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Fourteenth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri U.S.A., October 15-16, 1998 

LATERALLY BRACED COLD-FoRMED STEEL FLEXURAL MEMBERS WITH 

EDGE STIFFENED FLANGES 

By B.W. Schaferl & T. Pekoz2 

Abstract: The moment capacity of a laterally braced cold-formed steel flexural 
member with edge stiffened flanges (e.g., a channel or zee section) may be adversely 
affected by local or distortional buckling. Traditional design methods recognize the need 
to explicitly account for local buckling, but not distortional buckling. Experimental data 
and numerical analyses suggest that proper strength prediction of laterally braced cold­
formed steel flexural members requires explicit treatment of distortional buckling. New 
procedures for hand prediction of the buckling stress in the local and distortional mode 
are presented. Numerical investigations are employed to highlight post-buckling behavior 
unique to the distortional mode. A new design method for flexural members is presented. 
The method integrates distortional buckling into the unified effective width approach 
currently used in most cold~formed steel design specifications. Comparison to 
experimental tests shows the viability and advantages of the new approach. 

INTRODUCTION 
Finite strip analysis of a flexural member with an edge stiffened flange (Figure 1) 

reveals three fundamental buckling modes: local, distortional, and lateral-torsional. For a 
laterally braced flexural member the lateral-torsional mode is restricted. Therefore, the 
two primary modes of concern are local and distortional. 

The American Iron and Steel Institute Specification for the Design of Cold­
Formed Steel Structural Members (AISI 1996), hereon referred to as the AlSI 
Specification, attempts to account for distortional buckling through an empirical 
reduction of the local plate buckling coefficient, k. The empirical k values do not agree 
with the actual distortional buckling stress. The experimental work (Desmond et al. 1981) 
conducted to determine the redl,lced k, concentrated efforts on local buckling of the 
flange. Experimentally, this was accomplished by using back to back sections, such that 
the web did not buckle. This experimental setup strongly restricts distortional buckling. 
More recent experiments on laterally braced flexural members with edge stiffened flanges 
by Willis and Wallace (1990), Schuster (1992), Moreyra (1993), and Ellifritt (1997). 
demonstrate unconservative strength prediction using the AISI Specification. 

A hand method for the prediction of the distortional buckling stress in 
compression members was derived by Lau and Hancock (1987). Hancock extended this 
approach to flexural members in Hancock (1995) and Hancock (1997). In Hancock et al. 
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(1996) a method for evaluating the strength in distortional buckling is proposed. Hancock 
et al.' s method provides an independent strength calculation for distortional buckling. 
The suggested design strength is the minimum of the AISI Specification method and a 
distortional buckling method. Comparison of this approach to test data is favorable, 
though the method proves overly conservative in many cases. 

A unified treatment of local and distortional buckling in laterally braced flexural 
members with edge stiffened flanges is sought here. The procedure begins with closed­
fonn prediction of the local and distortional buckling stress. Interaction of the flange, 
web, and lip in both local and distortional buckling is considered. A need for the 
integration of die distortional mode into the design procedure is highlighted by two 
behavioral phenomena: First, the distOltional mode has less post-buckling capacity than 
the local mode. Second, the distortional mode has the ability to control failure even when 
it occurs at a higher critical stress than the local mode. A design method incorporating 
these phenomena is needed to provide an integrated approach to strength prediction 
involving local and distortional buckling. 

ELASTIC BUCKLING 
The elastic buckling of cold-fonned steel members may readily be predicted by 

numerical methods. However, for design procedures, closed-fonn solutions are still 
required. Therefore, new hand methods are developed for prediction of the buckling 
stress in the local and distortional modes. 

LOCAL BUCKLING PREDICTION 
An element model and a semi-empirical interaction model are presented for 

closed-fonn approximation of the buckling stress in the local mode (see Figure la). The 
element model ignores interaction of the flange, web, and/or lip. For instance, for a 
compression flange, it is assumed that the element is simply supported on all four sides 
and thus a plate buckling coefficient of k = 4 is employed. For the semi-empirical 
interaction model local buckling of the flange is influenced by its attachment to a lip and 
a web. 

Expressions for the plate bucking coefficients for the element model and the semi­
empirical interaction model are summarized in Table 1. All of the k values are written in 
tenns of the critical buckling stress of the flange, where: 

n2D 
fer = k b2t . (1) 

Several of the elements are subjected to a stress gradient, which is defined in terms of ~, 

~= f1 - f2 . (2) 
f1 

Where, f1 and h are defined as the stresses at the opposite edges of the element. For the 
web,!I· is at the web/compression flange juncture. For the lip, f1 is at the lip/compression 
flange juncture. Compression stresses are positive. 

