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Stochastic simulation of entangled polymeric liquids in
fast flows: Microstructure modification

Joontaek Park, David W. Mead, and Morton M. Denna)

Benjamin Levich Institute and Department of Chemical Engineering, The City
College of New York, CUNY, New York, New York 10031

(Received 24 June 2011; final revision received 30 April 2012; published 19 June 2012)

Synopsis

We have modified the full-chain stochastic tube (XDS) model developed by Xu et al. [J. Rheol. 50,

477–494 (2006)] to simulate the rheology of entangled melts and solutions of linear monodisperse

polymers. The XDS model, which has a single adjustable parameter that is equivalent to the Rouse

time, successfully describes steady and transient shear and normal stress data at low to moderate

rates, but the results deviate systematically from experimental data at high rates. The algorithm for

re-entanglement was revised, and a configuration-dependent friction coefficient (CDFC), as

originally proposed by Giesekus, was incorporated to account for microstructural change of the

tube away from equilibrium. The simulation results from the modified model significantly reduce

the deviation from the experimental data in shear, and they also agree well with extensional data

for entangled solutions, including an initial �0.5-power dependence of the steady extensional vis-

cosity on extension rate. We also applied the CDFC to the molecular model developed by Mead

et al. [Macromolecules 31, 7895–7914 (1998)] and obtained improved predictive performance at

high deformation rates, reinforcing the idea that there is a structural change in the tube far from

equilibrium that accelerates relaxation processes. Finally, noting that molecular models make

fundamentally different assumptions about the effect of the deformation on the entanglement

density but give essentially equivalent rheological predictions, we explored the effect of the dynam-

ics of the entanglement density by changing the entanglement assumptions in the stochastic

model. VC 2012 The Society of Rheology. [http://dx.doi.org/10.1122/1.4720086]

I. INTRODUCTION

The tube model [Doi and Edwards (1986)], first postulated by Edwards (1967) and

subsequently refined by many authors, quantitatively simulates linear and moderately

nonlinear flows of monodisperse and polydisperse linear and branched entangled polymer

melts and solutions [McLeish (2002)].

The tube concept as originally formulated is an equilibrium construct. Numerous mod-

ifications [for example, Doi (1983); Pearson et al. (1991); Ianniruberto and Marrucci

(1996); Mead et al. (1998); McLeish (2002)] have been made to the original tube model

to improve the prediction of rheological behavior near equilibrium and in weak flows,

predicated on the assumption of a constant equilibrium tube structure. Graham et al.
(2003) claimed that the entanglement microstructure of the tube is effectively the

a)Author to whom correspondence should be addressed; electronic mail: denn@ccny.cuny.edu

VC 2012 by The Society of Rheology, Inc.
J. Rheol. 56(5), 1057-1081 September/October (2012) 0148-6055/2012/56(5)/1057/25/$30.00 1057

http://dx.doi.org/10.1122/1.4720086
http://dx.doi.org/10.1122/1.4720086
http://dx.doi.org/10.1122/1.4720086


equilibrium microstructure as long as _cse << 1, where _c is a shear rate and se denotes the

Rouse (equilibration) time of a single tube segment. When the chain segments become

highly aligned, however, the microstructure of the tube is unlikely to be that of the equi-

librium state, and the proper formulation for nonlinear simulations within the framework

of the tube model is not yet firmly established. We focus on the highly nonlinear rheolog-

ical properties in this manuscript. In particular, we demonstrate that systematic depar-

tures of tube model predictions from experimental data at high deformation rates suggest

that changes in the entanglement microstructure defining the tube may be occurring. This

observation is supported by experimental evidence of “rupture” of entangled polymers in

well defined uniaxial extension experiments at high stress levels [Joshi and Denn (2004a,

2004b); Burghelea et al. (2009)]. Since most polymer processing operations operate in

the highly nonlinear regime [e.g., Denn (2008)], resolving the outstanding issues in this

flow regime is highly relevant.

It is well known that new physical phenomena manifest themselves in entangled poly-

mers under conditions that go beyond the original construct, and modifications to the ba-

sic tube model to describe these phenomena have progressed according to the classic

methodology of the scientific method by first identifying a systematic deviation of tube

model predictions from experimental data and then introducing new physical concepts

that are compatible with the basic construct where it applies. This is the process whereby

such modifications as dynamic dilution in star polymer rheology [Ball and McLeish

(1989)], convective constraint release [Marrucci (1996); Ianniruberto and Marrucci

(1996); Mead et al. (1998)], Rouse-like motion of the tube in star-linear blends [Milner

et al. (1998)], component stretch in fast extensional flows of polydisperse systems [Auhl

et al. (2009)], and tube dilation [Struglinski and Graessley (1988)] have been made. Con-

vective constraint release, in particular, is an entirely nonlinear flow effect that introduces

the notion of a dynamic tube in fast flows. In this work, we consider another fully nonlin-

ear effect on the molecular rheology of monodisperse entangled polymers, namely, a

configuration-dependent friction coefficient (CDFC).

