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Abstract 

A computational intelligence approach to system-of-systems architecting is developed using multi-objective optimization.  Such 
an approach yields a set of optimal solutions (the Pareto set) which has both advantages and disadvantages.  The primary benefit 
is that a set of solutions provides a picture of the optimal solution space that a single solution cannot.  The primary difficulty is 
making use of a potentially infinite set of solutions.  Therefore, a significant part of this approach is the development of a method 
to model the solution set with a finite number of points allowing the architect to intelligently choose a subset of optimal solutions 
based on criteria outside of the given objectives.  The approach developed incorporates a meta-architecture, multi-objective 
genetic algorithm, and a corner search to identify points useful for modeling the solution space.  This approach is then applied to 
a network centric warfare problem seeking the optimum selection of twenty systems.  Finally, using the same problem, it is 
compared to a hybrid approach using single-objective optimization with a fuzzy logic assessor to demonstrate the advantage of 
multi-objective optimization. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of Stevens Institute of Technology. 

Keywords: System-of-Systems; SoS; Architecting; Genetic Algorithm; GA; Multi-Objective Optimization Problem; MOP; Multi-Objective 
Evolutionary Algorithm; MOEA; Meta-Architecture 

1. Introduction 

System architecting is the process of defining the form and underlying structure of a system to fulfill a stated need 
and a System-of-Systems (SoS) is a “supersystem” of other elements that are themselves independent operational 
systems that through interaction achieve a goal1.  Therefore, System-of-Systems architecting may be defined as the 
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process of the defining form and underlying structure of a system comprised entirely of systems.  The key difference 
being that System-of-Systems architecting becomes a combinatorial problem when the systems have common 
interfaces (e.g. Link-16).  In fact, this is the goal in joint warfighting System-of-Systems2.  This makes the 
architecting problem amenable to solution by computational means.  However, the architecting process typically 
involves optimizing trade-offs between multiple objectives where the functions modeling the objectives are not 
differentiable.  Therefore, this is a Non-Gradient Optimization (NGO) problem and a candidate for a Computational 
Intelligence (CI) approach.  Computational Intelligence is comprised of algorithms that mimic intelligent behaviors 
in order to find optimal solutions to problems and include Evolutionary Algorithms (EA), Particle Swarm 
Optimization (PSO), and Artificial Neural Networks (ANN) to name of few3. 

As an optimization problem with multiple objectives, one choice that must be made is whether to solve the 
problem as a Multi-objective Optimization Problem (MOP) or as a hybrid method that reformulates the problem as a 
Single-objective Optimization Problem (SOP).  It might seem obvious to just use a MOP solver, but this approach 
creates significant difficulties because instead of working with a single optimum, there is a now a set of optimum 
solutions (the Pareto or non-dominated set).  To avoid these difficulties, the problem can be restated as a single 
objective problem by defining a function that maps all the objectives to a single value for use in a SOP solver.  This 
may be accomplished many ways, the simplest being weighting and then summing the objectives.  A more 
sophisticated approach is to use a Fuzzy Logic System (FLS)4,5 to evaluate each solution (known as a fuzzy 
assessor)6.  The advantage to the single objective approach is that it simplifies the solution space to a single “best” 
solution.  This is also the disadvantage because it fails to provide any other information about the solution space. 

Single objective approaches find an optimum (best) solution by reducing the dimension of the objective space to a 
single dimension, thereby losing information about the structure of the solution space.  This information loss is 
avoided by using a multiple objective approach.  However, multiple objective approaches often yield large sets of 
optimum solutions, none of which are a priori better than another.  This can yield significant information about the 
solution space, but is difficult to make use of. 

A multiple objective approach is developed that makes the solution set more readily understood by choosing a 
small set of solutions from the Pareto set that provide a useful picture of the solution space.  This approach begins by 
defining a meta-architecture to represent the actual architecture.  A MOP solver is then used to generate and evolve 
architectures until a satisfactory approximation to the Pareto set is found.  Finally, a method to choose the solutions 
best representative of the optimum solution space is presented.  The MOP solver will be based upon a Genetic 
Algorithm (GA)7,8 because of their wide-spread use, effectiveness, and simplicity. 

