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Thirteenth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri U.S.A., October 17-18,1996 

EFFECT OF BRACING STIFFNESS ON BUCKLING STRENGTH OF 
COLD-FORMED STEEL COLUMNS 

Pratyoosh Gupta1, S.T. Wang2 and George E. Blandford2 

Abstract: A three-dimensional second-order analysis is used to study the effect of brace stiffhess 
on the buckling strength of cold-formed steel columns. The finite element formulation uses an 
iterative updated Lagrangian scheme to include the second-order geometric non-linear effects in 
the space frame element as well as the connection element used to model a brace. Lateral brace 
stiffhess required to achieve full bracing for a two-dimensional column, and lateral and torsional 
brace stiffhesses required for a three-dimensional cold-formed steel column are studied. The 
strength requirement for various brace components, the effects of column initial imperfections, 
and the impact of varying warping boundary conditions are also investigated. 

INTRODUCTION 

Light weight structures are becoming increasingly popular resulting in slender structural 
members. Thus, determination of the buckling behavior of the members is important. It is very 
common to provide bracing for slender members to increase their buckling capacity. It is essential 
to provide lateral and/or torsional bracing in order to provide full column bracing and to make 
sure that the deflections ofthe column are within permissible tolerances. Full bracing is defined as 
equivalent in effectiveness to an immovable lateral or torsional SUppOit. 

The effect of lateral bracing on the buckling strength of columns has been studied 
extensively by various researchers over the years. Winter (1960) presented a simple elementary 
method that permits the lower limits of strength and rigidity of lateral support in order to provide 
full bracing. Wang et al. (1980) presented the bracing requirements for locally buckled thin-walled 
columns. These authors performed bifurcation analySis and load incremental analysis for simple 
thin-walled columns to determine the restraint stifihess requirements. Wang and Nethercot (1989) 
investigated the brace stifihess requirements using a three-dimensional analysis and included the 
effects of initial imperfections and plasticity on the section. Plaut and Yang (1993, 1995) 
performed extensive parametric studies to determine the lateral brace stifihess requirements for 
mUlti-span columns with two or three spans. These authors based all their findings on two
dimensional analyses, i.e., pure flexural analysis about the weak axis for hot-rolled sections. Most 
of the authors mentioned above presented two-dimensional analyses for pure flexural buckling or 
bifurcation analysis for flexural-torsional buckling for hot-rolled steel sections. 

In this paper, a three-dimensional analysis with the inclusion of second-order geometric 
non-linear effects is used to determine the buckling loads of cold-formed steel columns with 
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various lateral and torsional brace stiffuesses. An initial imperfection is also considered for the 
various columns considered. A connection element is used to model the brace stiffuess at the 
column midheight. Effects of support warping restraint on the brace stiffuess requirements is also 
investigated. 

FINITE ELEMENT FORMULA nON OVERVIEW 

A computer program GNSFAP (Geometric Nonlinear Space Frame Analysis Program) 
based on the finite element theory developed by Chen (1990) is used in this study. Some details of 
the finite element formulation and numerical analysis are explained below, but complete details are 
provided in Chen (1990), and Chen and Blandford (1991a, b; 1993; 1995). 

This finite element formulation for the large-deformation analysis of space frame 
structures is based on second-order geometric nonlinear theory and Vlasov's theory for thin
walled beams (i.e., large displacement of members with small strains, and includes the warping 
deformation influence). Rodriguez's modified rotation vector is used to represent angular 
deformations, which avoids rotational discontinuities at the joints of deformed space frame 
structures. Two local coordinate systems are used in the finite element development: complete 
(fixed local) reference which is used to locate the initial beam position, and a cantilever bound 
reference. A displacement field defined on the cantilever bound reference experiences no 
displacement or rotation at end a (Fig. I (a») except for the warping deformation. 

Frame Element : There are eight deformation degrees of freedom for the space frame finite 
element, U~X,U~y,U~Z,e~,e~,e~,X:'X~ where subscript's' refers to the displacements at the section 

shear center; superscripts 'a' and 'b' refer to beginning and end nodes of the finite element, 
respectively; translational displacements are represented by u; Euler rotations bye; and warping 
deformation by X. An element stiffuess matrix k~ is developed using the usual finite element 

procedures discussed in Chen and Blandford (199Ia) based on a cubic interpolation for torsion 
and bending about each axis with a linear interpolation of the axial deformation. 