With the exception of the k = 4 solution, all of the expressions in Table 1 are new. 
The equations in Table 1 are detennined by fitting expressions to finite strip analysis 
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results. Figure 2 shows the comparison for the local buckling expressions of an isolated 
flange and lip. The element model provides a lower bound, while the semi-empirical 
interaction model closely approximates the finite strip analysis, within prescribed 
parameters. 

DISTORTIONAL BUCKLING PREDICnON 
Prediction of distortional buckling, as shown in Figure 1b, is complicated due to 

the sensitivity of the solution to the rotational restraint at the web/compression flange 
juncture. Consider an isolated flange and lip (similar to the inset of Figure 2) in which the 
weblflange juncture is idealized as either a simple support or a fixed support. Finite strip· 
analysis (Figure 3) shows that for local buckling the change in the plate buckling 
coefficient is small regardless of the boundary conditi,on. However, for distortional 
buckling the P9tential differences are significant. 

Closed-form prediction of the distortional buckling stress is based on an 
examination of the rotational restraint at the weblflange juncture. Consider a typical 
cross-section as shown in Figure 4 and the definition of the rotational stiffness. The 
rotational stiffness may be expanded as a summation of elastic and stress dependent 
geometric stiffness terms with contributions from both the flange and the web, 

k~=(k\!f+kqJl\1-(k\!f+k\IWt. (3) 

Buckling ensues when the elastic stiffness at the weblflange juncture is eroded by the 
geometric stiffness, i.e., 

k~ =0. (4) 

Using (4) and writing the stress dependent portion of the geometric stiffness explicitly, 

k~ = k\!fe + k\IWe - f(k\!fg + k\IWg) = O. (5) 

Therefore, the buckling stress (f) is 

(6) 

Analytical models are needed for determining the rotational stiffness contributions 
from the flange and the web. For the flange, cross-section distortion is not important (see 
Figure 1b). The flange is thus modeled as a column undergoing flexural-torsional 
buckling. This is similar to the approach of Sharp (1966), Lau (1988), Seah and Rhodes 
(1993), Hancock (1997), and Davies and Jiang (1996). For the web, cross-section 
distortion must be considered. The web is modeled as a single finite strip. Therefore, the 
transverse shape function is a cubic polynomial. The longitudinal shape functions of the 
flange and web are matched by using a single half sine wave for each. 

Distortional Buckling - Model for the flange 
Consider the flexural-torsional buckling of a column with springs along one edge 

as shown in Figure 5. The governing differential equations are: 
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(7) 

(8) 

(9) 

Where Ixf, I yf, Ixyf, I of, Cwf, If and Af are section properties of the flange, kxf, kyf, and 
k4if are the springs, Xo and Yo are the distances from the centroid to the shear center, and hx 
and hy are the distances from the centroid to the springs. The following shape functions 
consistent with a simply supported column are used: 

tj>=Alsin(~} U=A2sin(~} V=(Xo-hx)Alsin(~) (10) 

For this application the kxf spring is assumed zero and the kyf spring is assumed infinite. 
The typical approach is to find the buckling load, Pcr• However, the goal here is to write 
the solution in terms of the rotational restraint the flange provides to the web/flange 
juncture. The shape functions (11) - (12) are substituted into (7) - (9) and the load, P, is 
written in terms of the uniform stress, fl. If terms of order f2 are neglected then the flange 
rotational restraint may be written in the linear form given in (5). The resulting rotational 
stiffness terms are 

k4te =(~r[ EIxf(Xo -h} +ECwf -E~: (xo -hJ)+(~J GIt , (11) 

f .. = (~JH('. -hJt: J -2y.( •. -ht': ]+h; + Y}l' +I" ](12) 
For a simple lip stiffened flange (Figure 5) the section properties in (11) and (12) 

are only a function of b, d, e, and t: 
At =(b+d)t, (13) 

It = Y;bt 3 + Y;dt 3 , (14) 

t(t 2bZ +4bd 3 -4bd 3 cos2(e)+ t 2bd +d4 - d 4 cos2(e)) 
Ixf = 12(b+d) , (15) 
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t{b4 +4db3 + 6d 2b2 cos(a)+4d 3bcos2(a)+ d 4 COS2 (a)) 
Iyf = 12(b+d) , 

tbd 2 sin(a)(b + d cos(a)) 
I xyf = 4(b + d) , 

tb3 bt3 td3 
IOJ ="3+12+3' 

b2 _ d 2 cos(a) 
Xo = 2(b+d) 

