SALES AND DAILY PAY MODULES . .
8. ACCOUNT STATUS
9. REMAINING MODULES

10. SALES AND PAY - NESTED MODULES . . .
a. KEEP TOTALED BY KEY
b. KEEP SORTED
c. KEEP TOTALED

vi ii
d. KEEP O R D E R E D 149
e. D I S T R I B U T E 150
f. KEEP T O T A L E D 150

G. PROGRAM EXAMPLE - SPELLING CHECKING
P R O G R A M 157
1. C O U N T 157
2. D I S T R I B U T E 158
3. SEARCH AND T A L L Y 158
4. M E R G E 161
5. S T R I P 163

H. S U M M A R Y 165
V. CONCLUSIONS AND FURTHER RESEARCH 166

A. C O N C L U S I O N 166
B. FURTHER RESEARCH 170

R E F E R E N C E S ... 173
VITA 180

ix

«e

3
16
20

21
22
24
34
36
38
40
43
45
47
49
51
52
54
62
64
73
80
81
84

LIST OF ILLUSTRATIONS

SAMPLE DATA FLOW GRAPH
PROGRAM ENVIRONMENT OVERVIEW
INTERNAL PROGRAM ENVIRONMENT (IPE)
MODULE ..
PORTS ..
MODULE, PORTS AND PATHS
MODULES, PORTS AND PATHS
MODULE ..
MODULE DISTRIBUTE
MODULE DISTRIBUTE
PORT REPRESENTATION
MULTIPLE PORTS
INPUT, OUTPUT, REQUEST PATHS
FAN-IN PATHS
DATA SUPPLY FAN-OUT
DATA INQUIRY - FAN-OUT
BRANCH-OUT
ENHANCED MODULE DISTRIBUTE
MODULE DISTRIBUTE
DATA REQUEST
ORIGINAL
MODULE REPLICATED
PROGRAM SEGMENT

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

x

85
88

92
103
105
106
108
110

112

114
118
119
123
124
125
127
129
131
135
136
137
139
140
142
143
146

MODULE REPLICATION
ENHANCED MODULE DISTRIBUTE
COMPLETE SYSTEM ENVIRONMENT
MODULE REPLICATION
MODULE DESTINATION REPLICATION
DATA REDUNDANCY
MODULE TESTING
NESTED MODULES
USAGE OF MODULE
NESTED MODULES
MODULE ASSOCIATED FILE
EXTERNAL FILE
KEEP SORTED
KEEP SORTED PSEUDO-CODE
TRADITIONAL SEQUENTIAL FILE UPDATE
MERGE ..
MERGE PSEUDO-CODE
MERGE LOGIC DIAGRAM
ORDER PROCESSING PROGRAM
ORDER VERIFICATION MODULE
CUSTOMER MASTER FILE MODULE
DISTRIBUTE MODULE
BACK ORDER MODULE
INVENTORY MODULE
CONSTRUCT SHIPPING LABEL
ACCOUNT STATUS MODULE

50
51
52
53
54
55
56
57
58
59

xi

148
151
152
153
155
156
159
160
162
164

KEEP TOTALED ON KEY . . .
MODULE DISTRIBUTE (NESTED)
KEEP ORDERED MODULE . . .
KEEP TOTALED
KEEP SORTED
SPELLING CHECKER
MODULE COUNT
MODULE SEARCH AND TALLY .
MODULE STRIP

SALES AND PAY MODULE . . .

1

I. INTRODUCTION

A. MOTIVATION - WHY DATA FLOW?

1. A Need For Parallelism. To meet increased
computing demands, both software and hardware improvements
are required. Computing in the areas of meteorology,
cryptography, image processing, and sonar and radar
surveillance, using real time processing, requires
computation speeds surpassing even the current super
computers [24]. Computing speeds have been increasing due
primarily to improvements in hardware design. These
improvements are approaching an upper limit as traditional
hardware advances are limited by the physical character­
istics of the components. Computers must support a great
deal of concurrency to achieve a significant increase in
performance. Data flow architectures offer a solution to
the problem of efficiently exploiting concurrency of
computation on a large scale [33]. Appropriate software
must be developed to use a data flow architectures
effectively. Data flow programs and program design offer
a solution.

2. What Is Data Flow? Program development using
data flow is conceptually different than programming with
traditional procedural languages. There are no program
counter sequencing instructions or a global memory. Side

2

effects are eliminated to allow concurrent instruction
execution. The sequence of execution in data flow depends
only on data availability.

Directed graphs represent data flow programs. Actors
are nodes which contain operators. Links are paths in the
graph that carry the output of one actor to the input of
another actor as described by the directed graph. Data
presence in all consuming links causes an actor to "fire"
which consumes the data from those links and produces
results on the supply links.

Figure 1 shows a data flow graph which corresponds
to the expression: (B**2 - 4*A*C) / 2*A. As shown,
traditional data flow actors contain one instruction per
actor. These instructions are generally at the level of
an add or multiply. The example shows the typical level
of parallelism exploited by these graphs. An instruc­
tion level of parallelism or fine parallelism is
represented by Figure 1. Each actor consumes data
values and produces results. Concurrency, in this
example, is possible since the first three actors fire
simultaneously. By using a data flow graph, it is
possible to expose all of the parallelism in an algorithm
and highly concurrent computation becomes a natural
consequence of the data flow concept [32].

3

B B 4 A

(B**2 - 4*A*C) / (2*A)

FIGURE 1
SAMPLE DATA FLOW GRAPH

4

3. A Second Application Of Data Flow. The time
and effort involved in software design and development has
proven to be significant. As hardware prices continue to
fall, there is growing pressure to increase productivity
of application programmers. Many companies are trying to
find ways to substantially improve productivity [43].
Efficiency is enchanced by improved software design
techniques. Such concepts as structured programming and
top-down design have improved programmer productivity.
Algorithm design is further enhanced by using pseudo­
coding and reusable routines. A routine can be developed
to perform a task. If the routine is genera] enough, it
can be used in a wide variety of programs. Some operating
systems provide a SORT routine that can be used in a
variety of applications.

The data flow concept can be extended to include
program design. Top-down design as well as modular
construction is supported through data flow. Traditional
data flow can be extended to include many instructions in
an actor. An actor consisting of many instructions is
called a module and data flows between modules in paths.
Independently developed modules interact only through data
exchanges. The data flow graph is a convenient way to
show all data interaction between modules. Benefits from
using data flow are:

- no global storage
- visible module dependencies

5

- reusable modules
- reduced complexity
- natural, consistent application view
- easier application development [43].
Modules are developed independently without knowledge

of other modules supplying input or receiving output. The
modules can often be placed in a variety of programs. The
program design is specified by a directed graph represen­
ting flows of data between modules. The modules initially
represent large tasks which are subdivided into smaller
modules as the development proceeds. The data flow
methods are used during the refinement process. Data flow
usage in the design of programs is a natural development
as data flows from module to module like the flow of paper
from desk to desk in a big office environment.

4. Need For Parallel Algorithm Development. Since
parallel architectures are now a reality, [5, 44, 45, 49]
parallel algorithms are necessary. To capture all of the
parallelism possible in an algorithm, parallel design and
development from the initial design phase are required.
Since data flow is a radically different concept, new and
different thoughts about algorithm design are encouraged.
Just as algorithm design and implementation were initially
difficult, some effort must be given to the design and
development of algorithms which are conceptually
different. This effort realizes benefits in computing
performance and time of program development.

6

5. Content Of Dissertation. This paper is written
to: 1) offer a medium for the development and expression
of parallel algorithms and 2) promote a correspondingly
different view of computing systems. Data flow is the
vehicle for the expression of these algorithms. Operating
system features are described to provide support for the
programs used to represent algorithms. The features of
the operating system are developed only to the extent of
establishing the environment in which data flow algorithms
are to operate.

The second goal of this paper is to promote a
different view of computing systems. Traditionally,
programs in the form of jobs or job steps are entered into
a system, executed, and removed from the system. Consider
a computing system where programs are always resident.
The programs remain idle until data presence "activates”
the program. The program remains active as long as data
processing is required. Upon completion of its proces­
sing, the program becomes dormant or "goes to sleep". The
program does not leave the system, but waits for further
processing. In this environment, there is no human-given
command which starts programs, but rather the presence of
data, indicating required processing, determines program
activation. Data flow at a "higher" level distinguishes
this approach to concurrent programming from others. This
concept will be emphasized throughout the paper.

7

Chapter 1 shows why data flow is chosen. This
chapter also gives an introduction to the vehicle used in
the expression of parallel algorithms, design decisions,
and a review of the goals and qualities of the vehicle.
Chapter 2 describes the basic components that are at the
disposal of software designer. Chapter 3 explains the
support required of an operating system to create the
programming environment. Chapter 4 discusses programming
implications such as: nesting, replication, file handling,
common modules and examples. Chapter 5 presents
conclusions and ideas for further research.

8

B . CURRENT RESEARCH.

1. Introduction. Since parallelism is accepted as
a promising solution to increased demands for computing, a
variety of research is taking place. The research spans a
very broad spectrum covering the development of parallel
architectures to software design processes. Two
approaches to the development of parallel architectures
are being followed: an extension of the von Neumamn model
and new designs patterned after data flow. Some parallel
programming languages are being developed which extend
procedural languages like Pascal and PL/I, while new
languages like LZ are based on graphical representations
[12]. Programs written in procedural languages are
manipulated by translators which attempt to recognize
implicit and explicit parallelism. The translators
produce a form of the program suitable for execution on
large-scale, parallel processing systems while graph-based
languages can be executed directly on an appropriate
parallel architecture by directly interpreting the graph.

Parallelism is also being used during the software
system design phase. If the system defined can be divided
into a number of independent tasks, many software
engineers can be assigned to develop the system. This
practice is commonly employed in the development of a
large system. Parallelism is sought during the initial
design phase and retained through system implementation.

9

Concurrent system development is possible by using a
parallel approach [43]. Data flow is a natural model used
during the design and implementation phases.

2. Parallel Architectures. Extensions to the von
Neumamn computing model fall into five categories:
systolic arrays, associative processors, tree machines,
array processors, and multiple CPU computers. Systolic
arrays are a collection of synchronized special purpose
processors with a fixed interconnection network. This
model is not frequently used. An associative processor is
a special purpose processor built around an associatve
memory which allows the simultaneous searching of the
whole memory for some specified contents. Again, this
model is not frequently used. A tree-structured searching
machine has capabilities falling somewhere between an
associative processor and an array processor. The array
processor has a set of synchronized arithmetic units
capable of performing the same operation on different
data. This processing system is called SIMD. SIMD is a
single instruction executing on multiple data streams.
The arithmetic units execute the instruction on the data
paths in parallel. Multiple-CPU computers (MIMD) consist
of a number of fully programmable processors, each capable
of executing its own program. MIMD (Multiple Instruction
Multiple Data) means that multiple processing units with
individual instructions execute on different data sets.
The processors communicate via shared memory. MIMD models

10

may differ in two respects: the processors may be
synchronous or asynchronous and the number of processors
may be fixed or unbounded [36].

Data flow architectures are so new that categoriza­
tion is impossible. Arvind and others at MIT are
developing an architecture designed to execute data flow
programs with a tagged token. Their paper describes how
data flow programs are mapped onto the hardware [5].
The Manchester data flow machine, being developed at the
University of Manchester, functions on a labeled data flow
model. The units of the machine are connected in a ring
and consist of a processing unit, token queue, matching
unit and node store. The tokens flow around the ring and
contain three information fields and a control field. The
information fields of the tokens carry data, the label,
and the token’s destination node address. The tokens are
matched by using the control field and passed to the
processing unit for execution, which produces a new set of
tokens [49]. Other researchers are developing architec­
tures designed to execute parallel programs and studying
different architecture designs to estimate computing
efficiencies [6,44].

Data flow architectures are characterized by the lack
of global storage. Processors communicate via a message
passing network rather than through shared global memory.
There is no "control” sequencing instructions, but the
presence of data causes instruction execution.

11

3. Language Development. Research into languages
covers a wide spectrum from extensions to existing
languages, such as FORTRAN and Algol, to new languages,
such as the single assignment languages for data flow
machines. These languages have the following attributes
in common: they are all textually based languages and
attempt to exploit parallelism near the machine
instruction level. DFL, a data flow language which is a
Pascal-like parallel language, provides a typical example
[33]. A program written in DFL represents a data flow
graph. Concurrency is almost always implicit, in contrast
with Concurrent Pascal, where all concurrencies are
specified explicitly by the programmer.

ID, CAJOLE, LAPSE, VAL and DDM1 are data flow
languages being developed at the University of California
(Irvine), the University of London, Manchester University,
MIT and University of Utah, respectively. Of these
languages, DDMl is the only graph based language. They are
functional in nature and are translated into data flow
graphs for execution [1]. LZ [12], developed at Oxford
Poly t echme, and PR OGRAPH [27] , developed at the
University of Ottawa and the Technical University of Nova
Scotia, are graph-based languages, which do not need to be
converted to a data flow graph before execution. These
languages allow parallel activity on a data-driven
abstract machine.

12

4. Data Flow Models. In order for data flow to be
an effective model of concurrent program execution, an
appropriate representation of data flow is required. The
representation should be simple so that algorithm
development is not complicated by the representation and
rich enough to allow real problem solutions. Petri nets,
e-nets, colored petri nets and time-extended petri nets
have been used for this purpose. Petri nets are composed
of places, transitions, functions defining sources of
input, and functions defining destinations of the output.
Places represent conditions and transitions represent
events. The input for each transition is defined by a
function specifying the places from which each transition
receives its input. Another function defines the places
where each transition sends its output. A marking of a
Petri net is an assignment or distribution of tokens to
places in the net. Tokens always reside in places. A
transition may fire if each of its data receiving places
has at least one token. When firing, a transition removes
a token from each of its receiving places and writes a
token to each of its places associated with data output.
Firing of a transition means execution of the operation
contained within the transition. During execution data is
consumed from receiving paths and produced in supply paths
to allow the firing of connected transitions.

E-nets are extended Petri nets which consist of loca­
tions and transitions. Each location is either a

13

resolution location or a token location. A resolution
location is associated with its own resolution procedure
and is used to control token flow.

Colored Petri nets are an extension of the basic
petri net in which colors are associated with the tokens.
The firing rule for each transition is defined by a
function of input-tokens which produces colored output-
tokens. A transition is enabled if there is a set of
colored tokens, one token from each receiving place, and
the set of colors where each color taken from the set of
colored tokens is matched to an entry in the table of
transitions.

Time extended Petri nets are an extension of the
basic Petri net designed to represent time-resolved
behavior of interacting parallel processes, holding of
system resources, and to allow specifications of models as
data structures [19].

The major concern of the programmer in a Petri net-
like environment is determining the exact sequence of the
various atomic operations that make up the application
(mostly arithmetic and data-moving operations and deci­
sions). A basic position underlying this dissertation is
that a soarser-grained parallelism is initially more
conducive to devising concurrent algorithms, that the
programmer should be concentrating on the flow of data
through functions that correspond more closely to familiar
"real world" functions [31]. This work provides a vehicle

14

for the programmer that is simple enough to allow
expression of parallel algorithms without being concerned
with the exact sequence of the various atomic operations.
The vehicle is established to allow the programmer to
express the algorithm naturally, as data flows from module
to module.

15

C . OVERVIEW - THE BASIC BUILDING BLOCKS.

1. Introduction. Figure 2 shows a graphical view
of the programming environment. Each box labeled TERM
represents a terminal or interactive device. The TERMINAL
INTERFACE (TI) supports terminals and passes messages
between terminals and programs in the INTERNAL PROGRAM
ENVIRONMENT (IPE). The IPE contains programs composed of
modules interconnected by data paths. These programs are
entered by application programmers and designed to perform
specific functions. DEVICE represents printers, plotters,
tape drives and other similar peripheral equipment
associated with computing systems. Messages are passed
from the TERM to the TI, from the TI to the IPE.
Execution begins when messages of sufficient quantity
arrive in the IPE allowing activation of modules within
the IPE. As a result of active modules in the IPE,
messages are either sent to the TI or to devices as
required. Messages sent to the TI are routed to the
appropriate TERM. Messages contain data and separators.
The separators distinguish the end of one message from the
beginning of another. Messages which pass through the
terminal interface also include a source and destination
address.

16

FIGURE 2
PROGRAM ENVIRONMENT OVERVIEW

17

2. Terminals. The terminals send messages to and
receive messages from programs in the IPE. The dialogue
between terminals and programs in the IPE is supported by
the TI. Data flows from TERM to TI and back again through
the paths which are represented by the lines between TERM
and TI.

3. Terminal Interface (TI). The TI supports the
dialogue taking place between programs in the IPE and the
terminals. Messages are routed by a dynamic "source-
destination" table as described in section 4. Messages
originating at a terminal contain destination program
identities part of the message. The user determines the
destination by supplying the name of the receiver. The
name is supplied at terminal activation time and may be
changed by the user at any time during the terminal
session. The TI maintains a table of the destination name
and user— terminal-identifier pairs for each active
terminal. The destination name determines which program
or programs receive messages. Associated with each
terminal is a unique terminal identifier. The user
terminal identifier is retained with a message so that
replies can be routed correctly.

Messages originating in a program are either private,
semi-private or public. A private message is routed to a
specific terminal as determined by the terminal identifier
and is generated as a response to a previously received
message from a specific terminal. The TI appends the user

18

terminal identifier to the message when passing it to the
IPE. The program, when responding to a message, retains
the identifier with the response. Using the retained
identifier, the TI routes the return message to the
appropriate terminal. Invalid data is an example which
requires a response to the specific user terminal entering
that data.

A semi-private message originating in a program is
destined for a group of terminals. The message is
generated to inform terminals performing a particular
function of a change meaningful to those users. Suppose a
program in the IPE responds to orders of a department
store. Upon depletion of a particular item from stock, a
message is sent to all terminals placing orders indicating
the depletion of that item. The TI determines the
receiving terminals by a list of terminal identifiers.