For the usual finite element development, the rotational displacement components ex 
(=<I>x), ey, and ez are chosen, but components ey and ez do not equal the modified rotation vector 
components <l>y and <l>z. A geometric discontinuity results at a corner node where an axial rotation 
component <l>x of one member is assembled to a bending rotation component ey or ez of another 
member. For the finite element developed by Chen and Blandford (1991a), components of the 
modified rotation vector are chosen as the rotational displacement field and the eight deformation 
degrees of freedom for the cantilever bound reference (Fig. I(a) areu~X'u~y,U~z, <I>! ,<I>~,<I>~ ,X:,X!. 
Stiffuess matrix k~ is transformed to k~ based on the modified rotation vector components and a 

cantilever bound reference. Element stiffuess matrix k~ is used for element force recovery since 

rigid body displacements are excluded. The stiffness matrix k~ can be expressed as 

(1) 
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in which transformation matrix T~ and geometric stiffiIess matrix k~~ are given in Chen and 

Blandford (l99Ia). Superscript 'f signifies frame element. Furthermore, k~ is transformed to 

.matrix k~~ based on the complete reference. The displacement field (fourteen displacement 

degrees of freedom) for the complete reference is U:x ' U:y ,U:z ' CI>: ,CI>;, CI>: ,U ~x ,U ~Y' 

U ~z' CI> ~,CI> ~,CI> ~ ,X~ ,X ~ (Fig. 1 (b» and the stiffness matrix can be written as 

(2) 

in which the details for the element geometric stiffiIess matrix k~ge and transformation matrix B~ 

are provided in Chen and Blandford (1991a). 

Flexible Connection Element: Development of the flexible connection element follows the same 
steps shown above for the frame element. Again, two different coordinate systems are used and 
various assumptions considered in the formulation are explained in Chen and Blandford (1995). 
Geometric nonlinearity is also considered in the connection element formulation. The connection 
element also has fourteen degrees of freedom (dot) as in the fi'ame element case including the 
warping dof. Second-order geometric nonlinear terms are also included as in the frame element. 
The stiffness matrix on the complete reference k:~ is represented by 

(3) 

in which k~ is the connection element stiffiIess matrix defined on the cantilever bound reference; 

B~ is the connection element displacement - deformation transformation matrix; and k;g is the 

geometric stiffness matrix on the complete reference (Chen and Blandford 1995). 

Transformation details from the shear center to an arbitrary connection point.and other 
transformations involved in the formulation are given in Chen (1990) and Chen and Blandford 
(1995). 

Structure Equations: The beam and connection element stiffiIess matrices of (2) and (3) are 
transformed fi'om the local coordinate system into the global coordinate system (Chen and 
Blandford 1991 b) and are then assembled together using the conventional direct stiffiIess analysis 
procedure. These global stiffness equations can be represented as 

(4) 

in which K is the global structure stiffiIess matrix; 8q is the global iterative change in the 
displacement vector; A. is a load multiplier; P is the reference load vector; F is balanced or 
equilibrated force vector; pre-superscript k+ I denotes current load step; and subscript i signifies 
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the iteration number. An iterative updated Lagrangian scheme is used to include second-order 
geometric nonlinear effects, i.e., the structure geometry is updated for each iteration within the 
load step based on the iterative change in displacements. Work-increment-control and modified 
Newton Raphson methods are used for the solution of the nonlinear global stiffiless equations 
presented. The details of the work-increment-control method are given in Chen and Blandford 
(1991b; 1993). 

NUMERICAL RESULTS 

Extensive verification of the computer program GNSFAP (Geometric Non-Linear Space 
Frame Analysis Program) has been performed and the results are compared with available 
analytical solutions. The numerical solutions have been found to be in good agreement with the 
analytical results. 

Two-dimensional analysis results for a thin-walled Euler column are presented for the 
purposes of studying convergence. Two and three-dimensional analysis results are presented for a 
cold-formed steel column to study the bracing requirements. The constitutive properties for all the 
columns considered in this study are: elastic modulus E = 20000 kN/cm2 and shear modulus G = 
7590 kN/cm2 • The boundary conditions for the two-dimensional columns are: at the bottom 
support displacements UI (translation in x-direction), VI (translation in y-direction), WI (translation 
in z-direction) and rotations 8x!' 8y!, XI (rotation about strong axis, torsional rotation and warping 
rotation, respectively) are zero, but rotation about weak axis 8z1 is non-zero; at the top support of 
the column the boundary conditions are that of the bottom support except that displacement along 
the length of the column V2 is non-zero. All the displacement degrees of freedom at intermediate 
nodes are restrained except the weak axis rotation (8zl), translation in weak direction (u) and 
translation along the column length (v), so that the column is forced to act as a two-dimensional 
column. The boundary conditions for three-dimensional column at the bottom support are: 
restrained against translation in all three directions, free to rotate about weak and strong axes, 
restrained against torsion but free to warp, unless specified otherwise; and the boundary 
conditions at the top support of the column are similar to that at the bottom support, except that 
it is free to translate in the longitudinal direction or along the column length (i.e., roller support). 
None of the displacement degrees of freedom at intermediate nodes (seven at each node) are 
restrained. A second-order geometric non-linear analysis is performed for all the columns. An 
asymmetric initial geometric imperfection ~x is specified for both the two- and three-dimensional 
braced columns studied. The initial deflection (imperfection) is provided by adding together a half 
sinewave ~xl with amplitude <4>1 and a full sinewave ~x2 with amplitude <4>2. These deflections are 
expressed as 