_d 2 sin (a) 
hy = Yo = 2(b+d) , 

_(b2 +2db+d2 cos(a)) 
hx = 2(b+d) , 

Distortional Buckling - Model for the Web 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

Derivation of the rotational restraint provided by the web to the weblflange 
juncture is based on using a single finite strip as shown in Figure 6. The finite strip 
solution for the plate bending terms may be symbolically represented as: 

{ 
f..l} Ilkll k12 kI3 k141 llkll k12 k13 k14 111{Wl } M 1 k21 k22 k23 k24 k21 k22 k23 k24 a 1 

= -f..2 k31 k32 k33 k34 k31 k32 k33 k34 W2 
M 2 k41 k42 k43 k44 E k41 k42 k43 k44 G a2 

(24) 

Where f.. and M refer to consistent nodal loads or moments and the kij terms are 
stiffness coefficients for the plate bending finite strip matrix, (e.g. Cheung 1976). For 
simply supported edges, the terms of interest are: 

{ M 1 } [[k22 k24] [k22 k24] ]{a 1 } (25) 
M 2 = k42 k44 E - k42 k44 G a2 

In order to find k¢w consider the strip to be unloaded along edge 2 and loaded 
along edge 1 (the web/compression flange juncture) with a sinusoidal edge moment of 
M sin( 1r)I / L). The consistent nodal moments M.z = 0, and MJ = YzML are substituted. The 

solution is then written in terms of a\. If a\ = 1, then M = kl/lW, therefore: 
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k -~((k -k )_(k24e-k24g)(k42e-k42g)] (26) 
j1.v - L 22e 22g ( ) 

k44e - k44g 

The web rotational stiffness, k~, is decomposed into elastic and geometric parts: 

~=~-~, ~ 

k - 2 (k k;eJ </We - L 22e -k ' (28) 
22e 

-k = ~[[(k - k ) - (k24e - k24g)( k42e - k42g )]- (k - k;e J] (29) 
</Wg L 22e 22g (k _ k ) 22e k . 

~ 44g ~ 

The kij terms may be substituted directly to yield the complete analytical 
expressions for k~. Although exact, the expressions have an inordinate number of terms. 
Simplifications are made in order to provide a more compact solution. The elastic 
rotational stiffness (28) is truncated by converting to partial fractions on the length, L, and 
keeping the constant term, the lIL2 term, and the 11L4 term. The resulting expression 
asymptotes to the full expression and provides a reasonable approximation of the elastic 
rotational stiffness, 

k = D ~+ 1C 19h + 1C ~ ( ( )2. ()4 3) 
j1.ve h L 60 L240' 

(30) 

For the geometric rotational stiffness (29) the first approximation made is to 
linearize on the stressft, This is adequate for stress gradients near pure bending (C;web - 2), 
but breaks down as the stress approaches pure compression (C;web = 0). With this 
simplification the geometric rotational stiffness takes the form: 

_ _ 2f1 (2k22ek24ek24g - k22gk;e - k22g k;2e) 
kj1.vg - 2 • 

L k22e 
(21) 

Further simplification is provided after substituting in the kij terms by converting 
the solution to partial fractions on the length, L. The general expression is then in 3 terms 
in which the denominators are 

(32) 

Parametric analysis shows the final term to be insignificant, thus it is neglected. 
The first two terms are combined to form the approximation of the rotational geometric 
stiffness, where: 

(33) 
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Distortional Buckling - Critical Length 
The buckling stress is a function of length, L. To approximate the L at which f is a 

minimum, the rotational stiffness terms are rewritten explicitly in terms of L: 

kife=(l/LtCl+(l/L)2C2' (35) 

kifg = (l/L/C3 , 

k~e = Kl + (l/L)2 K2 + (1/Lt K3 , 

k~g = K4 (f( L)). 

(36) 

(37) 

(38) 

(39) 

The critical length is found by minimizing f with respect to L. This minimization 
is complicated by the K4 term - the web geometric stiffness. If the f(L) in the K4 term is 
approximated as lIL2 then the C3 and K4 terms drop out. This assumption is made, 
therefore, the general solution for Lcr is: 

df =O~ L =(C1 +K3)r. (40) 
dL cr Kl 

(41) 

If the flange is assumed to be pinned (as is done in the critical length derivation of 
Lau 1988) then the (/xy)21/y term is assumed negligible. 

