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NEW POD ERROR EXPRESSIONS, ERROR BOUNDS, AND
ASYMPTOTIC RESULTS FOR REDUCED ORDER MODELS OF

PARABOLIC PDEs∗

JOHN R. SINGLER†

Abstract. The derivations of existing error bounds for reduced order models of time varying
partial differential equations (PDEs) constructed using proper orthogonal decomposition (POD)
have relied on bounding the error between the POD data and various POD projections of that
data. Furthermore, the asymptotic behavior of the model reduction error bounds depends on the
asymptotic behavior of the POD data approximation error bounds. We consider time varying data
taking values in two different Hilbert spaces H and V , with V ⊂ H, and prove exact expressions for
the POD data approximation errors considering four different POD projections and the two different
Hilbert space error norms. Furthermore, the exact error expressions can be computed using only
the POD eigenvalues and modes, and we prove the errors converge to zero as the number of POD
modes increases. We consider the POD error estimation approaches of Kunisch and Volkwein [SIAM
J. Numer. Anal., 40 (2002), pp. 492–515] and Chapelle, Gariah, and Sainte-Marie [ESAIM Math.
Model. Numer. Anal., 46 (2012), pp. 731–757] and apply our results to derive new POD model
reduction error bounds and convergence results for the two-dimensional Navier–Stokes equations.
We prove the new error bounds tend to zero as the number of POD modes increases for POD space
X = H in both approaches; the asymptotic behavior of existing error bounds was unknown for this
case. Also, for X = H, we prove one new error bound tends to zero without requiring time derivative
data in the POD data set.

Key words. proper orthogonal decomposition, reduced order models, parabolic equations,
Navier–Stokes equations, data approximation
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1. Introduction. Proper orthogonal decomposition (POD) is a well-known and
widely used model reduction method for partial differential equations (PDEs) and
other dynamical systems. POD takes simulation data or experimental data and pro-
duces modes that can be used to reduce the model via a Galerkin projection. These
reduced order POD models are not well understood—when initial conditions or pa-
rameters are changed in the reduced model, the solution of the reduced model can be
either surprisingly accurate or completely unrelated to the solution of the full model.
Understanding and predicting the accuracy of the reduced model is an extremely
important problem.

As a first step toward this goal, Kunisch and Volkwein in [20, 21] proved error
bounds for the POD reduced order model of various linear and nonlinear parabolic
PDEs under the assumption that the initial conditions and parameters in the reduced
model were not varied from the original PDE model. Since these works, other re-
searchers have considered various scenarios (different PDEs, numerical methods, etc.)
and modified POD model reduction schemes and have proved related error bounds;
see, e.g., [2, 3, 4, 8, 13, 15, 18, 19, 23, 24, 25, 26, 27]. Also, see the many references
in these works for more information about POD and applications of POD to many
different fields.
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A distinguishing feature of parabolic PDEs is that the solution is square integrable
in time when taking values in two different Hilbert spaces, H and V . For example, for
the diffusion equation with zero Dirichlet boundary conditions on a bounded domain
Ω ⊂ Rn, the usual choices are H = L2(Ω) and V = H1

0 (Ω). The inner product of
two functions f and g on H is the integral of the product fg over Ω, while the inner
product on V is the integral of the dot product of the gradients ∇f · ∇g over Ω. The
POD eigenvalues and modes depend on the Hilbert space X chosen, and therefore
different reduced order models arise for X = H and X = V .

In [21], Kunisch and Volkwein gave an error bound for the two-dimensional (2D)
Navier–Stokes equations for the case X = V that converges to zero as the time step
is refined and the number of POD modes is increased. However, they did not obtain
a similar asymptotic result for X = H due to a factor in the error bound that tends
to infinity as the number of POD modes increases. Also, in many of the recent POD
error estimate works listed above, the case X = H is not considered even though
numerical results in many works indicate the error converges to zero for this case.

Furthermore, in order to obtain the asymptotic result for the caseX = V , Kunisch
and Volkwein required that solution time derivative data be included in the POD
computation. They noted in [20] that including this extra data did not improve the
accuracy of the reduced model in numerical experiments unless the time step was
coarse. However, the time derivative data was found to increase the accuracy of the
reduced model in [15].

In a recent paper [3], Chapelle, Gariah, and Sainte-Marie used a different error
estimation technique and produced a new error bound for the case X = V (they
did not consider the case X = H) that does not depend on the time derivative of
the solution. In addition, they proved that the error bound converges to zero under
the assumption that the V operator norm of a certain POD projection is bounded
as the number of POD modes increases. They noted that it was possible for this
quantity to be unbounded; however, they produced analytical and numerical evi-
dence that strongly suggests that this quantity is bounded for the problems they
considered.

The main roadblock in the analysis in the works discussed above is the estima-
tion of the error between the solution data used to construct the POD modes and
different POD projections of that data. In this work, we consider time varying data
taking values in two different Hilbert spaces and we prove exact expressions for these
POD data approximation errors for four different POD projections and two error
norms (H and V ). These error expressions can be computed using only the POD
eigenvalues and modes. We illustrate these new exact error expression results in sec-
tion 4 with a numerical example. We also prove that the errors converge to zero
as the number of POD modes in the projections increases. However, for one case
we must make the same additional assumption that was made in [3] for the case
X = V .

We show how to use these results with the error estimation approaches of [20, 21]
and [3] to prove new POD model reduction error bounds and convergence results (as
the number of POD modes increases) for the 2D Navier–Stokes equations in section
6. We prove the new error bounds tend to zero for POD space X = H in both error
estimation approaches. Moreover, for X = H , we use our new results along with the
technique of [3] to prove a new error bound that tends to zero without including time
derivative data in the POD data set.

Our results can be applied to derive new error bounds for standard POD Galerkin
reduced order models of other parabolic PDEs, and our results should also be
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applicable to error bounds for nonstandard POD reduced order models such as those
considered in [2, 4, 18].

2. POD. We begin with a brief overview of the continuous POD theory for
a collection of time varying functions taking values in a Hilbert space. For more
details and for the proof of the main POD theory (for both discrete and time varying
data), see, e.g., [14, 31, 21, 9, 32]. We also highlight the POD properties that will be
important to the proofs of the main results in section 5.

Before we describe the continuous POD, we introduce some notation and back-
ground.

2.1. Notation. Let X be a Hilbert space with inner product1 (·, ·)X and corre-

sponding norm ‖x‖X = (x, x)
1/2
X . For X = CN , the dot product can be taken as the

standard dot product (x, y)X = y∗x or a weighted product (x, y)X = y∗Mx, where
M is a Hermitian positive definite matrix.

Let I = (a, b) with −∞ ≤ a < b ≤ ∞. Let the inner product on L2(I) be given by

(f, g)L2(I) =

∫
I

f(t) g(t) dt

with norm ‖h‖L2(I) = (h, h)
1/2
L2(I). Also let Ij be open intervals for j = 1, . . . ,m, and

let L2(I)m denote the Hilbert space L2(I1)×L2(I2)×· · ·×L2(Im) with inner product

(f, g)L2(I)m =

m∑
j=1

(fj , gj)L2(Ij)

for f = [f1, . . . , fm]T and g = [g1, . . . , gm]T .
Let L2(I;X) be the Hilbert space of functions w(t) such that w(t) ∈ X for t ∈ I

and

‖w‖L2(I;X) =

(∫
I

‖w(t)‖2X dt

)1/2

<∞.

The inner product on L2(I;X) is

(w, z)L2(I;X) =

∫
I

(
w(t), z(t)

)
X
dt.

2.2. The singular value decomposition and Hilbert–Schmidt operators.
Let K : X → Y be a compact linear operator, where X and Y are separable Hilbert
spaces. Let {xk} ⊂ X and {yk} ⊂ Y be orthonormal bases of eigenvectors of K∗K :
X → X and KK∗ : Y → Y , where K∗ : Y → X is the Hilbert adjoint operator. The
nonzero (positive) eigenvalues {λk} of K∗K and KK∗ are the same, and we have

Kxk = σkyk, K∗yk = σkxk,

where σk = λ
1/2
k . Furthermore, zero is an eigenvalue of K∗K with eigenvector xk if

and only if Kxk = 0 since

K∗Kxk = 0 ⇒ (K∗Kxk, xk)X = 0 ⇒ ‖Kxk‖2Y = 0 ⇒ Kxk = 0,

and Kxk = 0 implies K∗Kxk = 0. Similarly, zero is an eigenvalue of KK∗ with
eigenvector yk if and only if K∗yk = 0.

1We assume all inner products are linear in the first argument and conjugate linear in the second
argument so that (αx, y)X = α (x, y)X and (x, α y)X = α (x, y)X for α ∈ C.
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The singular value decomposition of K consists of the singular vectors {xk} and
{yk} and the singular values {σk}, where we include zero in the list of singular values
if either K∗K or KK∗ has a zero eigenvalue. Furthermore, we order the singular
values (and corresponding singular vectors) so that σ1 ≥ σ2 ≥ · · · ≥ 0. In general,
it is possible for K to have infinitely many positive singular values and also a zero
singular value.

