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ABSTRACT

The electron–phonon coupling factor was calculated for both pristine and vacancy-rich 3C-SiC. Ab initio calculations were performed
within the framework of the density functional perturbation theory. Wannier functions were used to interpolate eigenvalues into denser
grids through the electron–phonon using Wannier code. The coupling factor was determined through calculations of the electron self-
energy, electron–phonon relaxation time, and electronic specific heat. These parameters were extrapolated to high temperatures using a
hybrid model which mixes band calculations for electrons below an energy cutoff with the free electron gas model for electrons above the
energy cutoff. The electron relaxation times, specific heats, electron drift mobilities, and electron–phonon coupling factors were calculated
as a function of electron temperature. Si and C vacancies were found to have a profound effect on electron–phonon coupling for all temper-
atures, while electronic specific heat capacity was found to be most affected at cryogenic temperatures. The electron drift mobility was calcu-
lated at different temperatures using the scattering time. Calculated mobilities were validated with Hall mobility measurements reported in
the literature. The importance of structural defects on the electron–phonon coupling is discussed in the context of the two-temperature
model, a model that has been widely used to understand aspects of the interaction of solids with pulsed laser irradiation and swift heavy
ion irradiation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0056244

I. INTRODUCTION

Silicon carbide is a high-temperature ceramic with numerous
commercial and industrial uses. Its utility arises from a combination
of desirable properties such as high hardness, high thermal conduc-
tivity, low coefficient of thermal expansion, semiconducting proper-
ties, and radiation tolerance.1,2 In the nuclear power industry, SiC
is used in high-temperature gas-cooled reactors as a coating in
tri-isostructural (TRISO) fuel particles. It is also being considered for
use as a cladding material in light water reactors1,3 and as a structural
material in the flow channels of fusion systems.4

Materials in nuclear energy systems are exposed to intense
fields of neutrons, gamma rays, and fission products. The interac-
tion of radiation with matter results in the transfer of energy from
incident particles to the lattice through nuclear energy loss and to
electrons through electronic energy loss.5 The former can produce
structural disorder through the introduction of elementary point

defects such as vacancies and self-interstitials. Higher-order defects
such as clusters, dislocations, and voids can subsequently form and
grow.6 Electronic energy loss describes the excitation of the elec-
tronic structure and the generation of delta electrons. Energy trans-
fer from the electronic system to the lattice is mediated, to a large
extent, by electron–phonon coupling,7 though in semiconductors,
trap-assisted radiative and non-radiative recombination processes
are also important.8 Understanding electron–phonon coupling in
the presence of structural defects and as a function of electron tem-
perature is an important element in developing a complete picture
of radiation interactions and radiation effects when both nuclear
and electronic energy loss mechanisms are present. In SiC, an
interesting competitive relationship between nuclear and electronic
energy loss was recently observed.9 Structural disorder produced in
SiC with ions in the nuclear energy loss regime was found to be
partially annealed upon irradiation with ions in the electronic
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energy loss regime. Reasons for this may stem from modulation of
the electron–phonon coupling and thermal diffusivity via defects.
This paper examines the former.

The electron–phonon interaction is also an important quasi-
particle interaction that modifies both the electron and phonon
self-energies in a material. It is, therefore, connected to the basic
thermodynamic and transport properties of the material.10

The electron–phonon coupling factor discussed in this work is the
dimensionful factor appearing in the two-temperature model, a
model that has been used to describe the transfer of energy from
hot electrons to a lattice.11,12 The two-temperature model is
expressed through the following equations:

Ce
@Te

@t
¼ ∇ � [ke∇Te]� G(Te � Tph)þ A(r, t), (1)

Cph
@Tph

@t
¼ ∇ � [kph ∇Tph]þ G(Te � Tph), (2)

where A(r, t) represents the space- and time-dependent energy
source (e.g., pulsed laser or swift charged particle), Ce

� and Cph

are the specific heat capacities of electrons and the lattice, respec-
tively, ke and kph are the corresponding thermal conductivities for
electrons and the lattice, and Te and Tph are the temperatures of
the electrons and the lattice, respectively. In the two-temperature
model, it is assumed that electrons and the lattice are at quasi-
thermodynamic equilibrium, which is to say that energy is rapidly
shared among electrons establishing a well-defined local electron
temperature, and energy is efficiently shared among phonons estab-
lishing a well-defined local lattice temperature. The two tempera-
tures can be different owing to the slow transfer of energy from
electrons to lattice. The rate of energy transfer is governed by
G(Te � Tph).

