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Fifteenth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri U.S.A., October 19-20, 2000 

A Design Approach for Complex Stiffeners 

A. T. Sarawit1, T. Pek6z2 

ABSTRACT 

This paper presents a design approach for laterally braced cold-fonned steel flexural 

members with edge stiffened flanges other then simple lips. The design method for flexural 

members given by Schafer and Pek6z (1999) is used here for designing these complex stiffeners. 

The method integrates distortional buckling into the unified effective width approach currently 

used in most cold-fonned steel design specifications. A finite element method was first used to 

investigate the post-buckling behavior and carry out initial geometric imperfection sensitivity 

studies for various types of stiffeners. Then parametric studies were carried out for different 

types of stiffeners to compare the moment capacity detennined by the finite element method, 

AISI (1996) and the proposed design approach for flexural members given by Schafer and Pek6z 

(1999). 

INTRODUCTION 

The following is a summary of the design procedures for flexural members given by 

Schafer and Pek6z (1999). The design procedures are based on the need for the integration of the 

distortional mode into the design procedure. Two behavioral phenomena must be considered. 

First, the distortional mode has less post-buckling capacity than the local mode. Second, the 

distortional mode has the ability to control failure even when it occurs at a higher critical stress 

than the local mode. A design method incorporating these phenomena is needed to provide an 

integrated approach to strength prediction involving local and distortional buckling. For 

consistency with the existing cold-fonn steel design specifications an effective width approach 

was undertaken. Effective section properties are based on effective widths, b. 

1 Graduate Research Assistant, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 

14850, U.S.A. 

2 Professor, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, U.S.A. 
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b=pw 

where w is the actual element width and post-buckling reduction factor, p, is 

p=(1-0.22jA)/A forA,> 0.673 otherwisep= 1. 

where 

(1) 

(2) 

(3) 

In order to properly integrate distortional buckling, reduced post-buckling capacity in the 

distortional mode and the ability of the distortional mode to control the failure mechanism even 

when at a higher buckling stress than the local mode must be incorporated. Therefore, the critical 

buckling stress of the element was defined by comparing the local buckling stress and 

distortional buckling stress to determine the governing mode as follows: 

Vcr) = ~in[ Vcr) local' Rd Vcr) <li.,/.] (4) 

Rd = min( 1, A~I: 1 + 0.3) where Ad = ~fy /VJdi ... (5) 

Rd reflects the reduced strength in mechanisms associated with distortional failures. For Rd < 1 

this method provides an additional reduction on the post-buckling capacity. Further, the method 

allows the distortional mode to control situations where the distortional buckling stress is greater 

than the local buckling stress. Thus, Rd provides a framework for solving the problem of 

predicting the failure mode and reducing the post-buckling capacity in the distortional mode. 

Schafer and Pekoz (1999) developed the expression for Rd based on post-buckling capacity as 

shown in Figure 3 (a) and from the experimental results of Hancock et al. (1994). With!cr of the 

element known the effective width of each element may readily be determined and the effective 

section properties generated. 

IMPERFECTION SENSITIVITY STUDY 

To investigate the post-buckling behavior and develop the expression for Rd the authors 

analyzed an isolated flange-stiffener model as shown in Figure 3 (a) rather then using the full 

section. Two types of imperfections, local and distortional mode, are superposed to give the 

initial geometric imperfections. The magnitude of the imperfection is selected based on the 

statistical summary provided in Schafer and Pekoz (1998). Then the ultimate strength of these 

isolated flanges is found for different magnitudes of imperfection. Two maximum imperfection 
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magnitudes, one at 25% and the other at 75% probability of exceedance, are used. The percent 

differences in the strength are used to measure the imperfection sensitivity. 

(f., )75%imp, - (f., )25%iIllP' X 100% 

t (I., )75%imp, + V" )25%iIllP' 

(6) 

The error bars in Figure 3 (a) show the range of strengths predicted for imperfections 

varying over the central 50% portion of expected imperfection magnitudes. The greater the error 

bars, the greater the imperfection sensitivity. A contour plot of this imperfection sensitivity 

statistic is shown in Figure 3 (b). Stocky members tending to failure in the distortional mode 

have the highest sensitivity. 