Elastic Distortional Buckling - Summarized 
To find the critical buckling stress in the distortional mode (fer)dist. use (6). The 

rotational stiffness terms in (6) are found in (11), (12), (30), and (34). The rotational 
stiffness terms should be evaluated at Lcr via (41) unless Lb < Ler• 
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COMPARISON OF ELASTIC BUCKLING METHODS 
Thirty-two members are examined via finite strip analysis to compare to the 

proposed hand methods. The critical local buckling moment (M/oca/) and critical 
distortional buckling moment (Mdist.) are recovered from the finite strip analysis. The 
geometry of the studied members is summarized in Table 2. The comparison of the 
predictions is in Table 3. 

The models proposed for the local buckling stress (Table 1) do not directly 
provide a direct prediction of the critical buckling moment. For the element model the 
governing local buckling stress is assumed to be the minimum of the flange, web, or lip. 
For the interaction model the governing local buckling stress is assumed to be the 
minimum of the flange/lip and flange/web calculation. The governing local buckling 
stress is then used to determine the local buckling moment. 

For local buckling prediction the interaction model performs markedly better than 
the element model. The overly conservative nature of the element model is largely driven 
by poor predictions when the lip controls the local buckling stress. In cases when the lip 
controls, the average MpredictedIM/oca/ ratio is 0.6. The proposed distortional buckling 
method compares favorably with finite strip analysis. Predictions for the e = 45 0 members 
are slightly less conservative than for the e = 900 members. Fortunately, the ratio for the 
e = 45 0 degree members is still 0.98 and the standard deviation is lower than for the 
e = 900 members. 

POST-BUCKLING BEHAVIOR OF EDGE STIFFENED ELEMENTS 
To investigate the post-buckling behavior in the local and distortional modes, 

nonlinear FEM analysis of isolated flanges is completed using ABAQUS (HKS 1995). 
The boundary conditions and the elements used to model the flange are shown in Figure 
7. The material model is elastic-plastic with strain hardening. Initial imperfections in the 
local and distortional mode are superposed to form the initial imperfect geometry. A 
longitudinal through thickness flexural residual stress of 30% fy is also modeled. 

The geometry of the members inve.stigated is summarized in Table 4. The 
thickness is Imm and h = 345MPa. The two basic failure mechanisms from the FEM 
analysis are shown in Figure 8. It is observed that the final failure mechanism is 
consistent with the distortional mode even in cases when the distortional buckling stress 
is higher than the local buckling stress. Consider Figure 9, which shows the final failure 
mechanism for all the members studied. Based solely on elastic buckling one would 
expect the local mode to control in all cases in which (fcr)/oca//(fcr)dist. < 1 - as the figure 
shows, this is not the case. 

Finite element analysis also reveals that the post-buckling capacity in the 
distortional mode is less than that in the local mode. Consider Figure 10, for the same 
slenderness values the distortional failures exhibit a lower ultimate strength. Similar loss 
in strength is experimentally observed and summarized in H;ancock et al. (1994). 

The geometric imperfections are modeled as a superposition of the local and 
distortional mode. The magnitude of the imperfection is selected based on the statistical 
summary provided in Schafer and Pekoz (1998). The error bars in Figure 10 demonstrate 
the range of strengths predicted for imperfections varying over the central 50% portion of 
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expected imperfection magnitudes. The greater the error bars, the greater the imperfection 
sensitivity. 

The percent difference in the strength over the central 50% portion of expected 
imperfection magnitudes is used as a measure of imperfection sensitivity: 

(Ju )25% imp. - (Ju )75%imp. 
( )

X100%. 

t (Ju )25%imp. + (Ju )75%imp. 
(42) 

A contour plot of this imperfection sensitivity statistic (42) is shown in Figure 11. Stocky 
members prone to failure in the distortional mode have the greatest sensitivity. ill general, . 
distortional failures are more sensitive to initial imperfections than local failures. Areas of 
imperfection sensitivity risk are assigned. 

DESIGN OF FLEXURAL MEMBERS 
The current AISI Specification approach for the capacity of a laterally braced 

flexural member involves determining an effective section modulus to account for local 
buckling. As shown in Figure 12, each element is reduced from its gross width (e.g, b) to 
an effective width (e.g., be). The reduction is based on an empirical correction to the work 
of von Karman et al. (1932) completed by Winter (1947). The extension of this approach 
to all members of the cross-section is based on the unified approach of Pekoz (1987). 
Once the effective width is calculated determination of the flexural strength becomes a 
relatively straightforward manner, as shown in Table 5. 

