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Abstract –An integral form of the variational nodal method is formulated, implemented, and tested. The
method combines an integral transport treatment of the even-parity flux within the spatial node with an
odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The re-
sponse matrices that result from this formulation are compatible with those in the VARIANT code at
Argonne National Laboratory. Spatial discretization within each node allows for accurate treatment of
homogeneous or heterogeneous node geometries. The integral method is implemented in Cartesian x-y
geometry and applied to three benchmark problems. The method’s accuracy is compared to that of the
standard spherical harmonic formulation of the variational nodal method, and the CPU and memory
requirements of the two approaches are compared and contrasted. In general, for calculations requiring
higher-order angular approximations, the integral method yields solutions with comparable accuracy
while requiring substantially less CPU time and memory than the spherical harmonics approach.

I. INTRODUCTION

Diffusion calculations based on nodal methods have
long been a mainstay for performing whole-core ther-
mal reactor analysis. Building on their success, nodal
transport methods have been developed to treat fast re-
actor cores in which steeper flux gradients and in-
creased leakage resulted in unacceptable errors in
diffusion theory.1–3 In both diffusion and transport meth-
ods, standard practice has been to homogenize cross

sections and obtain response matrices for fuel assembly–
sized nodal volumes. Experience with the variational
nodal method implemented in the VARIANT code at
Argonne National Laboratory, however, has indicated
that refining the angular approximation in whole-core
transport calculations beyond aP5 spherical harmonic
approximation provides only marginal improvements in
accuracy when fuel assembly homogenization has been
employed.4,5 Other than increasing the number of en-
ergy groups, further refinement of the phase-space treat-
ment of the Boltzmann transport equation requires more
explicit representation of the spatial flux dependence*E-mail: masmith@ra.anl.gov
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within the fuel assemblies. Such refinements may be
achieved by using heterogeneous node formulations~i.e.,
nodes containing cross-section discontinuities!, using
smaller node sizes, or a combination of both.

The treatment of heterogeneous nodes within the vari-
ational nodal framework thus far has been carried out in
two separate approaches. In the first, higher-order poly-
nomial trial functions were employed, and cross-section
discontinuities were handled by precise spatial integra-
tion of the material heterogeneities.6 In the second ap-
proach, a finite element approximation was employed,
and cross-section discontinuities were allowed at finite
element interfaces. Since each spatial node in VARI-
ANT may itself be considered a hybrid finite element,
the implementation of the finite element approximation
within each node is referred to as the subelement form of
the variational nodal method.7–9

To date, the subelement formulation has been imple-
mented in two ways. In the first,7 the fuel assembly is re-
tained as the node size, and square subelements are used
to represent individual homogenized fuel pin cells within
each fuel assembly. In the second,8,9 the node size is re-
duced to the size of a single fuel pin cell, and triangular
finite elements are used to represent the fuel-coolant in-
terface explicitly. Consistency in the level of phase-space
approximation requires the use of finer energy group struc-
tures and higher-order angular approximations when fuel-
coolant homogenization is eliminated. For example,
sphericalharmonicapproximationsashighasP21havebeen
required to obtain close agreement with reference Monte
Carlo solutions for lattices containing heterogeneous MOX
pin cells.4 With large problem geometries, the high levels
of refinement in space-angle approximations frequently
lead to prohibitive CPU time and memory requirements.8,9

In this work we formulate an integral form of the
variational nodal method that offers an alternative treat-
ment of the angular variables for problems in which very
refined angular approximations are required. The new
formulation draws on earlier work10 in which an integral
transport method was applied to the even-parity trans-
port equation. Now, however, we combine the integral
treatment of the even-parity flux within the node with
odd-parity spherical harmonic expansions of the La-
grange multipliers along the node interfaces. This inte-
gral approach can be employed in combination with either
the orthogonal polynomial or finite subelement spatial
discretization of the even-parity flux and leads to re-
sponse matrices that are compatible with the VARIANT
code.