The design approach given by Schafer and Pekoz (1999) was developed based on simple 

lips edge stiffeners. Therefore, before adopting this approach for other types of stiffeners 

verification on the reduction factor for distortional stress, Rd is needed. This is done by creating a 

post-buckling capacity graph and imperfection sensitivity contour plot on the types of stiffeners 

in interest for comparison with the original Figure 3 (a) and 3 (b). In this research 4 types of 

complex stiffeners shown in Figure 4 (a), 5 (a), 6 (a) and 7 (a) are studied. 

Finite Element Model 

In order to study the post-buckling behavior of complex stiffened elements nonlinear 

finite element analyses are performed using ABAQUS. To study only the complex stiffened 

element behavior an idealization of the boundary conditions at the weblflange junction are made 

by restraining all degrees of freedom except for the translation along the length. Roller supports 

are used at both ends and to avoid localized failure at the ends the uniform load has been 

distributed to the first row of elements. Boundary conditions are shown in Figure 2. The material 

model used is elastic-plastic with strain hardening and fy = 347 MPa. Residual stress is also 

included with a 30% yield stress throughout the thickness in the longitudinal direction. The 

residual stresses are assumed tension on the outside and compression on the inside ofthe section. 

Initial geometric imperfection is introduced by superimposing the eigenmodes for the 

local and distortional buckling shown in Figure 1. The magnitude of the imperfection is selected 

based on the statistical summary provided in Schafer and Pekoz (1998). The length of the model 

is selected by using the length that would give the least buckling strength in the distortional 

mode, which is obtained, by using the Finite Strip Method CUFSM. Table I summarizes the 
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geometry of the members. An investigation of the post-buckling behavior and an imperfection 

sensitivity study has been performed for each type of stiffener. Figures 4, 5, 6 and 7 show the 

results. For each type of stiffener a total of 42 models were investigated. 

It can be seen that the post-buckling capacity graphs and imperfection sensitivity contour 

plots are similar to those obtained by simple lips edge stiffened flanges. Therefore, the reduction 

factor for distortional stress, Rd is expected to be similar to Schafer and Pek5z (1999). 

PARAMETRIC STUDIES 

Two Z-section parametric studies were carried out for different types of stiffeners to 

compare the moment capacity as determined by the finite element method, AISI (1996) and the 

proposed design approach for flexural members given by Schafer and Pek5z (1999). The first 

parameter study consists of different Z-section geometry with all cross sections having the same 

thickness while the second parametric study uses one standard Z-section with variation in 

thickness. The cross sections selected for both these parameter studies are intend to cover a wide 

range of slenderness. 

Parametric Study I 

The parametric study was carried out by changing different widths of the web, flanges 

and stiffeners for five types of stiffeners simple lips, inside angled, outside angled, inside 

hooked, and outside hooked stiffeners. All cross sections have the same thickness. Figure 8 (b)

(f) and Table 2 summarize the geometry ofthe members. Local and distortional buckling stresses 

obtained by the finite strip method are used for the proposed design approach for flexural 

members given by Schafer and Pek5z (1999). 

Finite Element Model 

The finite element model used for this parametric study is shown in Figure 9 (a). The 

web/flange junction is restrained only for the translation degree of freedom perpendicular to the 

length to brace the member laterally. Roller supports are used at both ends. To avoid localized 

failure at the ends the constant moment is modeled by nodal loads distributed to the first row of 

elements. The material model used is elastic-plastic with strain hardening and fy = 345 MPa. 

Residual stress throughout the thickness in the longitudinal direction is assumed to be 30% of the 
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yield stress in the flange and 40% of the yield stress in the web. The residual stresses are also 

assumed to be tension on the outside and compression on the inside of the section. 

Initial geometric imperfections are introduced by superimposing the eigenmodes for the 

local and distortional buckling shown in Figure 9 (b) and (c). Two different imperfection 

magnitudes of 75% and 25% probability of exceedance, based on the statistical summary 

provided in Schafer and Pekoz (1998), are used for each model. The length of the model is 

selected by using three half-wave lengths of the distortional mode that gives the least buckling 

strength. The wavelengths are obtained using the Finite Strip Method. Figures 10 (a), 11 (a) and 

12 (a) summarize the results for the different approaches. 