Public messages generated in the IPE are sent to all
active terminals. System messages important to all users
fall into this category. Messages relating to "system
modification" or "system status" are examples of this
message type.

4. Internal Program Environment (IPE). The IPE is
composed of PROGRAMS, PATHS and PORTS. Programs are
composed of MODULES, PATHS and PORTS. The paths and ports
of a program perform the same function as the paths and
ports in the IPE.

19

Figure 3 shows an internal program environment. PR1
and PR2 represent two programs in the system. Program 1
contains 3 modules named Ml, M2 and M3 and program 2
contains modules M4, M5 and M3. Note that module M3 in
this example is duplicated for use in more than one
program. Also, any name the programmer desires can be
assigned to a port. Port names are used as data transfer
devices and hence have only local meaning; therefore,
duplication of port names within a system is allowed. The
lack of restrictions associated with port names enhances
program generality. IPE port names, A, B, C, D, E and F,
are used to communicate to the TI and devices which reside
outside the IPE. These ports, on the IPE, are known by
the system to perform specific functions, such as
print ing.

Figure 4 shows a module, as represented in a program
graph, as a box containing a name. The module is composed
of a series of traditional programming instructions,
possibly from a high level language such as Pascal, LISP
or PL/I. Modules can be included in a program a number of
times to improve performance, as resources permit, or to
perform the same function on different data.

Figure 5 shows a module with its ports. The ports
are identified by a letter at the edge of the module.
They pass data from a module to a path or from a path to a
module as requested by the module. Ports offer a unified
mechanism for communication [11].

20

FIGURE 3
INTERNAL PROGRAM ENVIRONMENT (IPE)

Ml

FIGURE 4
MODULE

22

ports

FIGURE 5
MODULE AND PORTS

23

Figure 6 shows the basic program construct. A
module, its ports and the paths which carry data to or
from other modules or devices, make up all programs.

Programs communicate with the TI interface by sending
messages to ports. Ports A, B, C and D on the edge of the
IPE in Figure 3 are being used to pass messages between
the program’s modules and the TI by placing messages in
the associated paths. Ports I, J, T, H, P, K, L and C of
Figure 3 are associated with the respective modules.
Each module receives messages from and sends messages to
its ports. A module communicates only with its ports and
is not aware of the source of its messages received or the
destination of the messages supplied. Modules can be
developed in an independent manner. Knowing the data
requirements and the processing functions of a set of
modules allows programs to be constructed by connecting
ports with data paths.

5. Devices. Ports F and E of Figure 3 are being
used to communicate to DEVICES. Devices are distinguished
from terminals in that a device is not interactive. A
dialogue does not take place between program modules and a
device. Messages pass to or from the device in the same
manner as messages pass between modules within a program,
so modules communicate with devices like modules
communicate with modules in the program, except that the
message traffic can only be one-way.

24

paths

FIGURE 6
MODULE, PORTS AND PATHS

25

6. Application Programmer Tasks. The application
programmer has two distinct tasks when creating programs.
First, the modules are constructed to receive, manipulate
and send data. Second, the paths are determined which
allow data to flow in the appropriate manner. A
description of modules provides the programmer with an
explanation of the data requirements, functioning of the
module, and data to be supplied (in messages) by the
module. With this description, a programmer can envision
the desired modules and plan their interconnection to
create a program. By using a structured, top-down
approach, the necessary modules are identified. These
modules consist of "old" modules and "new" modules. Old
modules are those previously developed and can be included
immediately in the program. New modules must be developed
by the programmer to perform tasks specific to the program
being developed. After the modules are established, the
programmer's attention turns to specifying the necessary
data paths among them. The programmer's task is finished
when data flows between modules allowing them to perform
the desired functions. Notice that the flow of messages
is then causing the activation of programs, rather than
the traditional user-supplied command or job submission.

26

D . DESIGN DECISIONS - GOALS.

1. Vehicle Aspects. The vehicle presented
concentrates on a number of aspects of programming and
program execution support. These aspects consist of a
terminal environment, internal programs, devices, and
operating system support features. The terminal
environment is the appearance provided to the user by the
terminal interface. The appearance consists of user-
friendly features such as split screens or menus. The
user can enter modifications to the terminal interface to
create desired features. Internal programs are composed
of a network of modules. Devices are the physical
components, outside of the programming environment, which
are used by programs. Sample devices are disk, tape,
plotter and printer. Operating system support features
allow programs to execute in this environment. The
allocation of resources, activation and deactivation of
modules and message transfer are just a few of the tasks
performed by the operating system.

The purpose of this work is two-fold; to encourage
thought about the development of parallel algorithms and
to describe the operating system support for internal
program modules. The description of the operating system
support is required to set the environment for the
expression of the parallel algorithms. The programs are
constructed by connecting message paths among program

27

modules. The operating system support and program
expression provide the vehicle for the specification of
parallel algorithms. Using this vehicle allows
programming to move away from the thought pattern of
sequential program expression to the development of truly
parallel algorithms. It also promotes algorithm
expression at a level that does not distract the
programmer with low-level details. This research
concentrates on the operating system requirements to
support this programming vehicle. The operating system
support of the internal programming environment is
emphasized since new algorithms can be imagined to reside
in this environment. The remaining facilities are
included to aid in envisioning a complete system.

Support of the IPE has two major aspects: programming
support as viewed from the inside of the module and
programming support as viewed from the outside of the
module. The parallel algorithm can be expressed only when
the environment outside the module is in place, so this
research concentrates on support facilities external to
the module. Support related to message passing, data
buffers and activation of modules are some examples of
this support. Internal module expression is in pseudo­
code in sufficient detail to allow full understanding of
the algorithm. Other features, such as the terminal
interface, are included to aid the reader in envisioning
the power and flexibility of this approach. The data flow

28

model of progranni ng and program development is followed
throughout the programming process. All computing intei—

action, between users and programs, programs and devices
or program modules is accomplished within the data flow
model.

2. A Different Concept. The programming vehicle
described is a different concept in programming, yet, many
traditional programming practices still apply.
Structured, top-down design is common to both the
traditional program design and to programs expressed
within this developed system. The algorithms look and
perform differently since no central control or global
updatable memory exists. A program module begins
execution "on demand”. That is, data presence determines
the need for module activation. The module’s execution
continues until the module relinquishes control by issuing
a request to the operating system for "sleep” . After
receiving the sleep request, the operating system allows
the module to become dormant. A module in the dormant
state does not leave the system but waits for reactiva­
tion. The concept of jobs entering and leaving a system
is replaced by modules always resident. The traditional
job or job step no longer exists. After satisfying an
activation criteria determined by data presence, the
operating system provides the necessary resources and
reactivates the module. A user can add and delete modules

29

in the system through an editing facility. This facility
is a mechanism allowing the creation and modification of
program graphs where modules are the nodes and edges
represent paths. The specification of module names, ports
and interconnecting paths permits the addition and
deletion of modules.

3. Qualities. Programming with this vehicle offers
a number of advantages. Parallelism is expressed at a
high level. Low-level program considerations are delayed
until the program design is complete. This high level of
programming allows parallelism to be recognized and
exploited fully during the program development phase and
during program execution. The vehicle, while presenting a
new computing concept, does not call for radically
different program development practices. Top-down
structured program development is fundamental to the
success of program development with this vehicle. Most
significantly, new modes of thought about algorithms are
required since sequential program execution no longer
exists. The programmer now considers functions or modules
that execute in parallel. The overhead of processor
switching is reduced by this model.

Modules that are continually present replace the
concept of jobs entering and leaving a computing system.
The modules become active when data is present and go
dormant when additional processing is no longer required.
The concept of modules always present, becoming active

30

when data exists, is consistent with the data flow model.
When modules are independent, relying only on the

presence of data, independent development is possible.
Programmer productivity is increased when individual pro­
grammers develop modules independently. The specification
of data requirements provides the guide for parallel pro­
gram development. Module programming is done in a
familiar procedural language.

Algorithm communication is enhanced by the pictorial
representation natural to the data flow programming
environment. Pictures present ideas more effectively as
demonstrated by graphs and diagrams used in other
applications. Programmer efficiency is enhanced when
using this representation since complex program designs
are clearly represented through data flow graphs.

Many of the problems encountered when attempting
parallelism are eliminated with this version of the data
flow concept. Synchronization and module communication
overhead is reduced when a message passing system is used.
Synchronization is no longer required since each module’s
execution is dependent only on the presence of data.
Artifacts such as control tokens are no longer required.

The vehicle used for representing algorithms is a
natural extension of familiar processes. Data flows
between modules in much the same way paper passes between
desks or offices in a business. Many tasks are accom­
plished in a parallel manner in that environment. An

31

analogous concept is provided by this vehicle for
algorithm expression.

In general, parallelism is not hindered by side
effects within this model. Each module executes
independently of other modules* execution. The modules
are interdependent only through data explicitly flowing in
established paths.

4. Summary. Chapter 1 has introduced the basic
components along with the motivation and rationale for
this work. The need for parallel algorithm development is
demonstrated. Traditional data flow and this extension
shows the basis of the vehicle described. Data flow is a
natural model for this work. Current research shows a
recognition of the need for parallel software, but
restricts itself to parallelism at a low level. This work
demonstrates the benefits of parallelism at a higher
level. The basic components of the vehicle are modules,
paths and ports. Modules are independent and remain in
the computing system in a dormant state until data
presence causes activation. The programmer, when
developing a parallel algorithm, determines the required
data paths between modules and then determines the
internal details of the module. The advantages of this
vehicle increase the desirability of its further
development.

32

II. THE DATAFLOW PROGRAMMING ENVIRONMENT

A. INTRODUCTION.
A program is comprised of modules and paths intercon­

necting modules’ ports. Modules contain instructions
which manipulate data, cause data to be consumed from
ports and cause data to be supplied to ports. Ports,
which offer a general mechanism capable of supporting all
types of communication, are used to pass data between a
path and a module. Paths carry data in the form of
messages between ports of modules. A programmer
constructs programs by determining appropriate modules and
then interconnecting ports of those modules with paths.
Modules are passive when entered into the system. Data
presence, satisfying a specific set of conditions,
determines module activation. The set of conditions used
for module activation is called a trigger. One trigger is
associated with each module and is a list of boolean
expressions and associated entry points. A trigger is
true if any of its boolean expressions are true. A module
is a candidate for activation when its trigger is true.
Many modules may be active at one time permitting highly
parallel activity. This chapter presents these building
blocks - modules, triggers, ports and paths - that
comprise the semantic base of this form of data flow
programming.

33

Figure 7 shows a portion of a program. Modules,
ports and paths are shown as they are used in a program.
Each module corresponds only with its ports and the port
passes data between the module and the path. The oper­
ating system provides support for data passage between
ports.

B . MODULES.

1. Module Introduction. A program consists of
modules interconnected by data paths. The program modules
store and manipulate data. The module is a basic
component of a program and corresponds roughly to a task
in traditional programming environments. The module is
comprised of programming instructions shown in this paper
in pseudo-code. The instructions can be expressed in any
supported language, including the new parallel languages
when implemented. If necessary, the programming language
can be expanded to communicate with ports. Additional
instructions allow polling of ports for data presence,
perform data consumption and supply data to a port. Any
number of instructions comprise a module, however, the
number of instructions should be limited so that potential
parallelism is not lost. A module may also be defined to
consist of other modules and the paths among them. This
nesting capability is discussed in detail in Chapter 4.

FIGURE 7
MODULES, PORTS, PATHS

35

Figure 8 shows a module as represented in a program
graph. A program graph is a pictorial representation of
an algorithm consisting of many modules and paths. Bach
module is shown as a rectangle and is identified by a
unique name. The name identifies the module for use in a
variety of programs. Associated with the module name is a
description of its function which explains the data
supplied and received by the module and all manipulations
performed on the data. With this information a programmer
can use modules previously constructed and provide
information about new modules which are candidates for
inclusion in other programs. A module may appear in a
program more than once. Parallelism and performance of
similar functions on different data occurs when the same
module appears in a program multiple times.

Both versions, demand flow and supply flow, of data
flow semantics are supported. In demand flow, program
modules respond to data requests. In supply flow, a module
supplies data as it is generated. Supply flow modules are
activated by the presence of data. During the activation,
the module may naturally supply data to a port causing
activation of other modules. In demand flow, a module
makes a request for data from its port. The request is
passed along by the operating system to the supplying
module. The requested module is activated and supplies
the desired data. The operating system supports the
source-destination details of a request allowing the

36

NAME

FIGURE 8
MODULE

37

modules to execute independently of each other. Module
dependence exists only through data supply and
consumption. If sufficient data and resources exist,
concurrent module execution is possible.

The simultaneous supply and update problem of a
module capable of responding to data requests is easily
solved in this environment. Since a module’s activation
depends on the satisfaction of its trigger, some data
ports can be deactivated while others are active. Hence,
a module can be limited to satisfying a request or
updating its encapsulated data.

A module may be composed of multiple interdependent
procedures and therefore may have multiple entry points.
Associated with the conditions for activation of a module
is an entry point name. This name identifies the address
where control is given when a module becomes active.

2. Module Example. The example in Figure 9 shows a
module as presented in a program along with the
description and pseudo-code required for understanding.
Module specification is concerned with a description of
the data supplied and consumed, a general description of
the function of the module and the instructions of the
module that determine the module’s function. Each module
must include the data description, the function
description and its instructions to be effectively used in
a program.

38

A______ s/_

DISTRIBUTE E >>/

B

>f >

C

f

FIGURE 9
MODULE DISTRIBUTE

39

GENERAL DESCRIPTION: The module’s name is DISTRIBUTE.
The module receives data from port A. The module supplies
some of the data to port B and some of the data to port C
as predetermined by a set of criteria. For example,
numbers greater than zero can be supplied to port B and
numbers less than zero to port C. Non-numeric data is
written to port E. The module is activated if any data
exists at port A. The distribute module demonstrates a
general concept of routing data as determined by a
specific criteria.
DATA DESCRIPTION: Data is consumed from port A. Each
data item is consumed and processed before another item is
read. In the example, numeric data items greater than or
equal to zero are written to port B, numeric data items
less than zero are written to port C and non-numeric data
items are written to port E. Figure 10 shows the pseudo­
code for the Distribute Module.

This module might be used in an accounting program to
separate credits and debits. After the specification of
the data requirements, the module can be used any time a
split facility is required. The programmer includes the
name of the module and specifies the data paths. The
module remains in the computing environment and performs
its function whenever data is present. The activation
criteria is the module’s trigger which is explained in
section E. The complete module is shown in Chapter 4
which includes the module’s trigger.

40

MODULE PSEUDO-CODE: MODULE DISTRIBUTE.
WHILE DATA EXISTS AT PORT A DO.

READ FROM PORT A TO VARIABLE X
IF X IS NUMERIC THEN DO.

IF X IS >= 0 WRITE X TO PORT B
ELSE WRITE X TO PORT C.

ELSE WRITE X TO PORT E.
SLEEP (activation criteria).
END .

END MODULE DISTRIBUTE.

FIGURE 10
MODULE DISTRIBUTE

41

C . PORTS.
A port is a named data entry or exit point that

provides data transfer between one or more paths and a
module. A letter near the boundary of a module represents
a named port as shown in Figure 11. The module communi­
cates only to ports and requires no additional information
about the surrounding environment. The module is
independent of the paths connecting its ports with other
modules' ports in a program. There can be one path or
many paths connected to a port. The module performs in
the same manner in either case. Ports, which provide all
communication to the module, are capable of communicating
all data types. A port offers a mechanism for communi­
cating with devices, terminals, other programs and the
operating system. Data passes through a port as a
response to an input or output command executed in the
module. Programming languages are easily imagined to be
extended to include commands of the type READ FROM PORT A
and WRITE X TO PORT C where A and C represent port names
and X a data value. The module is also capable of
querying a port to determine if data is present without
actually receiving the data.

During program design, the application programmer
must determine the data to be received and supplied by all
modules. Upon determination of the data requirements, the
programmer establishes ports which represent the point of

42

data receipt or supply. Section B has shown an example of
module communication with ports. All communication is
initiated by the module and effected by the operating
system.

One or more paths may be connected to a port. The
port multiplexes the data received from multiple paths.
When the module requests data from the port, the data is
received in a FIFO manner. The operating system holds the
data in buffers until the module executes a Read command
at which time a specific quantum of data is transferred to
the module. Multiple paths can be connected to a supply
port as well as a receiving port. The fan-in and fan-out
of paths from ports are discussed in Section D. The
operating system is responsible for providing the port to
port communication. Modules are not aware of paths
connected to their ports.

43

A
MODULE

FIGURE 11
PORT REPRESENTATION

44

In Figure 12, A, B, C, D and E represent ports. The
dot on port D indicates the capability of responding to
requests. The inquiry port supplies data upon demand. A
port is the only facility through which data transfers to
and from the module. A port is used in one of three
manners:

i. An input port only receives data, i.e. another
module writes data to an output port, the data
is transferred along a path, and the data is
received at the input port.

ii. An output port only provides data, i.e. to paths
for transfer to other modules.

iii. An inquiry port, which is a special output port,
provides data in response to specific requests,
e.g. a module may supply named records upon
request.

An inquiry port listed above (iii) is an output port
which is capable of responding to requests. The requested
module must be active and execute an input command to
receive the request from the port. The request can be
used to trigger module activation. After determining what
is requested, the module supplies the response to the same
port. A port capable of receiving requests has a bold dot
associated at the origin of the path which marks it as a
port capable of responding to requests.