In Sec. II we provide the details of the new formu-
lation. In Sec. III we apply the method to three two-
dimensional benchmark problems. The first is a
fixed-source deep-penetration problem while the sec-
ond is a three-region criticality problem. Both are treated
using homogeneous nodes with orthogonal polynomial
trial functions. The third problem is an Organisation of
Economic Co-operation and Development~OECD! small-

core mixed-oxide~MOX ! benchmark, the heterogeneit-
ies of which are treated using the finite subelement
formulation. For each of the three problems, the accu-
racy of the integral method is compared to that of the
standard spherical harmonics formulation of the varia-
tional nodal method. Additionally, CPU and memory
requirements of the two angular treatments are com-
pared. We conclude in Sec. IV with a brief discussion
of future research using the new formulation.

II. THEORY

The within-group formulation for the integral trans-
port approach is derived from the same functional used
in earlier forms of the variational nodal method.3,4,7,9,11

After decomposing the problem domain into subdomains
Vv ~called nodes!, the functional may be written as a
superposition of nodal contributions:

F @c1,c2# 5 (
v

Fv @c1,c2# , ~1!

with

Fv @c1,c2# 5 E
v
dVHE dV@St

21~ ZV{ ;¹c1!2 1 St c
12

#

2 Ssf2 2 2fSJ
1 2(

g
E

Gg

dGE dV [ng{ ZVc1cg
2 . ~2!

Each node is bounded by an interfaceG broken intog
surfaces,Gg , each with an outward normal[ng . The even-
and odd-parity fluxes are denoted byc6~ ?r, ZV!, the sca-
lar flux by f~ ?r !, and the group source byS~ ?r !, where ?r is
the spatial coordinate vector andZV is the direction of
neutron travel. The total and within-group scattering cross
sections areSt ~ ?r ! andSs~ ?r !, and isotropic scattering and
sources are assumed. The surface terms containc2~ ?r, ZV!,
the odd-parity Lagrange multiplier that imposes continu-
ity conditions across nodal interfaces.

Within each node the even-parity flux is approxi-
mated by a vectorf ~ ?r ! of known spatial trial functions
and a vector of coefficients,z~ ZV!, that is a function of
angle:

c1~ ?r, ZV! 5 f T~ ?r !z~ ZV! . ~3!

The scalar flux is thus approximated by

f~ ?r ! 5 f T~ ?r !f , ~4!

where

f 5 E dV z~ ZV! . ~5!
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The Lagrange multiplier along each nodal interfaceGg is expanded in odd-parity spherical harmonicskg~ ZV! and
spatial trial functionshg~ ?r !:

c2~ ?r, ZV! 5 kg
T~ ZV! J hg

T~ ?r !xg , ?r [ Gv , ~6!

whereJ indicates Kronecker tensor multiplication andxg is the vector of unknown coefficients.
For the spatial distribution of the even-parity flux,f ~ ?r !, either the orthogonal polynomial representation or the

finite element approximation may be used. The interface trial functionshg~ ?r ! are taken to be the same orthogonal
polynomials as those employed in the VARIANT code. A point of departure between the spherical harmonic formu-
lation in VARIANT and the new integral formulation is in the definition ofkg~ ZV!. For two-dimensional geometries,
the integral formulation utilizes a complete set of odd-parity spherical harmonics through orderN, while the spherical
harmonics approach deletes~N 1 1!02 odd-parity terms. Both formulations are defined such that they satisfy Rumy-
antsev interface conditions11 as required for a nodal spherical harmonic method.

Inserting Eqs.~3!, ~4!, and~6! into Eq.~2! yields the angularly dependent functional

Fv @z,x# 5 E dVFzT~ ZV!A ~ ZV!z~ ZV! 2 2fTFsf 2 2fTs1 2(
g

zT~ ZV!Eg~ ZV!xgG , ~7!

where

A ~ ZV! 5 (
K

(
L

VKVLPK, L 1 Ft ~8!

Eg~ ZV! 5 ZV{ [ng kg
T~ ZV! J Dg ~9!