Also, the operator K above is Hilbert–Schmidt (see, e.g., [1]) if

(2.1) ‖K‖HS :=

(∑
k≥1

‖Kzk‖2Y
)1/2

<∞,

where {zk} ⊂ X is any orthonormal basis. The above sum is independent of the
choice of orthornormal basis, and also

‖K‖HS =

(∑
k≥1

σ2
k

)1/2

<∞.

Furthermore, if Z is another separable Hilbert space and L : Y → Z is bounded, then
it follows from (2.1) that LK : X → Z is also Hilbert–Schmidt.

2.3. Continuous POD of one function. Let data w ∈ L2(I;X) be given. The
POD problem for the data w ∈ L2(I;X) looks for an orthonormal basis {ϕi} ⊂ X
(the POD modes) minimizing the data approximation error

Er = ‖w − Prw‖2L2(I;X) =

∫
I

‖w(t) − Prw(t)‖2X dt

for the data approximation

(2.2) Prw(t) =

r∑
i=1

(
w(t), ϕi

)
X
ϕi.

To solve this data approximation problem, introduce the linear operator K :
L2(I) → X defined by

Ku =

∫
I

u(t)w(t) dt.

It can be shown that K is a compact linear operator, and therefore it has a singular
value decomposition: there exist singular values σ1 ≥ σ2 ≥ · · · ≥ 0 and singular
vectors {fi} ⊂ L2(I) and {ϕi} ⊂ X such that

(2.3) Kfi = σiϕi, K∗ϕi = σifi,

where the Hilbert adjoint operator K∗ : X → L2(I) is given by

[K∗x](t) =
(
x,w(t)

)
X
.

The singular vectors are orthonormal bases for each space. Furthermore, K is known
to be Hilbert–Schmidt (see, e.g., [28, Proposition 4.3]), and so the sum of the squares
of the singular values is finite: ∑

i≥1

σ2
i <∞.

The squares of the singular values, λi = σ2
i , are often called the POD eigenvalues of

the data.
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It can be shown that the POD modes {ϕi} ⊂ X are the above singular vectors of
K, and the approximation error is given by the sum of the squares of the neglected
singular values, i.e.,

Er = ‖w − Prw‖2L2(I;X) =

∫
I

‖w(t)− Prw(t)‖2X dt =
∑
i>r

σ2
i .

Furthermore, from the SVD equations (2.3) for K and the definition of K∗, we have(
w(t), ϕi

)
X

= [K∗ϕi](t) = σifi(t).

Therefore, the data approximation can be rewritten as

Prw(t) =

r∑
i=1

σi fi(t)ϕi.

The Hilbert–Schmidt property of K and the above form of Prw play crucial roles in
the proofs of the main results in section 5.

2.4. Continuous POD of multiple functions. In model reduction applica-
tions, the POD of more than one function is often considered. We consider the case
where all functions take values in the same Hilbert space, but they may be defined
on different time intervals.2

Assume we are given multiple functions wj ∈ L2(Ij ;X) for j = 1, . . . ,m. The
POD problem is again to find an orthonormal basis {ϕi} ⊂ X minimizing the approx-
imation error

(2.4) Er =
m∑
j=1

‖wj − Prwj‖2L2(Ij ;X)

with data approximations Prwj defined analogously to (2.2) above. The linear oper-
ator K : L2(I)m → X and its adjoint K∗ : X → L2(I)m are now given by

(2.5) Ku =
m∑
j=1

∫
Ij

uj(t)wj(t) dt, K∗x =
[(
x,w1(t)

)
X
, . . . ,

(
x,wm(t)

)
X

]T
.

The singular value decomposition {σi, fi, ϕi} of K again gives the solution. We have
again that K is Hilbert–Schmidt, Er =

∑
i>r σ

2
i , and

Prwj(t) =

r∑
i=1

(
wj(t), ϕi

)
X
ϕi =

r∑
i=1

σi fi,j(t)ϕi,

where fi,j is the jth component of the singular vector fi ∈ L2(I)m.

3. POD projections: Basic properties and new results. The PODGalerkin
model reduction error bounds and our main results all center around POD projec-
tions. In this section, we define four POD projections, give their basic properties, and
present new POD data approximation errors involving these projections. As in the
previous section, we consider the POD of multiple functions. To begin, we make a
basic assumption that the data takes values in two Hilbert spaces and we fix notation
for the POD singular values and singular vectors.

2The theory for the case of different time intervals is similar to the case of one time interval.
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Main assumption. Let H and V be two Hilbert spaces with V ⊂ H , and let
wj ∈ L2(Ij ;H) ∩ L2(Ij ;V ) for j = 1, . . . ,m be given data, where Ij = (aj , bj) with
−∞ ≤ aj < bj ≤ ∞.

At times, we assume V is dense in H or V is continuously embedded in H , i.e.,
there exists a constant CV > 0 (called the embedding constant) such that ‖v‖H ≤
CV ‖v‖V for all v ∈ V . We do not make either of these assumptions unless specified
otherwise.

Since the data satisfies wj ∈ L2(Ij ;X) for X = H and X = V , we can consider
two different POD problems with error norm X = H or X = V in (2.4). The solution
of the POD problem in each case leads to the operators K : L2(I)m → X , where
X = H or X = V . Since the adjoint operator K∗ depends on the X inner product,
the singular value decomposition of K is different in each case.

Notation. Let {σk, fk, ϕk} ⊂ R × L2(I)m × H denote the singular values and
singular vectors of K, where K : L2(I)m → H , and let {μk, gk, ψk} ⊂ R×L2(I)m×V
denote the singular values and singular vectors of K, where now K is viewed as a
mapping from L2(I)m to V . We assume throughout that the singular values are
ordered so that σ1 ≥ σ2 ≥ · · · ≥ 0 and μ1 ≥ μ2 ≥ · · · ≥ 0.

The following lemma is important to keep in mind in this work.
Lemma 3.1. Let the main assumption hold.
1. If σi > 0, then ϕi ∈ V .
2. For 0 < M <∞, μi = 0 for i > M if and only if σi = 0 for all i > M .
3. σi > 0 for infinitely many i if and only if μi > 0 for infinitely many i.
4. If V is densely and continuously embedded in H and μi > 0 for all i, then
σi > 0 for all i.

Proof. To prove the first item, recall that ϕi satisfies Kfi = σiϕi, where the
operator K is viewed as a mapping from L2(I)m to H . Since wj ∈ L2(Ij ;V ), we have
that K maps into V . This gives ϕi ∈ V .

For the second item, assume that μi = 0 for i > M with 0 < M < ∞. Since the
approximation error (2.4) for X = V is given by

Er =
∑
i>r

μ2
i =

M∑
i=r+1

μ2
i ,

we have EM = 0 and therefore wj(t) =
∑M

i=1

(
wj(t), ψi

)
V
ψi for each j. Therefore

K : L2(I)m → H has rank at most M for both X = V and X = H by the definition
of K in (2.5). Since K : L2(I)m → H has rank at most M , we have σi = 0 for all
i > M . The same argument shows that σi = 0 for i > M implies μi = 0 for i > M .
This also proves σi > 0 for infinitely many i if and only if μi > 0 for infinitely many i.

For the final part, since μi > 0 for all i, the null space of K : L2(I)m → V
and its adjoint K∗V : V → L2(I)m consist of only zero. We show the null space of
K : L2(I)m → H and its adjoint K∗H : H → L2(I)m also consist of only zero. First,
note that K : L2(I)m → H andK : L2(I)m → V have the same null space. Therefore,
we need only show K∗H has zero null space.

For X = H or X = V , let N (K∗X ) and R(K) denote the null space of K∗X :
X → L2(I)m and the range ofK : L2(I)m → X . Then we haveX = N (K∗X )⊕R(K),
where the bar denotes the closure in X . Since the null space of K∗V is only zero, the
closure in V of R(K) is all of V .

Let x ∈ H and let ε > 0. Since V is dense in H , there is a v ∈ V with ‖x−v‖H <
ε/2. Also, there exists r ∈ R(K) such that ‖v − r‖V < ε/(2CV ), where CV is the
embedding constant. Then
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‖x− r‖H ≤ ‖x− v‖H + ‖v − r‖H < ‖x− v‖H + CV ‖v − r‖V < ε,

and so the closure in H of R(K) is all of H . Therefore, the null space of K∗H consists
of only zero.

Our analysis is centered around the following four orthogonal projections.
Definition 3.2. Define the sets Hr and Vr by

Hr = span{ϕ1, . . . , ϕr}, Vr = span{ψ1, . . . , ψr}.

Also define the orthogonal projections PH
r , QH

r : H → H and PV
r , Q

V
r : V → V by

1. PH
r : H → Hr, and for x ∈ H, PH

r x minimizes infxr∈Hr ‖x− xr‖H .
2. PV

r : V → Hr, and for v ∈ V , P V
r v minimizes infxr∈Hr ‖v − xr‖V .

3. QH
r : H → Vr, and for x ∈ H, QH

r x minimizes infvr∈Vr ‖x− vr‖H .
4. QV

r : V → Vr, and for v ∈ V , QV
r v minimizes infvr∈Vr ‖v − vr‖V .