Various approaches for determining G have been made. Here,
we follow the approach of Ref. 13, which takes as the value of G,

G ¼ Ce

τ
, (3)

where τ is the electron–phonon relaxation time (inverse scattering
rate). It should be mentioned that the dimensionless electron–
phonon coupling constant—which frequently appears in the context
of superconductivity in metals—can also be related to the dimen-
sionful factor.14,15 Though well-defined for metals at cryogenic tem-
peratures, the dimensionless constant presupposes that only electron
scattering at the Fermi surface contributes to energy transfer.7 In
bandgap materials, electron–phonon scattering occurs in the conduc-
tion and valence bands. Therefore, the factor discussed from this
point forth pertains only to the definition in Eq. (3).

The main goal of this study is to understand the effect of Si
and C vacancies on electron–phonon coupling in cubic SiC. Using
the density functional perturbation theory (DFPT), the electron–
phonon coupling factors and conduction electron lifetimes were
calculated in pristine 3C-SiC and in relaxed supercells of 3C-SiC
containing Si or C vacancies. The model was validated through the
comparison of predicted electron drift mobilities and electron Hall
mobility measurements, reported in the literature.

II. THEORY AND METHODOLOGY

A. The electron relaxation time

The electron relaxation time is related to the imaginary part of
the electron self-energy,

P
nk (with band n and wave vector k).

In the Migdal approximation, the mode-resolved scattering rates
(inverse relaxation times) are given by16

1
τnk

¼ 2Im
X
nk

¼ 2π
�h

X
mv

ð
dq
ΩBZ

jgνmn(k, q)j2[(1� fmkþq þ nqν)

� δ(εnk � εmkþq � �hωqν)

þ ( fmkþq þ nqν)δ(εnk � εmkþq þ �hωqν)], (4)

where gνmn(k, q) are the electron–phonon matrix elements,

gνmn(k, q) ¼ ψmkþqj@qνV jψnk

D E
: (5)

Here, @qνV is the partial derivative of the effective potential
with respect to the lattice normal mode indexed by wave vector q
and branch ν. Each electron–phonon matrix element represents the
transition amplitude for an electron in state ψnk (with wave vector
k and branch n) to scatter into state ψmkþq due to the perturbation
in the effective potential resulting from atomic motion. fmkþq are
the Fermi occupation numbers for electrons and nqν are the Bose
occupation numbers for phonons. It is here assumed that the elec-
tron and phonon occupation numbers are calculated at different
temperatures. εnk and �hωqν are electron and phonon energies,
respectively. The integral is performed over the first Brillouin zone,
which has volume ΩBZ .

B. Calculation of matrix elements

Density functional perturbation theory (DFPT) calculations
were performed on 2 × 2 × 2 supercells of 3C-SiC. After relaxing
the atomic coordinates to minimize total energy, ground state wave
functions were calculated on a uniform 6 × 6 × 6 k-grid with a
cutoff energy of 60 Ry using the Quantum Espresso code.17

Phonon frequencies and polarization vectors were calculated on a
uniform 3 × 3 × 3 q-grid centered at Γ using the perturbation
theory method. The resulting polarization vectors were used to
deform the effective potential along phonon normal coordinates,
taking V ! V þ @qνV . The matrix elements were then determined
by taking the product of the in and out Bloch states with the per-
turbing potential [Eq. (5)].

The resulting matrix elements were Wannierized and interpo-
lated onto a 12 × 12 × 12 k-grid and 46 × 46 × 46 q-grid using the
Electron–Phonon using Wannier (EPW) code.18,19 The density of
the k-point grid was increased until the maximum differences in
the imaginary electron self-energy converged to within 5%. This
resulted in a final interpolated grid of 12 × 12 × 12 for the k-point
grid and 46 × 46 × 46 for the q-point grid. EPW was subsequently
used to determine the electron self-energies and relaxation times.
Calculations in defective supercells of SiC were performed by
adding a single C or Si vacancy into the supercell and relaxing the
structure. This corresponded to C or Si vacancy concentrations of
12.5%. Those defective supercells will hereafter be referred to as
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SiC0.875 or Si0.875C. Initial projections used sp3 hybridized orbitals
for the pristine cell and random projections for the defective cells.