VK,VL 5 direction cosines ofZV.

The arrays of spatial matrices and the spatial source ap-
pearing in Eqs.~7!, ~8!, and~9! are given by

Pi, j
K, L 5 E dV@¹K fi ~ ?r !#

1

St ~ ?r !
@¹L fj ~ ?r !# , ~10!

Fx, i, j 5E dV fi ~ ?r !Sx~ ?r ! fj ~ ?r ! , ~11!

Dg, i, j 5E
g

dG fi ~ ?r !hg, j ~ ?r ! , ~12!

si 5E dV fi ~ ?r !S~ ?r ! , ~13!

and

¹K 5 ]0]x ~K 5 1! and]0]y ~K 5 2! .

We require the functional in Eq.~7! to be stationary
with respect to arbitrary variations in the vectorz~V!.
The result is the set of equations,

A ~ ZV!z~ ZV! 2 Fsf 2 s1 (
g

Eg~ ZV!xg 5 0 , ~14!

which can be solved forz~ ZV! to obtain

z~ ZV! 5 A21~ ZV!Fsf 1 A21~ ZV!s

2 (
g

A21~ ZV!Eg~ ZV!xg . ~15!

We next integrate Eq.~15! over the angular domain and
make use of the definition of the scalar flux in Eq.~5! to
arrive at

f 5 HFsf 1 Hs 2 (
g

M g xg , ~16!

where

H 5 E dV A21~ ZV! ~17!

and

M g 5E dV A21~ ZV!Eg~ ZV! . ~18!

Solving Eq.~16! for f yields the scalar flux distribution
within the node,

f 5 ZHs 2 (
g

ZM g xg , ~19!

where

Z 5 ~I 2 HFs!
21 ~20!

I 5 identity matrix.

We use Eq.~19! to eliminate the scalar flux in Eq.~15!
and obtain a relation for the even-parity flux explicitly in
terms of the group sources and Lagrange multiplier co-
efficients,xg :

z~ ZV! 5 @A21~ ZV!~FsZH 1 I !#s

2 (
g

@A21~ ZV!~FsZM g 1 Eg~ ZV!!#xg . ~21!

To complete the derivation, we utilize the continuity con-
ditions at the interface imposed by the Lagrange multi-
pliers. We first insert Eq.~7!, the reduced nodal functional,
into Eq.~1!. Requiring this new equation to be stationary
with respect to variations inxg yields the condition that
the even-parity flux moments defined by
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Cg 5 E dV Eg
T~ ZV!z~ ZV! ~22!

be continuous across nodal interfaces. Upon substitution
of Eq. ~21! into Eq. ~22!, we obtain Eq.~23!, which
expresses the even-parity interface moments in terms of
the group source and Lagrange multiplier,xg :

Cg 5 M g
T~FsZH 1 I !s2 (

g '
~M g

TFsZM g ' 1 L g,g ' !xg ' ,

~23!

where

L g,g ' 5 E dV Eg
T~ ZV!A21~ ZV!Eg ' ~ ZV! . ~24!

We simplify Eq. ~23! to a more compact form that is
analogous to the spherical harmonics form implemented
in VARIANT ~Ref. 4!:

Cg 5 Cg s2 (
g '

Gg,g 'xg ' , ~25!

Cg 5 M g
T~FsZH 1 I ! , ~26!

and

Gg,g ' 5 M g
TFsZM g ' 1 L g,g ' . ~27!

Utilizing partitioned matrix notation, we may write the
set of equations given by Eq.~25! as

C 5 Cs2 Gx , ~28!

where theC andx vectors now include all of the node
interfaces. To express this result in conventional re-
sponse matrix notation, we introduce the partial current-
like variables

j6 5 4
12C 6 2

12x ~29!

along the node interfaces. Combining Eqs.~28! and~29!
leads to the response matrix equation

j 1 5 Bs1 Rj 2 , ~30!

where

R 5 ~2
12G 1 I !21~2

12G 2 I ! ~31!

and

B 5 ~ 2
12G 1 I !21~2

12C! . ~32!