If σi > 0 for i = 1, . . . , r, the lemma above gives that Hr ⊂ V and so PV
r is well

defined and also PH
r maps into V .

These projections can be computed using the following expressions:

PH
r x =

r∑
k=1

(x, ϕk)Hϕk, PV
r v =

r∑
k=1

ck ϕk, Src = y,

QH
r x =

r∑
k=1

dk ψk, Mrd = z, QV
r v =

r∑
k=1

(v, ψk)V ψk,

where c = [c1, . . . , cr]
T , d = [d1, . . . , dr]

T , and the matrices Sr,Mr ∈ Cr×r and vectors
y, z ∈ Cr have entries

(3.1) Sr,ij = (ϕj , ϕi)V , Mr,ij = (ψj , ψi)H , yi = (v, ϕi)V , zi = (x, ψi)H .

The orthogonal projections PH
r and QH

r are bounded operators on H ; however,
we can also view PH

r and QH
r as operators from H to V or from V to V . Lemma 2

in [20] essentially shows these operators are bounded; in the latter case, we make the
additional assumption that V is continuously embedded in H .

Lemma 3.3. If the main assumption holds, then QH
r : H → V is bounded. If, in

addition, σi > 0 for i = 1, . . . , r, then PH
r : H → V is bounded. Furthermore,

‖QH
r v‖V ≤ ‖M−1

r ‖1/22 ‖v‖H , ‖PH
r v‖V ≤ ‖Sr‖1/22 ‖v‖H ,

where ‖ · ‖2 denotes the spectral norm of a matrix, and Mr, Sr ∈ Cr×r are defined in
(3.1).

If also V is continuously embedded in H with embedding constant CV , then Q
H
r :

V → V and PH
r : V → V are bounded and

‖QH
r v‖V ≤ CV ‖M−1

r ‖1/22 ‖v‖V , ‖PH
r v‖V ≤ CV ‖Sr‖1/22 ‖v‖V .

Proof. Let v ∈ V . Since σi > 0 for i = 1, . . . , r, Lemma 3.1 gives that Hr ⊂ V so
that PH

r maps into V . The proof now follows the proof of Lemma 2 in [20]. We also
use that since PH

r and QH
r are orthogonal projections on H , we have ‖PH

r v‖H ≤ ‖v‖H
and ‖QH

r v‖H ≤ ‖v‖H .
Note that we have not proved that the operator norms ‖PH

r ‖L(V ) and ‖QH
r ‖L(V )

can be bounded independent of r.
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Next, the orthogonal projections PV
r and QV

r are bounded operators on V ; how-
ever, we can also view PV

r and QV
r as operators from V to H . Again, Lemma 2 in

[20] shows that these operators are bounded.
Lemma 3.4. If the main assumption holds, then PV

r : V → H and QV
r : V → H

are bounded and

‖PV
r v‖H ≤ ‖S−1

r ‖1/22 ‖v‖V , ‖QV
r v‖H ≤ ‖Mr‖1/22 ‖v‖V .

3.1. New results. Our new results give exact expressions for various POD data
approximation errors ‖w−πrw‖L2(I;W ) involving the four different POD projections πr
and different error norms W = H and W = V . The error expressions are computable
using only the POD singular values and modes. We also give convergence results for
the errors as r → ∞.

We give an overview of the results here and give detailed statements of the results,
along with the proofs, in section 5. For some of the results, we must assume V is
continuously embedded in H .

Recall the well-known POD data approximation error expressions (from section
2 with X = H and X = V , respectively):

m∑
j=1

‖wj − PH
r wj‖2L2(Ij ;H) =

m∑
j=1

∫
Ij

‖wj(t)− PH
r wj(t)‖2H dt =

∑
i>r

σ2
i <∞,(3.2)

m∑
j=1

‖wj −QV
r wj‖2L2(Ij ;V ) =

m∑
j=1

∫
Ij

‖wj(t)−QV
r wj(t)‖2V dt =

∑
i>r

μ2
i <∞.(3.3)

Here, the errors tend to zero as r → ∞.
Our results are as follows: If the main assumption on the data holds, then the

data approximation errors for the H error norm are

m∑
j=1

‖wj − PV
r wj‖2L2(Ij ;H) =

∑
i>r

σ2
i ‖ϕi − PV

r ϕi‖2H <∞,

m∑
j=1

‖wj −QH
r wj‖2L2(Ij ;H) =

∑
i>r

μ2
i ‖ψi −QH

r ψi‖2H <∞,

m∑
j=1

‖wj −QV
r wj‖2L2(Ij ;H) =

∑
i>r

μ2
i ‖ψi‖2H <∞,

and for the V error norm the error expressions are

m∑
j=1

‖wj −QH
r wj‖2L2(Ij ;V ) =

∑
i>r

μ2
i ‖ψi −QH

r ψi‖2V <∞,

m∑
j=1

‖wj − PV
r wj‖2L2(Ij ;V ) =

∑
i>r

σ2
i ‖ϕi − PV

r ϕi‖2V <∞,

m∑
j=1

‖wj − PH
r wj‖2L2(Ij ;V ) =

∑
i>r

σ2
i ‖ϕi‖2V <∞.

In addition, all the above errors tend to zero as r → ∞. However, for the case
of QH

r with V error norm, we must make an additional assumption to guarantee



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

860 JOHN R. SINGLER

convergence of the error to zero as r → ∞. (See Remark 1 below.) As we mentioned
in the introduction, this convergence result for QH

r and the V norm was obtained in
[3]. As far as we are aware, all the other results are new.3

4. Numerical example. Before we prove the main results, we give a numerical
example illustrating the exact expressions for the approximation errors. Consider a
2D scalar Burgers’ equation

wt + wwx + wwy = μ (wxx + wyy),

on the unit square Ω with zero Dirichlet boundary conditions and piecewise constant
initial condition w(0, x, y) = 1 if x ≤ 1/2 and w(0, x, y) = 0 otherwise. The solution is
square integrable in time with values in the Hilbert spacesH = L2(Ω) and V = H1

0 (Ω),
where the latter space is given the inner product (u, v)V =

∫
Ω
ux vx+uy vy. Also, due

to the Poincaré inequality, V is continuously embedded in H .
We take μ = 1/100 and approximate the solution for 0 ≤ t ≤ 1 using the group

finite element method (see, e.g., [5, 6, 7]) with continuous piecewise bilinear basis
functions and ode23s of MATLAB for the time stepping scheme.

For the POD computations, we take the approximate solution values at each time
step, w(tk), and form a piecewise constant function in time; we set the value on the
kth time interval as the average (w(tk+1) + w(tk))/2 of the approximate solution at
the endpoints of the interval. As is well known, the POD eigenvalues and modes can
be found exactly in this case [29]. Also, the approximation errors can be computed
exactly for this piecewise constant in time function so that we can compare the actual
approximation errors with the error formulas.

Due to round-off errors in the POD eigenvalue computation, some of the computed
error formulas have extremely small imaginary parts; we report the absolute value of
the computed error formulas below. Also, the two POD error formulas (3.2) and (3.3)
are of course already known; however, we also present computational results for these
formulas below to give a point of comparison for the other error formulas.

Table 1 shows the actual approximation errors and the computed error formulas
for all eight scenarios with r = 5 and 201 equally spaced finite element nodes in each
coordinate direction. To give an example of the notation in the table, the last line in
the table gives the values

computed actual error =

∫
I

‖w(t)− PH
r w(t)‖2V dt,

computed error formula =
∑
i>r

σ2
i ‖ϕi‖2V .

Also, line 1 and line 5 in the table correspond to the two known POD error formulas
(3.2) and (3.3). The table shows excellent agreement between all eight actual errors
and the error formulas. Rounding error in the POD computations led to small dif-
ferences in the computed values, but the numerical results illustrate the theoretical
findings.

Table 2 again shows excellent agreement between the actual approximation errors
and the computed error formulas for all eight scenarios with r = 15. We also see all
the errors tending to zero as r becomes larger in accordance with the theory. Of

3Of course, the convergence of the error for QV
r and the H error norm follows directly from V

being continuously embedded in H and (3.3).
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Table 1

Comparison of actual approximation errors and error formulas with r = 5 using 201 equally
spaced finite element nodes in each coordinate direction.

Projection Error norm Actual error Error formula

PH
r H norm 1.084× 10−5 1.148× 10−5

PV
r H norm 3.867× 10−5 3.952× 10−5

QH
r H norm 2.040× 10−5 2.159× 10−5

QV
r H norm 6.754× 10−5 6.949× 10−5

QV
r V norm 1.848× 10−2 1.862× 10−2

QH
r V norm 1.017× 10−1 1.034× 10−1

PV
r V norm 3.340× 10−2 3.345× 10−2

PH
r V norm 5.589× 10−2 5.614× 10−2

Table 2

Comparison of actual approximation errors and error formulas with r = 15 using 201 equally
spaced finite element nodes in each coordinate direction.