2. Meta-Architecture 

The meta-architecture is the representation of the architecture.  It should be able to represent all possible 
architectures and, whenever possible, naturally enforce all constraints on the architecture.  The meta-architecture 
should also fit with the algorithm chosen to optimize the architecture.  For example, if a Genetic Algorithm is used 
as the optimizer, then a chromosome is the ideal meta-architecture because Genetic Algorithms use chromosomes to 
represent solutions. 

The definition of the meta-architecture, just like the actual architecture of a system, will ultimately determine the 
limits on the performance, robustness, extensibility, and simplicity of the Computation Intelligence approach taken.  
If the meta-architecture is able to represent all possible feasible solutions without representing any non-feasible 
solutions (in other words, naturally enforces all feasibility constraints), then feasibility may be assumed.  This 
simplifies the algorithm that generates and evolves the architecture greatly because it does not need to enforce 
constraints explicitly which not only complicates the algorithm, but can prevent the use of off-the-self standard 
implementations. 

While a meta-architecture may represent the architecture explicitly, it is sometimes preferable to make some 
aspects implicit.  For example, if an aspect of a solution, such as its topology, naturally follows based upon the other 
choices made, then there is no need to complicate the meta-architecture with a representation of the topology.  The 
key benefit of keeping the chromosome as small as possible is that the GA will be able to better explore and exploit 
the solution space in a given amount of time. 
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3. Architecture Generation and Evolution 

Since the meta-architecture is the representation of all possible architectures, to generate an architecture is simply 
to realize the meta-architecture with actual values.  Genetic algorithms find optimal solutions given nothing more 
than a particular representation (the meta-architecture in this case), making them is a natural choice for this 
approach.  To be clear, genetics algorithms are being employed here because they are easy to apply to this problem 
because of the met-architecture representation, not because GAs are faster or find better solutions than other 
algorithms for this type of problem.  Because GAs find optimal solutions by generating random solutions (by 
populating the meta-architecture) and evolving them according to specific operations modeled after genetic ones, 
this process can be termed architecture generation and evolution.  The GA used in this approach is the Canonical 
Genetic Algorithm (CGA)9 minimally extended to work with a set of optimal (non-dominated) solutions instead of a 
single optimal solution.  However, any Multi-objective Optimization Evolutionary Algorithm (MOEA) such as 
MOGA10, NSGA-II11, or SPEA212 could be used in its place. 

The Canonical Genetic Algorithm can be considered the basic genetic algorithm and is comprised of four main 
elements13: 

 A chromosome with a bitstring representation, 
 Proportional selection to select parents for recombination, 
 One-point crossover operator as the primary method to produce offspring, and 
 Mutation operator. 

For the purpose of this discussion the details of how the Canonical Genetic Algorithm works is not important.  
What is important is that the CGA creates an initial population of individuals.  These individuals are simply 
randomly populated chromosomes.  The fitness of each individual is then evaluated and half of the population is 
then selected to produce offspring.  The selection is random, but the chance of selection increases proportionately 
with the fitness of the individual.  After parents are chosen, offspring is produced though one point crossover which 
produces offspring by choosing a random point within the chromosome and copying one parent’s chromosome 
though that point and the other parent’s for the rest.  The mutation operator then randomly changes the value of 
individual bits in the chromosome.  The fittest individual is then recorded for this generation and the process of 
selecting parents and producing offspring is repeated until successive generations fail to produce a fitter individual. 

Back to the chromosome.  A chromosome is comprised of genes.  Each gene represents a particular attribute of 
the whole and is represented in binary using the minimum number of bits required to represent the range of possible 
values of the particular attribute.  Because the chromosome is comprised of a string of bits, it is called a bitstring 
representation.  If n represents the number of choices (values) possible, then x = ceiling(log2n), where x is the 
number of bits required for the gene.  For example, if a gene represents a system to be employed and there are 
fifteen different systems to choose from, then four bits would be required for this chromosome.  The structure of a 
chromosome is shown in Fig. 1.  
 

