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Absolute triple difFerential cross section for ionization of helium near threshold

T. Rosel, J. Roder, L. Frost, K. Jung, and H. Ehrhardt
Fachbereieh Physik, Uniuersitat Kaiserslautern, D-6750 Kaiserslautern, Germany

S. Jones and D. H. Madison
Laboratory for Atomic and Molecular Collisions, University ofMissouri Roll—a, Rolla, Missouri 65401

(Received 21 April 1992)

Absolute measurements with an accuracy of 22% and theoretical results in a distorted-wave Born ap-

proximation (DWBA) are reported for the triple-differential cross section for 26.6-eV electron-impact
ionization of helium. An apparatus is used that allows all scattering angles to be independently varied

for both coplanar and noncoplanar geometries. The measurements are compared with a DWBA calcula-

tion that includes exchange distortion in the calculation of the distorted waves, as well as with earlier
calculations by Crothers [J. Phys. B 19, 463 (1986)] and Pan and Starace [Phys. Rev. Lett. 67, 185

(1991)]. Emphasis is placed on understanding the mechanisms for near-threshold ionization.

PACS number(s): 34.80.Dp

I. INTRODUCTION

The most detailed information about the electron-
impact ionization of atoms is available from (e, 2e)
electron-coincidence spectroscopy, in which both the
final-state electrons following an ionizing event are
detected in coincidence. The experiment determines the
incident energy Eo, the final-state electron energies E&
and Ez, and the momenta k, and kz of the electrons (for a
more detailed description, see, e.g. , Ehrhardt et al. [1]or
Lahmam-Bennani [2]). As a result, the kinematics of
each ionizing event is fully determined, thus providing a
measurement of the triple-differential cross section
(TDCS).

The experimental variables and geometries are defined
in Fig. 1. For the case of equal outgoing-electron kinetic
energies, the angle e&2 between the two outgoing elec-
trons, together with the polar angles 8, and 82, fully
define the kinematics of the ionizing collision. It is some-
times convenient to refer to the azimuthal angle y2
(where y, is defined to be zero), and also to the angle
g&2=82 —8&. In this work the incident-electron energy
Eo is set to 26.6 eV, i.e., 2 eV above the threshold for ion-
ization of helium.

The goal of the present work is to advance the under-
standing of ionization near threshold by presenting exten-
sive absolute TDCS measurements and theoretical calcu-
lations for helium in a set of kinematics designed to test
different aspects of the reaction. A comparison with ab-
solute rneasurernents yields a severe test of theoretical
models and in some cases permits the isolation of irnpor-
tant physical effects in the reaction.

The distorted-wave Born-approximation (DWBA)
model presented here includes exchange of continuum
and target electrons in the formation of the distorting po-
tentials and is an improvement over the previously re-
ported model of Jones, Madison, and Srivastava [3]. Two
other theoretical approaches are also discussed: Crothers

[4] has obtained an approximate semiclassical solution of
the Schrodinger equation for singlet scattering and Pan
and Starace [5] have performed a DWBA calculation for
8,2=180' where the effects of exchange are included in a
nonlocal distorting potential.

Full details of the apparatus and method of measuring
absolute TDCS have been reported in Rosel et al. [6] and
will not be repeated here. The method is based upon
measurements of beam-target overlap densities using
known absolute total ionization cross sections and of
electron-detection efBciencies using known absolute
double-differential cross sections. The quoted standard
deviation of 22% is derived by Rosel et al. from the stan-
dard deviation due to counting statistics (3%), due to
various measurement tolerances (8%), and due to the pre-
cision of the absolute total ionization cross section (10%).

Previous measurements have been restricted to some
particular geometry, which, together with the choice of
particular electron energies, reduces the number of vari-
ables and acts as a "filter" to select certain types of ioniz-
ing events. A number of different geometries (kinematics)
are shown schematically in Fig. 1. Each emphasizes par-
ticular physical effects. All of these kinematics are now
accessible in the experiment reported here and will be dis-
cussed.

The outline of this paper is as follows. In Sec. II a brief
review of the various kinematics and previous experi-
ments is given. The present DWBA model as well as oth-
er theoretical models tenable at low impact energies is
then discussed in Sec. III. Section IV contains a compar-
ison of theory and experiment. Emphasis is placed on
testing the various theoretical assumptions and on isolat-
ing different aspects of the ionization reaction. The con-
clusions are summarized in Sec. V.

II. REVIEW OF KINEMATICS AND EXPERIMENTS

The schematic representation of electron-impact ion-
ization shown in Fig. 1(a) shows the general polar coordi-
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FIG. 1. Electron-impact ionization kine-
matics: (a) general coordinate system and ex-
perimental parameters; (b) coplanar asym-
metric kinematics; (c) coplanar symmetric ki-
nematics; (d) coplanar constant mutual angle

6»,' (e) perpendicular plane kinematics; (f)
noncoplanar constant mutual angle 6&2 for
fixed 8~,' (g) noncoplanar constant mutual an-

gle 8» and constant y» =82 —8 &.