Stochastic simulators have proven to be effective research tools for probing new physical

phenomena in entangled polymers in a way that is free of the inherent compromises and

ambiguities associated with closed-form analytical constitutive models that contain physical

and analytical approximations [e.g., the MLD model of Mead et al. (1998) and the GLaMM

model of Graham et al. (2003)] and with less computational load but clearer morphological

information than associated with molecular dynamics simulations, such as those by Kremer

and Grest (1990), Everaers et al. (2004), and Likhtman et al. (2007). Stochastic models for

entangled polymeric liquids generally consist of two dynamic components: (1) Brownian dy-

namics of a polymer chain along its primitive path in tubelike topological constraints

[de Gennes (1971)] and (2) dynamics of the confining tubes that are affinely deformed by

flows. Instead of simulating the virtual tubes directly, the proper choice of a mean field model

for the constraints can reduce complexity without losing the key dynamics.

Based on the way in which the virtual tube is represented, the stochastic models can

be separated according to three approaches: point obstacles, slip-links, and an axisym-

metric mean field harmonic potential. The “repton” model by Rubinstein (1987) discre-

tized the tube by point obstacles. The original idea of the slip-link [Doi and Edwards

(1978a, 1978b, 1978c, 1979), Edwards and Vilgis (1986)] was further developed by

Öttinger (1999), Fang et al. (2000), Gigras and Khomami (2002), Greco (2002), Rubin-

stein and Panyukov (2002), Likhtman (2005), Tasaki et al. (2001), and Doi and Takimoto

(2003). A “full-chain model” [Hua and Schieber (1998); Hua et al. (1998, 1999); Neer-

gaard et al. (2000)] was later developed into a consistently unconstrained Brownian slip-

link (CUBS) model [Nair and Schieber (2006); Schieber et al. (2007)]. The multichain
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primitive chain network (PCN) slip-link model of Masubuchi et al. (2001, 2003) was fur-

ther modified [Yaoita et al. (2008)] and recently adapted by Dambal et al. (2009) and

Kushwaha and Shaqfeh (2011).

The “stochastic tube model,” which is our initial focus here, represents the tubelike

confinement as an axisymmetric mean field harmonic potential. The topological restraints

in this model are very similar to the original virtual tube concept by de Gennes (1971).

Xu et al. (2006) developed this tube model by incorporating the harmonic potential into

the full-chain model [Hua and Schieber (1998); Hua et al. (1998, 1999)]. A harmonic

potential in the form of a transverse force regulates polymer chain departures from the

tube axis. The transverse force was derived self-consistently, so that it maintains the equi-

librium tube contour length and diameter in the absence of flow. The model by Xu et al.
(2006) effectively removed several limitations of the full-chain model [Hua and Schieber

(1998); Hua et al. (1998, 1999)]: specifically, (1) chain loop formation within a tube is

possible, as in the repton model [Rubinstein (1987)]; (2) the constraint release/creation

kinetics are self-consistent; and (3) the computed stress is independent of the number of

beads in the simulation. This stochastic simulator, which has only a single adjustable pa-

rameter defining the time scale, successfully predicted the rheological behavior of

entangled polymers at low to moderate shear rates [Xu et al. (2006)] and was also applied

to the study of apparent wall slip [Xu et al. (2007)].

The stochastic models mentioned above have shown reasonable agreement with

experimental data, but not all of the phenomena and conditions are satisfied according to

each model’s characteristic assumptions and approximations. For example, Ye et al. (2003)

adjusted the chain extensibility parameter in the MLD model of Mead et al. (1998) to fit

extensional flow data at high strain rates. The CUBS model by Schieber et al. (2007)

showed anomalously oscillating behavior in transient extensional stress, making it difficult

to get a reliable steady extensional viscosity. When the stochastic tube model of Xu et al.
(2006) was applied to higher shear rates and extensional flows, systematic deviation from

the experimental data caused by excessive stretch occurred, as will be shown in later

sections.

In this work, we propose modifications to the full-chain stochastic tube model of Xu

et al. (2006), hereafter denoted as XDS, so that the revised model, denoted as PMD,

can be applied to very high deformation rates and extensional flows. We interrogated

the re-entanglement process and found that a revision is required at higher deformation

rates that conserves the total contour length of tubes in the ensemble during constraint

release and creation. We conjecture that the tube structure may result in reduced fric-

tion for highly aligned configurations. Thus, the two modifications we implement are as

follows: (1) the preservation of the total contour length of the tube in an ensemble dur-

ing the re-entanglement process and (2) the incorporation of a configuration-dependent

friction coefficient, which depends on the relative alignment of segments with the

matrix chains.