45

MODULE

T*D

FIGURE 12
MULTIPLE PORTS

46

D. PATHS.
The data path is a representation showing data

transfer between nodules’ ports. Data is written into a
port by a nodule. The operating systen transfers the data
from the supply port to the receiving port as indicated by
the connecting path. Then conditions for activation of
the receiving module are evaluated. If sufficient data
exists, the module is allocated resources and begins
execution at the specified entry point. During execution,
the nodule issues an input command to the port where data
exists, consuming the data. Special markers are included
with the data to distinguish the beginning and end of data
records. The data remains in a path until the receiving
module "consumes" it. Buffers are maintained by the
operating system to hold the data between the time a
supplying module writes data into a path and the time a
receiving module reads the data. The operating
system buffer support is transparent to the executing
module.

Figure 13 shows a module with five ports and paths
connected to them. The unconnected ends of the paths are
connected to ports of other modules. The arrows indicate
the direction of data flow. If the arrow points to the
port, data flows to the module (data received). When the
arrow points away from the port, the data flows from the
module’s port (data supplied). The dot, associated with
port D in Figure 13, indicates the capability of

47

INPUT,

/1\

FIGURE 13
OUTPUT, REQUEST PATHS

48

responding to inquiries. This path receives requests for
data and the module supplies the corresponding data
through the same port, D. Supply flow occurs at port B.
Data is written to port B and the operating system places
data in the receiving module’s port as shown by the path.
No demand occurs for this data. Data written to a port
allows activation of other modules. Data in paths
connected to ports A, C, and E is read by the module for
further processing. Data presence at these ports is used
to determine if activation of the module is possible.

1. Fan-in. Figure 14 shows data from more than one
source merging at a port. Paths connected in this manner
are said to fan-in. With this type of connection, data
originating from a number of sources is supplied to a
module through a common port. The data is read at the
port with no concern for the origin of the data. A merger
of data records from an unknown (to the module) number of
modules is possible by the fan-in of paths, allowing all
data to be received through a single port. The
distribution of data is external to all modules, delaying
the binding of the number of receiving data paths
associated with a module until the module is included in a
program graph.

Activation criteria are not effected by paths having
fan-in. The criteria are concerned with the presence of
data at a port, not the source of that data, so modules

49

FIGURE 14
FAN-IN PATHS

50

can be developed independently of the paths associated
with their ports. The data from multiple sources is added
to the buffer associated with the port. Data presence in
the buffer is used to determine activation of the
receiving module.

2. Fan-out. Figure 15 shows multiple paths
originating at one port (E). This concept is called data
fan-out. Two types of data fan-out are possible. The
first, as shown in Figure 15, is fan-out associated with a
supply port (data output port type ii). When fan-out
occurs as demonstrated by the paths associated with port
E, a copy of the supplied data is placed on all paths.
The receiving modules get exact copies of the same set of
data. The data is placed in each path as an action of the
operating system, the module is unaware of the
distribution of its data. The number of paths connected
to a port is transparent to a module. The programmer
requests data duplication in the program graph by
including multiple paths at a port.

If multiple paths originate at a port which responds
to data inquiries, as in port F of Figure 16, selective
data response is required. Data is supplied to only the
requesting module. Inquiries are queued at the port and
satisfied in the order of receipt. The operating system
monitors the source of the inquiry and routes the response
accordingly. The supplying module services one inquiry at

51

FIGURE 15
DATA SUPPLY FAN-OUT

52

FIGURE 16
DATA INQUIRY - FAN-OUT

53

a time. The response is placed in the appropriate path by
the operating system.

3. Branch-out. Figure 17 shows paths that branch-
out from a port. These paths differ from paths that fan­
out. since a copy of the data is not placed in both paths.
A branched-out path is marked with a circle at the branch
point. The operating system determines the path with the
least amount of data waiting to be processed. New data is
placed in that path. Distributed paths are used to
improve performance by separating the data. Identical
receiving modules are used when the data is branched at a
path. Modules with high computing demands can be
replicated with data branched to them to improve high data
demand processing.

Paths are specified when the program is entered into
a computing system. During execution of the program,
paths remain fixed. There is no facility envisioned for
dynamically changing the path-port association while a
program is executing. Only during editing, when modules
are added or deleted from a program, may paths be changed.

54

FIGURE 17
DATA BRANCHED-OUT

55

E. TRIGGERS.
A nodule becomes a candidate for activation when its

trigger is satisfied. A trigger is a list of predicate
expressions which are true or false as determined by the
presence or absence of data at ports. An entry point is
associated with each predicate expression and indicates
the instruction in the module where execution begins when
the module is activated due to the satisfaction of that
expression. One trigger is associated with each module.
Port names, the modifier EOF, and boolean operators, AND,
OR and NOT, comprise a predicate expression. The boolean
value of a port name is determined by the presence or
absence of data at that port. For example, A is true if a
data message exists at port A. EOF B is true when the end
of file (EOF) marker has arrived at port B. (A OR EOF B)
is true if either of the above conditions are true. When
a predicate’s value is true, the module is a candidate for
activation with control passed to the entry point
associated with the predicate. A set of predicate-entry
pairs constitutes a module’s trigger.

Triggers are supplied with the module and maintained
by the operating system. Triggers are dynamic. During
the module's existence new triggers may be supplied to
allow different data presence conditions to meet
activation criteria. The operating system receives
triggers at two epochs in a module's life: at module

56

birth and each time a module ceases execution with a "put
me to sleep" request. The module remains inactive when
the current trigger is unsatisfied. The module’s trigger
is tested when data arrives by evaluating its predicates
to determine if an activation criterion has been met. If
so, (and resources are available,) the operating system
activates the module and control passes to an entry point
expressed in the trigger. Upon consumption of the data, a
module establishes a new trigger and relinquishes control
to the operating system by issuing a "put me to sleep"
request. The module does not leave the system, but
releases resources for use by other modules. When data
presence again satisfies a predicate of its trigger, the
module is reactivated.

Triggers are the sole activation criteria of a
module. Each trigger is supplied with the module when it
is entered into the system (at module birth) and when it
is put to sleep. The syntax of the trigger is shown by
the following Backus-Naur form rules:

Note: the following symbols are meta-symbols belonging to
the formalism, and not symbols of the TRIGGER.

: : = : (}

The brackets denote possible repetition of the enclosed
symbols zero or more times. In general,

A ::= {B}

is short form for the purely recursive rule:

57

A ::= < empty > ! AB

< TRIGGER > TRIG < NAME > i < PREDICATE > ,
< ADDRESS >;

{ < NAME > : < PREDICATE > , < ADDRESS > ; }
< ADDRESS > ::= < LETTER > { < LETTER OR DIGIT > }
< NAME > ::= < LETTER > { < LETTER OR DIGIT > }
< LETTER OR DIGIT > : •= < LETTER > : < DIGIT >
< LETTER > : : = A : b : c ! D : e : f : G : h :

I : j : k : L : m : n : 0 : p : Q
R : s : t : u : v ; w : X : y : Z

< DIGIT > :: = 0 ! 1 : 2 : 3 ! 4 5 : 6 : 7 :
8 : 9 t

1 _

< PREDICATE > : : = < PRED > : < EMPTY >
< EMPTY > ::=
< PRED > ::= < TERM > ! < PRED > OR < TERM >
< TERM > ::= < FACTOR > J < TERM > AND

< FACTOR >
< FACTOR > ::= < PORTNAME >) (< PREDICATE >)

< PREOP > < PORTNAME > !
< PREOP > (< PREDICATE >)

< PREOP > ::= NOT ! EOF
< PORTNAME > ::= < LETTER >

The value of a predicate expression is true or false
Evaluation of the predicate is required to determine

58

activation of a module. ADDRESS is the entry point name
of the module where control passes when the module is
activated due to satisfaction of the associated predicate.

1. Trigger Expression.
EXAMPLE 1:

TRIG ONE: (A AND B) OR NOT(EOF C OR D), ENTRY_1;
This example has the following meaning:

TRIG is a key word marking the beginning of the trigger.
ONE is the name of the predicate used to identify this
predicate from other predicates in a trigger list.
(A AND B) OR NOT (EOF C 0_R D) is the predicate evaluated to
determine if activation of a module is possible. The
parentheses show typical grouping with evaluation being
performed inside-out. A, B, C, and D are port names in
the associated module. A port name like A is considered
true if any incoming data exists in the path attached to
that port. Standard boolean evaluation is performed for
AND, OR and NOT. EOF C is considered true if a special
marker (EOF) is the next communication to be entered
through port C. NOT (EOF C) is the opposite of EOF C and
considered true when the special marker (EOF) is not the
next communication to be entered through port C. In
general, the (EOF) marker is used to identifty completion
of the data received. The empty predicate is considered
false. Predicates within the trigger are labelled ONE,
TWO, etc. as shown in the examples. The predicates are
evaluated in order of the numerical label with the first

59

predicate satisfied determining module entry point. Two
predicates can specify the same module entry point. The
predicate appearing first will be checked for module
activation before later appearing predicates. Multiple
predicates specifying the same entry point are equivalent
to a predicate containing each of the multiple predicates
logically combined. A trigger that does not clearly
specify the activation criteria for a module will result
in an error.

EXAMPLE 2:
TRIG ONE: A OR NOT B, ENTRYl;

TWO: NOT C M B B, ENTRY_2;
This example shows two entry points into a module.

If no data is present at port B or if there is data
present at port A then the module can be activated with
control passed to entry point name, ENTRY_1. If no data
is present at port C and data is present at port B, the
module can be activated with control passed to entry point
name, ENTRY2. A module, at sleep time, can update either
or both of the predicates by specifying the name, ONE or
TWO in this example, and the new predicate. A predicate
whose name is not specified will be left unchanged from
one activation to the next.

The predicates of a trigger are evaluated in order
with the entry name of the first predicate found true
receiving control. The order is determined by the ONE,

60

TWO, etc. labels associated with each predicate. ONE is
evaluated first, TWO second determined alphabetically.
The labelling of predicates places a precedence on the
evaluation of predicates. The first predicate found true
will cause execution to begin in the module at its
associated entry point address. Special cases can hold
the ONE or TWO labels and the general case predicate
placed at a lower priority.

A trigger is associated with each module. A
predicate may be associated with each entry point in a
module. When the predicate is satisfied, the module is
scheduled for activation and, when activated, control
passes to the entry point associated with the predicate.
The module will begin execution immediately if processing
resources are available to support the execution of the
module. When resources are not immediately available, the
module will be activated when resources become available
with no re-evaluation of the trigger. The operating
system maintains a trigger for each module. The list of
predicates in a module’s trigger is scanned sequentially
and control passes to the address name associated with the
first predicate found true. The list of predicates in the
trigger is evaluated each time data arrives at a port.
Since only one predicate is found true for a module, each
module begins execution at a we11-determined entry point.
If the module is supported by a parallel programming
language, further parallelism can be attained within the

61

module. When a module finishes execution at one entry
point, it submits new predicates with entry points for the
module's trigger. The module executes a "put me to sleep"
command causing the operating system to update the list of
predicates for the trigger of the module and releases
resources. In the case of other predicates having been
satisfied during its activity, the module can become
immediately active with control passing to the entry
associated with the first predicate satisfied is the list
of predicates.

2. Trigger Example. Consider the example of
Section B.l. To increase flexibility of the module, an
additional port can be included to allow entry of the
number used as a split point. That is, the numbers
greater than the split point are supplied to port B and
the numbers less than the split point are supplied to port
C. The module requires input from port S as shown in
Figure 18 before input from port A since port S provides
the splitting point. Triggers allow the proper execution
without significant modification to the instructions
within the module. The addition of the trigger is shown
in this example.

62

ENHANCED

A
N/____

DISTRIBUTE

B

>

c

✓

FIGURE 18
MODULE DISTRIBUTE

63

The nodule elements are:

GENERAL DESCRIPTION: The module’s name is
Distribute. The module receives a data element from port
S. The data received from port A is split with the
numbers greater than or equal to the data element of port
S supplied to port B and numbers less than the data
element of port S supplied to port C. Non-numeric data is
written to port E. The trigger associated with the module
determines the module’s activation.

DATA DESCRIPTION: Data is consumed from port S.
After port S has provided its data item, each data item is
consumed from port A and processed before another item is
read. Numeric data items greater than or equal to the
item from port S are written to port B, numeric data items
less than the item from port S are written to port C and
non-numeric data items are written to port E.

The module design can be used wherever data
separation on any key is desired. The module is basically
the same as in Section 2.B but is more general due to the
split point being bound to the module during execution
rather than at module construction. It is shown in Figure
19.

Line 1 gives the operating system the initial trigger
when the module is entered into the system. Lines 2
through 7 will be executed first due to the predicate in

64

MODULE DISTRIBUTE.
1 MODULE TRIGGER: TRIG ONE: S, E N T R Y O N E ;

(♦initial trigger supplied when the
module is entered into the program*)

2 MODULE PSEUDO-CODE:
3 E N T R Y O N E :
4 READ FROM PORT S TO VARIABLE SP.
5 NEW TRIGGER: TRIG TWO: A, ENTRY TWO
6 SLEEP
7 END E N T R Y O N E .

8 E N T R Y T W O :
9 READ FROM PORT A TO VARIABLE X
10 IF X IS NUMERIC THEN DO.
11 IF X >= SP WRITE X TO PORT
12 ELSE WRITE X TO PORT C.
13 ELSE WRITE X TO PORT E.
14 SLEEP
15 END ENTRY_TWO.
16 END DISTRIBUTE .

FIGURE 19
MODULE DISTRIBUTE

65

the trigger. Upon completion of lines 2 through 7, the
new trigger will include "TRIG A, E N T R Y T W O " . This new
predicate follows the old one so that lines 8 through 16
will be executed in response to arrivals at port A only
until a new value arrives at port C. This module is
organized to continue operation in this manner, controlled
by the structure of the triggers.

This example illustrates that if the trigger is
comprised of a predicate list, only selective predicates
need be changed. The operating system will update its
list when acting on the module's sleep request. The
predicates not included in the statement will be retained
in the new predicate list. The name associated with the
predicate determines which predicates are updated.
Predicates can be eliminated from the list through the
null predicate.

66

F. SUMMARY.
This chapter introduced the concepts of modules,

ports, paths and triggers. Emphasis is placed on a module
always being resident in a computing system. The module
specification is shown by its inclusion in a program
graph, the general description of the module function, a
description of the data consumed and supplied, and a
listing of pseudo-code describing its actions. Ports are
used as a communication mechanism capable of supporting
all types of data messages between paths and modules. The
ports are the only link a module has to its external
environment. All data communication takes place through
the ports and is specified in the instructions for data
receipt or supply. Two types of ports exist: input and
output. Input ports only receive data. Output ports
supply data either as a result of data requested or data
generated naturally. Multiple paths may lead into a
port, allowing the module to receive data from a number of
sources through one port. Multiple paths may lead from a
port, allowing the module to supply data to a number of
modules through one port. The fan-in feature allows a
module to accept data messages from an arbitrary number of
sources without the module providing separate ports for
each possible source. The fan-out feature allows data to
be distributed to a number of destinations without
affecting the module. The binding of the number of paths
connected to a port is delayed from module creation time

67

until the time a module is included in a program graph.
Paths represent the flow of data between modules’

ports. The programmer is challenged with two tasks when
developing a program: to determine the necessary modules
and their function and to determine the paths among them.
The paths govern the data flow from module to module.
Module development time is reduced if the path construc­
tion is carefully done. Data transfer is supported by the
operating system and is transparent to the module.
Operating system facilities queue data messages on paths
until receiving modules are ready to consume them. Paths
can fan-in and fan-out from a port allowing a single port
associated with a module to supply data to a number of
modules* ports or to allow a single port to receive data
from a variety of modules. All this allows module
development tasks to focus upon triggers and the
processing they are to initiate, relieving the programmer
from including instructions in the module to effect inter­
module communications. Programmer efficiency is increased
through this facility and modules are more general.

Triggers are used to determine module activation.
They consist of a list of predicates and associated entry
points. The predicates evaluate to true or false
depending on data presence at module’s ports. The
operating system evaluates a module’s predicates whenever
data arrives at one of its ports. The first predicate
found true is used for the activation of the module with

68

control passed to the entry point associated with the
predicate. Dynamic triggers allow changing the data
availability conditions which are to cause module
activation. The trigger is included with a module when
the module is entered into the system and new or altered
predicates are provided when a module becomes dormant.
The operating system maintains the list of triggers and
performs the evaluations.

69

III. OPERATING SYSTEM IMPLICATIONS

A. INTRODUCTION.

The discussion of operating system support facilities
is contained in this chapter. Support of the programming
environment includes message management, suspending and
waking a module, replication of modules by the operating
system, the terminal interface, support for devices such
as printers and plotters, and processor to module binding.
These support features are transparent to the user. The
support is an extension of traditional operating system
principles already in existence.

B. MESSAGE MANAGEMENT.

1. General. The designer of a program has two
tasks. First, modules are developed to manipulate data.
A part of module development is a description of data
supplied and received at each port. Secondly, the
programmer must determine the necessary paths for data
transfer between modules. Path determination is aided by
the data description associated with each module. The
construction of paths yields a directed graph which shows
the source and destination of each message path. The
paths are shown by lines connected to the ports of
modules. Each path unambiguously determines the source

70

and destinations of a message without aid from the
supplying module or the receiving module. Paths are bound
to ports of modules after module development is complete,
during the inclusion of a module in a program. Data is
written to a port associated with the supplying module and
is routed to the receiving module’s port as determined by
the path. Upon satisfaction of the trigger, the receiving
module is activated. Data is transferred to the receiving
module when execution of a "HEAD” instruction causes data
to be consumed through a port.

2. Buffering. The necessary data paths
interconnecting modules are determined by the programmer
with aid from the description of data consumed and
supplied. Each module has a description of its data
requirements associated with the module. Using the
description, the programmer can include the appropriate
paths that direct the flow of data between modules. A
receiving module may not be ready to receive the data when
it arrives at its port. The module might be suspended,
requiring satisfaction of its trigger for activation, or
might be processing other data. Therefore, buffers are
required to hold the arriving data until a "READ"
instruction allows data to be moved into the module.