(e)
V
Y

(g)

nates for out-of-plane measurements. The thick arrows
represent electron trajectories. There are three degrees of
freedom in angle (e.g. , 8„82,and y2) and two in energy
(e.g. , Eo and E& ). Four particular combinations of these
variables have been used in previous near-threshold ex-
periments: the coplanar asymmetric geometry [Fig. 1(b)],
the coplanar symmetric geometry [Fig. 1(c)],the coplanar
B,2 geometry [Fig. 1(d)] and the perpendicular plane
geometry [Fig. 1(e)]. These geometries and others acces-
sible with the present apparatus will now be defined and
briefly discussed.

Coplanar asymmetric (F2=0' or 180'; 8, fixed;
varied). Coplanar asymmetric kinematics [Fig. 1(b)] are
dominated at higher energies (above about ten times the
ionization potential) by scattering of one electron with
small energy loss into small angles 8, [1]. Near thresh-
old, however, the emission probability as a function of

the energy of the escaping electron tends to be more near-
ly constant [7] and the angular distributions are much
less forward peaked. Extensive measurements have been
made at 1, 2, 4, and 6 eV above threshold by the authors
of Ref. [8] and in this group [9,10].

Coplanar symmetric (F2=180'; E, =E2,' 8, =8&,
and hence 8z, varied). Coplanar symmetric kinematics
[Fig. 1(c)] are governed entirely by singlet scattering.
The momentum transfer to the ion core varies over a
wide range, from zero to maximum values at large 6, .
This has provided a sensitive test, particularly at higher
energies, of the projectile-core interaction in theories of
ionization that extend beyond first order, e.g. , second-
order Born and distorted-wave calculations [10,11].

Coplanar constant B,2 (yz=O' or 18-0 '; constant B&z,

8, , and hence 62, varied). Constant-B&z kinematics [Fig.
1(d)] represent the condition under which a simplified
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partial-wave analysis of the scattering near threshold is
feasible (see below). Furthermore, the postcollision in-
teraction between the two outgoing electrons remains
constant. This geometry has been used extensively to in-
vestigate Wannier-law angular distributions [12]. The
case where both electrons emerge in exactly opposite
directions (i.e., B,z=180') has received particular atten-
tion [13]and is illustrated in Fig. 1(d).

Perpendicular plane (8,=hz =90'; yz varied) P.erpen-
dicular plane kinematics [Fig. 1(e)] select those ionizing
events where a strong projectile-core interaction has usu-
ally occurred Cv. ejanovic and Read [14] performed mea-
surements for F2= 150' and 180' in the energy range from
0.2 to 3.0 eV above threshold. Jones et al. [15]measured
the distribution for @2 at 1 and 2 eV above threshold.

Noncoplanar constant B,z (-constant 8&z and 8„'8z, and
hence pz, varied). This geometry [Fig. 1(f)] has become
accessible with this apparatus and allows the investiga-
tions referred to above to be continued out of plane.

Constant y, z (constant B,z, 8„andhence yz and 8z are
varied). This geometry allows several tests of the experi-
mental method and of the reaction theory and is dis-
cussed later. The geometry is similar to that shown in
Fig. 1(g) (which represents, in fact, the special case
&iz=&z —&i =o)

Noncoplanar symmetric constant B,z (con-stant 8&z',

8, =8z; 8„andhence 8'z and pz, varied). This geometry
[Fig. 1(g)] further restricts the scattering in the above
case to events where only singlet scattering contributes.

III. THEORY

A. Overview

Various effects contribute to, or influence, the calcula-
tion of the ionization cross section near threshold: Direct
scattering of an electron of momentum k0 into a state
with momentum k&, with sufBcient energy transfer to ion-
ize the target, is described by the amplitude f (kp;k&, kz).
Exchange scattering, described by the amplitude
g (kp'k] kz), takes into account the indistinguishability of
the two electrons in the outgoing channel, where
g(k&, kz)=f(kz, k, ). The capture process, in which the
projectile electron remains with the positive ion core and
the two electrons from the target are ejected, is denoted
by the amplitude h (k&, kz). A process known as shakeoff
can contribute to both f and g: for shakeoff the incident
electron "collides" with the target —either the nucleus or

I

~= Ifis+fip+fi I'+ If3, +f3o I'

one of the bound electrons —and one of the "untouched"
target electrons is ejected.

The cross section is given by

d3 4

( If —gl'+ If —h I'+ Ig
—h I'),

1 2 E2 +0

where the flux factor results from choosing the continu-
um wave functions to be normalized to a 5 function in en-
ergy.

Until recently there were no detailed theoretical calcu-
lations of the triple-differential cross section near thresh-
old. Comparison by Schlemmer et al. [13] of relative
measurements for hydrogen and helium at 4 eV above
threshold in the coplanar B,z= 180' geometry [Fig. 1(d)]
showed quite different angular behaviors. The authors
argued that, since the final boundary conditions of three
charged particles in the continuum are identical, the
differences must be due to effects such as atomic polariza-
tion, or to the absence of the capture process in the case
of hydrogen.

Some simple theoretical models have been investigated.
For example, the semiclassical model of Wannier [16],
describing the escape of two electrons from a positive ion,
was modified by Rau [17] and by Selles et al [12] to . in-
clude partial waves beyond the 'S (e.g., L = 1,2, . . . ).