A distinct characteristic of the forgoing derivation is the
appearance ofA21~ ZV! in the integrands of Eqs.~17!,
~18!, and ~24!. Since the analytic inversion ofA ~ ZV! is
impractical, we evaluate the angular integrals numeri-
cally using a standard Gaussian quadrature integration
scheme. Specifically, we implement a Legendre quadra-
ture in the polar direction and a Chebychev quadrature in
the azimuthal direction. Usingn order Legendre and Che-
bychev approximations over an octant of the unit sphere,

we obtain a “square” Legendre-Chebychev~SLC! prod-
uct quadrature: an SLCn quadrature. For odd-parity in-
terface expansions of orderN, a minimum SLCN13
quadrature is required to produce accurate integrals. In
Sec. III an SLC16 quadrature is used for all three bench-
marks, resulting in 128 integration points.

III. RESULTS

Response matrix equations based on the integral
formulation derived in Sec. II have been implemented
as two sets of modifications of the VARIANT code.
Each replaces the even-parity spherical harmonics ex-
pansion with the integral approach, but retains the ex-
isting iterative solution algorithms as well as most of
the data structures and other code characteristics. In the
first, VARIANT-I, the integral method is applied using
the orthogonal spatial polynomial trial functions al-
ready available in VARIANT; it is thus suitable for
problems with homogeneous nodes. In the second,
VARIANT-ISE, the integral method is employed in con-
junction with the finite subelement~SE! method of ear-
lier work.9

We solve three benchmark problems inx-y geom-
etry to examine the capabilities of the integral method.
The first benchmark, due to Azmy,12 is a fixed-source
deep-penetration problem, and the second is a critical-
ity calculation specified by Wagner.13 Since both of these
problems utilize homogeneous nodes, we compare
VARIANT-I to the production form of VARIANT. We
employ sixth-order spatial polynomial approximations
for the even-parity flux and group source, and quadratic
Lagrange multipliers at the node interfaces in all calcu-
lations for both benchmarks, thereby eliminating differ-
ences caused by the spatial approximations. The third
problem is the two-dimensional form of the recent
OECD0Nuclear Energy Agency~NEA! MOX core
benchmark.14 For it, we compare results obtained using
VARIANT-SE and VARIANT-ISE to a reference Monte
Carlo solution. For the MOX benchmark we define each
node to correspond to a single pin cell and implement
identical finite element and Lagrange multiplier approx-
imations to eliminate discrepancies caused by different
spatial treatments.9 We first examine the accuracy of
the results for the three benchmarks and then discuss
the impact of the integral formulation on CPU times
and memory requirements.

III.A. One-Group Fixed-Source Benchmark

The layout for the Azmy benchmark problem12 is
shown in Fig. 1, while the cross-section and source data
are given in Table I. The computational objective speci-
fied for this benchmark is to obtain the scalar flux dis-
tribution along the line~9.84375,y! as indicated in Fig. 1.
The flux solutions are shown in Fig. 2 for both VARIANT
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and VARIANT-I with P1, P3, andP11 interface approxi-
mations. Also included in Fig. 2 are reproductions of the
TWODANT ~Ref. 15! S4 and S16 angular approxima-
tions using the mesh specified in Ref. 12. The VARI-
ANT P11solution is taken to be the reference since further
refinement of the space-angle approximation yielded neg-
ligible improvement in the solution. Although theP1 so-
lutions of both VARIANT and VARIANT-I display large
errors, the VARIANT-I flux distribution is significantly
more accurate than that of VARIANT. Likewise, while
substantial error remains in the VARIANTP3 solution,
the VARIANT-I P3 solution is nearly indistinguishable
from the referenceP11 solution. Thus, for fixed-source
problems of this nature, replacing the standardPN nodal
method with the integral treatment offers significant po-
tential. The TWODANT solutions clearly display the ray
effect phenomena common to discrete ordinate methods
for problems such as this. With a higher-order angular
quadrature in TWODANT, one would expect the solu-
tion to converge closer to that of the VARIANT reference.