Parametric Study II 

The second parametric study was carried out by modifying the stiffeners of a standard 

cross section 12ZS3.25, which has a depth of 12 inches, flange width of 3.25 inches and with a 

sloping edge stiffener. The sloping stiffener was modified into simple lips, inside angled and 

outside angled stiffeners. Figure 8 (a)-(d) summarize the geometry of the members. This was 

done for different thicknesses: 0.135, 0.105, 0.090, 0.075 and 0.060 inches. The finite element 

assumptions are the same as in the first parameter study except for the yield stress and the lateral 

bracing conditions. This study uses a 55 ksi yield stress and instead of fully bracing along the 

length as in the first parameter study, only four brace points are used. Brace points included one 

at each end and additional ones at one-third of the length, which is the same length as the half

wave lengths of the distortional mode which gives the least buckling strength. For these cross 

sections and bracing lengths, full formation of the distortional mode is still possible without 

causing a lateral-torsional failure. Figures 10 (b), 11 (b) and 12 (b) summarize the results for the 

different approaches. 

SUMMARY AND CONCLUSIONS 

Results from the investigation of the post-buckling behavior and imperfection sensitivity 

studies on different types of stiffeners suggest that the reduction factor for distortional stress, Rd 

given by to Schafer and Pekoz (1999) may still be used for stiffeners other then simple lips. 

Results from the first and second parametric studies revealed that the AISI (1996) 

approach gives unconservative moment capacity while the proposed design approach for flexural 
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members given by Schafer and Pek6z (1999) gives a more conservative result closer to the finite 

element results. There are no physical test results for these kinds of complex stiffeners. Tests for 

members with cross sections such as in Figure 8 are needed to verify this approach. Furthermore, 

study of section optimization with complex stiffeners should be conducted.' 
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B D a 

25 6.25 0, 3.125, 6.25 

12.5 0,6.25, 12.5 

50 6.25 0, 3.125, 6.25 

12.5 0, 6.25, 12.5 

25 0, 12.5,25 

75 6.25 0, 3.125, 6.25 

12.5 0, 6.25, 12.5 

25 0, 12.5,25 

37.5 0,18.75,37.5 

10O 6.25 0, 3.125, 6.25 

12.5 0, 6.25, 12.5 

25 0,12.5,25 

37.5 0, 18.75,37.5 

50 0,25,50 

* Thickness I mm In all cases 

Table 2 Summary of Z-section Models Geometry* 

Model H B d a 

I 50 25 6.25 3.125 

2 50 25 6.25 6.25 

3 10O 25 6.25 3.125 

4 100 25 6.25 6.25 

5 100 50 6.25 3.125 

6 100 50 6.25 6.25 

7 100 50 12.5 6.25 

8 100 50 12.5 12.5 

9 150 25 6.25 3.125 

10 150 25 6.25 6.25 

11 150 50 6.25 3.125 

12 150 50 6.25 6.25 

13 150 50 12.5 6.25 

14 150 50 12.5 12.5 

* Thickness - 1 mm mall cases 

Table 3 Summary of Z-section Moment Capacity for Parametric Study I 



Simple lips Inside Angled Outside Angled Inside Hooked Outside Hooked 
Model M75'I{, Mm~, M A1S1 M pRO M'5% M15% M A1S1 M pRO M~s% Mm,. M A1S1 M pRO M75% Mml. M A1S1 M pRO M'5% M 2S% M AtSI M pRO 

(Nom) (N-m) M 5!vy. MStl% (N-m) (N-m) M SfW• Mso% (N-m) (N-m) MSfWo M SfI% (N-m) (N.m) M,,,, MsO'Yo (N-m) (N-m) 