It is also possible [18]to analyze the scattering in terms
of partial waves in a model-independent approach, as fol-
lows. Assume erst that only the L, =0, 1, and 2 partial
waves contribute significantly near threshold. Assume
also that the final-state wave function can be written as a
two-electron wave function, i.e., in terms of singlet and
triplet components. In the present work, where the heli-
um atom and ion are in the ground states, the angular
momentum of the incoming and of the two outgoing elec-
trons must be equal and the projections on the electron-
beam axis (z axis) are zero. Conservation of parity elimi-
nates states with odd parity. The S' state is suppressed
for equal outgoing-electron energies [19]. Thus only the
two-electron states 'S', 'P', P', 'D', and D' contribute.

Altick and Rosel [18] have shown that the scattering
amplitudes can then be written as functions of the
outgoing-electron energy and the mutual angle 6,2 be-
tween the two final-state electrons, together with
geometric factors which depend on 8, and 82. The
triple-differential cross section o. can then be written us-
ing the above five partial waves:

ip) l

=IF~ +F, e ( cos8&+ cos8z)+F&oe [Pz( cos8, )+Pz( c sod )z] +F&,e (3cos8, cos8z —cosB&z)I

+ IF3 ( cos8, cos8z)+—F, e [Pz( cosd, ) —Pz( cosdz)]I (2)

Furthermore, it can be shown that if one defines the
angles g&z=8z —8& and P&z=(hz+0&)/2, then for con-
stant y&2 and constant 6,2 the cross section has the form
of a power series with terms cos"(P&z), with the highest

I

power equal to twice the highest contributing L wave.
This has been used in previous work [18] as a test of the
validity of the assumption L ~ 2.

A somewhat more stringent assumption, derived from
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the Wannier model, that the amplitudes in the above
equation are just proportional to exp( —2m. /k, 2), where

k)z is the magnitude of the relative momenta kI —kz of
the two outgoing electrons, allowed Shaw and Altick [20]
to estimate the partial-wave amplitudes from the copla-
nar measurements of Fournier-Lagarde et al. [8], taking
into account the double-differential absolute-cross-section
measurements of Pichou et al. [21]. Coplanar measure-
ments alone are not in principle sufhcient for such a pre-
diction [22]. These amplitudes were in turn used to pre-
dict the out-of-plane cross sections for 1, 2, and 4 eV
above threshold. In some cases it was predicted that the
cross section should increase as one of the detectors
moved out of the scattering plane, e.g. , for 2 eV above
threshold, 6, =60' and hz=135, and also for 8, =120'
and 8z =45'.

There has recently been rapid progress in ab initio
quantum-mechanical calculations of triple-differential
cross sections near to threshold and an attempt is made
to summarize this progress below.

Crothers [4] derives a semiclassical final-state two-
electron wave function with regular asymptotic behavior
that is a good approximation to the solution of the
Schrodinger equation for singlet scattering. This model
did not explicitly include for the helium target the possi-
bility of capture or shakeoff processes. Second-order
effects were neglected. Nevertheless, rather good agree-
ment with coplanar relative TDCS measurements and ab-
solute total ionization cross sections was obtained in

many cases. The theory has recently been extended to in-
clude P' triplet scattering [23]. Noncoplanar results are
not yet available.

Brauner et al. [24] reported calculations for atomic
hydrogen in which the Anal-state wave function has the
correct form to satisfy the asymptotic boundary condi-
tions for three charged particles. Near-threshold results
for helium are not available. The results for hydrogen
agreed with the general shape of the cross section in co-
planar asymmetric and coplanar constant-e&z kinematics.
The authors showed that much of the observed structure
could be explained in terms of the repulsion between the
two electrons, the kinematic effects, and the interference
between electron-electron scattering and electron-nucleus
scattering. The basic Wannier concept, that ionization
near threshold should be dominated by processes in

which the two electrons escape at about e&z=180' to
each other, was reproduced by the theory of Brauner
et al. , but it was noted that at exactly e&z=180' the an-

gular distribution was determined primarily by kinemati-
cal effects. That is, all Coulomb waves could be replaced
by plane waves without strongly changing the shape of
the angular distribution.

Botero and Macek [25] have recently considered an al-
ternative formulation of the perturbation series for the
electron-electron T matrix that allows the use of
Coulomb wave functions with arbitrary Z,~ (i.e., not
prescribed by the Rudge-Seaton-Peterkop boundary con-
dition). Using Coulomb waves for incident and outgoing
electrons, and multiplying the final-state wave function
by a Coulomb factor to account for the electron-electron
repulsion, excellent agreement was found with the shape

of relative TDCS measurements even below 30 eV. Un-
fortunately, absolute-cross-section calculations are not
available for comparison with the results reported here.

Attempts by Walters, Whelan, and Zhang to extend
the region of application of a DWBA, which has been
successful in describing coplanar symmetric scattering at
200 eV on helium [11],to energies of a few tens of volts
above threshold have been moderately successful in the
perpendicular-plane geometry, but not for the coplanar
symmetric kinematics [26]. A failure of the model at low
energies is perhaps not too surprising: The qualitative
success of the model of Brauner, Briggs, and Klar with
the correct asymptotic wave function shows that the
long-range interaction between the two final-state elec-
trons is important. However, these long-range forces are
not included in the calculation of the final-state wave
functions in the standard DWBA. While the standard
DWBA treats a large part of the electron-atom interac-
tion in the initial state and the electron-ion interaction in
the final state to all orders of perturbation theory, the
electron-electron interaction in the final state is treated
only to first order.