The paper is organized as follows: Sec. II describes the previous XDS model, as well

as the modifications implemented for this study (PMD model). In Sec. III, the systematic

deviation of the XDS simulator in predicting rheological experimental data at high shear

rates is shown, followed by the demonstration of the dramatic reduction in deviation by

the PMD model. The results from the application of the revised model to extensional

flows are also shown. Section IV shows the confirmation of the CDFC concept at high

deformation rates. We also apply the CDFC concept here to the MLD molecular model.

Conclusions are drawn in Sec. V. Additionally, we have investigated the microstructural

change in terms of the entanglement dynamics during the re-entanglement process, and

some preliminary results are described in the Appendix.
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II. MODEL DESCRIPTION

A. Governing equations

The full-chain stochastic tube model simulates entangled polymer chains as an ensem-

ble of NC individual bead-spring chains within tubes. Figure 1 shows a schematic dia-

gram of how the model represents an entangled polymer chain. The polymer chain

consists of N beads and N–1 springs. The Z virtual tube segments confine the polymer

chain by two forces: a transverse force, FR, which restrains the chain in the direction nor-

mal to the tube axis, and a tensile force, FT, which acts along the chain to maintain the

primitive path as a random walk. The ith bead position is denoted as Ri, and the primitive

path vector of the zth tube segment is represented by Uz; the corresponding unit vector

uz¼Uz/|Uz|. The dynamics of an unconstrained polymer chain are described by the

spring force, F
S; the Brownian force, F

B; and the viscous drag. Inertia is neglected. The

governing equation for the entangled polymer chain can therefore be expressed as a series

of coupled Langevin equations for each of the N beads, including the two confining

forces:

0 ¼ �f1
_R1 � j � R1

� �
þ FS

1 þ FR
1 � FT

1 þ FB
1 ;

0 ¼ �fi
_Ri � j � Ri

� �
þ FS

i � FS
i�1 þ FR

i þ FB
i ; 2 � i � N � 1;

0 ¼ �fN
_RN � j � RN

� �
� FS

N�1 þ FR
N þ FT

N þ FB
N: (1)

Here, fi is a friction coefficient, which is taken to be the same for all beads in the original

XDS model but may be dependent on relative segment/matrix configuration in our for-

mulation here. The velocity gradient tensor is denoted as j.

The spring force between beads is described by the nonlinear FENE model

FS
i ¼

H Riþ1 � Rið Þ
1� Riþ1 � Rið Þ2=b2

: (2)

Here, H and b are the linear spring constant and the maximum extensibility of the spring,

which are, respectively,

FIG. 1. Sketch of a part of the chain confined within two consecutive tube segments.
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H ¼ 3kBT N � 1ð Þ
NKa2

K

and b ¼ NKaK

N � 1ð Þ ; (3)

where aK is the Kuhn length and NK is the number of Kuhn steps in a chain.

The Brownian forces are derived from the fluctuation-dissipation theorem and can be

expressed in a discretized form for a numerical time step Dt using a random vector wi

that has a unit variance and zero mean [e.g., Van Kampen (1992)]:

FB
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTfi

Dt

r
wi: (4)

The tensile force, which follows the distribution function for a flexible polymer chain

confined in a tube [Doi and Edwards (1986)], is given as

FT
i ¼

3kBTffiffiffiffiffiffiffiffi
NKa2

K

Zeq

q uz ¼
3kBT

Leq
uz: (5)

Here, Zeq is the average number of entanglements at equilibrium and Leq is the average

equilibrium length of an entangled chain segment.

The transverse force was derived self-consistently by Xu et al. (2006) to ensure that

each chain is confined in an axisymmetric harmonic potential well and maintains the

equilibrium contour length of each tube at Leq:

FR
i ¼ �aiPi; (6)

ai ¼
� 2 K�1ð Þ

K H

�4� 2
K�2
þ 2

K

� �
H

(
i ¼ 1;N
i 6¼ 1;N

: (7)

Here, Pi is the coordinate orthogonal to the tube contour axis and K¼ 1–3Z/2(N–1).

Details of the governing equation and the forces can be found in Xu et al. (2006).

B. Algorithm

A simulation is performed by evaluating the time evolution of an ensemble of NC

polymer chains and their associated confining tubes. The tube segments associated with a

chain are paired with tube segments on different chains to simulate pairwise entangle-

ments. At each time step, the forces and friction coefficients of each bead in Eq. (1) are

evaluated from the chain conformation, after which the new position of each bead is

obtained by integrating Eq. (1) forward in time using an Euler forward difference

scheme. The time step is adjusted if necessary, based on the segmental extension, to

ensure that finite extensibility is maintained; the Brownian force is adjusted consistently

using Eq. (4) to ensure that the fluctuation-dissipation theorem is satisfied. The complete

equation set used for the numerical integration is in Appendix B of Xu et al. (2006). The

tube segments are then moved affinely by the flow field, as follows:

Uz tð Þ ¼ exp

ðt

t0
j t00ð Þdt00

� �
� Uz t0ð Þ: (8)

Here, de is a time-ordering operator, as defined by Van Kampen (1992).
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The lengths of the end tube segments are adjusted to correspond to the positions of the

first and last beads in the tube, which may not correspond to the first and Nth beads on

the chain because of the possibility of chain loops. If the chain has retracted sufficiently

to leave the end segment empty, the segment is removed and a constraint is released. If a

chain reptates out of the existing tube, and the resulting end tube segment is less than or

equal to the equilibrium tube segment length Leq, the tube segment is extended to incor-

porate the chain. If the extended tube segment is greater than Leq, the existing tube is cut

at a length Leq and a new tube segment with a randomly chosen orientation is created.

The re-entanglement algorithm then follows. An end tube segment that has been

removed releases the conjugate constraint on another tube, and the two tube segments

that meet at the conjugate constraint are combined. A newly created tube segment creates

a conjugate constraint at the midpoint of a randomly chosen tube that is longer than Leq.

The details of these processes are modified in the new model, and they are described in

the next section.

After rearrangement of the tube segments, the stress, s, is obtained by ensemble aver-

aging using the following Kramers formula:

s ¼
XN�1

i¼1

FS
i Riþ1 � Rið Þ

	 

�
XN�1

i¼1

FT
i ui siþ1 � sið Þ

	 

�
XN

i¼1

ai PiPih i þ nkBTd: (9)

The new entanglements are rejected, and the process of tube creation is repeated in the

event that finite extensibility is violated for any chain during this process.

C. Modification of the XDS simulator of Xu et al.

The problematic issues identified in the simulation results obtained from the previous

XDS model of Xu et al. (2006) revolve around excessive predicted orientation and

stretch. Any contemplated modification to the model must therefore simultaneously

attenuate the stretch and reduce the orientation while simultaneously preserving all of the

positive results from the model for _cse � 1, where the entanglement microstructure is

near equilibrium. We found that the re-entanglement process needs to be revised to pre-

vent overstretching the newly created tubes and to preserve the total contour length of

tubes in the ensemble. We also permitted the friction coefficient to be a function of the

orientation of the bead/connectors relative to that of the surrounding matrix to reflect

changes in the chain orientation; changing the friction coefficient simultaneously impacts

the orientation, since the disengagement time decreases, and the stretch, since the longest

Rouse time decreases. The two modifications are described below.

Figure 2 shows how the re-entanglement process is implemented. Here, L is the length

of a tube segment, subscripts denote the index of each tube segment, and superscripts

indicate whether the segment is old (before the re-entanglement process) or new (after

the re-entanglement process). The differences in the contour lengths of the tubes after the

constraint release and creation are DLCR and DLCC, respectively.

For the constraint release process, the old tube segment 2 is released by the removal of

its conjugate segment at one of the ends of another tube. The old tube segment 2 is then

combined with its neighboring old tube segment 1 to become a new tube segment 1. As a

result, DLCR is negative.

For the constraint creation process, a newly created tube segment at one of the ends of

a tube is randomly conjugated with old tube 3, where it creates a new constraint and new
tubes 3 and 4. Unlike the constraint release process, there are two degrees of freedom,

the orientation and the length, in creating the new constraint. A random vector that is
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perpendicular to the orientation of the old tube is selected. For the previous XDS model,

DLCC was chosen to be the average of the reduced contour lengths resulting from the

constraint release process,

DLCC � DLCR
	 


¼
XNCR

l

DLCR
l =NCR: (10)

Here, the index l represents each constraint release event, and NCR denotes the total num-

ber of constraint release events. We found that the algorithm sometimes fails at very high

shear rates and results in the divergence of the total contour length and overstretching of

chains. To prevent divergence we modified the re-entanglement algorithm slightly, as

follows:

DLCC �
XNCR

l

DLCR
l =NCC: (11)

Here, NCC is the number of newly created tube segments. This algorithm keeps the total

contour length of the tubes in an ensemble constant during the re-entanglement process.

The new entanglements are rejected and the process of tube creation is repeated in the

event that finite extensibility is violated for any chain during this process.