Projection Error norm Actual error Error formula

PH
r H norm 9.611× 10−10 1.031× 10−9

PV
r H norm 6.720× 10−9 6.826× 10−9

QH
r H norm 2.377× 10−9 2.603× 10−9

QV
r H norm 6.915× 10−9 7.354× 10−9

QV
r V norm 5.421× 10−6 5.530× 10−6

QH
r V norm 5.429× 10−5 5.688× 10−5

PV
r V norm 1.682× 10−5 1.684× 10−5

PH
r V norm 6.140× 10−5 6.191× 10−5

course, as mentioned above, we have not proved the error will tend to zero for QH
r

in the V norm. Further increasing r gives even smaller errors. Also, increasing the
number of finite element nodes gives similar results.

As we discuss in Remark 1 below, we can prove QH
r w converges to w in L2(I;V )

as r → ∞ if the quantity ‖QH
r ψi‖2V is bounded for all r and i > r. Figure 1 shows

the values ‖QH
r ψr+k‖2V for k = 1, . . . , 40 and various values of r. We see that these

values remain bounded as r increases. Therefore, we expect convergence as r → ∞,
as we have already seen above.

5. Proofs of main results. We now prove the main results: for all four POD
projections, we give exact expressions for the data approximation errors in different
error norms and prove the errors tend to zero as the number of POD modes tends to
infinity. We also consider the convergence of the approximation errors for individual
elements of the Hilbert spaces H and V below.

In this section, we assume the general framework of sections 2 and 3 holds. Let
V and H be (possibly complex) Hilbert spaces with V ⊂ H . We do not assume the
embedding is dense or continuous unless specified otherwise. Assume the given data
wj satisfies wj ∈ L2(Ij ;H) ∩ L2(Ij ;V ), with V ⊂ H , for j = 1, . . . ,m.

We begin by approximating wj by PV
r wj in the L2(Ij ;V ) norm and by QH

r wj in
the L2(Ij ;H) norm. The following lemma plays a crucial role in the proof.
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Fig. 1. The values ‖QH
r ψr+k‖2V for k = 1, . . . , 40 and various values of r computed using 201

equally spaced finite element nodes in each coordinate direction.

Lemma 5.1. Let 1 ≤ r, s <∞. If the main assumption holds, then

m∑
j=1

‖(I −QH
r )PH

s wj‖2L2(Ij ;H) =

s∑
k=1

σ2
k ‖ϕk −QH

r ϕk‖2H ,(5.1)

m∑
j=1

‖(I −QH
r )QV

s wj‖2L2(Ij ;H) =
s∑

k=r+1

μ2
k ‖ψk −QH

r ψk‖2H .(5.2)

In addition, if σi > 0 for i = 1, . . . , r, then

m∑
j=1

‖(I − PV
r )QV

s wj‖2L2(Ij ;V ) =

s∑
k=1

μ2
k ‖ψk − PV

r ψk‖2V ,(5.3)

m∑
j=1

‖(I − PV
r )PH

s wj‖2L2(Ij ;V ) =

s∑
k=r+1

σ2
k ‖ϕk − PV

r ϕk‖2V .(5.4)

Proof. We prove the results (5.3) and (5.4) involving PV
r . The remaining proofs

are similar.
We start with (5.3). First, since σi > 0 for i = 1, . . . , r, Lemma 3.1 gives that

Hr ⊂ V so that PV
r is well defined. Recall from section 2 that(

wj(t), ψi

)
V
= μi gi,j(t),

where gi,j is the jth component of gi ∈ L2(I)m, which is the ith singular vector of
the operator K : L2(I)m → V . Therefore,

QV
s wj(t) =

s∑
i=1

(
wj(t), ψi

)
V
ψi =

s∑
i=1

μi gi,j(t)ψi, PV
r Q

V
s wj(t) =

s∑
i=1

μi gi,j(t)P
V
r ψi,

which gives

(5.5) (I − PV
r )QV

s wj(t) =

s∑
i=1

μi gi,j(t) (ψi − PV
r ψi).
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Next, use the orthonormality of {gi} in L2(I)m and this separated form to directly
compute the approximation error:

m∑
j=1

‖(I − PV
r )QV

s wj‖2L2(Ij ;V )

=

m∑
j=1

(
(I − PV

r )QV
s wj , (I − PV

r )QV
s wj

)
L2(Ij ;V )

=

m∑
j=1

s∑
k,�=1

μk μ� (g�,j, gk,j)L2(Ij) (ψk − PV
r ψk, ψ� − PV

r ψ�)V

=

s∑
k,�=1

μk μ� (g�, gk)L2(I)m (ψk − PV
r ψk, ψ� − PV

r ψ�)V

=

s∑
k=1

μ2
k ‖ψk − PV

r ψk‖2V .

This proves the error expression (5.3).
The proof of the error expression (5.4) is similar; the main difference is that for

k = 1, . . . , r, PV
r ϕk = ϕk since ϕk ∈ Hr.

Theorem 5.2. Let the main assumption hold and let r ≥ 1. Then

(5.6)
m∑
j=1

‖wj −QH
r wj‖2L2(Ij ;H) =

∑
i>r

μ2
i ‖ψi −QH

r ψi‖2H <∞.

If σi > 0 for i = 1, . . . , r, then

(5.7)
m∑
j=1

‖wj − PV
r wj‖2L2(Ij ;V ) =

∑
i>r

σ2
i ‖ϕi − PV

r ϕi‖2V <∞.

Furthermore, QH
r wj → wj in L2(Ij ;H) and PV

r wj → wj in L2(Ij ;V ) as r → ∞ for
each j.

Proof. We prove the results involving PV
r . The proofs involving QH

r are similar.
Again, since σi > 0 for i = 1, . . . , r, Lemma 3.1 gives that Hr ⊂ V so that PV

r is well
defined.

To begin, assume σi = 0 for i > s for some s ∈ N. In this case, the known
POD data approximation error expression (3.2) gives that wj = PH

s wj for each j.
Therefore, the error expression (5.4) in Lemma 5.1 proves the main error expression
(5.7). Furthermore, this error expression shows that wj = PV

s wj since σi = 0 for
i > s.

Next, assume σi > 0 for infinitely many i, or equivalently μi > 0 for infinitely
many i (see Lemma 3.1). We cannot extend the above argument to the case s = ∞
since we do not know if PH

s wj converges to wj in L2(Ij ;V ) for each j. Instead, we
approximate wj by QV

s wj and derive an alternate expression for the approximation
error. Then we use the Hilbert–Schmidt property of K to prove that the alternate
error expression actually equals the main error expression (5.7).

To begin, recall I−PV
r is an orthogonal projection on V , and so ‖I−PV

r ‖L(V ) = 1.
Also recall QV

s wj → wj in L2(Ij ;V ) as s → ∞ for each j by the known POD data
approximation error expression (3.3). This gives
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m∑
j=1

‖(I − PV
r )(wj −QV

s wj)‖2L2(Ij ;V ) ≤
m∑
j=1

‖wj −QV
s wj‖2L2(Ij ;V ) → 0 as s→ ∞.

Therefore, (I − PV
r )QV

s wj → (I − PV
r )wj in L2(Ij ;V ) as s→ ∞ for each j. Now use

(5.3) in Lemma 5.1 above to give an alternate error expression:

m∑
j=1

‖wj − PV
r wj‖2L2(Ij ;V ) = lim

s→∞

m∑
j=1

‖(I − PV
r )QV

s wj‖2L2(Ij ;V )

= lim
s→∞

s∑
k=1

μ2
k ‖ψk − PV

r ψk‖2V =
∑
k∈Jμ

μ2
k ‖ψk − PV

r ψk‖2V ,

where Jμ = {k : μk > 0}. Since ‖I − PV
r ‖L(V ) = 1 and ‖ψi‖V = 1, this sum is finite

since
∑

i≥1 μ
2
i <∞.

Next, we prove the main error expression (5.7). Since μkψk = Kgk for k ∈ Jμ

and Kgk = 0 for k /∈ Jμ, the alternate error expression above can be rewritten as

m∑
j=1

‖wj − PV
r wj‖2L2(Ij ;V ) =

∑
k∈Jμ

‖(I − PV
r )Kgk‖2V =

∞∑
k=1

‖(I − PV
r )Kgk‖2V .

Since I − PV
r : V → V is bounded and K : L2(I)m → V is Hilbert–Schmidt, we have

(I−P V
r )K : L2(I)m → V is also Hilbert–Schmidt. Also, since {gk} is an orthonormal

basis for L2(I)m, the right-hand side of the above equation equals the square of the
Hilbert–Schmidt norm of (I − PV

r )K. The Hilbert–Schmidt norm is independent of
the choice of orthonormal basis, so we can replace {gk} with {fk} to obtain

m∑
j=1

‖wj − PV
r wj‖2L2(Ij ;V ) =

∞∑
k=1

‖(I − PV
r )Kfk‖2V =

∑
k∈Jσ

‖(I − PV
r )Kfk‖2V ,

where Jσ = {k : σk > 0} and we used Kfk = 0 for k /∈ Jσ. This gives

m∑
j=1

‖wj − PV
r wj‖2L2(Ij ;V ) =

∑
k∈Jσ

σ2
k ‖(I − PV

r )ϕk‖2V =
∑
k>r

σ2
k ‖(I − PV

r )ϕk‖2V ,

where we used Kfk = σkϕk for k ∈ Jσ and PV
r ϕk = ϕk for k = 1, . . . , r (since

ϕk ∈ Hr). Note in the right-hand side of the above equation we suppressed that
k ∈ Jσ for ease of notation; we continue to use the simpler notation throughout this
work. This proves the main error expression (5.7).