I 718 613 1.027 1.027 709 596 1.055 1.055 702 594 1.062 1.057 710 596 1.056 1.056 710 637 
2 757 691 0.960 0.968 755 635 1.034 1.034 740 654 1.031 0.987 746 630 1.053 1.053 724 617 
3 1665 1551 1.060 0.987 1647 1517 1.081 0.989 1708 1532 1.055 0.931 1616 1503 1.098 0.995 1643 1523 
4 1823 1650 1.008 0.956 1753 1558 1.083 1.012 1764 1583 1.071 0.907 1744 1584 1.080 0.988 1674 1536 
5 1684 1650 1.177 1.052 1556 1536 1.324 1.092 1922 1708 1.128 0.906 1513 1480 1.361 1.114 1498 1488 
6 2174 1845 1.097 0.991 1832 1569 1.265 1.067 2015 1784 1.132 0.886 1703 1602 1.296 1.067 1722 1668 
7 2292 1994 1.032 1.036 2360 2002 1.098 1.042 2371 2008 1.094 0.984 2362 2058 1.086 1.014 2364 2003 
8 2430 2243 0.916 0.961 2470 2059 1.110 1.064 2435 2056 1.120 0.942 2453 2114 1.111 1.047 2433 2080 
9 2719 2544 1.101 0.872 2595 2404 1.162 0.917 2604 2486 1.141 0.883 2623 2442 1.147 0.911 2644 2487 
10 2916 2794 1.040 0.835 2850 2693 1.097 0.863 2702 2544 1.159 0.874 2869 2726 1.089 0.870 2736 2581 
II 2766 2719 1.105 1.005 2709 2688 1.187 0.982 3115 2947 1.057 0.853 2387 2369 1.340 1.105 2430 2361 
12 3160 2815 1.168 1.037 2666 2452 1.323 1.106 2448 2216 1.452 1.132 2522 2371 1.375 1.123 2308 2251 
13 3736 3356 0.983 0.948 3856 3521 1.048 0.920 3777 3567 1.053 0.908 3949 3586 1.028 0.901 3939 3539 
14 3766 3508 0.919 0.958 4130 3696 1.042 0.912 3964 3588 1.080 0.871 4178 3708 1.045 0.911 4041 3547 

Avg. 1.042 0.974 Avg. 1.136 1.004 Avg. 1.117 0.937 Avg. 1.155 1.011 Avg. . . M7S%' Mm~ - Ultimate moment capacity by fimte element method for Imperfection magmtudes 75 Yo and 25 Yo probability of exceedance 
MSII% = (Mm!.+ M'5%)12 
MAISI• MpRO - Nominal Moment capacity by AISI and proposed design approach for flexural members given by Schafer and PekOz (1999) 

Table 4 Summary of Z-section Moment Capacity for Parametric Study II 

Simple lips Simple lips Inside Angled Outside Angled 

Thickness M,s% M2,S% MA1S[ M pRO Mm<o M2,S% M Alsr M pRO M'5% Mm.-. M A1S1 M pRO M7S')1, Mm'~ M A1S1 

(kip-in.) (kip-in.) M SlI% M so"l0 (kip-in.) (kip-in.) M.", Msn% (kip-in.) (kip-in.) M.", M sO% (kip-in.) (kip-in.) M5il% 

0.135 436 378 1.150 0.985 433 411 1.133 1.020 420 368 1.231 1.039 420 376 1.219 
0.105 262 267 1.247 1.049 283 264 1.250 1.111 269 270 1.288 1.054 257 264 1.336 
0.090 194 185 1.397 1.163 221 214 1.276 1.121 213 207 1.375 1.170 192 188 1.518 
Om5 141 135 1.404 1.218 170 174 1.192 1.088 149 145 1.425 1.173 141 135 1.523 
0.060 94 91 1.452 1.295 122 118 1.213 1.129 112 100 1.366 1.165 97 95 1.505 

Avg. 1.330 1.142 Avg. 1.213 1.094 Avg. 1.337 1.120 Avg. 1.420 

M,O% 
1.024 
1.080 
1.081 
1.120 
1.365 
1.263 
1.099 
1.125 
1.132 
1.146 
1.330 
1.476 
1.035 
1.086 
1.169 

M pRO 

M,u% 
0.995 
1.048 
1.139 
1.191 
1.213 
1.117 

Figure 1 Isolated Flange-Stiffener (a) Local Buckling (b) Distortional Buckling (c) Geometric Imperfection 

MSII% 

1.014 
1.033 
0.952 
0.951 
1.095 
0.980 
0.983 
0.945 
0.877 
0.868 
1.079 
1.148 
0.891 
0.874 
0.978 
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Figure 2 Isolated Flange-Stiffener Boundary Conditions 
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