The buffering is performed by the operating system
and is done for each receiving port. A buffer is storage
which holds messages until the receiving module reads
them. When data arrives at a previously empty buffer of a

71

suspended module’s port, the operating system evaluates
the trigger to determine if activation criteria has been
met. All messages are held in the buffer until the
receiving module issues a "HEAD" instruction for that
port. The "READ" instruction causes data to be
transferred into the module, which releases buffer space.
The port name is specified in the instruction.

Data transfer is performed by the operating system
with control returning to the executing module upon
completion of the task. Data transfer between paths and
modules is similar to data transfer between disk and
executing programs in current computing systems. Data
from multiple suppliers, in the case of fan-in, is
interleaved in the buffer as it arrives. There is no
priority associated with the data arriving at the buffer.
Fan-in is supported by the system and is transparent to
the receiving module.

Data supply occurs when a module executes a "WRITE"
instruction. A port name specification is part of the
instruct, i on. The ins t ruct ion causes data to be moved from
the supply port of the sending module to the receiving
module’s port. The data at the supply port is placed in
the buffer of the receiving module’s port as indicated by
the path connecting the modules. Buffers are not required
at supply ports of the source module. When paths fan-out
from a supply port, the messages are replicated and placed

72

in the buffers of all receiving nodule’s ports by the
operating systen.

3. Data Request. Data supply ports which respond to
data requests have an operating system supported queue
associated with the port. The queue holds the requests
until the receiving module reads the request. Each
request is processed in the order received. A request
can, for example, indicate the need for a named data
quantity. Each request is queued at the data supply port
which is to respond to the request. When the requested
module is activated, each request is satisfied one at a
time in the order of receipt. The source of the request
is held by the operating system. When the request has
been satisfied, the operating system routes the data to
only the requesting module. The supply module is not
given and does not know the source of the request. All
routing is performed by the operating system.

Figure 20 shows two modules requesting data from a
third module. Module 1 is an ordei— receiving module which
requests data from the inventory module, module 3. The
data requests if module 1 can fill the order by deter­
mining if the item ordered is in stock. Module 2 checks
inventory to determine if a particular item is a standard
stock item or if it must be specially ordered. Each
module requests data from the inventory module, module 3.
When a request arrives at port C, the operating system
retains the source of the request. For demonstration

c
INVENTORY

3

FIGURE 20
DATA REQUEST

74

purposes, assume the first request originates at module 1.
While module 3 is processing the request, a request from
module 2 arrives at port C. The later request is held at
the port until the first request is satisfied. When
module 3 writes the requested data to port C, the
operating system routes the data to port A of module one.
The second request is now ready for processing by module
3. Since module 3 processes one request at a time, the
operating system always knows the destination of the
response. Pending requests are queued at port C. Each
request is processed individually allowing appropriate
routing of the response.

4. Directory. Messages are routed as described by
the directed graph of paths designed by the programmer.
The operating system maintains a directory of sources and
corresponding destinations. Each pair consists of a
module's supply port name and a list of module’s receiving
port names. A list is required to represent the fanning-
out of paths from a single port. When data appears at a
source, the corresponding destinations are found from the
directory and the data message placed in appropriate
buffers for receiving ports.

The source-destination relation maintained in the
operating system is static. The structure is not modified
during execution except during module replication by the
operating system. The user causes the structure to be
modified when the addition or deletion of modules occurs.

75

When new modules are added to the program, the directory
is updated to reflect the new data paths that are added.
Similarly, when modules are deleted from the program, the
directory is updated to show the elimination of data
paths. Modules are added, deleted and updated as program
development occurs. Updating is required when modules are
added (to perform new functions) or when modules are
deleted (found to be in error, of inferior design, or no
longer required).

5. Message Composition. Messages are composed of
values written to a port as a group. The supplying module
separates data value groups by an "end of record" marker
(EOR) and may terminate a set of messages by an "end of
file” marker (EOF). This separation is done in the same
manner as records are determined in traditional languages.
A test for the end of file marker may be used in the
expression of predicates as discussed in chapter 2. The
size of the message is not fixed and may vary from one
message to another.

76

C. MODULE SUSPENSION AND WAKEUP,

1. Requested Suspension. Modules are suspended at
their request. When current data is exhausted, the module
issues the "SLEEP*' instruction which is a request to the
operating system for suspension. When a module is
suspended, the operating system saves the environment
internal to the module. The value of variables can be
either reinitialized or their current value retained for
module reactivation. Value retention is the default.
When the module is suspended, resources, processors and
other support, are released for use by other modules. The
buffers are retained for destination ports since data
received at an inactive module must be saved. Request
queues are maintained for data supply ports capable of
responding to requests. Messages in the buffers and
requests in queues are used to determine satisfaction of
triggers. A trigger modification may be passed to the
operating system when a module is suspended, (the dynamic
triggers allow varying message presence conditions to
determine module activation). The operating system
rewrites the list of predicates that comprise the trigger
when module deactivation occurs. If sufficient real
memory does not exist, the module's space may be released
by traditional roll-out to secondary storage.

77

2. Suspension Without Request. Suspension can occur
if the module is doing little processing. In this case,
no request by the module for suspension exists.
Conditions are evaluated by the system to determine the
amount of data an active module is processing. When the
presence of data is such that the module is doing very
little processing, the operating system can suspend the
module. During the suspension, data is allowed to collect
in the buffers of the module’s ports. When data in
sufficient quantity exist, the module is restarted. No
request for suspension or writing of new triggers occurs.
The module performs exactly as if it were continually
active. Resources allocated to the module are freed for
use by other modules during this suspension. Performance
of the system is improved since module support is not
continuously required.

3. Wakeup. Wakeup or activation of a module after a
requested suspension occurs when one of the predicates of
its trigger is satisfied. Initialization as required by
the module, allocation of resources and control passed to
the address associated with the predicate completes a
module’s wakeup procedure. The module now executes
independently of any other module in the system.

Wakeup after a non-requested suspension requires
allocation of resources to support the module. Execution
begins at the instruction following the last executed
instruction. Triggers are not involved. Execut i on

78

proceeds as if the module had never been suspended.
This type of module suspension is required if limited

resources exist. Suspension is a mechanism of releasing
resources. The suspended modules remain in the system,
becoming active when data presence in sufficient quantity
indicates the need for activation. Conceptually, all
modules remain active in the system at all times.

D . MODULE REPLICATION BY THE OPERATING SYSTEM.

1. General. The operating system can duplicate a
module in order to improve computing efficiency.
Duplication consists of creating an identical module,
adjusting data paths, allocating resources and activating
the new module. The purpose of duplication is to reduce
bottlenecks created by high data flow to a module. Data
is supplied to the module with the least amount of data
waiting to be processed as determined by the quantity of
data held in the buffers. Data accumulation at a module’s
port is one criteria used in determining a need for
duplication. When buffer size becomes very large, the
receiving module’s processor is probably degrading system
performance. Assuming the module is active, a large
buffer indicates the need for module replication. Modules
are replicated in the following manner:

1) Copy the module's instructions.
2) Copy the module's trigger.

79

3) Allocate resources to the copied module.
4) Branch-out the data paths supplying the original

and duplicated module.
5) Fan-in data paths supplied by the original and

duplicated modules.
6) Activate the module.
In a branched data path the messages are supplied to

the module whose buffer contains the least number of
messages. Figures 21 and 22 show how branches are
constructed. Figure 21 shows how a module looks in a
program segment. Figure 22 is the same program segment
with the module replicated by the operating system. The
path is designated with a circle at the branch point to
indicated data distribution for each path. The data is
placed in one of the branch paths, that path with the
smallest amount of data waiting for processing.

2. User Allowed Replication. The programmer must
allow duplication by marking a module. Only modules
marked by the programmer can be replicated by the
operating system. Not all modules can be replicated by
the operating system since nondeterminacy can be
introduced. If a module can be replicated, the programmer
must include an instruction of the form "BREAK" which
allows the operating system to temporarily halt the
module’s execution, perform the replication, and restart
the module and its replication.

80

data in

_______ /________

M O D U L E A

\ /data out

FIGURE 21
ORIGINAL

81

data in

FIGURE 22
MODULE REPLICATED

82

Programmer-marked modules are candidates for
replication by the operating system. Modules which store
data warrant special consideration. If such modules are
replicated, caution must be exercised to ensure data
integrity.

The sequential order of data supplied by a module and
its replication may not be the same as if replication did
not occur. Caution must be exercised when replicating
modules that supply data whose sequential order must be
maintained. A replicated module’s processor may execute
slower or faster than the original module’s processor.
This causes data to appear in the data supply path
relatively sooner or later than one module would have
supplied. Supplied data from replicated modules is
multiplexed at the receiving port just as any other
fanned-in data. No order preserving facility exists for
data receipt.

3. Path Modification. To replicate a module, the
operating system causes data receiving paths to branch-out
to the module and its replication. The operating system
distributes the incoming data so that each module and its
replication shares in the computing load. Figure 23 shows
a program example with modules that receive orders, check
inventory, and retain back orders. The data receiving
paths labelled "new orders" and "back orders”, paths 1 and
2 of Figure 24, show the required paths due to module

83

replication. These paths are branched-out to supply data
to the original module and its replication.

The example in Figure 23 shows a simple program
segment. Module 1 writes data to module 2 which in turn
writes data to module 1 again. Module 1 requests data
from module 3 and in turn writes data to module 3. The
program is a segment of a mail-order program shown in its
entirety in chapter 4. Module 1 is an order receiving
module, module 2 processes back orders, and module 3
stores the inventory of a mail-order house. Since module
1 manipulates, receives, and supplies data with all other
modules, it is a potential source of a data bottleneck.
Suppose the operating system determines that replication
of module 1 is required. Figure 24 shows the program
segment after replication.

Data supply paths to the module and its replication
are fanned-in at all receiving modules. Paths labelled
"back ord." and "inv. update”, paths 3 and 5 of Figure
24, show the required fan-in. The replication of a
module by the operating system is transparent to any other
module. Module replication is contingent on: 1) the
module being active, 2) sufficient resources available
to support a replicated module, and 3) programmer marked
as replicatable. A processor must be available to
activate the replicated module.

84

new orders

FIGURE 23
PROGRAM SEGMENT

85

new orders

FIGURE 24
MODULE REPLICATION

86

The paths are shown as required for proper data
transfer. Paths 1 and 2 of Figure 24 show data
distributed to the original nodule and its replication.
Paths 1 and 2 use the branch-out of data since a copy of
the data is not placed in each path as previously
described for paths that fan-out; instead, the data is
supplied to the module with the least amount of data
waiting for processing as indicated by its buffer size.
The operating system is able to distinguish between this
branch-out and programmer designed fan-out, discussed in
chapters 2 and 4, since a record of path branch-out due to
replicati on is retained in the operat ing system. Path 3
of Figure 24 shows data being merged as a result of the
replicated modules. The data is actually merged at the
port by the operating system. However, for simplicity, the
paths are shown merged near the data supply port.
Messages from multiple sources might be interleaved at the
receiving port. All data is received at the back-order
module, module 2, just as though it were supplied from one
module. But, the orders received from the two modules may
not be in the same sequence as would have occurred if
supplied from one module. The programmer determines if
this degree of indeterminancy is crucial to the execution
of the program. If so, module 1 must be marked as non­
rep licatable.

Multiple request paths emanating at a port are shown
at path 4. The satisfied request will be routed to the

87

appropriate module. The operating system retains the name
of the requesting module and routes the response to that
module. When replication takes place, the operating
system assigns a unique name to the replicated module,
thus proper routing can be accomplished by using the
module’s name. Data is merged at path 5 in the same way
data is merged at path 3.

4. System Support of Replication. Reconsider the
example shown by Figure 17 and reproduced in Figure 25.
Module "DISTRIBUTE" works by reading the splitting value
from port S and reading the data from port A. When
present, a new splitting value is read and then port A
again, and so on. If the module supplying port A is
replicated, a potential problem exists. Each module and
its replication are comprised of the same set of
instructions. If a module suppiies an EOF marker, its
replication will also supply the same marker. Any
receiving module which uses the EOF marker in its trigger
is not aware of the replication. The operating system
ensures proper execution by stripping off the extra
marker. The receiving module receives the same set of
data after the supplying module has been replicated.
Thus, if there are two modules, an original and its
replication, the first EOF marker is stripped from the
data stream. When a module is replicated more than once,
resulting in N modules performing the same function, N - 1
EOF markers are stripped from the data. The system

88

A

DISTRIBUTE
E

B C

4

FIGURE 25
ENHANCED MODULE DISTRIBUTE

89

is responsible for keeping track of replicated modules and
ensuring proper execution when replication is performed.

5. Module Reduction. The operating system is
responsible for replicating modules when needed. The
recognition that replicated modules are no longer needed
is also an operating system function. By keeping
statistics on the amount of data in the buffers associated
with the ports and the rate of data flow through the
paths, the operating system can asses the need for
replicated modules. If a module is no longer needed, the
system can dispense with the module by reversing the steps
for replication. Branched paths added during replication
are merged and the program returns to the prereplication
state.

6. Linear Growth. When modules are replicated or
deleted, one module is added or subtracted from the system
at a time. Suppose a module (1) is replicated so that
modules (2), (3) and (4) exist where (2), (3) and (4) are
the replications. If the data load indicates need for
replication of all of these modules, the operating system
creates only a fifth module, not four more modules. Since
the original module is known and each of the replications
marked as replications, the operating system creates one
new module rather than a number of new modules. After
replication, the system tests the data load to determine
if sufficient performance is achieved. The system grows

90

or shrinks linearly rather than exponentially. Generally,
a linear growth is more stable in responding to changing
computing demands.

E. TERMINAL INTERFACE.

1. General. Figure 26 shows a complete programming
environment. The terminals are interactive and correspond
with programs through the terminal interface. The
environment consists of two programs, in this example,
each consisting of modules and each performing different
tasks. Each program produces printed output and is
connected to an operating system module labelled PRINTER.
This module reflects the existence of a real device. Each
program writes data to a port, P in this example, which
represents a printer. The operating system controls
printing in the same way current operating systems handle
virtual printers. Similarly, program 2 supplies plotter
commands through port C. The system module spools the
data and routes it to the appropriate plotter. Modules
supply data to ports whose paths connect to operating
system modules representing the desired devices.
Communication with real devices is thus accomplished
through path connections to operating system ports.

Each program communicates with a user terminal
through the terminal interface. This port is designated
as A in both programs of Figure 26. Unique port names are
unnecessary since the terminal interface contains a

91

directory of program ports. The path, if connected
between a module and a port at the program boundary, as in
port A of Figure 26, transfers data in the same fashion as
if the path were connected to the ports of interior
modules. Buffers exist between the terminal interface and
the program ports. Data transfer between modules and the
terminal interface is accomplished in the same manner as
data transfer between modules within a program. When a
program module writes data to a port connected to the
terminal interface, the data is held in a buffer at the
interface until it can be processed. The concept is
similar to data transfer between modules. The data
written to a program from the terminal interface is
treated like the data which comes from another module.
The program boundary is not considered in this data
t ransfer.

The terminal interface creates a desired environment
for the user. The control modules existing in the
terminal interface can be modified to become customized
versions. The user can, by writing his own control
modules, create a personal environment.

2. Private. Semi-Private, Public Messages. When the
user establishes communication with the computer, he
provides a data supply name. This name determines the
port name that will receive the messages originating at
this terminal. The user can have one supply name active

92

FIGURE 26
COMPLETE SYSTEM ENVIRONMENT

93

at his terminal at a time, but can change the name as
necessary to establish communication with other modules.
Only module receiving ports whose names correspond to the
supply name of the terminal will receive the terminal’s
messages. The supply name determines which modules will
receive the terminal’s messages.

The user also provides a data receiving name. This
name determines which messages will be directed to the
user’s terminal. The terminal interface intercepts all
messages to determine proper routing indicated by the
terminal's data supply and data receiving names.
Messages received by a terminal may be of three types:
priviate, semi-private and public. When private messages
are being received, the terminal interface routes the
message to only one terminal. A private dialogue is
taking place between a program and the terminal. The
operating system, at the terminal interface, appends a
user name to all messages originating at a terminal. If
the program replies to a particular message, it includes
the name with the message. When the name is present, the
terminal interface routes the message to the appropriate
user. If a user has left the system, the message is
queued for delivery upon his return. Errors in data
entry, for example, are returned to the original source
through this facility.

94

Semi-private messages occur when messages of a
particular nature are transmitted. A special designation
is included with the message to cause routing to all
terminals in a common mode. For example, the notification
of depleted inventory is sent to all terminals placing
orders as identified by their data supply and receiving
names. Public messages are sent to all active terminals.
A public message contains no name. A message of "system
going down" is an example of a public message.

The user, when establishing communication with the
computer, supplies the data supply name and the data
receiving name. These two names categorize the user as a
particular type. When semi-private messages occur, the
type is checked to determine which users will receive the
message.

All three message types originate in program modules.
The message type indicates which terminal or group of
terminals receive the message. All messages originating
at a terminal are routed according to the data supply
name, thus, one or more modules receive the message.

95

F. DEVICES.

Data transfer to devices that are common to all
programs is supported. These devices are characterized by
the fact that they do not carry on a dialogue as do the
terminals since communication is generally in one
direction. Printers, plotters, and card readers are
examples of these devices. Since a dialogue is not
required, a complex interface is unnecessary. The path of
a program’s port is connected to special operating system
ports that represent these devices. Port P in Figure 26
is an example of this port. Each program in the system
writes data to be printed to a port that has been
connected to an operating system module. Data to be
printed is routed from the module to a port on the program
boundary. The operating system routes the data at port P
to the printer, retaining proper order of the data. Data
is buffered on each path connected to port P until a
special marker appears. At that time the data is given to
the printer. No data interleaving takes place on these
paths. The order of the data printed is retained. This
concept is similar to conventional spooling which takes
place in current operating systems. This communication
presents no new problems for the user. A user program
communicates with a port and the operating system provides
support for the desired facility.