Next, we show PV
r wj → wj in L2(Ij ;V ) as r → ∞ for each j. Since ‖I −

PV
r ‖L(V ) = 1, the right-hand side of the main error expression (5.7) can be bounded

as ∑
i>r

σ2
i ‖ϕi − PV

r ϕi‖2V ≤
∑
i>r

σ2
i ‖ϕi‖2V =

∑
i>r

‖Kfi‖2V .

Since the Hilbert–Schmidt norm of K : L2(I)m → V equals the square root of∑
i≥1 ‖Kfi‖2V , the right-hand side of the above bound tends to zero as

r → ∞.
Next, we consider approximating wj by PH

r wj and QH
r wj in the L2(Ij ;V ) norm.

When infinitely many of the singular values of K are positive, we make an additional
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assumption that V is continuously embedded in H in order to guarantee PH
r and QH

r

are bounded when viewed as linear operators on V (see Lemma 3.3). As before, we
prove that the errors converge to zero as r → ∞; however, for QH

r we must make the
additional assumption that ‖QH

r ‖L(V ) is bounded independent of r.
Theorem 5.3. Let the main assumption hold and let r, s ∈ N. If μi = 0 for

i > s, then

(5.8)

m∑
j=1

‖wj −QH
r wj‖2L2(Ij ;V ) =

∑
i>r

μ2
i ‖ψi −QH

r ψi‖2V <∞.

If also σi > 0 for i = 1, . . . , r, then

(5.9)

m∑
j=1

‖wj − PH
r wj‖2L2(Ij ;V ) =

∑
i>r

σ2
i ‖ϕi‖2V <∞.

If μi > 0 for infinitely many i and V is continuously embedded in H, then (5.8) and
(5.9) hold and also PH

r wj → wj in L2(Ij ;V ) as r → ∞ for each j. If, in addition,
‖QH

r ‖L(V ) is bounded independent of r, then QH
r wj → wj in L2(Ij ;V ) as r → ∞ for

each j.
Remark 1. As mentioned in the introduction, the bound

m∑
j=1

‖wj −QH
r wj‖2L2(Ij ;V ) ≤

(
1 + ‖QH

r ‖L(V )

)2 ∑
i>r

μ2
i

was obtained in [3] for the case m = 1. This bound can be obtained directly from
the exact expression for the error in (5.8). The convergence result for QH

r as r → ∞
assuming ‖QH

r ‖L(V ) is bounded independent of r was also obtained in [3].
Also, since (ψi, Q

H
r ψi)V = 0 for i > r, we have ‖ψi − QH

r ψi‖2V = 1 + ‖QH
r ψi‖2V

for i > r. Therefore, (5.8) shows that if ‖QH
r ψi‖2V is bounded for all r and i > r, then

QH
r wj → wj in L2(Ij ;V ) for each j.

Proof. The proof is similar to the proof of Theorem 5.2. We only indicate the
main differences.

We begin with PH
r . First consider the case σi = 0 for i > s. An argument similar

to the proof of Lemma 5.1 gives

m∑
j=1

‖wj − PH
r wj‖2L2(Ij ;V ) =

s∑
i=r+1

σ2
i ‖ϕi − PH

r ϕi‖2V ,

where we used PH
r ϕi = ϕi for i = 1, . . . , r. We also have PH

r ϕi = 0 for i > r, and
this proves the main error expression (5.9) when σi = 0 for i > s.

Now assume μi > 0 for infinitely many i, and also assume V is continuously
embedded in H . Since the operator PH

r : V → V is bounded (by Lemma 3.3) and
PH
r ϕi = 0 for i > r, the proof is nearly identical.

Next, consider QH
r . The proof is similar except for the convergence as r → ∞.

A main difference in this case is that QH
r ψi does not necessarily equal zero for i > r.

However, if ‖QH
r ‖L(V ) is bounded independent of r, then ‖I−QH

r ‖L(V ) is also bounded
independent of r and the approximation error is bounded as∑

i>r

μ2
i ‖ψi −QH

r ψi‖2V ≤ ‖I −QH
r ‖2L(V )

∑
i>r

μ2
i
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since ‖ψi‖V = 1. The convergence as r → ∞ follows.
Last, we consider approximating wj by PV

r wj and QV
r wj in the L2(Ij ;H) norm.

When V is continuously embedded in H , we can simply bound the approximation er-
rors by the errors in the L2(Ij ;V ) norm. However, we give the exact error expressions
for completeness.

Theorem 5.4. Let the main assumption hold and let r, s ∈ N. If σi = 0 for
i > s, then

(5.10)

m∑
j=1

‖wj −QV
r wj‖2L2(Ij ;H) =

∑
i>r

μ2
i ‖ψi‖2H <∞.

If also σi > 0 for i = 1, . . . , r, then

(5.11)

m∑
j=1

‖wj − PV
r wj‖2L2(Ij ;H) =

∑
i>r

σ2
i ‖ϕi − PV

r ϕi‖2H <∞.

If μi > 0 for infinitely many i and V is continuously embedded in H, then (5.10) and
(5.11) hold and also QV

r wj → wj and PV
r wj → wj in L2(Ij ;H) as r → ∞ for each j.

Proof. Again, the proof is similar to the proofs of Theorems 5.2 and 5.3, and we
only indicate the main differences.

First, consider the case of PV
r . Since V is continuously embedded in H , we have

m∑
j=1

‖(I − PV
r )(wj − PH

s wj)‖2L2(Ij ;H) ≤ C2
V

m∑
j=1

‖wj − PH
s wj‖2L2(Ij ;V ),

where CV is the embedding constant and we used ‖I − PV
r ‖L(V ) = 1. By Theorem

5.3, the right-hand side tends to zero as s→ ∞ and so (I −PV
r )PH

s wj → (I −P V
r )wj

in L2(Ij ;H) as s→ ∞ for each j. The main error expression (5.11) follows by proving
a result similar to Lemma 5.1.

Next, consider QV
r . Similar to above, it can be shown that (I − QV

r )P
H
s wj →

(I − QV
r )wj in L2(Ij ;H) as s → ∞ for each j. An alternate error expression can

be shown by proving a similar result to Lemma 5.1. Then, Lemma 3.4 gives that
QV

r : V → H is bounded. Since V is continuously embedded in H , the identity
operator I : V → H is bounded, and so I − QV

r : V → H is bounded. Since
K : L2(I)m → V is Hilbert–Schmidt and I − QV

r : V → H is bounded, we have
(I − QV

r )K : L2(I)m → H is Hilbert–Schmidt. This can be used to prove the main
error expression (5.10) when μi > 0 for infinitely many i.

To show the convergence as r → ∞, use the continuous embedding to bound the
approximation errors by the errors in the L2(Ij ;V ) norm. These errors tend to zero
by (3.3) and Theorem 5.2.

We also consider the approximation capability of the POD projections for indi-
vidual elements of the Hilbert spaces H and V . We know ‖PH

r x − x‖H → 0 for all
x ∈ H since {ϕk} is an orthonormal basis for H , and similarly ‖QV

r w −w‖V → 0 for
all w ∈ V . Below, we show other convergence results for different POD projections
and error norms.

Proposition 5.5. Let the main assumption hold. If V is densely and continu-
ously embedded in H and μi > 0 for all i, then

(a) σi > 0 and ϕi ∈ V for all i, and so Hr ⊂ V for all r;
(b) for any w ∈ R(K) (the range of K), ‖PH

r w − w‖V → 0 as r → ∞;
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(c) for any w ∈ V , ‖PV
r w − w‖V → 0 as r → ∞.

If σi > 0 for all i, then
(d) for any x ∈ R(K), ‖QV

r x− x‖H → 0 as r → ∞;
(e) for any x ∈ H, ‖QH

r x− x‖H → 0 as r → ∞.
Proof. First, part (a) follows immediately from Lemma 3.1.
Next, note that w ∈ R(K) implies that there is a unique q ∈ L2(I)m such that

w = Kq. To see this, let w = Kq1 and w = Kq2. Then K(q1 − q2) = 0. However,
since zero is not a singular value of K, we must have that q1 − q2 = 0 or q1 = q2.

To prove (b), let w be in the range of K with w = Kq. We have

PH
r w =

r∑
k=1

(w,ϕk)Hϕk =
r∑

k=1

(Kq, ϕk)Hϕk =
r∑

k=1

(q,K∗ϕk)L2(I)mϕk

=

r∑
k=1

(q, fk)L2(I)mσkϕk =

r∑
k=1

(q, fk)L2(I)mKfk = K

r∑
k=1

(q, fk)L2(I)mfk.

Therefore, we have

PH
r w = Kqr, qr =

r∑
k=1

(q, fk)L2(I)mfk.

This gives

‖PH
r w − w‖V = ‖Kqr −Kq‖V ≤ ‖K‖L(L2(I)m,V ) ‖qr − q‖L2(I)m .