III.B. Two-Group Eigenvalue Benchmark

The configuration for the Wagner two-group criti-
cality benchmark14 is given in Fig. 3 and the cross
sections in Table II. The benchmark specifies reflected
boundary conditions on all surfaces, hereafter called
problem 1. To accentuate transport effects, we also

Fig. 1. Azmy benchmark geometry.

TABLE I

Cross Section and Source Data for the AZMY Benchmark

Region Total Absorption Scattering
Isotropic
Source

1 1.0 0.5 0.5 1.0
2 2.0 1.9 0.1 0.0

Fig. 2. Azmy benchmark VARIANT, VARIANT-ISE, and TWODANT solutions.
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include results for a modified configuration~prob-
lem 2! with vacuum boundary conditions at the top and
right, and reflected boundary conditions at the bottom
and left. A P17, eighth-order spatial flux and source,

and cubic spatial leakage approximation were imple-
mented in VARIANT to obtain reference eigenvalue so-
lutions of 0.901504 for problem 1 and 0.645602 for
problem 2. Table III provides percent error data for
the VARIANT and VARIANT-I codes using a sixth-
order spatial flux and source approximation and qua-
dratic spatial leakage. The TWODANT solutions are for
SN11 quadratures whereN represents the angular order
of the PN approximation used~i.e., S2, S4, S6, S8, . . .!.
Table III indicates clear convergence toward the refer-
ence solution for all three transport codes. However,
there appears to be some residual error remaining in the
solutions, and additional calculations were performed
using TWODANT and VARIANT-I to resolve these dis-
crepancies. For VARIANT-I, refinements of the space-
angle approximations cut the error for problems 1 and 2
to 0.0040 and 0.0316%, respectively, but did not ac-
count fully for the discrepancies seen. Refinements of
the spatial mesh and angular quadrature in TWODANT
actually increased the error for problems 1 and 2 to
0.0105 and 0.0362%, respectively. Given that further
refinements of the space-angle variables do not account
for the remaining discrepancies, one must attribute the
small remaining differences to the nuances between
formulations.

III.C. Seven-Group MOX
Small-Core Benchmark

The seven-group MOX small-core problem speci-
fied by OECD0NEA ~Ref. 14! is shown in Fig. 4. Each
pin is 1.08 cm in diameter, each square is 1.26 cm in
length, and the moderator region is 21.42 cm thick.
Seven-group cross sections for each of the composi-
tions defined in Fig. 4 were included in the benchmark
specification. A reference solution obtained with an
MCNP ~Ref. 16! multigroup Monte Carlo calculation
yields an eigenvalue of 1.18655, with a 68% confi-
dence interval of60.0034%, and estimates of all of the
pin powers with associated statistical errors.

Fig. 3. Two-group benchmark geometry.

TABLE II

Two-Group Benchmark Cross Sections

Fuel
Composition

Steel
Composition

Water
Composition

Cross
Section 1 2 1 2 1 2

Sa 0.01 0.07 0.003 0.11 0.001 0.03
xSf 0.006 0.1 0.0 0.0 0.0 0.0
St 0.22 0.8 0.53 0.94 0.701 2.0
S1x2 0.017 0.001 0.05
Ss 0.193 0.73 0.526 0.83 0.65 1.97
x 1.0 0.0

TABLE III

Eigenvalue Percent Error Data for VARIANT, VARIANT-I, and TWODANT for the Two-Group Benchmark

Problem 1 Problem 2

N VARIANT VARIANT-I
TWODANT

~N 1 1! VARIANT VARIANT-I
TWODANT

~N 1 1!