We postulate that the beads and connectors can slide past one another more easily

when they are highly aligned with the entanglement matrix. Conversely, when the bead

connectors are crossed with the matrix entanglements, they cannot simply slide past the

matrix entanglements; they must go around them because of the topological uncrossibil-

ity constraint. It would thus seem that the additional motion required to move around a

nonaligned matrix, or, alternatively, cooperative motion between the segments, should

manifest itself in a higher friction coefficient relative to the case where the bead connec-

tors and the matrix entanglements are highly aligned and can simply slide past one

another. Hence, we assume that the relative orientation of the connectors and the matrix

polymer has a direct impact on the friction coefficient encountered by the beads. We are

effectively accounting for changes in the friction coefficient as the entanglement micro-

structure changes, which is conceptually similar to an idea first advanced by Giesekus

FIG. 2. Schematic diagram of the re-entanglement process (constraint release and creation) in the stochastic

tube model: Dashed-line rectangles represent old tubes and solid-line rectangles are new tubes after the process.
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many years ago [cf. Giesekus (1966, 1982, 1983); Larson (1988); Wiest (1989)]. (This

proposed mechanism was alluded to in the Conclusion section of Xu et al. (2006). The

relation between the Giesekus approach to anisotropic friction and a tensor drag coeffi-

cient employed by Curtiss and Bird (1981) to obtain reptationlike chain motion without

employing the tube construct is discussed by Bird and Wiest (1985). More recently,

Yaoita et al. (2008) varied the friction coefficient according to the number of Kuhn steps

in each entanglement; these authors claimed that their algorithm is similar to that used in

the CUBS model of Schieber et al. (2007). The latter concepts are different from our

approach.) We emphasize that the qualitative mechanism for CDFC described here does

not require nonaffine deformation of the tube segments (entanglements); the tube seg-

ments always deform affinely in our model. The chain segments captured within the tubes

do deform nonaffinely, however, since the chains can retract into more interior tube seg-

ments upon deformation, and it is the variable effective friction involved in this dynamic

retraction process that we address.

The average orientation of the matrix entanglements, S, is given by

S ¼ 1

NCN

X
j

X
i

qj;iqj;i �
1

3
d: (12)

Here, the unit vector qi¼Qi/|Qi|, where Qi¼Ri – Riþ1. The index j runs over the entire

ensemble of chains, whereas the index i runs over the series of connectors on each chain.

Since the number of Kuhn bonds in each connector is identical, there is no need for a

weighting function. S¼ 0 at equilibrium. We propose that the friction coefficient fi, expe-

rienced by the ith bead is directly related to the relative orientations of the connector vec-

tors between ith and (iþ 1)th beads and the matrix entanglements, S, by the following

relationship, which is chosen for its simplicity:

fi ¼ feq 1� k
3

2
qiqi : S

� � �
: (13)

Here, feq is the friction coefficient in an isotropic, randomly oriented matrix. The factor

3/2 is a normalization constant such that 3
2

qiqi : S has the limiting value of unity for per-

fect alignment of the connectors with the matrix. The factor 0� k< 1 is an empirical

parameter that scales the magnitude of the topological effects. The friction coefficient is

effectively constant at or very near equilibrium, with fi¼ feq. Thus, the modified model

collapses to the previous XDS model near equilibrium. Only when significant orienta-

tion of the matrix has occurred will the CDFC have an impact on model predictions.

Both the Rouse time and the reptation time will be reduced by the proposed variation in

the friction coefficient as a function of the entanglement microstructure, which will

have the effect of simultaneously reducing the overalignment and stretch at high shear

rates.

D. Model parameters

The previous XDS model had only one adjustable parameter, the characteristic time

sH, which is proportional to the Rouse time:

sH ¼
p2

4N N � 1ð Þ sR: (14)
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The characteristic time scale is also proportional to the friction coefficient feq¼ 4HsH.

sH is determined from a single experiment, which would typically be a linear viscoelastic

experiment or a steady shear experiment at low rates. The number of tube segments at

equilibrium, Zeq, is determined using the relationship quantifying the number of entangle-

ments in a monodisperse solution,

Zeq ¼ /x Mw

Me
: (15)

Here, / is the volume fraction of the polymer, Mw is the molecular weight of the

polymer, and Me is the molecular weight between the entangled segments. The solvent

quality exponent, x, was taken to be 1.2 for polystyrene solutions in Xu et al. (2006) and

Hua and Schieber (1998), and that value is used in the simulations reported here. The

molecular weight between entanglements is taken from Ferry (1980), and the Kuhn step

length from Birshtein and Ptitsyn (1966) and Flory (1969).

Between 1000 and 3000 chains were used for each simulation. The computational

parameters N and Dt were chosen as 4Zeqþ 1 and 0.01� 0.02sH, respectively, based on

the convergent simulation results in Xu et al. (2006). For CDFC, the empirical parameter

k in Eq. (13) was chosen to provide the best fit to the experimental data sets in transient

and steady deformation. An equilibrium configuration was achieved by performing a

simulation with zero deformation.

E. Experimental data sets

In this work, predicted results from the modified stochastic and analytical models

were compared with the experimental data of nearly monodispersed entangled polymer

solutions and melts. The material properties of the experimental data sets used in this

study are listed in Table I.