Relaxation times were calculated from 20 to 106 K. In order
to parameterize the relaxation time as a function of electron tem-
perature, several simplifying assumptions were made. The electron
temperature dependence appears through the Fermi occupation
numbers in Eq. (4). The use of Fermi–Dirac statistics for the elec-
tron system assumes that the hot electrons and holes have estab-
lished quasi-thermal equilibrium, which is to say that they can be
characterized by a single electron temperature. In the context of the
two-temperature model, where a rapid excitation source is present,
such an assumption is likely only valid after an initial equilibration
period has elapsed and provided that the electron–electron interac-
tion rate is significantly greater than the electron–phonon scatter-
ing rate. Alternative approaches might also consider using
quasi-Fermi levels for both electrons and holes or using Boltzmann
transport or Monte Carlo methods to study the non-equilibrium
dynamics. However, in the context of the two-temperature model,
it is necessary to parameterize all material properties by a single
electron temperature and single lattice temperature.

C. Hybrid model of specific capacity and the
electron–phonon coupling factor

At low and intermediate temperatures, the Fermi occupation
numbers are negligibly small above the highest band energies, Emax ,
calculated using the DFT code (approximately 11 eV above the
Fermi level). However, above about 105 K, the number of electrons
above the highest energy bands begins to become non-negligible.
The contribution of those high-energy electrons is approximated
by treating them as a free electron gas obeying Boltzmann statistics.
The use of Boltzmann statistics is justified as high-energy states are
sparsely occupied. The hybrid electronic specific heat capacity is,
therefore, made up of two parts,

Ce(T) ¼ 2
Nk

X
nk
Cnk þ 3

2
kBn free(T): (6)

The first term is the heat capacity determined from the static
band calculations. The second term is the specific heat capacity of a
Maxwell–Boltzmann distributed gas of free electrons and is only
important above 105 K. Cnk are the mode-resolved electronic heat
capacities due to electrons in the calculated band structure, which
has a maximum energy of Emax ,

Cnk ¼
(ϵnk � ϵf )

2 exp
ϵnk � ϵf
kBT

� �

kBT2 1þ exp
ϵnk � ϵf
kBT

� �� �2 , (7)

where ϵf is the Fermi level and Nk is the number of sampled wave
vectors in the Brillouin zone (Nk ¼ 1728 for these calculations).
The factor of 2 appearing before the first term in Eq. (6) accounts
for electron spin. To connect Fermi–Dirac statistics for electrons
below Emax with Boltzmann statistics above Emax , the following
approximation is used for the product of the electronic density of

states D and the Fermi–Dirac distribution f :

D(ϵ)f (ϵ� ϵf ; T) ffi exp � Emax � ϵf
kBT

� �

� exp � ϵ� Emax

kBT

� �
DMB(ϵ� Emax), (8)

where ϵ . Emax and DMB is the density of states of a Maxwell–
Boltzmann gas. Integrating Eq. (8) over energy gives the number of
free electrons,

n free(T) ¼
ð1

Emax

D(ϵ)f (ϵ� ϵf ; T)dϵ ¼ N exp � Emax � ϵf
kBT

� �
, (9)

where N is the total number of valance electrons of SiC. For high
temperatures, the Fermi level was adjusted to ensure the conserva-
tion of valence electrons. At temperatures below 104 K, no adjust-
ment of the Fermi level was needed. While such a treatment of the
high-energy electrons is highly approximate, it is necessary to
account for their energy contributions in some way. Otherwise, the
specific heat capacity will be unphysically low at high temperatures
and may even decrease. Note that in this scheme, each valence elec-
tron in the structure has one valence state, one conduction/excited
state, and one free particle state. Extending Eq. (3) and incorporat-
ing the contribution of free electrons to the electron–phonon cou-
pling factor, one obtains

G ¼ 2
Nk

X
nk

Cnk

τnk
þ 3kBn free(T)

2τ free(T)
: (10)

The relaxation time for free electrons, τ free(T), is approxi-
mated as follows. The scattering rate is given by

1
τ free(T)

¼ �Σ vh i: (11)

Here, the mean cross section, �Σ, is assumed to be a sum of
geometric cross sections for ionic cores,

�Σ ¼ ρCσC þ ρSiσSi ¼ ρC(πr
2
c )þ ρSi(πr

2
Si), (12)

where ρC and ρSi are the number densities of carbon and silicon
atoms and rC and rSi are the ionic radii. The mean velocity of the
free electrons, vh i, which is also the mean velocity of a Maxwell–
Boltzmann gas is

vh i ¼
ffiffiffiffiffiffiffiffiffiffi
8kBT
πme

s
, (13)

where me is the electron mass.
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D. Electron mobilities and the electron–phonon mean
free path