 

Fig. 1. The structure of a chromosome.  The chromosome is comprised of a number of genes where each gene has its required number of bits. 

There is a downside to genetic algorithms.  Genetic algorithms have several parameters that must be tuned to 
each particular problem.  These parameters are: 
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 The population size, 
 Crossover probability, 
 Mutation probability, and 
 Number of successive failed generations before termination. 

Unfortunately, tuning a genetic algorithm is more art than science and finding effective tuning parameters is 
essentially trial and error where their quality is determined by the rate of convergence and quality of solutions found 
when using them. 

4. Architecture Evaluation 

Ultimately, a solution must be evaluated.  This was glossed over in the discussion of evolving the solution 
population but will be addressed here.  For the purposes of optimization, evaluation used for comparing one solution 
to another in order to decide which one is more optimal (fitter in GA terminology).  This is easy with single 
objective optimization, but with multiple objectives it is more complex.  In order to compare two solutions with 
multiple objectives, the concept of Pareto dominance is usually employed.  Assuming a minimization problem, a 
solution  is said to dominate a solution , written , if, and only if, for all 

 and for some , .  Since a single solution generally cannot be expected to dominate all other 
solutions, an optimal solution is then considered to be any solution that is not dominated by any other solution.  The 
set of non-dominated solutions is called the Pareto set. 

The difficulty with the Pareto set is that it can be very large (effectively infinite), so it is not very useful without a 
method to identify a small subset of solutions of particular interest.  Using a corner search method14 (see Fig. 2), the 
corners of the Pareto set are identified.  In this approach (assuming a minimization problem), corners are defined to 
be the solution with the minimum value for an objective.  Hence, there is one corner for each objective.  Another 
point of interest is the ideal point.  The ideal point is not part of the Pareto set, but shows the direction in which the 
solutions would be more optimal.  Using just the corners and the solution that is nearest to the ideal, the solution set 
can be reduced to a manageable size while still retaining information about the optimal solution set as a whole. 
 

 

Fig. 2. The corner and ideal points identified in a Pareto (non-dominated) set. 

5. The Network Centric Warfare Problem 

The network centric warfare problem (see Fig. 3 for the OV-1) is an extension of the five node aerospace 
problem15,16.  The five node aerospace problem makes a good basis with which to illustrate how this computational 
intelligence approach works. In this problem, there are five nodes: a ground station, a carrier, and three others 
chosen from two types of satellites and one type of UAV.  Each type of system has an associated cost and measure 
of overall capability.  There is also a matrix of values, αij and βij, that are used for Functional Dependency Network 
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Analysis (FDNA)17.  FDNA is a measure of resilience in that it measures the degradation of each system due to the 
degradation of other systems in the network.  The parameter αij represents the strength of dependency of system type 
j on system type i while βij represents the criticality of dependency of system type j on system type i. 

 

Fig. 3. High level operational view (OV-1) for the network centric warfare problem. 

 
The network centric warfare problem is the same as the five aerospace node problem except that there are: 

 Twenty-two nodes instead of five, 
 Three types of satellites instead of two, and 
 Two types of UAVs instead of one. 

This means that there are twenty systems that must be chosen from five available options for each.  Whereas the five 
node aerospace problem’s optimum architecture is easy to obtain by a brute-force exhaustive search, the network 
centric warfare problem’s solution is not amenable to exhaustive search.  This is because the aerospace problem has 
only (2+1)5-2 = 27 possible solutions, but the network centric warfare problem has (3+2)22-2 = 95,367,431,640,625 
possible solutions.  In each case there are two fixed nodes (the aircraft carrier and the ground station) and the 
options available for the remaining nodes are the some of the available types of satellites and UAVs. 

In this problem the ground station and aircraft carrier are fixed, but we are free to choose any of five types of 
systems for each of the other twenty nodes.  Since a genetic algorithm is being employed as the optimizer, the meta-
architecture should be a chromosome.  The chromosome should represent all the feasible architectures but not any 
that are infeasible.  Since twenty systems must be chosen, the chromosome should be comprised of twenty genes 
where each gene represents a system choice.  And since there are five types of systems to choose from, each gene 
requires three bits.  Since three bits represent eight unique values and only five are valid, modulo five should be 
applied to each gene to ensure all chromosome values represent feasible solutions.  The resulting meta-architecture 
is shown in Fig. 4. 