96

G. OPERATING SYSTEM LEVELS.

A high-level component of the operating system is
characterized by providing general support of all programs
in the system and a lower level component of the operating
system is characterized by providing local support of
modules within a program. One instance of the high-level
operating system exists and several instances of the low-
level system, one for each module, exist. The higher
level of support includes communication with the terminal
interface and external devices. The replication of
modules is included in the higher level of support. The
instance at the higher level monitors the operation of the
complete system. Low-level support is characterized by
the operat i ons that take place in support of each
individual module. The evaluation of predicates upon data
arrival and data transfer from a port’s buffer to the
module are examples of this. Conceptually, this portion
of the operating system is distributed to each module.

The higher level of the system supports devices
outside of the program environment. Data transfer support
is an example as shown for printer and plotter modules in
Figure 26. This support is at the higher level of the
operating system since it is used by all executing
programs. The support retains data order required at the
printer or plotter receiving modules.

97

H. PROCESSOR ASSIGNMENT.

The implementation of the programming environment is
not dependent on the number of processors available. If
one processor exists, the program can be executed by
assigning the processor in turn to each module that has
its trigger satisfied. If two processors exist, each is
assigned to modules as triggers are satisfied. Only the
amount of concurrent program execution is dependent on the
number of processors available. Algorithm development can
proceed independently of the actual hardware being used to
implement the system. Consideration is given for
processor assignment to modules by the following criteria:
[24]

1) Intermodule Communication - two modules known to
communicate heavily should be assigned
processors concurrently to increase system
performance.

2) Accumulative Execution Time - a module which
commonly executes for a longer time than average
module execution time should have a higher
priority. An avoidance of bottlenecks is
possible by assigning processors to high
execution time modules.

3) Precedence Relationship - certain paths in a
program network can have a priority assigned to
them. Modules connected to the higher priority

98

paths have processors assigned before modules
with lower priority paths.

I . SUMMARY.

Messages passed between modules perform the task of:
1) satisfying activation criteria of the receiving module
and 2) carrying data so that an instance of a problem can
be solved by the program. The operating system provides
transparent support to the module. This support consists
of message switching, module suspension and activation,
module replication (with permission), terminal support
through the terminal interface, support for external
devices, and resource allocation to modules. Most of the
support remains transparent to the user. Modules are
self-contained and require no status information of the
surrounding environment for proper execution.

The operating system support is performed at two
distinct levels. A higher level of support performs a
supervisory role over the complete computing system. Data
transfer between the terminal interface and modules as
well as between the modules and devices is a service of
the higher level of support. One instance of the
operating system exists at this level. At a lower level,
the system provides support for individual modules. With
assistance of the higher level, the lower level performs
data transfer between modules’ ports. The evaluation and
support of triggers is performed at this level.

Suspension of modules is performed by the operating
system at the request of the module or by the operating
system without a request if preemption is warranted.
Demand is determined by the quantity of data messages
waiting to be processed by a module. When the module
finds that it has processed all of the available incoming
data, it writes new predicates to the operating system an
issues a "SLEEP" request which allows the module to be
suspended. The module does not leave the system, but
allows resources to be reallocated. The operating system
when it determines a module is doing little processing,
can cause a module to be suspended. The module does not
issue a "SLEEP" request, nor are new triggers given. The
complete module environment is saved. Processor reas­
signment is performed when message accumulation is
sufficient. This concept is similar to the
multiprogramming environments of today’s computers, but
depends on data presence rather than I/O waits and timer
interrupts.

With permission, the operating system is capable of
replicating a module to enhance performance. The
surrounding modules are not affected by the replication.
The operating system is capable of evaluating the load
placed on modules to determine the need for module
replication or deletion. The number of modules grows or
shrinks linearly as required by computing demands and as
resources permit.

100

The user can modify the terminal interface to create
a desired terminal environment. User modification of the
terminal interface allows the creation of an environment
suitable for each application. The computing environment
is flexible to meet the needs of a variety of users. All
messages between the user and program modules pass through
the terminal interface. Private, semi-private and public
messages are supported.

Printers, plotters and other devices are supported by
the system. The transfer of data to these devices is
convenient since the programmer includes a path to a
system port on the boundary of the program designated as
the desired device. The program boundary is necessary for
this designation, since the operating system recognizes
the port names on the program boundary as device names.

Determination of processor assignment can be
performed according to a variety of schemes, however, data
message presence conditions expressed by triggers of
suspended modules are the primary determinant. Priority
assigned to modules or paths can be used to aid in deter­
mining the binding of processors to modules.

101

IV. PROGRAMMING IMPLICATIONS

A. INTRODUCTION.

A new concept in parallel algorithm development is
being described. To reinforce the concept, a number of
programming considerations and examples are presented in
this chapter. The examples demonstrate capabilities of
the system while exemplifying the programming vehicle
design. Such features as module nesting, module replica­
tion by the programmer, the representation of files,
module testing and verification and common module examples
are used to demonstrate programming implications. The use
of common modules shows a higher level of programming, a
level seldom afforded in data flow languages. As users
become more familiar with the vehicle, more common modules
will evolve. Nesting and replication aid the application
programmer during program development by allowing modules
to contain other modules and by allowing the same module
to be used multiple times. Each feature enhances program
readability and reduces program development time.

B . REPLICATION BY THE PROGRAMMER.

The vehicle allows module replication in two
different ways. First, replication is performed by the
operating system as described in Chapter 3, Section D.

102

Module replication by the operating system improves system
performance as required by data presence. Second, a
programmer can explicitly include many instances of a
module.

Several reasons for desiring replication exist. 1)
Identical modules can perform similar functions on
distinct data items. 2) Modules are replicated to build
redundancy into the program. 3) Improved system
performance is realized as a result of replication.
Replication is accomplished by the inclusion of desired
modules in the program, connecting data supply paths and
data consuming paths in the same manner as nonreplicated
modules.

1. Identical Function Replication. Figure 27
shows module A replicated by the programmer. The program
is a segment of the sample program shown in section F on
household expenses. For example, path 1 provides expense
data for house maintenance and path 2 provides expense
data for car maintenance. The processing required is
identical in both cases so that the same module is used.
Module B performs total expense summary, hence data from
both modules is routed to module B. Only one module is
developed to perform the maintenance computations. By
including the module many times, program efficiency as
well as programmer efficiency is increased.

103

FIGURE 27
MODULE REPLICATION

104

2. Ordered Data Supply. In the example provided by
Figure 27, data is consumed by module B in the order of
arrival. Since module B is an accumulator, no problems
are encountered. A potential problem exists when the
arriving data cannot be mixed, when replication of module
A requires replication of module B. Data streams that
cannot be so mixed are called order-sensitive.

Figure 28 shows the effect of replication when an
order-sensitive data flow is involved. Module B (REP),
which is a replication of module B, is included as a
result of module A ’s replication. Data order is retained
since each module A supplies data to a distinct module B.
The operating system does not determine necessary
replications (module B) that result from replications
(module A) occurring in a program network. The programmer
must recognize the need to replicate receiving modules
upon replication of supply modules. Order-sensitivity
must be determined by the program designer.

3. Redundancy Replication. Figure 29 shows an
example of module A being replicated to module A(REP).
Modules A and A(REP) are identical and manipulate the same
data. Redundancy provides reliability and reduces the
probability of erroneous data entering computations. Data
on path 1 and path 2 is identical and fanned-out from the
supplier.

105

------ i

A (

t-------
REP)

______^/

B (REP)

FIGURE 28
MODULE DESTINATION REPLICATION

106

FIGURE 29
DATA REDUNDANCY

107

Data supplied by these two modules is merged and compared
by module B. Data reliability is enhanced by this module
replication. If data inconsistencies are recognized by
module B, corrective measures are taken as actions of that
module.

Redundancy is a programmer-designed feature included
in this application, so data synchronizing is performed
within the modules, for example, module B in Figure 29.
Redundancy is a natural extension to the vehicle design
and allows duplicative processing of critical data. By
including redundancy, not only is data integrity enhanced,
but reliability is also improved. If a processor
associated with module A should fail, the system halts
with a message indicating a discrepancy. Data checking is
lost since only module A(rep) supplies data to module B
until module A is reactivated.

4. Module Testing. As shown in Figure 29, modules
are easily replicated to enhance reliability. Redundancy,
to any level desired, can be included through replication.
As with redundancy, testing of modules can also be
included naturally within the vehicle. A new module may
be placed alongside an existing module with supply lines
fanned to each module. The corresponding data produced by
the new module can be tested without interrupting original
data processing.

Figure 30 shows an example of a new module B included
in the program. The data is copied into the new path for

108

FIGURE 30
MODULE TESTING

109

test module B by the operating system function of fan-out
already in place. Since the original module B is
undisturbed, the new test module B can be studied without
interrupting processing. The comparator module is used to
check the results of the original module and the new
module producing a report of data accuracy.

C . NESTING.

1. General. A module has been described as a unit
expressed in terms of conventional programming
instructions. A module may also be comprised of other
modules. Modules placed within a module are said to be
nested. Nesting of modules is consistent with top-down
structured program design. The vehicle developed allows
the top-down design to be included in the final program
specification. Readability and reduced development time
are enhanced by this feature.

2. Specification Of Nesting. Nested modules enter
the system as shown in Figure 31. Modules X and Y are
previously defined modules. The data descriptions
associated with module XX describe the data requirements
of ports A, B and C. These data requirements correspond
to ports D, E and H, respectively. Modules X and Y are
known to the system and are low level modules or modules
consisting of other modules.

110

FIGURE 31
NESTED MODULES

Ill

Module XX is included in program graphs as shown in
Figure 32. Associated with the module is the description
of its function, a description of data supplied and data
consumed. The descriptions are similar to those for non­
nested modules.

The outermost module is specified in the program.
The system, through the module description, includes the
nested modules provided that the nested modules have
previously been entered in the system. The outermost
level module is included in the program graph. When the
nested modules are new, the programmer must specify the
complete make-up of the module network. In general, a
module is included in a program graph by specifying the
module name and connecting paths to ports. The module
which is comprised of other modules is included in a
program similarly. The composition of the module does not
change the inclusion procedure.

Nested modules are included by the operating system
through the description of the outer module. A module is
described by supplying four components: a description of
the function performed by the module, a description of the
data supplied, a description of data consumed, and the
instructions of the module. The descriptions assist the
programmer in determining which previously developed
modules to include in the program. The instructions
direct the computer to perform the desired computations.
Bach module consisting of nested modules is given by the

112

FIGURE 32
USAGE OF MODULE

113

components: a description of the function of the module, a
description of the data supplied at each port, a
description of data consumed at each port, and a
specification of the internal structure of the module in
terms of modules, paths and ports. A list of instructions
is necessary only at the lowest level module.

The replication factor is used when a module is
repeated in a program. Modules replicated by the
programmer are used to perform the same function on
different data. The name and replication number uniquely
identify each module in the system. In Figure 33, the
module AAA is used twice. Both modules perform the same
function on different data. AAA(l) and AAA(2) uniquely
name each module so that the appropriate internal port to
external port mapping can take place. The module name XXX
is used in program networks as if it were a low level
module as in Figure 32. The description of module XXX
consists of the data consumed (ports A, B, C, and D), data
supplied (port E) the functional description, and the
structure Figure 33 depicts.

3. Activation And Replication Of Nested Modules.
Modules containing other modules are not directly
considered for activation. There is no trigger associated
with module XXX in Figure 33. The internal modules
become active due to data presence condition that satisfy
their triggers. Activation is only considered for the
lowest level modules containing program instructions.

114

FIGURE 33
NESTED MODULES

115

All modules marked by the programmer are replicatable
by the operating system. Nested modules, originally
nonreplicatable, may be replicated when nested. Suppose
BBB is a nonreplicatab1e module in Figure 33. Data
consumption and supply may allow XXX to be replicated.
The replication of XXX indirectly replicates BBB. The
replication of BBB in this context is permissible even if
BBB is marked nonreplicatable. The programmer considers
each module individually within its environment to
determine replication permission. A module at one level
that is not replicatable may become indirectly
replicatable when nested.

The nesting of modules makes programs more readable
and is consistent with top-down structured program design.
By allowing modules to contain other modules, the specifi­
cation of a program graph is simplified. Program
development time is reduced when previously developed
modules are used.

D. FILES.

Data files can exist in the programming environment
in three forms. A file can be inside a module, supported
by the operating system and connected to a module, or
exist outside of the program.

116

1. Modules As Files. A file that is inside a
module appears and performs like any other module. A
module, acting like a file, generally accepts messages
calling for alteration of the file’s content and also
responds to inquiries. The use of previous modules
described and a module acting like a file is only a small
concept change in module usage. The role of traditional
modules is to manipulate data. Data storage exists only
in support of the manipulations. Modules acting as files
primarily hold data. Realizing that technically there is
no difference between data and program, the point is one
of the role a module plays in the program graph as used by
the program designer. Data security is high for these
modules since they exist within a program. The only
access to the data is through the paths and ports
associated with the module. File maintenance is difficult
with this type file since all updates are passed through
ports.

2. Module Associated Files. Figure 34 shows a
file connected to a module. The file is fully supported
by the operating system; that is, the module supplies data
to port A and consumes data from port B. Data is read and
written by the same module. The operating system
maintains the path in the same manner as paths which exist
between modules. The module can "page" through the data
by reading from port B and writing data to be "filed" at
port A. Files stored in this way are processed

117

sequentially. An EOF marker is written into the path
marking the end of the file. The marker is used to
determine when the entire file has been examined. The
security of this file is high since the only module
capable of accessing the data is the module to which the
file is attached. Other modules must request or receive
data through other ports associated with the module, not
from the file itself. Information hiding and request
validation are performed by the module associated with the
file. File transactions must be routed through the
associated module since the file is physically stored as a
queue of messages on a path. The natural use of this
mechanism is for small or temporary files that are
processed sequentially.

3. External Files. Files may also exist outside of
a program environment. In an external file, the file
exists outside of the PROG 1 environment. Accesses to the
file are through port E as shown in Figure 35.
Traditional file support is provided by the operating
system for files of this type. Direct access, indexed
sequential, or any other access method can be supported
for this file. Modules access the file by communicating
with a specified port, port E in Figure; 35. A path has
been specified which links port E with the globally-named
system supported file. Many programs may have access to
the file, thereby reducing the level of security.

118

>

MODULE
A

FIGURE 34
MODULE ASSOCIATED FILE

119

FIGURE 35
EXTERNAL FILE

120

Figure 35 shows one program accessing the external
file. In common application, many programs will be
allowed file access. The operating system must resolve
common problems such as simultaneous updating and
accessing of data. Many traditional problems exist when
files of this type are used. Advantages are realized with
this file organization since many programs can access the
data. Data important to a variety of applications can be
held in the external file. Each program has access to the
file directly provided by the operating system.

Programs communicate with external files through
dedicated system ports. Each program wis hing to
communicate with the file will contain paths to a port
similar to port E in Figure 35. The program supplies
data to or requests data from a known port. The operating
system controls the flow of data to and from the file.
Program communication with the external file exists in the
same way communication with any internal port in the
program environment takes place. Since the operating
system is the only facility communicating directly with
the file, traditional problems of file accessing are
solved in a similar fashion as solutions in current
computing systems.

121

E. COMMON MODULES.

From the experience of programming in the described
environment, some common modules are emerging. The common
modules are generic forms that are developed for use
within many programs.

1. Keep Sorted. GENERAL DESCRIPTION: The module
is called KEEP SORTED. Its function is to maintain a
sorted file. Data received is inserted in the ordered
position within the file.

DATA DESCRIPTION: Data records are received at port
A. New records are written at port B and record retrieval
occurs at port E. Upon request, records of the entire
file are supplied through port D.

Notice, in Figure 37, that no new triggers are
written when the module’s sleep request is executed. The
initial triggers provided at module entry are used
throughout the module’s existence. The module is a
candidate for activation when its trigger is satisfied.
During each activation at ENTRY_ONE, the file is updated.
The parallel nature of the computing environment along
with the continual presence of the module allows the file
to remain current. Thus, each request for data will yield
all current records. Naturally, a more efficient but far
more complex version of this module can be crafted.

122

The concept presented in this dissertation of a new
programming vehicle for expression of parallel algorithms
is typified by the KEEP SORTED module shown in Figure 36
and described above. File updates are typical of many
computer applications. Traditional updating routines
collect data in a file in random order until a program is
released to perform a sort as typified by Figure 38. The
sort may require significant time during which the user
waits for results. In the new programming environment,
the data is supplied to the module through port A (Figure
36). Data is inserted in its proper position by reading
from port E and writing to port B. When more data appears
at port A, it is inserted in the correct place. Thus, the
KEEP SORTED module is always present and potentially
active. The data is sorted as it is collected. When a
request occurs at port D, all available sorted data is
written. Very little wait time will occur since the data
had been sorted as it arrived. The KEEP SORTED module can
be activated during slack computing time so that better
utilization of resources is possible. If it is critical
that the records be kept current, the module can be active
at all times.

The KEEP SORTED module, as applied to a file,
contrasts with sequential file updating in Figure 38.
Processing takes place as a result, of an operator
releasing the programs for execution. Problems exist when
access requests for records arrive during the updating

123

NEW DATA

NK
SORTED
OUTPUT

DATA FILE

FIGURE 36
KEEP SORTED

lO
 W

 t-
00 03

124

MODULE KEEP SORTED:
1 MODULE TRIGGER: TRIG ONE: A, E N T R Y O N E ;
2 TWO: D AND NOT A, E N T R Y T W O ;
3 MODULE PSEUDO-CODE:

ENTRY ONE:
READ FROM PORT A TO VARIABLE M E W D A T A -
IF NO DATA AT PORT E WRITE EOF TO PORT B.
READ FROM PORT E AND WRITE TO PORT B UNTIL

POSITION FOR NEW_DATA IS FOUND.
WRITE NEWDATA TO PORT B.
WRITE DATA FROM PORT E TO PORT B UNTIL EOF

IS WRITTEN.
SLEEP.