Pan and Starace [5] recently reported a distorted-wave
(DW) calculation for e&&=180' that was in excellent
agreement with the measurements of Schlemrner et al.
[13]. The work of Pan and Starace represents an im-
provement over the standard DWBA in terms of the fol-
lowing.

(1) The final-state electron-electron interaction is ap-
proximately included in the calculation of the final-state
wave function through the use of effective charges chosen
to satisfy the Rudge-Seaton-Peterkop relation (see Ref.
[27], and references therein).

(2) Electron exchange with the target electrons is ex-
plicitly taken into account in the calculation of the dis-
torted waves through the use of a nonlocal distorting po-
tential.

DWBA models often do not take exchange into account
in the calculation of the continuum wave functions (i.e. ,

the distorting potentials do not distinguish between iden-
tical and nonidentical particles). Exchange can have an

important effect in the formation of the wave functions,
however. We have labeled this effect "exchange distor-
tion. "

Furthermore, Pan and Starace used the prior form of
the exact T matrix and used a procedure for generating
the distorting potentials that guaranteed orthogonality of
the bound and continuum target states. This has the
effect of causing shakeoff and capture terms to vanish and
also causes the post and prior forms of the T matrix to be
identical, providing that the autoionizing amplitudes that
appear in the post form are ignored [3].

Jones, Madison, and Srivastava (hereafter referred to
as JMS) [3] also recently reported an improvement over
the standard DWBA as follows.

(1) The final-state electron-electron interaction is ap-
proximately included in the calculation of the final-state
wave function through the use of angle-dependent
effective charges.
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(2) Shakeoff and capture amplitudes are calculated.
Normally these amplitudes are forced to vanish using or-
thogonalization procedures; often they are simply ig-
nored.

The JMS results were in qualitative agreement with rela-
tive coplanar measurements, but they could not fully
reproduce the large amount of scattering observed per-
pendicular to the beam direction.

The JMS model differs from the calculation of Pan and
Starace in the following aspects.

(1) The JMS model does not include exchange distor-
tion.

(2) A different Ansatz is used for the effective charges.
(3) JMS calculate shakeoff and capture amplitudes,

while Pan and Starace use a formulation where these am-
plitudes vanish.

(4) The post form of the T matrix is used by JMS,
while Pan and Starace use the prior form of the T matrix.

B. Present theoretical model

In this paper, we report an improvement over the JMS
model [3]. The primary difference between this model,
hereafter referred to as the JM (Jones-Madison) model,
and the JMS model is that the JM model includes ex-
change distortion. The motivation for including ex-
change distortion was provided by the work of Pan and
Starace [28], which showed that exchange effects are
needed to explain the large differences that are observed
between hydrogen and helium for scattering perpendicu-
lar to the incident-beam direction.

The theory without exchange distortion has been com-
pletely described in JMS; therefore only an outline of the
JM model will be given here. In addition to extending
the JMS model to treat exchange distortion, two simplify-
ing assumptions have been made.

(1) If the atomic states are orthogonal to the distorted
waves, the capture and shakeoff terms vanish. These
states are normally not orthogonal, however, and JMS
evaluated the resulting shakeoff and capture amplitudes.
One common method for eliminating these amplitudes is
to artificially enforce orthogonality by appropriately
modifying the continuum wave functions. The wisdom of
this approach may be questioned, however, since the con-
tinuum wave function can then be significantly altered for
the very important small radii. We found that while the
standard distorted waves were not orthogonal to the
bound states, the distorted waves rnodified by the ex-
change distortion (discussed below) were nearly orthogo-
nal to the bound states. Consequently, the JM model is
fairly insensitive to forced orthogonalization so we have
employed this technique as a matter of convenience.

(2) The sudden approximation is employed since it fur-
ther simplifies the details of the calculation. In the sud-
den approximation it is assumed that the helium atom
does not have time to relax immediately following the
ionizing collision (i.e., it is assumed that the initial and
final bound-state orbitals are equal). The JMS and JM
models are not sensitive to this assumption.

With these simplifications, the direct (f) and exchange
(g) amplitudes are given in the DWBA by [29]

f=txj(O)x, (() ))„(()go+(0)),
~pi

(3)

In the JM model, the effects of exchange are included
through the use of the Furness-McCarthy [31] exchange
potential:

U (r )=U„,(r )+U,„,(r )

with

U,„,= —,'[(E —V) —[(E—V) +8migi, i
]'

where V=U„, , and E =Ep for Up. Although this has
previously been used for high energies, the present results
indicate that it is also a reasonable approximation even
near threshold. In the standard DWBA approach, the
Coulomb repulsion between the two final-state electrons
is ignored in the calculation of the final-state distorted
waves and each of these electron wave functions is ob-
tained as an eigenfunction of the static potential of the
ion:

U~ (Po): + ll~ ()) ()~ ()))
2 1

Pp Tpi
(8)

However, in the JM model, as in the JMS model, the
final-state distorted waves approximately include the
three-body Coulomb interaction through the use of an
effective charge Ansatz. As discussed by JMS, the asymp-
totic effective charge for equal-energy final-state particles
is given by

1
z) =z~ =1—

2 sin(8
&
z/2 )

(9)

The distorting potentials U, and Uz are then formed by
taking a linear combination of U„, and U;,„,which
yields the proper boundary conditions at zero and
infinity:

U, (r) =z, U;,„(r)+(I —z, )U„,(r),
Uz(r)=zzU;, „(r)+(I—zz)U„, (r) .