Design - Effective Width of Elements 
The effective width of the flange (or lip, replace b with d) is, 

be == ph. 

Where p is defined as 
p == (1- 0.22/}"')/}'" for}", > 0.673 otherwise p == 1. 

The slenderness parameter, }"', is 

(43) 

(44) 

(45) 

Portioning of the effective width for the flange is straightforward (see Figure 12). 
However, in the case of a stiffened element under a stress gradient (Le., the web), the 
portioning of h to hI. h2, and ht is not as straightforward. The expressions currently used 
in the AISI Specification for a stiffened element under a stress gradient are discontinuous 
(Cohen 1987) and unconservative (Figure 13). Other specifications, such as the Canadian 
Code for Cold-Formed Steel Structural Members (Canadian Standards Association 1991) 
yield results more consistent with numerical analysis. 

A new approach is proposed for the effective width of stiffened elements under a 
stress gradient (Le., webs). Consider the effective width of an element in pure 
compression as shown in Figure 14. Determination of the effective width is based on (1) 
an approximation of the nonlinear post-buckling stress via p and (2) a force balance 
between the approximated nonlinear stress and the effective section. For an element under 
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a~s gradient (Figure 14) the natural extension to this methodology is to determine the 
effective width by insuring that both a force and a moment balance are maintained 
between the approximated nonlinear stress and the effective section. The solution of this 
force and moment balance result in the following expressions: 

II" = hOJ/~eb (for~eb > 0), (46) 

~ =(h/~'b)~OJ2_2OJ+p (for~eb >0), 

p = (1-0.22/A)/A, for A> 0.673, else p = 1, 

o ~ P < 0.77 OJ = 0.33p 

0.77 ~ P < 0.95 OJ = 0.23 

0.95 ~ P ~ 1.00 OJ = -4.6p + 4.6 

(47) 

(48) 

(49) 

(50) 

The resulting ex,pressions agree with numerical analysis (see Figure 13). Further, 
the effective width of the web is a function of p. Thus, for the first time, the effective 
width of an element under a stress gradient is a function of the degree of nonlinearity in 
the post-buckling stress distribution, as reflected through p. 

Design - Integrating Distortional Buckling into the Procedure 
If distortional buckling is considered then the critical buckling stress of an 

element (flange, web or lip) is no longer solely dependent on local buckling. In order to 
properly integrate distortional buckling, reduced post-buckling capacity in the distortional 
mode and the ability of the distortional mode to control the failure mechanism even when 
at a higher buckling stress than the local mod.e must be incorporated. Consider defining 
the critical buckling stress of the element used in (45) or (48) as: 

Vcr) = min[Vcr )IOCOI' Rd Vcr tJ (51) 

For strength, if the reduced distortional mode governs, then (44) or (49) become: 

p = ..JR,;A(I-0.22..JR,;A) (52) 

For Rd < 1 this method provides an additional reduction on the post-buckling 
capacity. Further, the method also allows the distortional mode to control in situations 
when .the distortional buckling stress is greater than the local buckling stress. Thus, Rd 
provides a framework for solving the problem of predicting the failure mode and reducing 
the post-buckling capacity in the distortional mode. The selected form for Rd based on 
Figure 9, Figure 10 and the experimental results of Hancock et at. (1994) is 

Rd =min(l, A:.1:1 +0.3) where Ad =~f)VJdist.. (53) 
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Two models are advanced for predicting the critical buckling stress of the 
elements. The models are summarized in Table 6. With fer of the element known the 
effective width of each element may readily be determined. The procedure outlined in 
Figure 12 and Table 5 is completed to calculate the section capacity. 

Comparison to Experimental Data 
Experimental tests on laterally braced flexural members with edge stiffened 

flanges from Cohen (1987), Desmond (1978)~ Elhouar and Murray (1985), Ellifritt et al. 
(1992), Ellifritt et al. (1997), LaBoube and Yu (1978), Moreyra (1993), Rogers (1995), 
Schardt and Schrade (1982), Schuster (1992), Shan et al. (1994), Willis and Wallace, 
(1990) and Winter (1947) is gathered and examined. Based on the information available 
from the tests, the type of sections tested, and the loading arrangement, the applicability 
for use in this ,comparison is assessed. The experimental data of Desmond (1978), Ellifritt 
et al. (1992), Elhouar and Murray (1985), and Winter (1947) are deemed to have poor 
applicability. Desmond's and Winter's tests use back to back webs which provide an 
unrealistic rotational restraint. Ellifritt et aI.' s (1992) tests primarily fail in the lateral­
torsional mode. Elhouar and Murray's (1985) summary of proprietary tests does not 
provide enough detailed information on loading and bracing. 