To simulate the experimental data by the stochastic model, the model parameters were

estimated as described in Sec. II D. The estimated simulation parameter sets are summar-

ized in Table II. Note that for the stochastic simulation with modification by CDFC,

k¼ 0.99 was found to give the best agreement with the experimental data. The selected

functional form would therefore result in a 100-fold decrease in the frictional drag in the

(unattainable) limit of full-chain extension and perfect alignment, where the tube

construct would cease to be meaningful.

TABLE I. Material properties of the experimental data sets used to compare with predictions from the models

studied in this paper.

Set name

Mw

(�106 g/mol)

Poly-dispersity

Index

Concentration

(vol. %) Solvent Reference

Polystyrene

PS-K

1.9 1.2 13 Tricresyl phosphate Kahvand (1995) and

Venerus and

Kahvand (1994)

Polystyrene

PS-O

8.42 1.17 5 Tricresyl phosphate Oberhauser

et al. (2004).

Polystyrene

PS-B

10.2 1.17 6 Dibutyl phthalate Bhattacharjee

et al. (2003)

Polystyrene

PSM

0.2 1.05 100 Melt Bach et al. (2003)

Polystyrene

PS-Y

8.42 1.17 7 Tricresyl phosphate Ye et al. (2003)
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III. COMPARISON OF RESULTS FROM THE MODIFIED MODEL TO
EXPERIMENTAL DATA

A. Shear flows of entangled polymers

Xu et al. (2006) simulated the shear data of Venerus and Kahvand (1994) and

Kahvand (1995) for an entangled polystyrene solution denoted as PS-K in Tables I

and II. As shown in Figs. 3 and 4, the simulation results from their stochastic tube model

are in a good agreement with the experimental data for the shear viscosity g and the first

normal stress difference coefficient W1 from low to moderate shear rates. There is a sys-

tematic deviation from the experimental data as the shear rate is increased, however, and

both g and W1 are significantly overestimated for shear rates greater than about 8 s�1

( _csR > 10). Figures 3 and 4 also show simulations using the modifications described in

Sec. II. The use of Eq. (11) in the re-entanglement algorithm without CDFC (k¼ 0)

results in some improvement in g at _csR > 0:5 and removes much of the overestimation

for _csR > 10. The results including CDFC, where k¼ 0.99 gives the best result, show

very good agreement with the data.

Figures 5 and 6 show the simulations of the transient shear viscosity gþ and the tran-

sient normal stress difference coefficient W1
þ, respectively. The methods are all

TABLE II. Parameter sets for the stochastic model to simulate the experimental data sets. Estimates were made

as described in Sec. II D.

Set name Zeq sR (s) Flow type

PS-K 9 1.27 Shear

PS-O 13 4.52 Shear

PS-B 21 2.3 Uniaxial extension

PSM 11 57 Uniaxial extension

FIG. 3. Steady shear viscosity as a function of shear rate: Comparison between the experimental data of poly-

styrene solution PS-K [Venerus and Kahvand (1994); Kahvand (1995)] and the simulation results from the pre-

vious XDS model [Xu et al. (2006)] and the modified PMD models with/without CDFC (k¼ 0.99/0). Lines are

drawn to guide the eye.
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equivalents at a shear rate of 0.1 s�1, and all predict the transient data well. At 1 s�1, how-

ever, the simulation results from the XDS model of Xu et al. (2006) begin to deviate

from the transient viscosity data, while the modified model both with and without CDFC

remain in agreement. The differences in the results from each simulation method became

apparent at a shear rate of 40 s�1 ( _csR >> 10). The predictions of the XDS model are indi-

cated by the arrows in Figs. 5 and 6; the deviation from the data is significant, and the

predictions are in fact quite similar to those for 4 s�1. The computed steady-state viscos-

ity from the modified model without CDFC is in a good agreement with the data, but the

calculated maximum in the transient is much larger than the experimental value. The

FIG. 4. Steady normal stress difference coefficient as a function of shear rate: Comparison between the experi-

mental data of polystyrene solution PS-K [Venerus and Kahvand (1994); Kahvand (1995)] and simulation results

from the previous XDS model [Xu et al. (2006)] and the modified PMD models with/without CDFC (k¼ 0.99/0).

FIG. 5. Transient shear viscosity as a function of time at various shear rates: Comparison between the experi-

mental data of polystyrene solution PS-K [Venerus and Kahvand (1994); Kahvand (1995)] and the simulation

results from the previous XDS model [Xu et al. (2006)] and the modified PMD models with/without CDFC

(k¼ 0.99/0). The arrow indicates simulation results from the XDS model at a shear rate of 40 s�1.
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simulation result with CDFC using k¼ 0.99, by contrast, shows a good agreement with

the data over the entire transient. The agreement between the simulation and the transient

normal stress coefficient is not as good at 40 s�1, but it is a considerable improvement

over the XDS prediction or the modified calculation without CDFC.