Since wj ∈ L2(Ij ;V ) for j = 1, . . . ,m, we have that ‖K‖L(L2(I)m,V ) <∞. Also, since
{fk} is an orthonormal basis for L2(I)m, this gives that ‖qr−q‖L2(I)m → 0 as r → ∞.
Therefore, ‖PH

r w − w‖V → 0 for all w in the range of K.
For (c), first note that QV

Nw is in the range of K for w ∈ V since Kgk = μkψk

and μk 
= 0 for all k gives

QV
Nw =

N∑
k=1

(w,ψk)V ψk = K

N∑
k=1

μ−1
k (w,ψk)V gk.

Then for fixed N , ‖PH
r Q

V
Nw −QV

Nw‖V → 0 as r → ∞ by part (b).
Let w ∈ V and let ε > 0. We have

‖PV
r w − w‖V = inf

xr∈Hr

‖xr − w‖V
≤ ‖PH

r Q
V
Nw − w‖V ≤ ‖PH

r Q
V
Nw −QV

Nw‖V + ‖QV
Nw − w‖V .

Since {ψk} is an orthonormal basis for V , the second term can be made less than ε/2
for N large enough; then for N fixed, the first term can made less than ε/2 for r large
enough. This proves (c) since PH

r QV
Nw is in Hr for all w ∈ V .

The proofs of (d)–(e) are similar to (b)–(c).

6. New model reduction error bounds for the 2D Navier–Stokes equa-
tions. We now apply the new POD data approximation error expressions to give
new error bounds for the 2D Navier–Stokes equations and other fluid dynamics equa-
tions. POD model reduction error bounds have been considered for this problem in
[21, 8]. We prove error bounds and convergence results using Kunisch and Volkwein’s
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approach [20, 21] in section 6.2 and using the approach of Chapelle, Gariah, and
Sainte-Marie [3] in section 6.3.

As mentioned in the introduction, numerical examples have shown that including
the time derivative data may or may not increase the accuracy of the reduced order
model. This is why we consider both error estimation approaches in this work.

It is possible that one approach could yield better error bounds than the other
approach for certain problems. In this work, we do not attempt to closely track all
the constants appearing in the error bounds. It may be interesting to give thorough
comparisons of the error bounds for various problems. Also, we do not attempt to give
the sharpest error bounds possible. We leave these issues to be considered elsewhere.

We assume the POD eigenvalues and modes are computed exactly using exact
solution data. We do not consider errors due to time stepping and space discretization.
These errors can be treated as in other works; for the 2D Navier–Stokes equations
considered here, errors due to discretization in time are considered in [21] and errors
in the solution data are treated in [8]. We focus on applying the new error expressions.
Some of the error estimation methods below are standard, and we only sketch proofs
in those cases.

We obtain error bounds with constants that depend exponentially on the quantity
‖w‖2L2(0,T ;V ), where w is the solution of the problem. This is similar to known results

for other numerical methods; see, e.g., [11, 22]. For sufficiently small problem data,
this quantity can be bounded independent of T . In general however, as Heywood and
Rannacher explain in [11], this exponential dependence on the solution magnitude is
expected since the true solution may be unstable and therefore nearby approximate
solutions can diverge exponentially fast (with T ) from the true solution. Error bounds
that do not grow with the final time T have been obtained for various numerical
methods under a stability assumption on the solution that is to be approximated
[10, 12]. It is possible that similar results could be obtained for the reduced order
models considered here. We leave this to be investigated elsewhere.

6.1. Problem formulation. The 2D Navier–Stokes equations and other fluid
dynamics equations can be placed in the following abstract formulation [30]. Let H
and V be two real separable Hilbert spaces with inner products (·, ·)H and (·, ·)V and

corresponding norms ‖ · ‖H = (·, ·)1/2H and ‖ · ‖V = (·, ·)1/2V such that V is densely and
compactly embedded in H . Due to this embedding, there is a positive constant CV

so that ‖v‖H ≤ CV ‖v‖V for all v ∈ V . Also let V ′ be the dual space of V , and denote
the action of a functional f ∈ V ′ on v ∈ V by 〈f, v〉.

Let a : V × V → C be a symmetric bilinear form that is bounded and coercive,
i.e.,

a(u, v) ≤ Ca‖u‖V ‖v‖V , a(v, v) ≥ ca‖v‖2V ,

for some constants ca, Ca > 0, and all vectors u and v in V . The bilinear form a can
be used to define an unbounded linear operator A : D(A) ⊂ H → H defined by

(Au, v)H = a(u, v)

for all v ∈ V and all u ∈ D(A), where D(A) is the set of all u ∈ V such that there
exists h ∈ H with a(u, v) = (h, v)H for all v ∈ V .

Next, consider another linear term given by a bounded linear operatorQ : V → V ′

such that Q : D(A) → H and
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|〈Qv, v〉| ≤ CQ ‖v‖1+γ1

V ‖v‖1−γ1

H for all v ∈ V ,

‖Qv‖H ≤ CQ ‖v‖1−γ2

V ‖Av‖γ2

H for all v ∈ D(A)

for some constants CQ > 0 and γ1, γ2 ∈ [0, 1). For ease of notation, set

aQ(u, v) := a(u, v) + 〈Qu, v〉.
Also assume A+Q is coercive:

(6.1) aQ(v, v) ≥ caQ ‖v‖2V
for some constant caQ > 0 and for all v ∈ V .

Finally, for the quadratic nonlinear term, let B : V × V → V ′ be bilinear and
continuous such that B : D(A) × D(A) → H . For u, v, w ∈ V , let b(u, v, w) =
〈B(u, v), w〉, and assume B satisfies

b(u, v, v) = 0,(6.2)

|b(u, v, w)| ≤ CB ‖u‖γ3

H ‖u‖1−γ3

V ‖v‖V ‖w‖γ3

V ‖w‖1−γ3

H ,

‖B(u, z)‖H + ‖B(z, u)‖H ≤ CB ‖u‖V ‖z‖1−γ4

V ‖Az‖γ4

H ,

‖B(u, z)‖H ≤ CB ‖u‖γ5

H ‖u‖1−γ5

V ‖z‖1−γ5

V ‖Az‖γ5

H

for all u, v, w ∈ V , z ∈ D(A), and some constants CB > 0 and γ3, γ4, γ5 ∈ [0, 1). The
first two conditions in (6.2) give

b(u, v, w) = −b(u,w, v), |b(u, v, w)| ≤ CB CV ‖u‖V ‖v‖V ‖w‖V ,
|b(u, v, u)| ≤ CB ‖u‖H ‖u‖V ‖v‖V

for all u, v, w ∈ V .
For a given forcing f ∈ L2(0, T ;V ′) and initial data w0 ∈ H , the nonlinear

evolution equation is given by

d

dt
(w(t), v)H + aQ(w(t), v) + b(w(t), w(t), v) = 〈f(t), v〉 for all v ∈ V ,(6.3)

w(0) = w0,

where the differential equation holds for almost every t ∈ (0, T ). This problem is
known to be well posed.

Theorem 6.1 (see [30]). Let T > 0 and let the above assumptions hold. If
f ∈ L2(0, T ;V ′) and w0 ∈ H, then there exists a unique solution w of (6.3) satisfying

w ∈ C([0, T ];H) ∩ L2(0, T ;V ), ẇ ∈ L2(0, T ;V ′).

If f ∈ L2(0, T ;H) and w0 ∈ V , then the unique solution satisfies

w ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)), ẇ ∈ L2(0, T ;H).

For a given finite-dimensional space Wr ⊂ V , the Galerkin reduced order model is

d

dt
(wr(t), vr)H + aQ(wr(t), vr) + b(wr(t), wr(t), vr) = 〈f(t), vr〉 for all vr ∈Wr,

wr(0) = wr,0 ∈ Wr,

(6.4)



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

870 JOHN R. SINGLER

and this equation is known to have a unique solution wr ∈ H1(0, T ;V ) satisfying
wr(t) ∈ Wr for all t. Below, we consider Wr to be the span of the POD modes
constructed from exact solution data.

Before we bound the error using the two approaches, we give one elementary
property of the approximate solution wr that will be useful later.

Lemma 6.2. Let T > 0 and let the above assumptions hold. If f ∈ L2(0, T ;V ′),
w0 ∈ H, and ‖wr,0‖H is bounded independent of r, then there exists a constant C > 0
such that

‖wr‖L∞(0,T ;H) ≤ C

for all r ≥ 1.
This result can be proved using well-known energy estimates: take vr = wr(t) in

(6.4) and use the inequality (6.1) for A + Q and the property b(u, u, u) = 0 for all
u ∈ V .

In the error bounds below, we use C to denote a positive constant that does not
depend on r. The value of C may change from one line to the next; we do not attempt
to give the most precise values of the bounding constants. Also, we repeatedly use
Young’s inequality: for any a, b, ε > 0,

ab ≤ ε

2
a2 +

1

2ε
b2.