END ENTRY ONE.
12 ENTRY-TWO:
13 READ FROM PORT D. (* REMOVE THE REQUEST *)
14 READ FROM PORT E AND WRITE TO PORT D UNTIL

THE FILE IS EXHAUSTED.
15 WRITE EOF TO B.
16 SLEEP.
17 END E N T R Y T W O .
18 END MODULE KEEP SORTED.

10
11

FIGURE 37
KEEP SORTED PSEUDO-CODE

125

UPDATED RECORDS

FIGURE 38
TRADITIONAL SEQUENTIAL FILE UPDATE

126

process. Generally, the file is inaccessible during this
procedure. New records are queued, waiting for the update
process to occur. Access to new records is difficult
preceding the updating process.

The keep sorted concept overcomes the above problems.
New records are processed immediately and thus are
available when needed. By keeping the update facility
active, the version of the file is always current.

A MERGE module is also common. Figure 39 shows a use
of the merge. Ordered data streams are supplied to two
ports, A and B. Depending on a specified criteria
(numerical or lexicographical ordering, for example), the
data is merged into one ordered data stream and supplied
through port C. The module is always resident and begins
execution as indicated by data presence.

2. Merge. GENERAL DESCRIPTION: The module is
called "MERGE". Its function is to combine two ordered
data streams into a single ordered stream.

DATA DESCRIPTION: The module is activated when data
or the EOF marker is present in the paths connected to
port A and port B. When data is present in each path, the
module is a candidate for activation and a data record can
be provided to port C as determined by the order criteria
in the module. Data is consumed, one record at a time,
from the appropriate port. If the record from port A is
written to port C, the data supply port, then port A is
read next. Port B is read similarly when data from port B

127

A__v/ _____________ N
B
f

MERGE

N

c

/

FIGURE 39
MERGE

128

is written to port C. When a path is exhausted, the data
at the other port is passed to port C. Port C is the data
supply port where all output is written. The pseudo-code
is shown in Figure 40.

The module performs a common merging of two data
streams. The EOF marker is removed from the paths by the
operating sytem when the module is triggered on the EOF;
that is, the EOF marker is implicitly removed when a
predicate like EOF A is true and the corresponding entry
is taken. The modules supplying the data streams are
required to write the EOF marker in each path to separate
instances of data streams. Merge writes EOF to port C
after EOF is found at port A and port B.

The merge module captures the flavor of programming
in this environment. Merge can be activated when there is
data ready to be processed rather than wait for a complete
file to be available. By using a variety of trigger
configurations, many data presence conditions allow module
activation. Figure 41 shows the conditions present that
allow control to be passed to a particular entry point.
The lines indicate which entry point can receive control
if the condition on the line is satisfied. The trigger
determines which of the conditions are true. Rectangles
name the entry point where control is passed depending on
data presence. The comment in the rectangle tells the
action performed in the module by the entry. The diagram

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

129

MODULE MERGE:
MODULE TRIGGER: TRIG ONE: A AND B, E N T R Y O N E ;

TWO: A AND EOF B, ENTRY TWO;
THREE: EOF A AND B, ENTRY THREE;
FOUR: EOF A AND EOF B, ENTRYFOUR;

MODULE PSEUDO-CODE:
E N T R Y O N E : {Ports A and B have data}

READ PORT A INTO DATA 1
READ PORT B INTO DATA 2
GO TO NINE

END E N T R Y O N E .
ENTRYTWO: {Data at port A, EOF at port B}

READ PORT A INTO DATA 1
WRITE DATA 1 TO PORT C
SLEEP: NEW TRIGGER:

TRIG ONE: A, E N T R Y T W O ;
TWO: EOF A, E N T R Y F O U R ;

END E N T R Y T W O .
ENTRY THREE: {Data port B EOF at port A}

READ PORT B INTO DATA 2
WRITE DATA 2 TO PORT C
SLEEP: NEW TRIGGER:

TRIG ONE: B, ENTRY THREE;
TWO: EOF B, ENTRY FOUR;

END ENTRYTHREE.
E N T R Y F O U R : { EOF at port A and EOF at port B}

WRITE EOF TO PORT C
SLEEP: NEW TRIGGER:

TRIG ONE: A AND B, ENTHY ONE:
TWO: A AND EOF B, ENTRY TWO;
THREE: EOF A AND B, ENTRYTHREE;
FOUR: EOF A AND EOF B, ENTRY FOUR;

END ENTRYFOUR
E N T R Y F I V E : {Read data at port A, data in B}

READ PORT A INTO DATA 1
GO TO NINE

END ENTRY FIVE

FIGURE 40
MERGE PSEUDO-CODE

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67

130

ENTRY_SIX: {EOF at port A, no data at A,
data in data 2}

WRITE DATA 2 TO PORT C
SLEEP: NEW TRIGGER:

TRIG ONE: B, ENTRY_THREE;
TWO: EOF B, E N TRYFOUR;

END ENTRY SIX
ENTRY_SEVEN: {Data at port B, data in data 1}

READ PORT B INTO DATA 2
GO TO NINE

END ENTRY_SEVEN
ENTRYEIGHT: {EOF at port B, no data in data 2

data at A}
WRITE DATA 1 TO PORT C
SLEEP: NEW TRIGGER:

TRIG ONE: A, ENTRY TWO;
TWO: EOF A, ENTRY FOUR;

END ENTRY_EIGHT
NINE: {do the comparison}

IF DATA 1 < DATA 2 THEN BEGIN
WRITE DATA 1 TO PORT C
SLEEP: NEW TRIGGER:

TRIG ONE: A, ENTRY FIVE;
TWO: EOF A, ENTRY SIX;

END BEGIN
ELSE BEGIN

WRITE DATA 2 TO PORT C
SLEEP: NEW TRIGGER:

TRIG ONE: B, ENTRYSEVEN;
TWO: EOF B, ENTRYEIGHT;

END BEGIN
END NINE

END MERGE

FIGURE 40 (continued)
MERGE PSEUDO-CODE

131

ENTRY CONDITIONS:
ENTRY ONE :
E N T R Y T W O :
ENTRYTHREE:
ENTRY_ FOUR:
ENT R Y F I V E :
E N T R Y S I X :
ENTRY_SEVEN:
ENTRY EIGHT:

DATA AT A AND B
DATA AT A, EOF AT B
EOF AT A, DATA AT B
EOF AT A AND B
DATA AT A
EOF AT A
DATA AT B
EOF AT B

INITIAL CONDITION

FIGURE 41
MERGE LOGIC DIAGRAM

132

shows the use of triggers to determine data conditions
which activate and control data processing by the entry
point within the module. Through the use of triggers a
wide variety of data conditions can exist. The dynamic
triggers, module presence, and activation determined by
data presence is shown by the Merge module and exemplifies
the basis of this style of programming.

F. PROGRAM EXAMPLE - ORDER PROCESSING PROGRAM.
This section provides an example that can be followed

to create other program systems. The program processes
data associated with a wholesale supplier. Orders are
received, payments received, inventory levels maintained
and reports generated. Programming features such as path
fan-out, path fan-in, common module usage, duplicate
modules, multiple entry points to a module, parallelism,
triggers and request queuing are demonstrated in this
example.

GENERAL PROGRAM DESCRIPTION: The program is called
Order Processing. Merchandise orders are received,
customer accounts updated, inventory updated and reports
generated through the program network of Figure 42.

1. Customer Verification. GENERAL DESCRIPTION:
The module is called Customer Verification. Its function
is to receive new orders, check the customers standing
with the Customer Master File module and remove the
rejected orders from the system. A qualified customer

133

order is passed to other
check. New customer ord
maintenance portion of t

DATA DESCRIPTION:
receiving ports, A, C, F
E. Port A receives new o
account is not present i
is passed to Account Mai
requests the customer ma
status. Port D writes o
checks to other modules,
orders while customer ve
writes customer orders w
order not to be filled.
Figure 43 .

modul
ers ar
he pro
The mo
and d

rders.
n the
ntenan
ster r
rders

Port
ri f ica
hos e a
The p

es upon satisfaction of the
e returned to the account
gram.
dule consists of data
ata supply ports, B, G, D,

A customer order whose
Customer Master File module
ce through port B. Port C
ecord to determine account
successful in the previous
s E and F are used to hold
tion is obtained. Port G
ccount status causes the
seudo-code is shown in

2. Customer Master File. GENERAL DESCRIPTION: The
module is called Customer Master File. Its purpose is to
maintain customer records and respond to requests. Each
customer associated with the program has a record in the
module. All relevant information related to a customer’s
account is retained in the module.

DATA DESCRIPTION: Ports A and B communicate with
customer maintenance. They receive new customers and
satisfy customer inquiries, respectively. The current
state of an account is maintained in the module. Payments
and credits are credited to an account from data received

134

through port C. Data received through port D represents
charges against an account. Requests for account status
are received and supplied through port B. The pseudo-code
is shown in Figure 44.

3. Distribute. GENERAL DESCRIPTION: The module is
a common module used for receiving data of a particular
type, translating data and passing it to the receiving
modules. The module is called Distribute.

DATA DESCRIPTION: Port A is the data receiving port
and receives payments or credits. If the data is a
payment, the credit is written to port B (to pass the
payment to the bank), to port C (accumulation of payments
received by day, month, quarter and year), and to port E
(credit the appropriate account). If the data is
"returned merchandise", the inventory item is written to
port D (to update inventory), and to port E (to credit the
account for the returned merchandise). The credit is not
reflected in daily payments or to the bank since only cash
flow occurs in these paths. The module pseudo-code is in
Figure 45.

o
z

H
H

n
i

s
a

>
2

0

2
;

135

ORDER ACCOUNT RECEIPTS CREDITS

FIGURE 42
ORDER PROCESSING PROGRAM

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22

136

MODULE CUSTOMER VERIFICATION:
MODULE TRIGGER: TRIG ONE: A, ENTRY ONE;

TWO: C, E N T R Y T W O ;
MODULE PSEUDO-CODE:

ENTRY_ONE:
READ FROM PORT A TO VARIABLE N E W O R D E R .
WRITE CUSTOMER REQUEST TO PORT C.
WRITE NEWORDER TO PORT E.
SLEEP.

END ENTRY_ONE.
ENTRYTWO: {match order status & chk invent.}

READ PORT C INTO ORDERSTATUS.
READ PORT F TO NEWORDER AND WRITE PORT E

WITH NEWORDER UNTIL ORDER AGREES
WITH ORDER_STATUS.

IF ORDER_STATUS IS OK THEN WRITE NEWORDER
TO PORT D.

ELSE WRITE ORDER TO PORT G.
IF ORDER STATUS IS "NOT PRESENT" WRITE

NEWORDER TO PORT B.
SLEEP.

END ENTRY TWO.

END MODULE CUSTOMER VERIFICATION.

FIGURE 43
CUSTOMER VERIFICATION MODULE

1
2

3
4
5
6
7
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

137

MODULE CUSTOMER MASTER FILE;
MODULE TRIGGER: TRIG ONE: A, E N T R Y O N E ;

TWO: C, E N T R Y T W O ;
THREE: D, ENTRYTHREE;
FOUR: B, ENTRYFOUR;

MODULE PSEUDO-CODE:
E N T R Y O N E :

READ PORT
ADD OR DELETE A RECORD
SLEEP

END ENTRY_ONE
ENTRY TWO:

READ PORT
CREDIT THE INDICATED ACCOUNT.
SLEEP

END ENTRYTWO
ENTRY_THREE:

READ PORT
DEBIT THE INDICATED ACCOUNT.
SLEEP

END ENTRYTHREE
ENTRYFOUR:

READ PORT B.
SUPPLY PORT B WITH THE REQUESTED RECORD.
SLEEP

EMD ENTRY FOUR.
END CUSTOMER MASTER FILE

FIGURE 44
CUSTOMER MASTER FILE MODULE

138

4. Back Order Module. GENERAL DESCRIPTION: The
module, called Back Order, holds orders when insufficient
inventory exists. Back orders are retained within the
module to be filled when new inventory arrives.

DATA DESCRIPTION: Port A receives orders that cannot
be filled. Ports F and E act as a sequential file to hold
the back orders. The back orders are written to port C for
further processing upon receipt of a message at port B.
The module pseudo-code is in Figure 46.

5. Inventory. GENERAL DESCRIPTION: The module
stores the quantity of merchandise on hand. Orders are
received, inventory adjusted and requests satisfied by the
module. Parameters to determine reorder point and other
inventory details are provided by the reports environment.

DATA DESCRIPTION: Port A receives orders for
merchandise. Port B receives data added to inventory when
new orders arrive. When sufficient inventory exists, the
order is filled by writing it to port D and adjusting the
inventory level for that item. Port C responds to
requests regarding inventory status. When insufficient
inventory exists to fill an order, the order is written to
port E. As orders are filled, the amount of the order is
written to port F. The pseudo-code for the module is
given in Figure 47.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

139

MODULE DISTRIBUTE:
MODULE TRIGGER: TRIG ONE: A, ENTRY_ONE;

TWO: EOF A, ENTRY_TWO;
MODULE PSEUDO-CODE:

ENTRY_ONE:
READ PORT A.
IF DATA IS CASHCREDIT THEN DO.

WRITE CASH AMOUNT TO PORT B.
WRITE CUSTOMER NUMBER AND CASH TO

PORT E.
WRITE CASH AMOUNT TO PORT C.
END

ELSE DO. { process returns }
WRITE INVENTORY DATA TO PORT D.
WRITE CREDIT AMOUNT AND CUSTOMER

NUMBER TO PORT E.
END

SLEEP.
END ENTRY_ONE.
ENTRY_TWO:

WRITE EOF TO PORT B
WRITE EOF TO PORT C
SLEEP

END ENTRY .TWO
END MODULE DISTRIBUTE

FIGURE 45
DISTRIBUTE MODULE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

140

MODULE BACK ORDER:
MODULE TRIGGER: TRIG ONE: A, E N T R Y O N E ;

TWO: B, ENTRY_TWO;
MODULE PSEUDO-CODE:

E N T R Y O N E :
READ PORT A INTO DATA.
WRITE DATA TO PORT F.
SLEEP

END ENTRY ONE
E N T R Y T W O :

READ PORT B
WRITE AN EOF MARK TO PORT F
REPEAT UNTIL EOF OCCURS

READ PORT E INTO DATA
WRITE DATA TO PORT C

END REPEAT
SLEEP

END ENTRY_ TWO
END MODULE BACK ORDER

FIGURE 46
BACK ORDER MODULE

141

6. Construct Shipping Label. GENERAL DESCRIPTION:
The Construct Shipping Label module receives orders that
can be filled. The information received at port A is
formatted and passed to the division of shipping orders.

DATA DESCRIPTION: Port A receives orders as
generated. Format specifications are built into the
module. The order is written to port B. Pseudo-code for
the module is in Figure 48.

7. Daily Sales And Daily Pay Modules. GENERAL
DESCRIPTION: The modules are repeated and used to
accumulate the sales or payments by a customer on a daily
basis. The module receives orders from which the customer
and amount is extracted. A total is retained for each
customer. The item and quantity is used to maintain a
total number sold for each item. The module interacts
with marketing control to produce reports as desired. The
generic Keep Sorted module and Keep Totaled modules make
up the daily sales module as shown in Figure 50. The
nesting modules feature allows modules to be comprised of
modules, ports, and paths and to promote a heirarchy of
comp1ex i ty.

DATA DESCRIPTION: Port A receives the order data
which is accumulated by customer name. Port B provides
customer records on request. When the end of the period
occurs, the records are written to port C. Ports D and E
communicate with the marketing control division. Port D

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

142

MODULE INVENTORY:
MODULE TRIGGER: TRIG ONE: A, ENTRY ONE;

TWO: B, ENTRY_TWO;
THREE: C, ENTRY THREE;

MODULE PSEUDO-CODE:
ENTRY ONE:

READ PORT A INTO DATA
DETERMINE FROM THE ORDER THE REQUIRED

INVENTORY
IF CURRENT INVENTORY LEVEL FOR THE ITEM >

REQUIRED INVENTORY THEN DO:
WRITE THE ORDER TO PORT D
WRITE THE DOLLAR AMOUNT TO PORT F
END

ELSE WRITE THE ORDER TO PORT E
SLEEP

END ENTRYONE
ENTRY_TWO:

READ PORT B INTO DATA
ADJUST ITEM INVENTORY LEVEL TO REFLECT NEW

INVENTORY RECEIVED
SLEEP

END ENTRYTWO
ENTRY_THREE:

READ PORT C INTO REQUEST
WRITE REQUESTED DATA TO PORT C
SLEEP

END ENTRYTHREE
END INVENTORY MODULE

FIGURE 47
INVENTORY MODULE

1
2
3
4
5
6
7
8
g
10

li

143

MODULE CONSTRUCT SHIPPING LABEL:
MODULE TRIGGER: TRIG ONE: A, ENTRY_ONE;
MODULE PSEUDO-CODE:

ENTRY_ONE:
READ PORT A INTO ORDER
USING SHIPPING DESIGN FORMS CONVERT ORDER

TO APPROPRIATE SHIPPING LABEL.
WRITE SHIPPING LABEL TO PORT B.
SLEEP

END ENTRY_ONE.
END CONSTRUCT SHIPPING LABEL

FIGURE 48
CONSTRUCT SHIPPING LABEL MODULE

144

receives a prod causing records to be written to port C.
Records are also written to port E as requested.

MODULE DAILY SALES: The pseudo-code and triggers for
a module comprised of other modules are given by the lower
level modules. Therefore, no pseudo-code is expressed at
this point. (See Figures 50, 51, 52, 53, 54 and
55 for the modules and pseudo-code that comprise the pay
and sales modules.)