1 21.0268 0.2473 20.8366 22.0659 0.7044 21.3991
3 20.0565 0.0364 0.1996 20.1805 0.2187 0.3241
5 20.0142 0.0156 0.0664 20.0688 0.1286 0.1237
7 20.0056 0.0096 0.0242 20.0342 0.0940 0.0686
9 20.0022 0.0071 0.0067 20.0181 0.0753 0.0457

11 20.0004 0.0058 20.0023 20.0090 0.0639 0.0337
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In earlier work, extensive studies of this benchmark
were performed using the subelement technique cou-
pled to the standard spherical harmonics formulation
referred to here as VARIANT-SE~Refs. 8 and 9!. Here,
we compare VARIANT-SE and VARIANT-ISE results
using the quadratic finite element mesh in Fig. 5 to repre-
sent each fuel pin cell. Our sensitivity studies indicated
that spatial mesh truncation errors are insignificant when
this subelement grid is combined with cubic Lagrange
multiplier approximations at the node interfaces. In this
work we utilize four error measures to examine the ac-
curacy of the VARIANT-SE and VARIANT-ISE solu-
tions: the eigenvalue percent error~Eigenvalue!, the
percent error of the pin with the maximum power~Max-
imum Pin Power!, the maximum percent error of all of

Fig. 4. The benchmark core configuration.

Fig. 5. Finite element mesh approximation.
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the fuel pins~Maximum!, and the root-mean-square of
the pin power percent error distribution~RMS!. Figure 6
shows the eigenvalue percent error trend for the two codes
while Table IV provides tabulated results for all four
error measures. The6 Monte Carlo values in Table IV
represent the 99% confidence intervals for the MCNP
reference calculation.

Figure 6 and Table IV indicate that both the spher-
ical harmonic and integral approaches converge toward
the Monte Carlo solution as the angular approximation
at the interface is refined. The integral method yields
less accurate eigenvalue results for low-order interface
conditions, but with interface orders higher thanP5,
which are typically required for cellular problems of

Fig. 6. VARIANT-SE and VARIANT-ISE solutions for the seven-group benchmark.

TABLE IV

VARIANT-SE and VARIANT-ISE Percent Error Measures

Eigenvalue
Maximum
Pin Power Maximum RMS

Angular Order SE ISE SE ISE SE ISE SE ISE

P1 20.278 1.209 0.942 2.818 5.911 10.579 1.726 2.077
P3 20.287 0.419 1.348 0.861 2.259 1.585 1.023 0.672
P5 20.286 0.233 0.995 0.413 1.797 0.975 0.763 0.363
P7 20.250 0.167 0.751 0.249 1.532 0.747 0.588 0.253
P9 20.205 0.092 0.583 0.086 1.345 0.526 0.470 0.176
P11 20.166 0.057 0.468 0.012 1.214 0.593 0.393 0.162
MCNP 60.008 60.16 60.58 60.36

148 SMITH et al.

NUCLEAR SCIENCE AND ENGINEERING VOL. 146 FEB. 2004



this nature, the integral treatment of VARIANT-ISE is
significantly more accurate than VARIANT-SE. This
trend is even more pronounced in the pin power results.

III.D. Computational Comparisons

The benchmark results presented above indicate that
the integral form of the variational nodal method pro-
duces results of comparable or superior accuracy to those
of the spherical harmonics treatment. The differences
are attributable wholly to the integral treatment of the
even-parity flux since in all cases comparisons are made
utilizing identical spatial trial functions and the same
order odd-parity spherical harmonics expansions along
the node interfaces. The greatest accuracy enhance-
ments tend to appear in those calculations requiring very
high-order angular approximations, such as the MOX
core benchmark treated in Sec. III.C. We have also found
that in such high-order transport calculations, the inte-
gral formulation of VARIANT-ISE enables consider-
able reductions in both memory requirements and CPU
times relative to those required for VARIANT-SE. These
reductions may be explained as follows, using the Car-
tesianx-y geometry of the foregoing MOX benchmark
as an example.