In order to validate these first principles calculations with
experimental data, the electron drift mobilities were calculated and
compared to experimentally measured electron Hall mobilities in
donor-doped 3C-SiC. The electron drift mobility can be obtained
from the conduction electron relaxation time using

μe ¼
eτ
m*

e
, (14)

where τ is the thermal-averaged conduction electron relaxation
time and m*

e is the effective mass of the electrons. μe is measured
by applying a magnetic field perpendicular to the carrier currents
that are induced by an electromotive force. This, in turn, produces
a potential difference, the Hall voltage VH,

20 which can be mea-
sured and used to extract the Hall mobilities for electrons and
holes. The electron mobility was calculated using

μe ¼
e
m*

e

P
CB,k τnkf (ϵnk � ϵf ; T)P
CB,k f (ϵnk � ϵf ; T)

: (15)

The quotient of the sums gives the thermal-averaged relaxa-
tion time. The sums run over the lowest conduction band only.
Near 0 K, the average relaxation time approaches the relaxation
time at the conduction band minimum (CBM) (bottom of the X
valley). Mobilities were calculated up to 1000 K. In that temperature
range, higher energy conduction bands and the free electron states

could be ignored. The value of m*
e used was the effective Hall mass

m*
e¼0:67me.

21

The average mean free path of electrons was also calculated
from the relaxation time using

λnk ¼ jνg,nkjτnk , (16)

where νg,nk are the electron group velocities. These mean free path
values were used to assess the degree of localization in the elec-
tron–phonon interaction.

III. RESULTS AND DISCUSSION

A. Phonon density of states

The calculated phonon dispersion curves of the pristine lattice
using a 6 × 6 × 6 q-grid are displayed in Fig. 1. SiC has two atoms
per primitive unit cell, corresponding to six phonon modes, three
of which are acoustic modes and three of which are optical modes.
The electron–phonon interaction depends strongly on the polariza-
tion of the phonon modes. For example, the matrix elements of the
transverse acoustic (TA) modes are smaller than the longitudinal
acoustic (LA) mode because the LA mode produces both shear
strain and volume dilation/contraction, while TA modes produce
only shear strain.22

The calculated phonon dispersion curves are in good agreement
with inelastic x-ray scattering23 and Raman scattering24 measure-
ments. The phonon density of states (DOS) of the pristine lattice
using a 6 × 6 × 6 q-grid is shown in Fig. 2. The high-frequency peaks
are mainly associated with vibrations of the lighter carbon atoms,

FIG. 1. Phonon dispersion curves of pristine 3C-SiC lattice calculated on a 6 × 6 × 6 coarse q-grid.
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while the lower frequency features tend to have a more mixed
character.

The effect of vacancies on the phonon DOS is illustrated in
Fig. 3. Both vacancy types cause splitting and the appearance of
low energy modes. This is expected from the interruption of long-
range order and a decrease in the average Si–C bond strength. In
SiC0.875, there is a greater degree of splitting and a notable down
shift in the energies of the optical phonons which is expected as
those phonon branches are largely characterized by vibrations on
the carbon sublattice.

B. Electron band structure

The electron band structure for pristine 3C-SiC is shown in
Fig. 4. The corresponding electron DOS is shown in Fig. 5. These
results show good agreement with the computational literature25

and experimental literature.26 Figure 6 shows the electron DOS for
Si0.875C and SiC0.875.

C. Electron–phonon relaxation times and G

Referring to Fig. 4, the upper three valance bands (bands 2, 3,
and 4) meet at the valence band maximum (VBM) while the con-
duction band minimum (CBM) occurs in only the lowest conduc-
tion band (band 5). Therefore, at low temperatures, those four
bands have the greatest contribution to the specific heat capacity,
electron–phonon coupling factor, and electron mobility. Relaxation
times are plotted along a Brillouin zone path in Fig. 7. The three

upper valence bands are shown by the dashed red lines, while the
lowest conduction band is shown by the dotted blue line.

As expected, the relaxation time of the lowest conduction
band is highest at X due to the valley at that point (X valley). The
maximum relaxation time for valence electrons occurs at Γ, coin-
ciding with the valence band maximum.

The relaxation times for pristine 3C-SiC are plotted in Fig. 8
as a function of the difference in energy between the electron
energy level and the Fermi level.