(10)

In this work, the exchange potential (7) is then added to
U, and Uz, with V = U& or Uz and with E =E& or Ez, as
appropriate.

The difference between the present work and the calcu-
lation of Pan and Starace [5) are the following.

Xp OXi 1
&

1 Xp
1

~pi

The incident distorted wave, yp, is an eigenfunction of the
initial-state distorting potential Up while y, and yz are
final-state distorted waves that are obtained as eigenfunc-
tions of potentials U, and Uz. )(()„is the Is Hartree-Fock
orbital for helium [30]. In the work of JMS, the initial-
state distorting potential Up was the static potential of
the neutral atom, which is given in atomic units as

Ug(l'0)=+2 ll~()) I/l~()))
2 1

Tp rp
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(1) For ei2=180 (the only case considered by Pan
and Starace), our asymptotic effective charge is —,', while
Pan and Starace use —,

' (discussed below).
(2) Pan and Starace include exchange interactions

directly in the calculation of the continuum wave func-
tions, while the JM model uses a local approximation for
this effect.

We note that although different Ansatze are used for the
effective charges, Eqs. (10) and (11) are equivalent to the
method used by Pan and Starace for forming distorting
potentials.

Finally, we note that for the special case of e&p=180'
the present choice for asymptotic effective charges
(zi =z2 =

—,
'

) gives the correct asymptotic potential energy
for each electron, but will not satisfy the Rudge relation
[27] explicitly unless one properly accounts for the dou-
ble counting of the final-state electron-electron interac-
tion. This is due to the fact that the Rudge relation is
essentially an energy-balance equation for the total poten-
tial energy of the system. To obtain the potential energy
of the system from an effective charge Ansatz such as (9),
it is necessary to subtract any interactions that are count-
ed twice when the individual potential energies are add-
ed. Then it is easily seen that (9) also gives the correct to-
tal potential energy of the system. Pan and Starace [5],
on the other hand, have chosen their effective charges so
that one obtains the correct asymptotic classical force on
each electron. For e&2=180', they use z& =z2 =

—,'. This
Ansatz satisfies the Rudge relation explicitly, but does not
give the correct asymptotic potential energy for each
electron.

IV. RESULTS AND DISCUSSIGN

We have performed absolute TDCS measurements for
kinematics both in and out of the scattering plane. These
measurements provide a stringent test for various
theoretical models, and, in this section, comparison be-
tween experiment and theory will be made for the JM
and JMS models, the DW results of Pan and Starace [5],
and the calculation of Crothers [4]. The JM and JMS
models were obtained for arbitrary energies and angles.
Pan and Starace [5] limited their calculations to coplanar
8,2=180', and the results of Crothers [4] are available
only for a limited range of coplanar kinematics.

Before proceeding to a detailed comparison between
theory and experiment, we will first illustrate the spatial
distribution of the triple-differential cross section. Figure
2 shows in polar coordinates a spline-curve surface fitted
to approximately 200 measured data points for the abso-
lute triple-differential cross section with one detector
fixed at 8,=90 and the other detector varied through all
possible angles in space. Note that a small intensity,
equal to 4% of the maximum, was also measured for 82
angles between detector 1 and the z axis (electron beam),
but this is omitted from the figure for clarity (see, howev-
er, Fig. 5). The thick line at 82=90' represents the kine-
matics for 8, =82=90', that is, the perpendicular plane
geometry referred to in the Introduction and shown in

Fig. 1(e). The dashed line represents coplanar measure-
ments. The results for both of these particular
geometries will be discussed below.

The maximum in the cross section occurs when the
second electron is approximately directly opposite the
first (i.e., at 82=90' and $2=180') as would be expected
from the simple picture of electron-electron correlation in
the continuum as originally proposed by Wannier. The
shape of the distribution is not cylindrically symmetric,
however, which means that it is not just a function of the
mutual angle 6,2 between the two outgoing electrons.

The above results are represented in the more con-
venient rectangular coordinates in Fig. 3(a), which can be
compared directly with the JM theoretical calculations in
Fig. 3(b). From this figure we see that while the JM cal-
culation exhibits the correct shape, the magnitude is
somewhat smaller than the absolute measurements. The
possible reasons for this discrepancy will be discussed
later, after considering results in other kinematics in de-
tail.

The spline-fitted cross-section data presented in Fig.
4(a) for 8, =60' show a more complex structure. There is
a clear "valley" or local minimum in the cross section
near 82=120', i.e., directly opposite detector 1. This
contradicts the intuition based on the simple Wannier
model, but can readily be explained in terms of contribu-
tions from partial waves higher than L =0. This point
has been discussed for relative, in-plane measurements by
Selles et al. [8]. The corresponding JM calculations in
Fig. 4(b) show good agreement with the shape, but the
structure is less sharp and the magnitude is again some-
what smaller.