 

Fig. 4. The chromosome representing the network centric warfare problem meta-architecture. 
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In order to evaluate the architecture, three objectives are employed.  Those objectives are cost, coverage, and 
resilience.  Cost is to be minimized while coverage and resilience are to be maximized.  The cost and coverage 
values used for the illustrating the approach are shown in Table 1.  The resilience is a calculated value and is taken 
to be the value of the final receiver in the network, which in this case is the carrier.  The values used for the strength 
of dependence, α, and the strength of criticality, β, are not shown because they must also be assigned for all possible 
interactions between the ground station and carrier as well as the five available system types, making for a rather 
unwieldy sized matrix in print.  Because the problem must be strictly either a minimization or maximization 
problem, it will be treated as a minimization problem by subtracting the coverage and resilience values from their 
respective maximum values (in this case, 100). 

     Table 1. Cost and coverage area for each type of system. 

System Cost Coverage area 

Satellite type 1 90 80 

Satellite type 2 100 90 

Satellite type 3 100 100 

UAV type 1 5 10 

UAV type 2 10 20 

 

6. Results 

The approach developed here was implemented using MATLAB® and the comparison approach was 
implemented in MATLAB® with the Fuzzy Logic ToolboxTM.  The Genetic Algorithm was set to a crossover 
probability of 0.9, a mutation probability of 0.02, and to terminate after 10 unsuccessful generations when using the 
multiple objective method and 50 when using the fuzzy assessor method.  In order to assess the resilience of a 
solution, each node is randomly degraded between 30% and 70% before the FDNA analysis is performed.  Runs 
were performed with population sizes of 100, 250, 500, 1,000, 2,000, 4,000, 6,000, 8,000, and 10,000. 

First, the total time required for each run and the average time required per generation is shown in Fig. 5.  
Because the number of generations can vary greatly depending on the given parameters, a more stable measure of 
time complexity is the time complexity of each generation.  The time complexity for the fuzzy assessor method is 
much better, , than that of the multiple objective method, .  However, as noted in the section on future 
work, there is opportunity for improvement. 
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Fig. 5. Total time required for each run and the average time required per generation scaled for visibility. 

Next, the Pareto set growth as a function of population and the Pareto set found with a population of 10,000 are 
shown in Fig. 6.  The Pareto set size grows linearly with the population size and, for this algorithm, averaged about 
60% of the population size. 
 

 

Fig. 6. (a) Pareto set size versus population size; (b) Pareto set found with a population of 10,000. 

Next, the solutions found by each method are shown in Fig. 7.  The solutions found by the fuzzy assessor method 
are perfectly in line with those found by the multiple objective method, however they are basically one point in the 
Pareto set and fail to yield as much information about the solution space as does the multiple objective method.  The 
value of reducing the Pareto set is clearly seen in the uncluttered approximation to the true Pareto set compared to 
the mass of solutions seen in Fig. 6b. 
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Fig. 7. (a) Multi-objective and fuzzy assessor method solutions for comparison; (b) Multi-objective method solutions broken-down. 

7. Conclusion 

The multiple objective computational intelligence approach demonstrated a significant improvement in the 
overall information available about the solution space.  The solutions weren’t better than those found by the fuzzy 
assessor method, but overall conveyed a picture that would allow an architect to better understand the optimal trade-
space of a problem.  The downside is that the multiple objective approach is significantly slower than the fuzzy 
assessor approach. 

8. Future Work 

This is a bare-bones approach incorporating multiple objective optimization and there is significant room for 
improvement.  A few areas include: 

 Use of potentially faster and more effective algorithms such as MOGA10, NSGA-II11, or SPEA212, 
 Use of many-objective optimization algorithms such as Corner Sort18, and 
 Improving the information extracted from the Pareto set. 
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