As with Fig. 7, the longest lived carriers are found at the VBM
and the CBM. The CBM electrons lack lower energy states to
scatter into. Similarly, holes in the VBM lack higher energy states
to scatter into. Meanwhile, in the middle of the bands, the abun-
dance of adjacent states reduces the lifetime to around 10−14 s. The
relaxation times also decrease as temperature increases due to the
lowering of occupation numbers.

The situation changes when vacancies are added. The narrow-
ing of the bandgap and production of in-gap defect states increase
the number of states that conduction electrons near the band edge
can scatter down into and valence band holes can scatter up into.
Figure 9(a) shows how the lifetimes of states near the VBM and
CBM decrease by several orders of magnitude due to the narrowing
of the bandgap in Si0.875C (Fig. 6). States near the VBM are particu-
larly affected. Figure 9(b), which shows the same for SiC0.875, indi-
cates a less pronounced change in the relaxation time near the VBM.

FIG. 2. Phonon density of states of the pristine 3C-SiC lattice calculated on a
6 × 6 × 6 coarse q-grid.

FIG. 3. (a) Phonon DOS of Si0.875C and (b) phonon DOS of SiC0.875. Modes
were interpolated onto a 12 × 12 × 12 coarse q-grid.
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FIG. 4. Electron band structure of pristine 3C-SiC. Zero energy coincides with the valence band maximum (VBM).

FIG. 5. Electron density of states of pristine 3C-SiC. FIG. 6. (a) Electronic DOS of Si0.875C and (b) electronic DOS of SiC0.875.
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FIG. 7. Relaxation times along a Brillouin zone path calculated on a fine 46 × 46 × 46 q-grid. The uppermost valence band is shown in red. The lowest conduction band is
shown in blue.

FIG. 8. Relaxation time vs the energy difference from the Fermi level for pristine
3C-SiC at 20 K.

FIG. 9. (a) Relaxation time vs energy in Si0.875C and (b) relaxation time vs
energy in SiC0.875.
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The electronic specific heat capacities calculated using
Eqs. (6)–(9) are shown in Fig. 10. At temperatures below 105 K,
nearly all electrons are accounted for in the static band structure
calculations and n free(T) ffi 0. At those temperatures, modification
of the electronic density of states has a profound effect on the spe-
cific heat capacity. In Si0.875C, the narrowing of the bandgap
increases the density of states near the Fermi level. Those states
make a greater contribution to the specific heat capacity. In
SiC0.875, the partial overlap of the bands further increases the
density of states near the Fermi level. As the temperature increases,
however, the broadening of the Fermi–Dirac distribution smears
out the details of the band structure. Also, a larger number of elec-
trons are treated as free electrons. Eventually, at very high tempera-
tures, the heat capacity approaches the classical value for a
Maxwell–Boltzmann gas, i.e., cv ffi 3

2NkB, where N is the number of
valence electrons per unit volume.

Using the mode-resolved specific heat capacities and relaxa-
tion times, the electron–phonon coupling factors were calculated
from Eq. (10). The coupling factors are shown in Fig. 11. In all
cases, G increases as Te increases. Over all temperatures, the vacan-
cies increase the coupling factor by several orders of magnitude,
but the increase is most pronounced at low temperatures.
Interestingly, the differences in specific heat and relaxation times
between the defective structures seem to largely cancel out. The
larger specific heat for SiC0.875 is compensated for by its longer
relaxation time. Thus, the values of G are similar for both defective
structures over all temperatures.

The electron mobilities calculated from the relaxation times
are compared with the experimental electron Hall mobilities mea-
sured in lightly (unintentionally) donor-doped 3C-SiC in Fig. 12.27

Calculated values from the Caughey–Thomas model28 are also

FIG. 11. Electron–phonon coupling factor vs electron temperature for pristine
SiC, SiC0.875, and Si0.875C.

FIG. 10. Electronic specific heat capacity as a function of electron temperature.