Shaw and Altick [20] predicted, on the basis of sem-
iempirical estimates, that the out-of-plane TDCS at 2 eV
above threshold should be larger than the coplanar value
for 6, =60' and 8z —135'. It is obvious from Fig. 4 that

ein

FIG. 2. The measured absolute triple-differential cross sec-
tion in polar coordinates for E, =E2 =1 eV and 8, fixed at 90.
The surface is a spline fit to over 200 data points and is marked
at 2' intervals. The measurements have a relative uncertainty to
each other of 10% and an overall uncertainty in absolute value
of 22%. The thick solid line indicates points measured in per-
pendicular plane kinematics, whereas the thick dashed line indi-
cates coplanar measurements.
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this is not correct. The disagreement could be due to the
limitations of the data available in the original fitting pro-
cedure or to a breakdown in the assumptions in the mod-
el.

The first assumption that Shaw and Altick used, that
the cross section can be analyzed in terms of the three
lowest partial waves, can be tested (as discussed above) by
fitting those points with constant 8,2 and constant

y,2=82 —8, with a power series in P&2. This test showed
that L =3 terms were not necessary to describe the re-

suits presented here. However, this is only a necessary
and not a suScient condition: Test calculations in the
JM model show that although partial waves with L )3
contribute only to angular ranges close to the beam direc-
tion (i.e., 8„82—+0 or 180, which are not experimentally
accessible), partial waves with I.=3 contribute for all an-
gles.

Nevertheless, a number of attempts were made, using
several fitting methods [32], to find a set of ten parame-
ters for Eq. (2) which could reproduce our measurements.

(a) (a)

180' 180'

150' 150

b)

80'
80'

150'

FICx. 3. (a) The measured absolute TDCS as in Fig. 2, but in
rectangular coordinates where y2 = 180 represents in-plane
scattering; (b) the calculated cross section using the JM model
corresponding to (a).

150

FICx. 4. (a) The measured absolute TDCS, spline-fitted as in
Fig. 3, but for 8& fixed at 60'; (b) the calculated cross section us-
ing the JM model corresponding to (a).
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FIG. 5. The measured absolute TDCS for
8&=90' and F2=0 or F2=180. The verti-
cal dashed line indicates the position of detec-
tor 1. Detector 2 is rotated within the scatter-
ing plane. This corresponds to the measure-
ment fitted by the dashed line in Fig. 2. In this
figure, the dotted line shows the theoretical
calculation of Crothers [4], the solid line the
JM results.

Unfortunately, several equally good and independent
solutions were found, showing that the accessible angular
range does not permit an unambiguous determination,
despite the present extension to out-of-plane kinematics.

The coplanar results from Fig. 3, where 8, is fixed at
90' and detector 2 is moved in the scattering plane, are
shown in detail in Fig. 5, together with calculations from
the JM model (solid line) and from Crothers (dotted line).
The JM results are in qualitative agreement with experi-
ment, but underestimate the magnitude of the peak and
overestimate the shift in the peak position. The small
amount of scattering at 6&=30' and $2=0 (i.e., both
detectors on the same side of the electron beam) is pre-
dicted by the JM model, but likewise shifted. The theory
of Crothers, even though calculated only for singlet
scattering, fits the data in these kinematics quite well, al-
though the peak is predicted to be at 90' instead of the
actual 100'. Test calculations, within the JM model,
show that the main peak is not affected by ignoring the
triplet contribution (of course, right at 8, =Bz=90 the
scattering must be of the pure singlet type). In contrast,
the smaller peak results primarily from triplet scattering.

The in-plane results for 8, =60' [Fig. 6(a)] show more
clearly the presence of two peaks. Again, results from
the JM model and from Crothers are shown for compar-
ison. The JM model shows the double-peak structure,
but the location of the first peak is shifted and the overall
cross section is underestimated. The first peak, near
8-, =90', is predicted rather well by the model of Croth-
ers, indicating that it is still mainly due to singlet scatter-
ing. Crothers's results significantly underestimate the
second peak, which indicates a strong triplet contribu-
tion. Cross-section measurements near 180' are unfor-
tunately not possible due to obstruction by the electron
gun. Experimental results are shown for 8,= 120 in Fig.
6(b). These show a similar double-peak structure, which
is also predicted by the JM model.

To conclude the discussion of coplanar results for fixed

8, , a similar comparison is shown for 8, =30 [Fig. 7(a)]

and 150' [Fig. 7(b)]. The JM model is in quite good
agreement with experiment in each case. The worsening
agreement for the Crothers results is due to increasing
contributions to the cross section from triplet scattering.