d . (21tX) = sm -- . 
02 L' (5) 

The magnitudes of the initial displacements in Eqn. (5) are small and each column can be 
considered to be almost perfect within allowable tolerances. An initial asymmetric imperfection is 
used so that the second buckling mode will be clearly identifiable. The stability or the buckling 
load Per for braced columns is defined as the load corresponding to a midheight lateral deflection 
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of twice the initial impetfection (2d(1l), as for practical design purposes it is undesirable to have 
deflections greater than 2<101 at midheight of the column (Winter 1960). 

Convergence of Finite Element Solution: A convergence study of the finite element solution is 
reported in this section and results are compared with the weak axis Euler load Py of the column. 
Properties for the thin-walled I-section (Wang et al. 1980) are: Ax (area of cross-section) = 11.61 
cm2; Iy (moment of inertia about weak axis) = 33.39 cm4; Iz (moment of inertia about strong axis) 
= 665.97 cm4; J (torsion constant) = 0.421 cm4 ; Cw (warping constant) = 3437.26 cm6; and L 
(length of column) = 254 cm. The boundary conditions and nodal restraints are that for a two
dimensional column. An initial geometric imperfection I:1x is given about the weak axis in 
accordance with Eqn. (5) to initiate bending. An amplitude of <101=0.0005L for the half sinewave 
and an amplitude of <102=0.0001L for the full sinewave is used in Eqn. (5). Since the column for 
this case is not braced, the column stability load Pcr is defined to be the load at which the tangent 
stiffness is reduced to 10-8 the elastic tangent stiffness. 

Fig. 2 shows the buckling load ratio versus an increasing number of elements used to 
discretize the column. The Euler load of this colunm is 102.180 kN. In Fig. 2 the stability load Pcr 
is non-dimensionalized with respect to the weak axis Euler load Py. Convergence is obtained with 
an eight element discretization. It is seen that even with six elements, the ratio Pc,/Py is 0.963 
which is very close to the ratio of 0.959 for an eight element discretization. The converged load is 
smaller in value as compared to the Euler load due to the inclusion of second-order geometric 
nonlinear effects in the present analysis. An eight element discretization is used for all the 
subsequent column analyses. 

Lateral Brace Stiffness/Strength Requirement for Two-Dimensional Column: The effect of 
lateral bracing provided at midheight on the buckling strength of a column is studied. A cold
formed I-section (C4x2.25xO.l05) is considered from the Cold-Formed Design Manual (1987) 
which consists of two channel sections back to back. Properties for this section are: Ax = 3.28 
cm2; Iy = 2.39 cm4; Iz = 26.47 cm4; J = 0.078 cm4; Cw = 23.44 cm6; and L (length of column) = 64 
cm. The boundary conditions and nodal restraints are that of a two-dimensional column. An initial 
geometric impetfection (1:1.) is given about the weak axis in accordance with Eqn. (5) to initiate 
bending. An amplitude of <10 I=LI 1 000 for the half sinewave and an amplitude of <102= LllOOOO for 
the full sinewave are used in Eqn. (5). A concentrated force is applied on the top of the colunm. 
The lateral brace (with stiffness Km or non-dimensionalized stiffness Sx) at midheight is modeled 
using a flexible connection element. The non-dimensionalized brace stiffness is defined as 

S = . (6) 

Geometric non-linearity in the connection element is also considered. The lateral brace stiffness is 
adjusted by varying the translational stiffness of the connection element (Km). All the degrees of 
freedom (dot) of the connection element except the translational dof are slaved to the midheight 
node of the column. 
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Fig. 3 shows the load-displacement curve for the lateral displacements at the midheight of 
the column at the brace location for a brace stiffness of Sx = 27.33 at which the column buckles 
into the second mode, as shown in Fig. 3. 