8. Account Status. GENERAL DESCRIPTION: The
module, Account Status, creates reports of a customer’s
status by merging data from ports A and B. Data supplied
has been sorted so that data is merged directly and
reports formatted within the module.

DATA DESCRIPTION: Port A receives data related to a
customer’s sales while Port B receives data related to a
customer’s payments. The two items are merged into one
report and supplied upon request to port C. The module
pseudo-code is shown in Figure 49.

9. Remaining Modules. The remaining modules in the
program are replications of modules already described.
Monthly sales, quarterly sales and yearly sales are
identical to daily sales. Marketing control provides
information to indicate when the module will emit its
information. Upon providing the information, the module
zeroes all totals. Each module performs an identical
task, passing its data to port C upon receipt of the prod

145

from marketing control. Marketing determines the time of
year for the module distinguishing a monthly sales module
from a yearly sales module, for example. A similar
discussion exists for the "pay" modules.

There exists an account status module for each
period. Upon request, data is extracted from the sales
and pay modules corresponding to the account status
requested. Current reports can be produced for each
account since data is always "up-to-date" in each of the
supplying modules. Individual reports by customer or
comprehensive reports can be produced as desired.

10. Sales And Pay - Nested Modules. The program
segment shown in Figure 50 exemplifies a number of the
programming features previously described. Nesting is
shown by modules which make up the Pay and Sales modules.
New triggers are shown in the Keep Sorted On Key module
and program execution considerations are shown by
resetting sums and initialization considerations of Keep
Sorted and Keep Totaled. Each of these features are
demonstrated within the following examples. Data request
queueing is exemplified by the Keep Sorted module. The
operating system queues the request allowing the module to
satisfy one request at a time. The system routes the
request to the appropriate path. Requests are satisfied
in order. The system queues requests and routes responses
accordingly.

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

146

MODULE ACCOUNT STATUS:
MODULE TRIGGER: TRIG ONE: A AND B, E N T R Y O N E ;

TWO: C, E N T R Y T W O ;
THREE: A AND EOF B, ENTRYTHREE;
FOUR: EOF A AND B, ENTRY_FOUR;
FIVE: EOF A AND EOF B, ENTRYFIVE;

MODULE PSEUDO-CODE:
E N T R Y O N E :

READ PORT A TO SALE
READ PORT B TO PAY
MERGE SALE AND PAY TO CREATE A REPORT
WRITE REPORT TO PORT C
SLEEP

END ENTRY_ONE
E N T R Y T W O :

READ PORT C INTO REQUEST
WRITE REQUEST TO PORT B AND TO PORT A
SLEEP

END ENTRYTWO
ENTRYTHREE:

READ PORT A TO SALE
READ PORT B
WRITE SALE TO PORT C WITH MESSAGE "NO

CUSTOMER IN PAYMENT FILE FOR THIS
SALE".

SLEEP
END ENTRY_THREE
ENTRYFOUR:

READ PORT A
READ PORT B TO PAY
WRITE PAY TO PORT C WITH MESSAGE "NO

CUSTOMER IN SALE FILE FOR THIS
PAYMENT".

SLEEP
END E N TRYFOUR:
E N TRYFIVE:

READ PORT A
READ PORT B
WRITE MESSAGE "NO CUSTOMER IN EITHER FILE

TO SATISFY REQUEST"
SLEEP

END ENTRYFIVE
END MODULE ACCOUNT STATUS

FIGURE 49
ACCOUNT STATUS MODULE

147

a. Keep Totaled By Key. GENERAL DESCRIPTION: Two
Keep Totaled by key modules are shown in Figure 50. They
are called Keep Totaled By Item and Keep Totaled By
Customer. Each performs a similar function on the data it
receives and represents the duplicate module concept. One
module totals the number of each item sold while the other
module totals the sales from each customer. Each total is
accumulated as data is received, allowing immediate
satisfaction of requests.

DATA DESCRIPTION: One data description is required
for both identical modules. Port A receives the data to
be totaled: Item and Quantity or Name and Dollar Amount.
Upon receipt of a prod at port C, all totals are written
to port B and the module total reset to zero. Port D
receives requests for individual sums by name or item as
required by Marketing Control.

b . Keep Sorted. GENERAL DESCRIPTION: The module
retains sorted records by name. Data received by the
module is Name, Item, Quantity and Amount. The module
inserts each record received in its correct sorted order
by name. All sorting is done immediately upon receipt of
the data, keeping the file current. Requests for records
are satisfied without delay since the file remains sorted.

DATA DESCRIPTION: Port A receives new records as
described. Requests are queued by the system at port B.
Each request is satisfied and routed to the appropriate
requestor by the system. The requests are for a named

148

FIGURE 50
SALES AND PAY MODULE

149

record or a complete file. The module will satisfy either
request and when all records are written, the file is
reset. The pseudo-code for Keep Sorted is in Figure 55.

c. Keep Totaled. GENERAL DESCRIPTION: The module
receives data representing an amount. Each amount is
added to produce an overall sum for the period. A running
total of sales or payments is maintained by the module.

DATA DESCRIPTION: Port B receives data in the form
of an amount. The amount is added to the total. Upon
receipt of a prod from port A, the total is written to
port C and the total reset to zero.

d. Keep Ordered. GENERAL DESCRIPTION: The module
receives records through three ports. Data received
cannot be intermixed which requires all data to be
processed from one port before processing any data from
the another port. Data received at ports A, B or C is
passed to port D in order.

DATA DESCRIPTION: The port receiving the first data
message causes module activation. Variables and triggers
ensure all processing at a port is complete before
processing the next port and all three ports have been
processed before starting over. The variables DONE A,
D O N E B and DONE_C determine which ports have already been
processed. Triggers determined by the variables ensure
correct processing of the ports.

150

e. Distribute. The distribute module nested in the
Sales Or Pay module is identical to the Distribute module
defined in Figure 42. The data received is different and
the distribution modified, but the function is
conceptually identical. A data record is received and
specific fields written to ports as required.

DATA DESCRIPTION: Port A receives records of the
form: Name, Item, Quantity and Amount. The Name and
Amount are written to port C, Item and Quantity are
written to port D and the Amount is written to port B.
Port E as previously described in Figure 42 is not used
in this application and will not be included in the trigger.

f. Keep Totaled. GENERAL DESCRIPTION: The module
keeps a current total of all sales or payments as
determined by the module’s position within the program.
That is, if the module is in the sales section, it keeps a
total of all sales. If it is in the payments section, it
keeps a total of all payments. The total is provided upon
receipt of a prod at port C which also allows the module
to reset the total to zero.

DATA DESCRIPTION: Port A receives an Amount. The
Amount is entered into the sura. Upon receipt of a prod at
port C, the total is written to port B and is reset to
zero.

1

2
3
4
5
6
7
8
9
10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25

151

MODULE KEEP TOTALED ON KEY
MODULE TRIGGER: TRIG ONE: A, ENTRYONE;
MODULE PSEUDO-CODE:
E N T R Y O N E :

READ PORT A
FIND ITEM SUM
ADD AMOUNT TO ITEM SUM

SLEEP: NEW TRIGGER:
TRIG ONE: A, E N T R Y O N E ;

TWO: C, E N T R Y T W O ;
THREE: D, ENTRYTHREE;

{this trigger organization allows data receipt before
purge or request }

END ENTRY_ONE
ENTRY_TW0:

READ PORT C
WRITE ALL RECORDS TO PORT B
RESET MODULE TO INDICATE ABSENCE OF RECORDS
SLEEP: NEW TRIGGER:

TRIG. ONE: A, E N T R Y O N E ;
END ENTRY_TWO
ENTRYTHREE:

READ PORT D INTO REQUEST
WRITE REQUESTED RECORD TO PORT D.
SLEEP

END ENTRYTHREE
END KEEP TOTALED ON KEY

FIGURE 51
KEEP TOTALED ON KEY

1

2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18

152

MODULE DISTRIBUTE (NESTED)
MODULE TRIGGER: TRIG ONE: A, ENTRY ONE;

TWO: EOF A, E N T R Y T W O ;
MODULE PSEUDO-CODE:
ENTRY_ONE:

READ PORT A INTO DATA
EXTRACT NAME AND AMOUNT AND WRITE TO PORT C
EXTRACT ITEM AND QUANTITY AND WRITE TO PORT D
EXTRACT AMOUNT AND WRITE TO PORT B
SLEEP

END ENTRYONE
E N T R Y T W O :

WRITE EOF TO PORT C
WRITE EOF TO PORT D
WRITE EOF TO PORT B
SLEEP

END ENTRY TWO
END DISTRIBUTE MODULE (NESTED)

FIGURE 52
MODULE DISTRIBUTE (NESTED)

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

153

MODULE KEEP ORDERED
MODULE TRIGGER; TRIG ONE: A, ENTRY_ONE;

TWO: B, E N T R Y T W O ;
THREE: C, ENTRY_THREE;

MODULE PSEUDO-CODE:
E N T R Y O N E :

DONE_A = TRUE
READ PORT A AND WRITE PORT D
SLEEP: NEW TRIGGER:

TRIG ONE: A, ENTRY ONE;
TWO: EOF A, ENTRY FOUR;

END ENTRYONE
E N T R Y T W O :

DONE B = TRUE
READ PORT B AND WRITE PORT D
SLEEP: NEW TRIGGER:

TRIG ONE: B, ENTRY_TWO;
TWO: EOF B, ENTRY_FOUR;

END ENTRYTWO
ENTRYTHREE:

D O N E C = TRUE
READ PORT C AND WRITE PORT D
SLEEP: NEW TRIGGER:

TRIG ONE: C, ENTRYTHREE;
TWO: EOF C, ENTRY_FOUR;

END ENTRYTHREE;
ENTRYFOUR: {one or nore ports finished}

IF NOT DONE_A THEN
IF NOT D O N E B THEN {c is done}

SLEEP: NEW TRIGGER:
TRIG ONE: A, E N T R Y O N E ;

TWO: B, ENTRY_ TWO;
ELSE IF NOT DONE_C THEN (b is done}

SLEEP: NEW TRIGGER:
TRIG ONE: A, ENTRYONE;

TWO: C, ENTRY THREE;
ELSE SLEEP: NEW TRIGGER: {b, c done}

TRIG ONE: A, E N T R Y O N E ;

FIGURE 53
KEEP ORDERED MODULE

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

154

ELSE IF NOT D O N E B THEN {a is done}
IF NOT DONE_C THEN

SLEEP: NEW TRIGGER:
TRIG ONE: B, E N T R Y T W O ;

TWO: C, ETNRY_THREE;
ELSE SLEEP: NEW TRIGGER: {a & c done}

TRIG ONE: B, E N T R Y T W O ;
ELSE IF NOT DONE_C THEN {a & b done}

SLEEP: NEW TRIGGER:
TRIG ONE: C, ENTRY_THREE;

ELSE {a, b & c done}
DONE_A = FALSE
D O N E B = FALSE
DONE_C = FALSE
SLEEP: NEW TRIGGER:

TRIG ONE: A, E N T R Y O N E ;
TWO: B, E N T R Y T W O ;
THREE: C, ENTRYTHREE;

WRITE EOF TO PORT D
END ENTRY_FOUR

END KEEP ORDERED MODULE

FIGURE 53 (continued)
KEEP ORDERED MODULE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

155

MODULE KEEP TOTALED:
MODULE TRIGGER: TRIG ONE: A, ENTRY ONE;

TWO: C, ENTRY_TWO;
MODULE PSEUDO-CODE:

ENTRY_ONE:
READ PORT A INTO DATA
ADD AMOUNT FROM DATA RECORD TO TOTAL
SLEEP

END ENTRYONE
E N T R Y T W O :

READ PORT C
WRITE ALL RECORDS TO PORT B PURGING EACH

RECORD AFTER WRITING
WHEN FINISHED WRITE EOF TO PORT B
SLEEP

END ENTRY_ TWO
END KEEP TOTALED

FIGURE 54
KEEP TOTALED

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

156

MODULE KEEP SORTED:
MODULE TRIGGER: TRIG ONE: A, ENTRYONE;

TWO: B, ENTRYTWO;
MODULE PSEUDO-CODE:

ENTRY_ONE:
READ PORT A INTO N E W D A T A .
INSERT NEWDATA INTO FILE IN SORTED ORDER
SLEEP

END ENTRYONE
ENTRY_TWO:

READ PORT B INTO REQUEST.
WRITE SATISFIED REQUEST TO PORT B.
RESET THE MODULE IF ALL RECORDS ARE

REQUESTED AND WRITE EOF.
SLEEP

END ENTRY TWO

FIGURE 55
KEEP SORTED

157

G. PROGRAM EXAMPLE - SPELLING CHECKING PROGRAM.

Many vehicle features are shown by the following
example. The program demonstrates how a simple, primarily
sequential, algorithm can be written within the model and
yield a parallel program. Parallelism is exploited at the
module level by duplicating common modules and distribu­
ting t asks as shown in Figure 56.

GENERAL PROGRAM DESCRIPTION: The program receives a
data file consisting of the document to be checked for
spelling errors. The results of the program are a list of
misspelled words and the original document with each
misspelling marked. The data dictionary modules are
capable of receiving new words as required. These modules
perform a search to match the words in the document with
the words in the dictionary. If a match is found, the
word is assumed correctly spelled. The program
distributes the document among many search modules. To
reconstruct the document, the program associates a
successive integer with each word. The document is
reconstructed by the merge modules. The strip module
removes the integers from the words of the document.

1. Count. GENERAL DESCRIPTION: The module creates
data records by associating successive integers with each
new word. The order of the original document is

158

reconstructed by using the number associated with each
word to determine correct ordering.

DATA DESCRIPTION: Port A receives words. An
internal counter assigns successive integers to each new
word. The word and its number are written to port B.

2. Distribute. GENERAL DESCRIPTION: The module is
identical to the previous distribute modules defined in
Section F. The purpose of the distribute module is to
improve computing efficiency by distributing the
processing to a number of search modules capable of
parallel execution. The exact distribution scheme is
delayed until module implementation time, but could use an
alphabetic distribution of words.

DATA DESCRIPTION: The module receives data records
through port A. As determined by the distribution
procedure, some of the records are written to port B and
some of the records to port C. A common distribution
procedure may write words beginning with A through M to
port B and N through Z to port C. The pseudo-code is in
Figure 57.

3. Search And Tally. GENERAL DESCRIPTION: The
module receives words and their associated value. These
words are compared with dictionary entries to determine
correct spellings. If a match is found, the word is
assumed correctly spelled. Additions to the dictionary
are possible. The number of references to each word in

2
 w S

2

 o a Q
 M

B

u
K

O
Q

159

D O C U M E N T O F W O R D S T O B E C H E C K E D

W O R D S M I S S P E L L I N G S

FIGURE 56
SPELLING CHECKER

MODULE COUNT:
MODULE TRIGGER: TRIG ONE: TRUE. ENTRY ONE
MODULE PSEUDO-CODE:

ENTRY ONE:
COUNTER = 0.
SLEEP: NEW TRIGGER:

TRIG ONE: A, ENTRY_TWO;
TWO: EOF A, ENTRY_THREE;

END ENTRY_ONE.
ENTRY_TWO:

COUNT = COUNT + 1
READ PORT A TO WORD
WRITE PORT B, WORD AND COUNT
SLEEP {trigger remains}

END ENTRY_TWO
ENTRY_THREE

WRITE EOF TO PORT B
SLEEP: NEW TRIGGER:

TRIG ONE: TRUE. ENTRYONE;
END ENTRY_THREE

END MODULE COUNT.

FIGURE 57
MODULE COUNT

161

the dictionary is recorded for reorganization of the
search procedure, thereby enhancing efficiency. The
stimulus causing reorganization is generated external to
the module.

DATA DESCRIPTION: Port B receives data to be
checked. New words are received through port A. Each
misspelled word is written to port C and the document,
with marked misspelled words, is written to port D. Port
G receives the stimulus to reorganize the dictionary. The
Search and Tally pseudo-code is shown in Figure 58.

4. Merge. GENERAL DESCRIPTION: Module Merge is
similar to the merge module already described in Section E
of Chapter 4. The module receives two ordered data
streams, combines them and provides an ordered stream.

Keep Sorted, Distribute and Merge modules have been
demonstrated in Section F of Chapter 4. The function of
each module is conceptually the same as previously
described, hence the pseudo-code is not presented in this
sect ion.

The program demonstrates the vehicle’s ability to
represent an algorithm without confusing the overall
design with details. Conceptual program verbs such as
merge and distribute are emphasized to promote this type
of algorithm development. By observing the program graph,
the reader is able to see the function of the program.
The details of each module are shown in the figures

162

MODULE SEARCH AND TALLY:
MODULE TRIGGER: TRIG ONE: A, ENTR Y O N E ;

TWO: B AND NOT A, ENTR Y T W O ;
THREE: G, ENTRY_THREE;
FOUR: EOF B, ENTRY_FOUR;

(NOTE: the trigger organization gives priority to port a)
MODULE PSEUDO-CODE:
ENTRY_ONE:

READ PORT A.
ADD WORD TO DICTIONARY.
SLEEP.

END ENTRY_ONE.
ENTRY_TWO:

READ PORT B.
CHECK WORD WITH DICTIONARY.
WRITE WORD TO PORT E.
IF WORD DOES NOT CHECK THEN WRITE WORD TO PORT F.
SLEEP.

END E N T R Y T W O .
ENTRYTHREE:

READ PORT G.
REORGANIZE DICTIONARY
SLEEP.

END ENTRY_THREE.
ENTRY_FOUR:

WRITE EOF TO PORT C
WRITE EOF TO PORT D

END ENTRYFOUR
END MODULE SEARCH AND TALLY.

FIGURE 58
MODULE SEARCH AND TALLY

163

containing pseudo-code. Enhanced understanding of the
program design is accomplished by removing the details to
the separate section. The program is constructed with
conceptual modules rather than explicit instructions of
the implemented procedures.

5. Strip. GENERAL DESCRIPTION: The module removes
the integers associated with each word to produce the
final checked document with marked misspellings.