6.2. Error estimate approach 1: V -orthogonal projections. First, we
consider Kunisch and Volkwein’s error bounding approach from [20, 21]. For f ∈
L2(0, T ;H) and w0 ∈ V , let w be the exact solution of the nonlinear evolution equation
(6.3) and let ẇ denote the time derivative of w. We further assume that f and w0

are regular enough so that ẇ satisfies ẇ ∈ L2(0, T ;V ). Also, we assume throughout
that the assumptions of section 6.1 above hold.

For w1 = w and w2 = ẇ, let {σk, fk, ϕk} ⊂ R×L2(0, T )2 ×H and {μk, gk, ψk} ⊂
R × L2(0, T )2 × V be the singular values and singular vectors of the operator K :
L2(0, T )2 → X for X = H and X = V , respectively. Also as before, define Hr =
span{ϕ1, . . . , ϕr} and Vr = span{ψ1, . . . , ψr}. We set Wr = Hr if X = H , and we set
Wr = Vr if X = V . When X = H , assume σi > 0 for i = 1, . . . , r so that Hr ⊂ V .

To bound the error, we split the error as

w − wr = ρr + θr, ρr = w − πV
r w, θr = πV

r w − wr,

where πV
r : V → V is the orthogonal projection onto Wr, i.e., π

V
r = PV

r when X = H
and πV

r = QV
r when X = V . We prove the following result below.

Theorem 6.3. Let T > 0, f ∈ L2(0, T ;H), and w0 ∈ V , and let w and wr be the
exact solutions of the nonlinear evolution equation (6.3) and the reduced order model
(6.4), respectively, for the set Wr as defined above. If ẇ ∈ L2(0, T ;V ) and ‖wr,0‖H is
bounded independent of r, then there exists a constant C, independent of r, such that

‖w − wr‖L2(0,T ;V ) ≤ C1(T ) ‖wr,0 − PV
r w0‖H + C2(T )

(∑
i>r

σ2
i ‖ϕi − PV

r ϕi‖2V
)1/2

if X = H and

‖w − wr‖L2(0,T ;V ) ≤ C1(T ) ‖wr,0 −QV
r w0‖H + C2(T )

(∑
i>r

μ2
i

)1/2
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if X = V , where

C1(T ) = c
−1/2
aQ exp

(
2 c−1

aQC
2
B ‖w‖2L2(0,T ;V )

)
, C2(T ) = 1 + C C1(T ).

Furthermore, if ‖wr,0 − πV
r w0‖H → 0 as r → ∞, then wr → w in L2(0, T ;V ) as

r → ∞ for both X = H and X = V .

Before we prove the result, we note the following:

• The result for the case X = V can be obtained without using the new results
from this work as it relies on the known POD data approximation error
expression (3.3). This result was included for completeness.

• For the initial condition wr,0 = πV
r w0, the first term in each error bound

equals zero. However, other choices of wr,0 ∈ Wr are possible. For example,
for wr,0 = PH

r w0 ∈ Hr in the case X = H we have

‖wr,0 − PV
r w0‖H ≤ ‖PH

r w0 − w0‖H + ‖w0 − PV
r w0‖H .

The first term tends to zero as r → ∞ since {ϕk} is an orthonormal basis
for H . Proposition 5.5 above gives that the second term also tends to zero
as r → ∞ (since w0 ∈ V and V is continuously embedded in H) assuming
μk > 0 for all k.

• The error can also be split using the Ritz projection as in [20, 21]. Another
variation is to construct the POD modes using the Hilbert space X = Va,
where Va = V with alternate inner product (u, v)Va = a(u, v) for u, v ∈ V .
Similar error bounds and convergence results can be obtained for both cases.

To begin, we give a preliminary lemma where we prove an error bound for the
nonlinear term. The proof is similar to part of the proof of [8, Theorem 6].

Lemma 6.4. Let f ∈ L2(0, T ;H) and w0 ∈ V , and let w and wr be the exact
solutions of the nonlinear evolution equation (6.3) and the reduced order model (6.4),
respectively. If ẇ ∈ L2(0, T ;V ) and ‖wr,0‖H is bounded independent of r, then for
any ε > 0 there exists a constant C, independent of r, such that

|b(wr(t), wr(t), θr(t))− b(w(t), w(t), θr(t))| ≤ C ‖ρr(t)‖2V + ε ‖θr(t)‖2V
+
C2

B

2 ε
‖w(t)‖2V ‖θr(t)‖2H

for all t ∈ (0, T ).

Proof. We sketch the proof. First, recall the exact solution w satisfies w ∈
C([0, T ];V ). We have

‖ρr‖L∞(0,T ;H) ≤ CV ‖I − πV
r ‖L(V ) ‖w‖L∞(0,T ;V ) = CV ‖w‖L∞(0,T ;V ),

where we used the continuous embedding of V ⊂ H and ‖I−πV
r ‖L(V ) = 1. Therefore,

ρr is uniformly bounded in L∞(0, T ;H). Also,

‖θr‖L∞(0,T ;H) ≤ ‖πV
r w‖L∞(0,T ;H) + ‖wr‖L∞(0,T ;H)

≤ CV ‖w‖L∞(0,T ;V ) + ‖wr‖L∞(0,T ;H).

Lemma 6.2 gives that wr is uniformly bounded in L∞(0, T ;H), and so θr is uniformly
bounded in L∞(0, T ;H).
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Next, use the properties of B to show (suppressing the dependence on t for ease)

|b(wr, wr, θr)− b(w,w, θr)| ≤ |b(w, ρr, θr)|+ |b(ρr, w, θr)|+ |b(θr, w, θr)|
+ |b(ρr, θr, ρr)|+ |b(θr, ρr, θr)|

≤ 2CB CV ‖w‖L∞(0,T ;V ) ‖θr‖V ‖ρr‖V
+ CB ‖w‖V ‖θr‖H ‖θr‖V
+ CB

(‖ρr‖L∞(0,T ;H) + ‖θr‖L∞(0,T ;H)

) ‖θr‖V ‖ρr‖V .
The result now follows from Young’s inequality.

In the proof of [8, Theorem 6], it appears the coefficient multiplying ‖θr(t)‖2H in
the above result is taken as an arbitrary constant; we are unable to follow the proof
of this.

Now we prove the error bounds and convergence results of Theorem 6.3.
Proof. As above, split the error as

w − wr = ρr + θr, ρr = w − πV
r w, θr = πV

r w − wr.

For any vr ∈Wr, subtract the two equations (6.3) and (6.4) to give

(6.5) (θ̇r, vr)H + aQ(θr, vr) = −(ρ̇r, vr)H − aQ(ρr, vr) + b(wr, wr, vr)− b(w,w, vr).

Take vr = θr and estimate (using Lemma 6.4 with ε = caQ/4)

1

2

d

dt
‖θr(t)‖2H + caQ ‖θr(t)‖2V

≤ ‖ρ̇r(t)‖H ‖θr(t)‖H +
(
Ca + ‖Q‖L(V,V ′)

) ‖ρr(t)‖V ‖θr(t)‖V
+ C ‖ρr(t)‖2V +

2C2
B

caQ
‖w(t)‖2V ‖θr(t)‖2H +

caQ
4

‖θr(t)‖2V

≤ C
(‖ρ̇r(t)‖2V + ‖ρr(t)‖2V

)
+
caQ
2

‖θr(t)‖2V +
2C2

B

caQ
‖w(t)‖2V ‖θr(t)‖2H.

This gives

d

dt
‖θr(t)‖2H + caQ ‖θr(t)‖2V ≤ C

(‖ρ̇r(t)‖2V + ‖ρr(t)‖2V
)
+

4C2
B

caQ
‖w(t)‖2V ‖θr(t)‖2H .

Gronwall’s inequality yields

‖θr(T )‖2H + caQ e
G(T )

∫ T

0

e−G(s) ‖θr(s)‖2V ds

≤ eG(T ) ‖θr(0)‖2H + C eG(T )

∫ T

0

e−G(s)
(‖ρ̇r(s)‖2V + ‖ρr(s)‖2V

)
ds,

where

G(t) = 4 c−1
aQC

2
B

∫ t

0

‖w(s)‖2V ds = 4 c−1
aQC

2
B ‖w‖2L2(0,t;V ).

Neglect the ‖θr(T )‖2H term and use that the function G(·) is increasing to obtain

caQ ‖θr‖2L2(0,T ;V ) ≤ eG(T ) ‖θr(0)‖2H + C eG(T )
(‖ρ̇r‖2L2(0,T ;V ) + ‖ρr‖2L2(0,T ;V )

)
.



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NEW POD ERROR BOUNDS FOR PARABOLIC PDEs 873

The error bounds follow from the triangle inequality

‖w − wr‖L2(0,T ;V ) ≤ ‖ρr‖L2(0,T ;V ) + ‖θr‖L2(0,T ;V ),

the inequality (a+b)1/2 ≤ a1/2+b1/2, and the exact error expressions and convergence
results from (3.3) for X = V and Theorem 5.2 for X = H .