The majority of the remaining tests, are on face to face channels in two-point 
bending. The channels typically have significant bracing at the load application point as 
well as a regularly spaced angle or bar attached across the two channels in both the 
compression flange and tension flange. The bracing is to insure lateral-torsional buckling 
does not occur, and to approximate the effect of sheeting. The small spacing of the 
attached angles, or bars (often 300mm -12" or 150mm - 6") partially restricts the 
distortional mode. 

If the bracing length (Lb) is less than the predicted Ler from (41) then Lb is used in 
determining the distortional buckling stress. In many tests Lb < Ler. Therefore capacity 
lower than the experimentally observed strength is possible even for a laterally braced 
member, due to the fact that the distortional mode is partially restricted. 

The flexural capacity of the remaining test data is assessed via the AISI 
Specification (MA1S1) and the two proposed methods: MJ and M2 (see Table 6). The 
statistical results are summarized in Table 7. One striking feature that Table 7 does not 
bring out is the systematic error that exists in the current AISI Specification method for 
large hlb (see Figure 15). 

From Table 7, the overall performance of the AISI Specification method appears 
adequate. A more detailed analysis reveals several inadequacies. For one, several of the 
individual tests groups yield consistently unconservative predictions (n<I). Second, the 
systematic error for large hlb is problematic. Third, the AISI method is not a function of 
bracing length. Therefore, the same members at longer unbraced lengths (but members 
still not failing in lateral torsional buckling) have the same strength prediction via the 
AISI Specification. This is inadequate - until Lb exceeds Lcr the distortional buckling 
stress and the strength will decrease. 

An integrated design method that employs local and distortional buckling 
calculations are possible and reliable. The systematic error for large hlb observed in the 
AISI Specification is alleviated in either of the proposed methods (MJ or M2). The test to 
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predicted ratio is slightly on the conservative side (> 1) for the overall results of the 
proposed models. The standard deviation and number of unconservative predictions are 
both lower than the AISI Specification for the overall results. 

Often, including the local buckling interaction (M2) actually yields a more 
conservative prediction than that determined by ignoring it and using an element 
approach (M!). However, individual cases are observed where including the local 
buckling interaction yields markedly better results. Local buckling initiated by long lips 
and local buckling with highly slender webs and compact flanges are examples where 
including the interaction is observed to improve the strength prediction markedly. 

CONCLUSIONS 
Laterally braced cold-formed steel flexural members with edge stiffened flanges 

have two important buckling phenomena: local and distortional. Current AISI 
Specification methods do not explicitly treat the distortional mode. Distortional'buckling 
deserves special attention because it has the ability to control the final failure mechanism 
in many cases and is observed to have lower post-buckling capacity than local buckling. 
New hand methods are developed to predict the critical buckling stress in both the local 
and distortional mode. A design method for strength prediction, based on the unified 
effective width approach, is developed. The design method uses the new expressions for 
prediction of the local and distortional buckling stress and also introduces a new approach 
for determining the effective width of the web. The resulting design method is compared 
to a large body of experimental results and shown to provide more consistent and 
conservative prediction than the existing AISI Specification. Proper incorporation of the 
distortional buckling phenomena is imperative for accurate strength prediction of cold­
formed steel members. 
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APPENDIX II. NOTATION 
b flange width 

effective flange width 

D plate rigidity 

geometric rotational stiffness of the 
web 
flange model spring stiffness in x 
direction 
flange model spring stiffness in y 
direction 
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I stress k~g k~/f 

II edge stress on an element L length 

h edge stress on an element Lb unbraced length 

Icr minimum buckling stress Lcr length at whichfis a minimum 

lu ultimate failure stress for a member M moment 

h material yield stress M consistent nodal moment 

h web height MI moment capacity by proposed method 1 

hI portion of effective width of a web M2 moment capacity by proposed method 2 

h2 portion of effective width of a web MAIS1 moment capacity by the AISI 
Specification 

k plate buckling coefficient Rd reduction factor for distortional 
buckling stress 

kip rotational stiffness at the weblflange thickness 
juncture 

kifJie elastic rotational stiffness of the u flange model displacement in x 
flange 

kifJig geometric rotational stiffness of the v flange model displacement in y 
flange 

kipwe elastic rotational stiffness of the web ; stress gradient 

p post-buckling reduction factor cp flange model twist 

e orientation angle of the edge stiffener A slenderness 
(lip) 

I 10 . 100 
half-wavelength (m.) 