Fig. 4 shows the stability load ratios, i.e., Pc/Py, with varying lateral brace stiffness for the 
two-dimensional column. It is seen that Sx = 27.33 yields a stability load of approximately 4Py, 
i.e., the second buckling mode is encountered. Hence, full bracing is achieved for this column. 
Fig. 5 shows the axial force in the brace with increasing lateral brace stiffness. It is observed that 
the maximum strength required for the brace is approximately 5.5 % of the weak axis Euler 
buckling load. Deflected shapes of the column about the weak axis for different values of lateral 
brace stiffness are shown in Fig. 6. It is observed that the second flexural buckling mode occurs at 
a lateral brace stiffness of Sx = 27.33. 

Torsional Brace Stiffness Requirement for a Three-Dimensional Column : The three
dimensional column consists of the same cold-formed I-section (C4x2.25xO.105) as that 
considered for the two-dimensional case. Boundary conditions and nodal restraints are that of the 
three-dimensional column. Initial imperfections are provided about both the strong and weak axes 
ofthe column in accordance with Eqn. (5) with amplitudes of do1=Lll 000 and do2= Lll 0000. Such 
imperfections lead to a small initial twist in the column. The full lateral brace stiffness of Sx = 28 is 
assumed for this column which is slightly higher than the stiffness determined from the two
dimensional analysis (i.e., Sx = 27.33). Again, a flexible connection element is used to model the 
torsional stiffness of the brace (Kt.ey) to the column at midheight. The non-dimensionalized 
torsional brace stiffness (Say) is expressed as 

(7) 

where J = torsion constant of the column. 

Fig. 7 shows the non-dimensionalized stability loads of the column with increasing 
torsional stiffness of the brace at midheight. It is observed that if Say = 0, torsional buckling with 
Pcr = 1.6Py occurs, which is very close to the theoretical value of the column torsional buckling 
load of 1. 6 7P y computed from Timoshenko and Gere (1961). It is seen that a torsional brace 
stiffness of Say = 550 eliminates the torsional buckling mode and forces the column back into the 
second flexural buckling mode about the weak axis. Fig. 8 shows the bending strength required 
(23 kN-cm) for the brace provided for the three-dimensional column. 

Effects of Warping Restraint at Supports on Torsional Brace Stiffness Requirement : 
Effects of various warping end conditions of the column are studied. The three-dimensional 
column considered in the previous section is used. The warping degrees of freedom were not 
restrained (warping free or warping fixity factor = 0.0; Blandford 1994) in the previous section at 
the supports. Two different cases are considered in this study. In the first case, the warping fixity 
factor for the supports is considered to be 0.5 and in the second case, the warping is fully 
restrained (warping fixed or warping fixity factor = 1.0) at the supports. A flexible connection 
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element is used at each support of the column to model the varying warping stiffnesses. In both 
cases, a full lateral brace stiffness of Sx = 28 is provided. It is seen from Fig. 9 that the torsional 
brace stiffness requirement reduces with increasing warping fixity. A torsional brace stiffness of 
SOy = 400 for the first case leads to the second flexural buckling mode and it is observed that no 
torsional brace stiffness is required if the column ends are fully restrained against warping, as is 
considered in the second case. 

SUMMARY AND CONCLUSIONS 

A finite element formulation for large-deformation analysis of space frame structures 
based on second-order geometric nonlinear theory (large displacement of members with small 
strains) and iterative updated Lagrangian geometry corrections has been used to perform analyses 
of columns with a midheight brace. A flexible connection element included in the program is used 
to model the lateral and torsional brace of each column. 

The lateral brace stiffness required to provide an effective brace for the column to buckle 
into the second mode has been evaluated when the column is restricted to pure flexural bending 
about the weak axis. It has been shown by means of space frame analysis capabilities that a very 
slight initial torque to the column (with warping free at both ends of the column) can lead to 
torsional buckling rather than the anticipated flexural buckling, even though full lateral brace 
stiffness is provided to the column. The buckling load becomes very small, i.e., about 1.6 times of 
the Euler load. In such a case, it is essential to provide torsional and translational brace stiffnesses. 
It is seen from the results presented that a non-dimensionalized torsional stiffness of about SOy = 
550 (i.e., 550 times GJIL of the column) is required to force the column into the second flexural 
buckling mode. The effect of warping restraint at the ends of the column has a large impact on the 
torsional brace stiffness requirements. It has been shown that no torsional brace is required when 
the column supports are fully restrained against warping. 
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