Xu et al. (2006) also simulated the shear flow of an entangled polystyrene solution

studied by Oberhauser et al. (2004), denoted as PS-O in Tables I and II. Figure 7 shows

very good agreement between the CDFC simulation of the viscosity with k¼ 0.99 and

FIG. 6. Transient normal stress difference coefficient as a function of time at various shear rates: Comparison

between the experimental data of polystyrene solution PS-K [Venerus and Kahvand (1994); Kahvand (1995)] and

the simulation results from the previous XDS model [Xu et al. (2006)] and the modified PMD models with/without

CDFC (k¼ 0.99/0). The arrow indicates simulation results from the XDS model at a shear rate of 40 s�1.

FIG. 7. Steady shear viscosity as a function of shear rate: Comparison between the experimental data of a poly-

styrene solution PS-O [Oberhauser et al. (2004)] and the simulation results from the previous XDS model [Xu

et al. (2006)] and the modified PMD model with CDFC (k¼ 0.99).
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the experimental data, whereas there is a systematic deviation over most of the experi-

mental range, which corresponds to _csR � 10, with the XDS model. The predictions of

the first normal stress coefficient with both formulations shown in Fig. 8 are similar and

are in good agreement with the data.

B. Extensional flows of entangled polymers

We now turn to the simulation of steady and transient uniaxial extension, and we

employ only the modified model [i.e., with Eq. (11)] with and without CDFC. Figure 9

shows extensional stress data as a function of strain at two stretch rates for an entangled

polystyrene solution denoted as PS-B, which was studied by Bhattacharjee et al. (2003);

the steady-state Trouton ratio (extensional viscosity/zero-shear viscosity) is shown in

Fig. 10. The model overestimates most of the transient data, but it predicts the steady

state very well with CDFC and k¼ 0.99, including capturing the initial power-law expo-

nent of �0.5 followed by strain hardening. The use of CDFC is required to predict the

�0.5 scaling and the presence of a minimum; the data are overestimated over the entire

range with k¼ 0. Clearly, CDFC provides an accelerated relaxation mechanism at high

stretch rates ( _esR > 1) to relieve the overstretching of the chains.

Figures 11 and 12 show transient and steady-state extensional data by Bach et al.
(2003) for a polystyrene melt (PSM). The simulation with k¼ 0.99 shows the �0.5

scaling and is in agreement with the experiments at low extension rates, but it predicts a

minimum and subsequent strain hardening at high extension rates, whereas the data show

a �0.5 scaling over a broad range of extension rates up to and including _esR � 1. The sto-

chastic simulator with CDFC falls within the class of molecular models that Marrucci

and Ianniruberto (2004) refer to as “standard” tube constructs, and it appears that such

models cannot capture the broad �0.5 power-law scaling observed by Bach et al. (2003).

We believe that the �0.5 regime represents a transition from the zero-shear viscosity

slope of zero to an asymptotic �1 power law that is not observed in standard models,

FIG. 8. Steady shear normal stress difference coefficient as a function of shear rate: Comparison between the

experimental data of polystyrene solution PS-O [Oberhauser et al. (2004)] and the simulation results from the

previous XDS model [Xu et al. (2006)] and the modified PMD model with CDFC (k¼ 0.99).
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because it is cut off by the inception of strain hardening. Wagner et al. (2005) have con-

structed a “nonstandard” model based on the “interchain pressure” concept of Marrucci

and Ianniruberto (2004), which causes a resistance to squeezing the tube diameter during

extensional flow, and the idea has been further developed by Wagner et al. (2008) and

Dhole et al. (2009); this approach does capture the �0.5 scaling over a broad range of

extension rates. A recent study by Kushwaha and Shaqfeh (2011) presents an alternative

explanation for the scaling based on disentanglement during extension.

FIG. 9. Transient extensional stress at various strain rates: Comparison between the experimental data of poly-

styrene solution PS-B [Bhattacharjee et al. (2003)] and the simulation results from the modified PMD models

with/without CDFC (k¼ 0.99/0).

FIG. 10. Steady-state extensional viscosity as a function of strain rate (normalized by 2sD): Comparison

between the experimental data of polymer solution PS-B [Bhattacharjee et al. (2003)] and the simulation results

from the modified PMD models with/without CDFC (k¼ 0.99/0). Lines are drawn to guide the eye.
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IV. COMPARISON WITH THE MLD MODEL

The success of CDFC in improving the predictions of the stochastic model raises the

question as to whether this is in fact a universal phenomenon for entangled polymers. We

therefore applied CDFC to the MLD toy model, which is a simplified version of the full

MLD model at the tube coordinate level [Mead et al. (1998); Mead (2007)]. The CDFC

was incorporated into the MLD model by changing the characteristic relaxation time

FIG. 11. Transient extensional stress at various strain rates: Comparison between the experimental data of PSM

[Bach et al. (2003)] and the simulation results from the modified PMD models with/without CDFC (k¼ 0.99/0).