FIG. 12. Electron mobilities calculated in the present model (red crosses) along
with Hall mobilities measured for lightly doped 3C-SiC taken from Ref. 27 and
values calculated using the Caughey–Thomas (blue circles) taken from Ref. 28.
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overlaid. There is reasonably good agreement between the calcula-
tions and data when one takes into account the following factors.
First, there is inherent variability in Hall measurements due to
impurity concentration.27 These calculations do not consider
several relaxation mechanisms such as electron–electron scattering,
electron-dislocation scattering, and electron-impurity scattering.
The latter mechanism accounts for the larger differences between the
calculated and measured mobilities at 20 and 50 K. As temperature
decreases, the lattice scattering rate decreases while the impurity scat-
tering rate increases.29 The inflection in the experimental data
around 60 K indicates the presence of both impurity and lattice scat-
tering. Since the present calculations do not include the effects of
impurities, the higher mobilities at 20 and 50 K are expected. Also
note that in the calculations, only the electron temperature is varied.
The lattice temperature is fixed at 0 K and therefore, only Stokes pro-
cesses are accounted for. At elevated temperatures, the anti-Stokes
processes should also reduce the electron mobility. Nevertheless,
better than order of magnitude agreement was observed in a temper-
ature range where lattice scattering (electron–phonon coupling) is
the dominant relaxation mechanism.

The mean free paths of electrons calculated using Eq. (15) are
shown in Fig. 13 as histograms. The main outcome from the calcu-
lation is that the mean free paths of electrons in the defective cells
are smaller than the lattice parameter at temperatures greater than
200 K. This implies that when electrons scatter in the presence of
vacancies, the scattering is highly localized, perhaps occurring over
a length scale of an atom or a bond. This suggests that it may
be possible to use a rule-of-mixtures approach in interpolating G
over a range of stoichiometries given by SiCx and SixC where
0.875 < x < 1.0. Between 20 and 200 K, there are a small number of
states with mean free paths larger than the lattice constant. Since
some of those states can carry a significant fraction of the specific
heat capacity, it may not be reasonable to use a rule-of-mixtures
approach as the interaction can take place over several unit cells.

Interpolation to other stoichiometries may be further compli-
cated by non-linearities in the DOS and band structure. Defective
2 × 2 × 2 supercells, though necessary to make the problem compu-
tationally tractable, cannot be regarded as a small perturbation to
the pristine cell from an isolated vacancy. Figure 6 shows a clear
narrowing of the bandgap and, in the case of SiC0.875, a semi-
metallic DOS. At much lower defect concentrations, localized
defect states are expected to be more-or-less uncoupled and show
negligible dispersion (i.e., exhibit flatbands). A 2 × 2 × 2 supercell
might not provide an accurate approximation of the effect of an
isolated point defect on states near Ef. That said, it is clear from
comparing Figs. 8 and 9 that vacancy defects have a profound
effect on the lifetimes of states of all energies within the band struc-
ture. Future work will need to be conducted to (1) validate the
rule-of-mixtures approximation either using larger supercell calcu-
lation or some other approximation and (2) calculate the coupling
constant for various stoichiometries and explore its impact on the
two-temperature model.

IV. CONCLUSION

Electron relaxation times, specific heat capacities, electron
drift mobilities, electron–phonon coupling factors, and electron–
phonon mean free paths were calculated for pristine 3C-SiC,
Si0.875C, and SiC0.875 for electron temperatures from 20 to 106 K.
The calculations were performed using a hybrid model that com-
bines density functional perturbation theory calculations with a
free electron gas model. The model was validated by comparing
calculated electron mobilities with measured Hall mobilities.

Vacancy defects have a profound effect on the electron specific
heat capacity at low temperatures due to changes in the electron
density of states near the Fermi level. The relaxation times decrease
and the electron–phonon coupling factors increase by several
orders of magnitude in the defective structures compared to

FIG. 13. The electron mean free path of (a) pristine cell, (b) Si0.875C, and (c) SiC0.875. The vertical line corresponds to the lattice constant.
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pristine 3C-SiC. Both vacancy types have nearly the same magni-
tude of effect on the coupling factor. Perhaps most importantly, the
coupling factor strongly depends on the electron temperature. Such
temperature dependence is not usually accounted for in the two-
temperature model. While an effective electron–phonon coupling
constant has been used as a fitting parameter within the two-
temperature model to successfully explain experimental data from
swift heavy ion irradiations and pulsed laser experiments, the con-
sequences of the strong temperature dependence on the coupling
factor should be investigated further.

Electron–phonon mean free paths calculated in the defective
supercells were found to be, in most cases, much smaller than
the lattice constant. This suggests that it may be possible to interpo-
late the electron–phonon coupling factors to other stoichiometries
of SiC using a simple rule-of-mixtures approach. This will need to
be confirmed by either performing the calculations in a larger
supercell, in effect lowering the vacancy concentration, or through
an alternative approach.
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