6.3. Error estimate approach 2: H-orthogonal projections. Next, we use
the approach of Chapelle, Gariah, and Sainte-Marie [3] to bound the error. We do
not need to include the time derivative of the solution in the POD data; however,
we are unable to conclude convergence of the error as r → ∞ if X = V without
assuming ‖QH

r ‖L(V ) is bounded independent of r. We prove convergence of the error
as r → ∞ if X = H without making additional assumptions. Also, we eliminate the
regularity assumption ẇ ∈ L2(0, T ;V ) required in the approach above. However, we
do require f ∈ L2(0, T ;H) and w0 ∈ V in order to guarantee the solution satisfies
w ∈ C([0, T ];V ). We use this fact to bound the nonlinear term.

As before, assume throughout that the assumptions of section 6.1 above hold. For
f ∈ L2(0, T ;H) and w0 ∈ V , let w be the exact solution of the nonlinear evolution
equation (6.3). For w1 = w, let {σk, fk, ϕk} ⊂ R×L2(0, T )×H and {μk, gk, ψk} ⊂ R×
L2(0, T )×V be the singular values and singular vectors of the operatorK : L2(0, T ) →
X for X = H and X = V , respectively. As before, define Hr = span{ϕ1, . . . , ϕr} and
Vr = span{ψ1, . . . , ψr}. Set Wr = Hr if X = H , and set Wr = Vr if X = V . When
X = H , assume σi > 0 for i = 1, . . . , r so that Hr ⊂ V .

Theorem 6.5. Let T > 0, f ∈ L2(0, T ;H), and w0 ∈ V , and let w and wr be the
exact solutions of the nonlinear evolution equation (6.3) and the reduced order model
(6.4), respectively, for the set Wr as defined above. If ‖wr,0‖H is bounded independent
of r, then there exists a constant C, independent of r, such that

‖w − wr‖L2(0,T ;V ) ≤ C1(T ) ‖wr,0 − PH
r w0‖H + C2(T )

(∑
i>r

σ2
i ‖ϕi‖2V

)1/2

if X = H and

‖w − wr‖L2(0,T ;V ) ≤ C1(T ) ‖wr,0 −QH
r w0‖H + C2(T )

(∑
i>r

μ2
i ‖ψi −QH

r ψi‖2V
)1/2

if X = V , where

C1(T ) = c
−1/2
aQ exp

(
2 c−1

aQC
2
B ‖w‖2L2(0,T ;V )

)
, C2(T ) = 1 + C C1(T ).

Furthermore, if ‖wr,0 − PH
r w0‖H → 0 as r → ∞, then wr → w in L2(0, T ;V ) as

r → ∞ for X = H. Also, if ‖wr,0 − QH
r w0‖H → 0 as r → ∞ and ‖QH

r ‖L(V ) is
bounded independent of r, then wr → w in L2(0, T ;V ) as r → ∞ for X = V .

The error bounds are very similar to the bounds obtained in approach 1. In fact,
even though we have not carefully tracked the values of the constant C appearing in
both results, it is not hard to see that the values are comparable in both approaches.
Therefore, it appears the primary difference in the error bounds is the values of the
POD data approximation errors.

Proof. Let πH
r : H → H be the orthogonal projection onto Wr, i.e., π

H
r = PH

r

when X = H and πH
r = QH

r when X = V . Split the error as

w − wr = ρr + θr, ρr = w − πH
r w, θr = πH

r w − wr.
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Similar to the proof of Lemma 6.4, we can show ρr and θr are uniformly bounded
in L∞(0, T ;H) since w ∈ C([0, T ];H), ‖I − πH

r ‖L(H) = ‖πH
r ‖L(H) = 1, and wr is

uniformly bounded in L∞(0, T ;H) (by Lemma 6.2). Therefore, the error bound result
for the nonlinear term of Lemma 6.4 can be proved for this case using w ∈ C([0, T ];V ),
but without the requirement ẇ ∈ L2(0, T ;V ).

Next, for any vr ∈ Wr, use wr = πH
r w − θr in the reduced order model (6.4) to

give

d

dt
(θr, vr)H + aQ(θr, vr) = −(f, vr)H +

d

dt
(πH

r w, vr)H + aQ(π
H
r w, vr) + b(wr, wr, vr).

Since πH
r : H → H is self-adjoint, we have

d

dt
(πH

r w, vr)H =
d

dt
(w, πH

r vr)H =
d

dt
(w, vr)H

since vr ∈ Wr implies πH
r vr = vr. Use the nonlinear evolution equation (6.3) in the

above equation to give

(θ̇r, vr)H + aQ(θr, vr) = −aQ(ρr, vr) + b(wr, wr, vr)− b(w,w, vr)

for any vr ∈Wr .
This equation is similar to (6.5) obtained in approach 1, but now we do not have

the term containing ρ̇r. The remainder of the proof is similar to approach 1, except
we use Theorem 5.3 for the POD error expressions and convergence results.

7. Conclusion. We considered POD data approximation errors of time varying
functions taking values in two different Hilbert spaces H and V with V ⊂ H . We
considered four different POD projections and both error norms. In all cases we
proved exact expressions for the errors that are computable using only the POD
eigenvalues and modes. Furthermore, we proved all the data approximation errors
tend to zero as the number of POD modes in the projections increases. For the case
of the POD projection QH

r with the V error norm, we made the additional assumption
that ‖QH

r ‖L(V ) is bounded independent of r to prove the convergence. As far as the
author is aware, all these results are new except this last case, which was proved in [3].

We applied these results to give new error bounds and convergence results for POD
reduced order models of the 2D Navier–Stokes equations. We considered two differ-
ent error estimation approaches: the first approach from [20, 21] used V -orthogonal
projections, and the second approach from [3] used H-orthogonal projections. The
first approach requires including the time derivative of the solution in the POD data
for the most complete results and it also requires the solution has sufficient regularity.
The second approach eliminates the time derivative requirement and lessens the regu-
larity requirement; however, for the POD spaceX = V we can only conclude the error
converges to zero as the number of POD modes increases under the above assumption
on QH

r . For both approaches with POD space X = H , we proved error bounds and
convergence without making any additional assumptions. This convergence has been
observed numerically for many problems in many papers; however, we believe this is
the first work to prove computable error bounds that tend to zero as the number of
POD modes increases.

We proved error bounds for different POD reduced order models constructed using
different POD techniques. It does not appear that our results directly indicate which
of these reduced order models is the most accurate. It is possible that further analysis
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will indicate which inner product (H or V ) is more desirable and also whether it is
advantageous to include the time derivative data in the POD computation. Recent
work analyzing some of the different techniques can be found in [17].

We did not consider estimating errors due to time and space discretization as has
been done in other works. However, our results (possibly in a discrete form) should be
applicable when considering these additional sources of error to give improved error
bounds and convergence results for these cases.

It is likely that our results are also applicable to POD model reduction error
bounds for other types of PDEs. For POD error bounds for hyperbolic PDEs, see
[19, 3].

Also, we have only considered approximation errors for the POD projections for
one-dimensional time intervals. Similar arguments can give error expressions for POD
projections arising from a discrete POD setting with a (possibly weighted) sum replac-
ing the time integrals. Furthermore, it is possible that similar error expressions can
be derived for multidimensional parameter domains in place of the one-dimensional
time interval.

Our work does not give error estimates or error indicators for the POD reduced
order model when model parameters or initial conditions are varied from those used
to construct the POD basis. (Some work in this direction can be found in [16].)
However, our work gives further insight into the behavior of POD reduced order
models for PDEs in the case where the model is not varied. Hopefully, an increased
understanding of this case will lead to additional progress in analyzing the effects of
problem variations on reduced order models.

Acknowledgment. The author would like to thank Mark Opmeer for very help-
ful discussions and also for the proof of Lemma 3.1, part 4 (which is simpler than the
author’s original proof).

REFERENCES

[1] J.-P. Aubin, Applied Functional Analysis, 2nd ed., Wiley-Interscience, New York, 2000.
[2] J. Borggaard, T. Iliescu, and Z. Wang, Artificial viscosity proper orthogonal decomposition,

Math. Comput. Modelling, 53 (2011), pp. 269–279.
[3] D. Chapelle, A. Gariah, and J. Sainte-Marie, Galerkin approximation with proper orthog-

onal decomposition: New error estimates and illustrative examples, ESAIM Math. Model.
Numer. Anal., 46 (2012), pp. 731–757.

[4] S. Chaturantabut and D. C. Sorensen, A state space error estimate for POD-DEIM non-
linear model reduction, SIAM J. Numer. Anal., 50 (2012), pp. 46–63.

[5] I. Christie, D. F. Griffiths, A. R. Mitchell, and J. M. Sanz-Serna, Product approximation
for nonlinear problems in the finite element method, IMA J. Numer. Anal., 1 (1981),
pp. 253–266.

[6] C. A. J. Fletcher, The group finite element formulation, Comput. Methods Appl. Mech.
Engrg., 37 (1983), pp. 225–244.

[7] C. A. J. Fletcher, Computational Techniques for Fluid Dynamics I, Springer-Verlag, Berlin,
1991.

[8] P. Galán del Sastre and R. Bermejo, Error estimates of proper orthogonal decomposi-
tion eigenvectors and Galerkin projection for a general dynamical system arising in fluid
models, Numer. Math., 110 (2008), pp. 49–81.

[9] T. Henri and J.-P. Yvon, Stability of the POD and Convergence of the POD Galerkin Method
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