It is useful here to consider a geometry which has been
discussed recently [10,11,33] in terms of direct and dou-
ble scattering, namely the coplanar symmetric geometry
in which 8, is maintained equal to 82. The results
presented in Fig. 8 are slightly different from those shown
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FIG. 6. The measured absolute TDCS for (a) 8&=60 (b)

8, =120'. Calculations: Crothers [4], dotted line; JM, solid
line.
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FIG. 7. The measured absolute TDCS for (a) 8&=30', (b)

8& = 150'. The curves are as in the previous figure.

in the near-threshold measurements reported from this
laboratory [10]. In these kinematics the apparent posi-
tion and width of the measured peak depend very sensi-
tively on the alignment and adjustment of the electron
beam, and several tests had to be devised to monitor
alignment during the course of the measurements. The
results in the figure are from a single measurement lasting
2 d, and they are in agreement within statistics with indi-
vidual measurements made for a range of kinematics
(which happened to include some coplanar points with
8, =8&) over the course of several months.

I 1z=1—
4 sin(e&2/2)

(12)

Test calculations showed that using z& =z2 =z in the JM
model dramatically worsens agreement with experiment,

As discussed in the Introduction, triplet scattering is
suppressed in these symmetric kinematics, so that the
Crothers model should be applicable. The measurements
show, however, a slight tendency for increased scattering
at higher angles, and a breaking of the symmetry about
90', which was predicted by the model of Crothers. Com-
parison of theory and experiment at higher energies have
shown [10] this effect to be due to second-order terms in
the scattering. In particular, it is known that double
scattering, in which the incident electron is scattered
backwards through a collision with the nucleus before
ionizing the target, is important for describing the case in
which both electrons emerge in the backward direction.
Crothers used a first-order approximation (plane wave)
for the incident electron, and so this double collision
could not be modeled. The JM model, on the other hand,
accounts for double scattering since the projectile-nucleus
interaction is included exactly in the formation of the
initial-state distorting potential.

The JM model predicts, however, stronger backscatter-
ing than is seen in the experiment. We believe that this
discrepancy arises primarily from the inability of effective
charges to model accurately final states with small
electron-electron angular separations. This stems from
the fact that an effective charge is "placed" at the origin
and thus can only exert a radial force on the outgoing
electrons. Thus, effective charges should be more reliable
for large angular separations where the Coulomb repul-
sion between the two final-state electrons is nearly in the
radial direction from the residual ion. This conclusion is
further supported by the fact that the JM results in Fig. 8
also overestimate the forward scattering when the angu-
lar separation is small.

If we demand, for equal energies, that z& =z2, then the
Rudge relation yields the asymptotic effective charge

10 I I I I I I I I I I I I I I I
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O
Q)

CV
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2CI

FIG. 8. The measured absolute TDCS for
coplanar symmetric kinematics,
F2=180'. Theory: JM, solid line; Crothers,
dotted line.

30 60 90 120
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causing the single peak for coplanar symmetric geometry
to split into two much larger peaks near 50 and 150',
with a pronounced minimum near 90 (where the experi-
mental maximum occurs). Furthermore, we found that
using z, rather than (9), worsens agreement for all kine-
matics in this report (in both the JMS and JM models);
the worsening is, however, much more striking for the
case of coplanar symmetric scattering.

The above examples show structures resulting from
strong electron-electron correlation in the outgoing chan-
nel, and in some cases strong distortions in the incident
channel. In the case of scattering in the perpendicular
plane kinematics [Fig. 1(e)], where 8, =82=90', and
Bz=e,z is varied, structures arising from distortions in
the incident channel are expected to be washed out due to
the strong Coulomb repulsion at the low energies con-
sidered here. This can be seen as follows. With a very
simple model, Zhang, Whelan, and Walters [26] were able
to show that ionization in the perpendicular plane results
from two basic mechanisms. Each of these mechanisms
leads, at higher energies, to a peak in the TDCS. First,
they considered the possibility of a single collision be-
tween the projectile and an atomic electron (no momen-
tum is transferred to the ion) leading to two final-state
electrons in the perpendicular plane. Since initially the
free momentum in this plane is zero, they argued that
two electrons with equal kinetic energies will most likely
emerge in opposite directions in the scattering plane.
Next, they showed that a simple double collision could be
pictured by assuming that the incident electron is first
elastically scattered through 90' by the nucleus. This is
followed by a collisions with a target electron, which
would most likely lead to two electrons emerging 90'
apart. Although this double-scattering mechanism is ex-
pected to be important near threshold, the strong
Coulomb repulsion between the two final-state electrons
will dominate and cause these two electrons to emerge
with an angular separation greater than 90'. Thus, at
sufficiently low energies, only the single peak at
e&2 = 180' will remain.

It might be thought that in perpendicular plane kine-
matics, where only the final-state angular separation is
varied, the shape of the angular distribution would de-
pend only on the final-state electron-electron interaction.
However, test calculations within the JM model show
that this is certainly not the case. In particular, the
double-scattering mechanism referred to above increases
the relative amount of scattering for angles greater than
approximately 90 . Thus perpendicular plane kinematics
do not necessarily provide a sensitive test of the Ansatz
used to model the Coulomb repulsion, since these kine-
matics cannot isolate the effects of the final-state
electron-electron interaction from distortions in the in-
cident channel.