1000 

(a) Local Buckling (b) Distortional Buckling (c) Lateral-Torsional Buckling 

Figure 1. Finite Strip Analysis of a Flexural Member with an Edge Stiffened Flange 
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Figure 2. Local Buckling of Isolated Flange 
and Lip 

Figure 4. Rotational Stiffness at 
Web/Flange Juncture 
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Figure 3. Finite Strip Analysis of Isolated 
Flange and Lip 
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Figure 5. Flange Model 
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Figure 6. Finite Strip Idealization of the Web 
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(a) Boundary Conditions and Loading (b) Abaqus S9R5 Shell Element 

Figure 7. Finite Element Analysis of Edge Stiffened Flanges 

(a) Local Failure (b) Distortional Failure 

Figure 8. Displaced Shape at Peak Load for Edge Stiffened Flanges 
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Figure 9. Failure Mode of Edge Stiffened 
Flanges 
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Figure 10. Post-Buckling Capacity of Edge 

Stiffened Flanges 
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b 

d 

h 

(a) Gross Section (b) Effective Section 

Figure 11. Imperfection Sensitivity of Edge 
Stiffened Flanges 

Figure 12. Typical Gross and Effective 
Section 

1.2.--------------~ 
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~ * - Canadian Code 
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o FEM - ABAQUS 
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Figure 13. Simply Supported Plate in Pure 
Bending 
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, forces FI and F2 
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force and a 
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Figure 14. Effective Width Determination 
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1.4 ,-----------------------, 

M"" 1.0 
M AIS1 
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---~ ~- -1- -'f -x -x- ------------x- - -
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i JI! >I< x ~ 

Xx 1Sc~ ~ 

0.6 
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Figure 15. Performance of AISI Specification vs. hlb 

ELEMENT MODEL 

Flange: (fer)! 

Web: (fer)w 

Lip: (fer)/ 

Table 1. Local Plate Buckling Coefficients 

k=4 

k =(O.5~~'b +4~:eb +4)(b/h)2 

k = k/ip(b/dt 

15 

for 0 < ~/ip ::0; 1.1 k/ip = 1.4~I~ - 0.25~lip + 0.425 

for 1.1 < ~lip ::0; 2 

SEMI-EMPIRICAL INTERACTION MODEL 

k/ip = 13~I~p - 65.5~1~ + 131~/iP - 80 

FlangelLip: (fer)jl k = (8.55~/iP -11.07)(d/b)2 +(-1.59~/iP + 3.95)(d/b) +4 

for ~lip ::0; 1 and d/b::O; 0.6 

Flange/Web: (fer)jW k = 1.125min{4,(0.5~~eb +4~:eb +4)(b/ht} 

Table 2. Geometry of Members 

h b d 8 
50 25 6.25,12.5 45,90 

100 25 6.25,12.5 45,90 

50 6.25,12.5,25 45,90 

150 25 6.25,12.5 45,90 

50 6.25,12.5,25 45,90 

75 6.25,12.5,25,37.5 45,90 

200 25 6.25,12.5 45,90 

50 6.25,12.5,25 45,90 

75 6.25,12.5,25,37.5 45,90 

100 6.25,12.5,25,37.5,50 45,90 



Element 
c. Flange 

Web 1 
Web 2 
Web 3 

T. Flange 
C.Lip 
T.Lip 
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Table 3. Performance of Elastic Buckling Methods 

Local Buckling Distonional Buckling 

Element Model Interaction Model Proposed Method 

MpredictedlM/ocal MpredietedlM local 
0.90 

MpredictedlMdist. 