DATA DESCRIPTION: Data is received at port A
containing words and integers. Each word may have a mark
associated with it. The module passes the words along to
port B producing the original document. Pseudo-code is
given in Figure 45.

MODULE STRIP
MODULE TRIGGER: TRIG ONE: A, ENTRY ONE;

TWO: EOF A, ENTRYTWO
MODULE PSEUDO-CODE:
ENTRY ONE:

READ PORT A WORD AND INTEGER
WRITE WORD TO PORT B
SLEEP

END ENTRY ONE
ENTRY TWO:

WRITE EOF TO PORT B
SLEEP

END ENTRYTWO
END MODULE STRIP

FIGURE 59
MODULE STRIP

165

H. SUMMARY.
This chapter has shown examples of program

construction within the vehicle used to describe
algorithms. Features discussed in the previous chapters
are demonstrated in this chapter. Common modules show
how programming at a higher level can be used to
demonstrate solutions to problems. Paths that fan-out are
shown in instances where data is copied into both paths.
Paths that branch out are shown where data is placed in
the path with the least amount of data waiting to be
processed. Module duplication by the program designer is
exemplified in Figure 4.27. The examples in the chapter
show how programs are constructed and how the vehicle is
used to construct algorithms. The pictorial representa­
tion and the pseudo-coding of module details allow the
design of an algorithm to be clearly shown. The goals, to
provide a vehicle for the expression of algorithms and to
present a new computing environment fostering medium­
grained parallelism and awareness of concurrency during
algorithm design, are demonstrated by these examples.

166

V. CONCLUSIONS AND FURTHER RESEARCH

A. CONCLUSION.
A new way to think about algorithm design and

computing systems has been described. The concept of
programming modules being always present is an extension
of current computing systems. Compilers and interpreters
now exist in this way. They are system-resident and
become active when a program is present. The program that
is compiled is data allowing activation of the compiler.
The proposed vehicle extends this concept to allow all
program modules to be present in the system and become
active when data is present. The artificial control
(traditional job control languages) used in activating
compilers is eliminated by allowing data presence to
activate a module.

Generality is achieved by allowing a variety of data
presence conditions to activate the module. The
envisioned vehicle allows modules to become active when
any data or a combination of data presence exists at ports
of a module. Complete files or commands from the operator
are no longer required to determine activation. Modules
become active when any data exists rather than waiting for
a complete file. The merge module in Chapter 4 is an
excellent example of this concept. Traditional merge
facilities require complete files to be present which

167

delays results. The modules in the envisioned vehicle
become active when any data is present and produce results
immediate1y .

Algorithm design is possible without a great deal of
complexity involved. Features provided by the operating
system are those required to facilitate algorithm design
without forcing concern for details. The operating sytem
supports module communication by allowing direct construc­
tion of paths between ports of modules. The module
trigger constructed by the programmer allows module
activation flexibility. Modules react to varying data
presence conditions tested by the system. These
facilities of the vehicle are designed to assist the
programmer in developing algorithms.

Increased computer performance relies on the develop­
ment of parallel systems. Much effort is taking place
toward the development of parallel architectures. To
receive the greatest benefit a comparable effort is
required to develop parallel software. The envisioned
vehicle allows design of parallel algorithms. Current
parallel systems seek to exploit parallelism from
sequentially designed algorithms. Potential parallelism
is lost within a sequential solution. By designing an
algorithm within an inherently parallel system, potential
parallelism need not be lost.

Algorithms designed within the envisioned vehicle are
presented in a graphical manner. Using graphs allows the

168

design to be understood and evaluated. Program designs
within this vehicle can be discussed and improved due to
the representation of the algorithm. After an accepted
design has been developed, the algorithm can be adapted to
one of the existing parallel architectures or the
described vehicle can be used as a guide for developing an
architecture capable of directly supporting the envisioned
system.

Chapter 4 shows examples of two applications of the
vehicle designed. Figure 42 shows a complete computing
system where modules are always resident to satisfy a
particular need. The example shows a dedicated computing
system designed for a specific application. Parallelism
is exploited within the general solution. Figure 56
shows an application of the vehicle to a specific problem.
Spelling checking or other similar functions are part of a
larger program. These examples show how the vehicle meets
the initial goals of the design. The vehicle promotes the
specification and parallel solution of problems. It also
provides a framework for envisioning a different computing
system.

Programming development is enhanced within the
vehicle by constructing solutions to problems through the
use of high-level verbs. The development of an algorithm
is no longer confused by details of the implementation and
yet the algorithm is outlined sufficiently for under­
standing .

169

The support external to the module is designed to
assist the construction of all parallel algorithms.
Specific problem details are solved inside a module. For
example, the branch-out path is required to enhance
processing efficiency. It is a form of data distribution
required of all programs. The distribute module, in
contrast, is dependent on the problem. Since different
problems require different conditions for data distribu­
tion, module development is required to solve the specific
prob1em.

An additional advantage to programs designed with
this vehicle is a built-in documentation facility. To
describe the function of existing modules, the module
designer must include a description of what the module
does. The description includes data received at each port
and data supplied by each port. By investigating the data
received and supplied and the function of the module, a
reader is able to determine the overall function of the
program. Module descriptions are used if the general
program function is not obvious from the program network
supplied.

The vehicle designed provides insight to a different
type of programming environment. The difference is not a
large step from conventional programming systems, but is a
significant step in organization. The organization allows
the development and analysis of parallel algorithms. The
goal of this research has been achieved; to promote

170

thinking about a different type of computing system, and
to provide a medium for the development and discussion of
parallel algorithms.

B. FURTHER RESEARCH.
In any data flow model, problems arise when errors

enter the system. The vehicle described requires
continued research to determine effective ways to deal
with errors. A module’s processor that creates incorrect
data requires recognition and notification of other
modules supplied by the incorrect module. Errors are also
entered into the system from modules incorrectly designed.
Not writing the EOF marker into a path is a common design
error that causes receiving modules to operate in error.
Run-away modules, those that never execute the SLEEP
statement, need to be recognized. Further development is
required to recognize both processor failures and
programmer errors.

This research concentrates on design aspects of the
vehicle external to the module. Internal considerations
are developed only to the extent required for under­
standing. Further research is needed to determine
appropriate ways of constructing modules. Some considera­
tions for the internal module development are how module
design can use operating system facilities most
efficiently. Internal module considerations also include
required extensions to current languages to allow
communication with ports. Some consideration should be

171

given to determining appropriate languages for use in the
module.

Further research is required to consider the
implementation details of how modules and complete program
networks are entered into a computing system. This
research includes the process of program modification.
Such questions as determining when a module can be added,
deleted or modified in a system which is potentially
active at all times needs consideration. Adding revised
modules to a system has been considered, but the manner in
which modifying or revising a complete network of modules
should be determined.

The vehicle can be extended to allow requests for
data to be satisfied in any order. As described, the
requests are satisfied in the order received. This
feature was included to simplify the operating system. As
programmers become familiar with the vehicle, additional
operating system features can be included.

Research related to extending the model to allow
dynamic specification of ports and paths, other than
operating system replication of modules already in place,
could be considered. Dynamically adding ports and paths
gives a program network considerable flexibility for
adapting to a variety of problem instances. Much
consideration would be necessary to determine when and how
to modify intermodular communication and the operating
system features required to allow this facility.

172

If the operating system is implemented to support the
vehicle, research is required to determine appropriate
hardware configurations. Traditional computing problems
such as deadlock, race conditions, and optimal processor
assignment algorithms need to be considered. The
functions performed by each processor need to be
considered. A processor assigned to a module may be
allowed to evaluate the trigger. When the trigger is
satisfied, the processor can be reassigned to the module.
No processor reassignment exists within this description.
Efficient processor assignment can be attained through
this concept.

More work can be done, but a vehicle for the
development of parallel algorithms is in place. The goal
of describing a new programming environment has been
attained. The operating system has been developed to the
extent that one can envision it being in place.
Programming examples show how the vehicle supports the
development of parallel algorithms. Through the use of
this vehicle software engineers can begin to leave
traditional sequential thinking about algorithm design and
begin to develop fundamentally parallel algorithms.

173

1.

2.

3.

4.

5.

6 .

7 .

8 .

9.

REFERENCES

Ackerman, William B., "Data Flow Languages," Proc.
1979 NCC. pp. 1087-1095, AFIPS Press, 1979.
Agerwala, T. and Arvind, "Data Flow Systems,"
Computer, vol. 15, pp. 10—13, (Feb., 1982).
Arvind, and J.D. Brock, "Resource Managers in
Functional Programming," Journ. of Parallel and
Distributed Computing, vol. 1, pp. 5-21, (1984).
Arvind and J.D. Brock, "Streams and Managers,"
Computation Structures Group Memo-217, MIT, 1982.
Arvind, D.E. Culler, R.A. Ianucci, V. Kathail, K.
Pingali and R.E. Thomas, "The Tagged Token Dataflow
Architecture," Laboratory for Computer Science, MIT,
Aug., 1983.
Arvind, M.L. Dertouzos and R.A. Iannucci, "A
Multiprocessor Emulation Facility," TR/302,
Laboratory for Computer Science, MIT, Oct., 1983.
Arvind and K.P. Gostelow, "The U-Interpreter,"
Computer, vol. 15, pp. 42-49, (Feb., 1982).
Arvind and R.A. Iannucci, "Two Fundamental Issues in
Multiprocessing: The Dataflow Solution," TM/241,
Laboratory for Computer Science, MIT, Sept., 1983.
Arvind, V. Kathail and K. Pingali, "Sharing of
Computation in Functional Language Implementations,”
Laboratory for Computer Science, MIT, July, 1984.

174

10. Avrunin, George S. and Jack C. Wileden, "Describing
and Analyzing Distributed Software System Designs,"
ACM Transactions on Programming Languages and
Systems, vol. 7, pp. 380-403, (July, 1985).

11. Balzer, R.M., "Ports - A Method for Dynamic
Interprogram Communication and Job Control," Proc.
1971 SJCC. pp. 485-489, AFIPS Press, 1971.

12. Boarder, J.C., "Graphical Programming for Parallel
Processing Systems," Proc. 2nd International Conf. on
Distributed Computing Systems, pp. 467-475, IEEE
Computer Society Press, 1981.

13. Davis, A.L. and R.M. Keller, "Data Flow Program
Graphs," Computer, vol. 13, pp. 26-41, (Feb., 1982).

14. DeRemer, Frank and Hans H. Kron, "Programming-in-the
Large Versus Programming-in-the-Smal1," IEEE
Transactions On Software Engineering, vol. SE-2, pp.
80-86, (June, 1976).

15. Gajski, D. D., D.A. Padna, D.J. Kuck and R. H. Kuhn,
"A Second Opinion on Data Flow Machines and
Languages," Computer, vol. 15, pp. 58-69, (Feb.,
1982).

16. Gaudiot, J. L. and M. D. Ercegovac, "Performance
Analysis of a Data-Flow Computer with Variable
Resolution Actors," Proc. 4th International Conf. on
Distributed Computing Systems, pp. 2-9, IEEE Computer
Society Press, 1984.

175

17. Gomaa, H., "A Software Design Method for Real-Time
Systems," Comm. ACM, vol. 27, pp. 938-949,
(September, 1984).

18. Gostelow, K. P. and R. E. Thomas, "A View of
Dataflow," National Computer Conference Proc.. pp.
629-636, AFIPS Press, 1979.

19. Han, S. Y., "A Language for the Specification and
Representation of Programs in a Data Flow Model of
Computation," Ph.D. Diss., UT/8319598, University of
Texas, Austin, Texas, 1983.

20. Jennings, S. F. and A. E. Oldehoeft, "An Analysis of
Program Execution on Recursive Stream-Oriented Data
Flow Architecture," The Journal of Systems and
Software, pp. 147-154, (March, 1983).

21. Kernighan, B. W. and R. Pike, The Unix Programming
Environment, Prentice-Hall, Inc., New Jersey, 1984.

22. Kramer, Jeff and Jeff Magee, "Dynamic Configuration
for Distributed Systems," IEEE Trans. Trans. Software
Eng.. vol. se-11, pp. 424-435, (April, 1985).

23. Kunii, H., "Graph Data Language: A High Level Access-
Path Oriented Language," Ph.D. Diss., UT/8319622,
University of Texas, Austin, Texas, 1983.

24. Lan, M. T., "Characterization of Intermodule
Communication and Heuristic Task Allocation for
Distributed Real-Time Systems," Ph.D. Diss.,
CSD/850012, University of California, Los Angeles,
California, 1985.

176

25. Leavenworth, B., "A Data Flow Pseudocode," Report RC
7772, IBM Corp. , Yorktown Heights, N.Y., July, 1979.

26. Lesser, Victor, Daniel Serrain, and Jeff Bonar, "PCL:
A Process-Oriented Job Control Language" Proc. First
International Conf. on Distributed Computing Systems,
pp. 315-329, IEEE Computer Society Press, 1979.

27. Matwin, S. and T. Pietrzykowski, "Prograph: A
Preliminary Report," Computer Lang., vol. 10, pp. 91-
126, (Feb., 1985).

28. McGraw, James R., "The VAL Language: Description and
Analysis," Trans, on Prog. Languages and Systems,
vol. 4, pp. 44-82, (January, 1982).

29. Mekly, L.J. and S.S. Yau, "Software Design
Representation Using Abstract Process Networks," IEEE
Trans. Software Eng., vol. se-6, pp. 420-434,
(September, 1980).

30. Moriconi, M. and D. F. Hare, "Visualizing Program
Designs Through Pegasys," Computer, vol. 18, pp. 72-
85, (Aug. 1985).

31. Morrison, J.P., "Data Stream Linkage Mechanism," IBM
Systems J ., vol. 17, pp. 383-408, (1978).

32. Organick, E. I., "Algorithms, Concurrent Processors,
and Computer Science Education," 16th Technical
Symposium on Computer Science Education, pp. 1-5,
Association for Computing Machinery, 1985.

177

33. Patnaik, L.M., P. Bhattacharya and R. Ganesh, "DFL: A
Data Flow Language," Computer Languages, vol. 9, pp.
97-106, (1984).

34. Pingali, K. and Arvind, "Efficient Demand-Driven
Evaluation (I)," TM/242, Laboratory for Computer
Science, MIT, Sept., 1983.

35. Price, W. T., Computers and Application Software. An
Introduction. Holt, Rinehart and Winston, New York,
N.Y., 1985.

36. Quinn, M. J. and N. Deo, "Parallel Algorithms and
Data Structures," CS/82-098, Computer Science
Department, Washington State University, Pullman,
Washington, Oct., 1982.

37. Richards, H., "An Overview of Arc Sasl,” Burroughs
Corporation, Austin Research Center, Austin, Texas,
June, 1984.

38. Shulits, Jon, "A Functional Shell," CU-CS-245-83,
Department of Computer Science, University of
Colorado, Boulder, 1983.

39. Smith, J. 0. Jr., "A Mechanism for Specifying
Parallel Procedures," M.S. Thesis, Department of
Computer Science, University of Missouri, Rolla,
1979.

40. Solomon, M.M. and R.A. Finkel, "The Roscoe
Distributed Operating System," Proc. 7th Symp. on
Operating Systems Principles, pp. 108-114,
Association for Computing Machinery, 1979.

178

41. Srini, V. P., "A Fault Tolerant Dataflow System,"
Computer, vol. 18, pp. 54-68, (March, 1985).

42. Srini, V. P., "An Architectural Comparison of Data
Flow Systems," Computer, vol. 19, pp. 68-88, (March,
1986).

43. Stevens, W.P., "How Data Flow Can Improve Application
Development Productivity," IBM Systems J ., vol. 21,
pp. 162-178, (1982).

44. Stone, H. S., ed., Introduction to Computer
Architecture. Science Research Associates, Inc.,
Chicago, 1980.

45. Syre, J.C., "The Data Flow Approach for MIMD
Multiprocessor Systems," Parallel Processing Systems,
ed. David J. Evans, pp. 239-273, Cambridge University
Press, 1982.

46. Thoreson, S. A. and A. E. Oldenhoeft, "Instruction
Reference Patterns in Data Flow Programs," Proc. of
the Annual ACM Conference, pp. 211-217, Association
for Computing Machinery, 1980.

47. van den Bos, Jan, Rinus Plasmeijer, and Jan Stroet,
"Process Communication Based on Input
Specifications," Trans, on Programming Languages and
Systems, vol. 3, pp. 224-250, (July, 1981).

48. Ward, Stephen A. and Robert H. Halstead, Jr., "A
Syntactic Theory of Message Passing," Journ. ACM,
vol. 27, pp. 365-383, (April, 1980).

49.

179

Watson, I. and J. Gurd, "A Practical Data Flow
Computer," Computer. vol. 15, pp. 51-57, (Feb, 1982).

50. Weng, Kung-Song, "An Abstract Implementation for a
Generalized Data Flow Language," Ph.D. Diss.,
MIT/LCS/TR-228, Laboratory for Computer Science, MIT,
1979.

180

VITA

Roger Edwin Eggen was born on May 3, 1947, in
Havre, Montana. He received his primary and secondary
education in Joplin, Montana. He received his Bachelor of
Science degree from Northern Montana College in June,
1969. He taught for six years at Malta High School,
Malta, Montana before beginning his graduate work.

He enrolled in The University of Nebraska -
Lincoln where he received his Master of Science degree in
Computer Science in 1977. He has been enrolled in the
Graduate School of the University of Missouri - Rolla
since August 1982. He held an AMOCO Research Fellowship
from 1982 through 1985 and a Teaching Assistantship from
1985 through 1986. He is a student member of the
Association for Computing Machinery and the Institute of
Electrical and Electronics Engineers. He was initiated
into the Upsilon Pi Epsilon honor society while at
Nebraska.

	A semantic basis for parallel algorithm design
	Recommended Citation

	tmp.1634564613.pdf.z0vMI