The results shown in Fig. 9, for the perpendicular
plane kinematics, are compared here with the JM model.
The fact that the JM model underestimates scattering at
8& =82=90' and F2= 180' has already been demonstrated
and discussed. Hence in this figure the JM theory (solid
line) has been multiplied by a factor of 1.44 (dashed line)
to emphasize the good agreement for the shape of the JM
cross sections for final-state angular separations greater
than 140'. The effective charge Ansatz used here to mod-
el the repulsion between the two final-state electrons is
expected to break down as the mutual angle e, z is de-
creased; the results shown in Fig. 9 suggest that the An-
satz works well down to e&2=140 for perpendicular
plane kinematics.

In contrast to previous kinematics, where electron-
electron repulsion was important, Fig. 10 presents results
for coplanar kinematics with 8,2= 180' (see inset of Fig.
10), where the repulsion (correlation) between the two
outgoing electrons is weakest. Correlations in the target,
or distortions in the incident channel, could hence be ex-
pected to play a more significant role. Calculations are
shown for the models of JM (solid line), JMS (dotted-
dashed line), Pan and Starace (dashed line), and Crothers
(dotted line).

The recent theoretical treatment by Pan and Starace
(dashed curve in Fig. 10) attributes the pronounced peak
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FIG. 9. The measured absolute TDCS for
perpendicular plane kinematics, 8 )

=6q =90',
and y2 (that is, e&2) varied. The solid line is
the JM result; the dashed line is the JM result,
multiplied by 1.44 to allow comparison of rela-
tive shape.
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FIG. 12. (a) The measured absolute TDCS for out-of-plane kinematics with 8»=150' and g&2=0 20 40 60' (from top to bot-
tom). Theory: JM, solid line; (b) as in (a), but 8»=135', (c) as in (a), but 8»=120', (d) as in (a), but 8]p=105'.

the angular range 40&8, &140'. It is interesting, and
somewhat puzzling that the Crothers model, with its em-
phasis on the final state interaction (a plane wave is used
for the incident electron), also achieves good agreement
with the data near 8&=90' since we find that it is essen-
tia1 to also include the short-range interactions in the ini-
tial state wave function. Thus, despite the success of Pan
and Starace's calculation, the physics governing the an-
gular distribution is still not completely understood.

Further light is shed on the reaction by examining a
progression of experiments for kinematics in which the
effects of the electron-electron interaction are graduaHy
increased. Figure 11 compares JM (solid line) and JMS
(dashed line) coplanar results for B,z ranging from 165'
down to 120. Recall that the only significant difference
between the JMS and JM model is that the JM model in-
cludes exchange distortion. It can be seen from this
figure that exchange distortion provides greatly improved

agreement with experiment, both in shape and absolute
magnitude. It should be noted that the best agreement
between experiment and the JM model occurs here for
6,2=135 whereas for Fig. 9 it was seen that the JM
shape was best for 6,2 greater than 135'. This observa-
tion further demonstrates that effects other than the
final-state interactions (8,2) are very important under
different kinematical conditions.

Next, we generalize constant 6,2 kinematics to include
out-of-plane results. The top set of figures in Figs. 12(a)
through (d) show results for 6,2=150', 135', 120', and
105, with 8&=82. Since 8,=82 corresponds to singlet
scattering, these out-of-plane results provide a detailed
test for how well the singlet amplitude is modeled. From
these figures we see that the strong backscattering pre-
dicted by the JM model is essentially correct although
the amount of backscattering is overestimated.

The above test can be further refined. Defining the an-
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gle y,2=82 —8&, the above kinematics represent scatter-
ing with e&2 constant and y, 2=0'. The choice of y&2=0'
suppressed triplet scattering. Other choices of y&z permit
progressive inclusion of the triplet components. Thus
any theory that provides good agreement with the above
test of the singlet components should be further tested by
comparison with data for other y, 2 values, to determine if
the triplet scattering components are also well modeled.
From Fig. 12 it is seen that the degree of agreement or
disagreement between experiment and the JM theory is
not changed, for better or for worse, by including triplet
contributions.

V. CONCLUSION

We have reported theoretical and absolute experimen-
tal results for the triple-differential cross section for
near-threshold ionization of helium. The out-of-plane
measurements have shown that it is not possible to sirn-

ply extrapolate these results from in-plane measurements.
Furthermore, a partial-wave analysis of nearly 200 data
points using L =0, 1, and 2 was not able to provide
unambiguous results. This is partly due to unavoidable
limitations on the range of accessible angles.

A comparison between absolute experimental results
and theory provides a very sensitive test of different as-
pects of theoretical models near the threshold. Contribu-
tions due to distortions in the incident channel, to
electron-electron repulsion in the final state, or to the
singlet or triplet components of the amplitudes can all be
tested. In addition, the results of Pan and Starace as well
as the calculations reported here show that at these low
energies it is not enough to merely antisyrnmetrize the
approximate wave function —the possibility of exchange
must be included ab initio.

While the JM model gives good results using simple
effective charges to model the final-state electron-electron
interaction, it would be highly desirable to perform
distorted-wave calculations where this interaction is
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treated on an equal footing with the electron-ion interac-
tion. %'ork has commenced on incorporating the exact
asymptotic boundary condition into the DWBA so that
the use of effective charges can be avoided. Further ex-
periments will be made on atomic hydrogen and on argon
to help clarify the roles of exchange distortion and polar-
ization.
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