Average 0.74 
St. Dev. 0.12 0.05 

0.95 
0.08 

Table 4. Geometry of Edge Stiffened Flanges 

Per,local 

bIt dlt 6 Pcr,disf 

25 4.00 - 19.0 90 1.82 - 0.25 
6.25 - 12.5 45 1.94 - 0.96 

50 5.00 - 25.0 90 1.58 - 0.27 
6.25 - 25.0 45 1.76 - 0.51 

75 6.25 - 37.5 90 1.34 - 0.18 

6.25 - 37.5 45 1.73 - 0.35 
100 6.25 - 50.0 90 1.40 - 0.14 

6.25 - 50.0 45 1.75 - 0.23 

Table 5. Example for Effective Section Calculation 

A y Ay Ai 
bet 
hIt h/2 (hlitl2 (hl)3tI4 
h2t h - (h,+h,f2) 
h,t h - (h,/2) 
bt h 
det d/2 
dt h - dl2 

L,A L,Ay L,Al 

Mn =S'fffl 
Ieff 

yeff = ~~ Ieff = L,Al + L,Iown -(L,A)lff Seff =-
yeff 

Table 6. Elastic Buckling Stress Determination 

Modell-Ml 
No Local Buckling Interaction 

Mode12-M2 
Local Interaction Included 

lown 

t(hl)3112 

L,Iown 

(fcr tb = min[ (fcr t, Rifcr ) J 
(fer) flang. = min[ (fer) f' Rifcr ) d ] 

(fcr)lip =min[(Jer)/,Rd(fert] 

(fcr tb = min[ (fcr ) ftv' Rifcr ) d ] 

(fcr ) flange = min[ (fcr ) ftv' (fcr ) fI' RAfer ) d ] 

(fer) lip = min[ (fcr ) fI' Rifcr ) d ] 
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Table 7. Summary of Test to Predicted Ratios 

Researcher and the 
Mtest M test M test 

basic 2eometry/setup max min M AIS1 M\ M2 
Cohen (1987) hit 128 78 Avg. 1.08 1.02 1.02 

I J[ 1[ hit 55 33 St. Dev. 0.05 0.11 0.11 
dlt 16 9 min 0.99 0.93 0.92 

II ~f,/(J<,), 1.3 0.4 n<1 of 18 2 6 5 
Ellifritt et a1. (1997) hit 139 113 Avg. 0.78 0.91 0.91 

01:J 
hit 48 31 St. Dev. 0.10 0.11 0.11 
dlt 16 11 min 0.61 0.75 0.75 

~f,f(f,,), 1.5 1.2 n<l of 10 10 8 8 
Laboube and Yu (1978) hit 269 77 Avg. 1.02 1.07 1.11 

OCJMB 
hit 75 28 St. Dev. 0.08 0.08 0.10 
dlt 15 11 min 0.87 0,88 0.92 B ~f,f(f,,), 1.2 0.7 n<1of32 11 7 6 

Moreyra (1993) hit 124 120 Avg. 0.86 0.96 0.99 

[ hit 36 34 St. Dev, 0.08 0.11 0.09 
dlt 16 12 min 0,80 0.86 0.91 

~f,/(J,,), 1.0 0.6 n<lof6 5 5 5 
Rogers (1995) hit 228 53 Avg. 1.02 1.09 1.11 

0 hit 61 15 St. Dev. 0.11 0.07 0.07 
dlt 34 3 min 0,83 0.94 0,94 

~f,/(J,,), 1.8 0.5 n<lof49 26 6 2 

Schardt and Schrade (1982) hit 183 178 Avg. 1.05 1.05 1.09 

~I hit 71 45 St.Dev, 0.10 0.09 0,08 
dlt 16 10. min 0.89 0.92 0.96 

~f,f(f,,), 1.4 0.6 n<lof37 14 13 7 
Schuster (1992) hit 168 166 Avg. 0.82 0.97 1.01 

0 hit 34 33 St. Dev, 0.04 0.05 0.05 
dlt 11 10 min 0.78 0,93 0.97 

~f,f(f,,), 1.0 1.0 n<1of5 5 3 3 
Shan et a1. (1994) hit 256 43 Avg. 0.97 0.97 1.04 

0 
hit 58 19 St. Dev. 0,13 0.10 0,09 
dlt 20 6 min 0.75 0.79 0.85 

~ 1.0 0.4 n<lof29 18 22 10 
Willis and Wallace (1990) hit 131 126 Avg. 1.02 1.02 1.08 

[ S 
hit 40 38 St. Dev. 0.08 0.07 0.08 
dlt 17 14 min 0.92 0.93 0.98 

~ 0.7 0.6 n<lof4 2 1 1 
All Experimental Data hit 269 43 Avg. 1.00 1.04 1.07 

hit 75 15 St. Dev. 0.10 0.08 0.08 
dlt 34 3 min 0.61 0.75 0.75 

~ 1.8 0.4 n<l of 190 93 71 47 
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