Variational nodal calculations are performed in two
steps:~a! formation of the nodal response matrices and

~b! iterative solution of the resulting response matrix
equations. The most prominent difference between the
integral treatment and the spherical harmonics treat-
ment appears in the response matrix formation. LetSbe
the number of spatial degrees of freedom utilized to
approximate the even-parity flux within the node andT
be the number of spatial degrees of freedom utilized in
the Lagrange multiplier approximation for each nodal
surface. For the MOX benchmark problem, which uti-
lizes the finite element mesh shown in Fig. 5,S5 113
and T 5 4. An N’th order spherical harmonics expan-
sion has1

4
_~N 1 1!2 even-parity moments that are cou-

pled to the internal spatial approximation. Thus, to
obtain a response matrix using the spherical harmonic
treatment, the inversion of a banded symmetric coeffi-
cient matrix of dimension1

4
_S~N 1 1!2 must be carried

out. This matrix represents the bulk of the memory
requirement and computational time needed to obtain
a response matrix for the VARIANT-SE treatment. In
contrast, for the integral treatment of VARIANT-ISE,
A ~ ZV! with dimensionS is the largest matrix to be in-
verted for low-order angular interface approxima-
tions while G, with dimensionT~N 1 3!~N 1 1!,
dominates at high-order angular interface approxi-
mations. However, sinceA ~ ZV! must be inverted
128 times~the number of integration points in the SLC16
quadrature!, it accounts for the majority of the CPU

Fig. 7. Dimensions of largest inverted matrix for the Q2 mesh, cubic Lagrange multiplier response matrix calculation.
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time in the response matrix formation for the integral
method.

For problems utilizing high-order odd-parity spher-
ical harmonics expansions along the node interfaces, the
differences in memory requirements and computational
times for the spherical harmonic and integral response
matrix formulations become quite dramatic. In Fig. 7 we
have plotted the dimension of the largest inverted matrix
for the two approaches as a function of the interface
angular approximation. Similarly, in Fig. 8 we have plot-
ted the total memory requirements for the two methods
as a function of interface angular approximation.

The integral response matrices formed in VARIANT-
SE have slightly smaller dimensions because of the re-
moval of the~N 11!02 terms from the angular interface
expansions. While this increases the memory require-
ments and running time for the iterative solution algo-
rithm in VARIANT-ISE, the net effect is minor compared
to the savings incurred in response matrix formation.
Table V displays the net effects on memory requirements
and CPU time for the MOX benchmark problem for dif-
ferent levels of interface approximation.

IV. CONCLUSIONS

An integral form of the variational nodal method has
been presented, utilizing both orthogonal polynomial and

finite subelement approximation treatments of the spa-
tial variables. A two-dimensional implementation of the
integral method in the VARIANT code has been carried
out, and the new method tested on three benchmark prob-
lems. The first benchmark demonstrated the method’s
ability to obtain the flux solution for a fixed-source deep-
penetration problem, while the second demonstrated its
ability to solve simple criticality problems. The third
benchmark, by far the most difficult, illustrated the meth-
od’s capability for treating situations in which lattice
effects combined with sharp global flux gradients to re-
quire very high order angular approximations through-
out the problem domain.

Fig. 8. Total memory~MB! for the Q2 mesh, cubic Lagrange multiplier response matrix calculation.

TABLE V

CPU Time and Total Memory Ratios
~VARIANT-ISE0VARIANT-SE!

CPU Time Memory

P1 1.433 2.503
P3 1.366 0.427
P5 1.120 0.181
P7 1.112 0.121
P9 0.685 0.098
P11 0.502 0.086
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For calculations requiring higher-order angular ap-
proximations, the integral method yields solutions with
favorable accuracy compared to those obtained using the
standard spherical harmonics approach. Moreover, for
such calculations the integral method requires dramati-
cally less CPU time and memory than the spherical har-
monics approach. Such results encourage consideration
for extending the integral formulation to wider classes of
problems; these would include hexagonal and Cartesian
three-dimensional geometries and problems that include
anisotropic scattering. Opportunities also remain for im-
proving algorithms and optimizing coding to reduce the
CPU and memory burdens imposed by large transport
computations.
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