FIG. 12. Steady extensional viscosity at various strain rates: Comparison between the experimental data of PSM

[Bach et al. (2003)] and the simulation results from the modified PMD models with/without CDFC (k¼ 0.99/0).
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scale input parameters (sR and sD) using the order parameter tensor S0 (defined as S in the

original paper), defined as follows:

s ¼ seq 1� k
3

2
S0 : S0

� � �
: (16)

Here, the subscript eq indicates the input value at equilibrium.

Table III summarizes the experimental data sets used for comparison with the predic-

tions of the MLD model when CDFC is incorporated, as well as the input parameters

used for the calculations. The number of entanglements Zeq and the extensibility parame-

ter, b, which is the ratio between Leq and the maximum stretch of a tube segment, were

estimated as described by Pattamaprom and Larson (2001) and Fetters et al. (1994).

The plateau moduli GN
O and sR for PS-B and PS-Y were taken from the original referen-

ces. sR of PS-K was estimated by fitting the linear viscoelasticity data, as described in

Sec. II D and Xu et al. (2006), and GN
O was selected to provide the best fit to the experi-

mental data.

Figures 13 and 14 show the MLD simulations with CDFC of the transient viscosity

and first normal stress coefficient, respectively, for PS-K at 40 s�1. We have chosen this

shear rate for illustration, because it represents the most difficult case. The final steady-

state viscosity is predicted reasonably with all values of k, but both the position and mag-

nitude of the maximum are greatly overestimated with k¼ 0. The viscosity data are fit

very well with k¼ 0.8 but underestimated by k¼ 0.99. The fit to the normal stress coeffi-

cient with k¼ 0 is very poor, with the fit improving as k is increased to a value of 0.8.

The steady-state values of both g and W1 are fit very well over the entire shear rate range

with k¼ 0.8.

Ye et al. (2003) simulated their polystyrene PS-Y extensional data using the MLD

model. They adjusted the extensibility parameter, b, which is a ratio between Leq and the

maximum stretch of a tube segment, to obtain agreement with the experimental data at a

high strain rate, as shown in Fig. 15; the original estimate of b was 0.056, but they

employed a value of 0.12. The extensional viscosity was significantly overestimated over

most of the experimental range in any event, although less so with b¼ 0.12 than with

b¼ 0.056. Figure 15 shows the result from the MLD model including CDFC using the

same parameter values as Ye et al., but with b¼ 0.056 and k¼ 0.4. The agreement with

the data is improved considerably without the need to adjust b in a nonphysical way.

Simulations of the extensional flow data of Bhattacharjee et al. (2003) on polystyrene

PS-B using the MLD model with and without CDFC are shown in Figs. 16 and 17. The

estimate of b for this solution is 0.043, but it must be increased (in this case to 0.096) in

order to approach the data at high rates without incorporating CDFC. The fit to the data

with b¼ 0.043 is quite good when CDFC is incorporated, however, with k¼ 0.4. Larger

values of k significantly underestimate the extensional viscosity at high rates.

We also applied the MLD model with and without CDFC to the extensional flow melt

data of Bach et al. (2003) on PSM. The predictions were similar to those of the stochastic

TABLE III. Experimental data sets and corresponding parameter sets for the MLD predictions.

Set name GN
O (Pa) Zeq sR (s) sD (s) b Estimation method

PS-K 1000 9 1.27 7.5 0.060 Xu et al. (2006) and Pattamaprom and Larson (2001)

PS-B 290 25 2.96 83.66 0.043 Bhattacharjee et al. (2003)

PS-Y 480.4 36 5.0 189.6 0.056 “Toy model data set” in Ye et al. (2003)
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model, and we were unable to predict the absence of extension thickening; increasing k
delayed the upturn, but at the expense of increasing the deviation from the data at low

rates.

Overall, the MLD model with CDFC gave results that were consistent with and com-

parable to the stochastic model with CDFC and considerably better than the original

MLD model. The stochastic model results were obtained with k¼ 0.99, however, while

smaller values, ranging from 0.4 to 0.8, were required for the MLD model. This

FIG. 13. Transient shear viscosity as a function of time at a shear rate of 40 s�1: Comparison between the exper-

imental data of polystyrene solution PS-K [Venerus and Kahvand (1994); Kahvand (1995)] and the predictions

of the original toy MLD model [Mead et al. (1998)] and its modifications by CDFC (k¼ 0.4 and 0.8).

FIG. 14. Transient normal stress difference coefficients as a function of time at a shear rate of 40 s�1: Compari-

son among the experimental data of polystyrene solution PS-K [Venerus and Kahvand (1994); Kahvand

(1995)], and the predictions of the original toy MLD model [Mead et al. (1998)] and its modifications by CDFC

(k¼ 0.4 and 0.8).
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difference is not surprising. The stochastic simulator calculates the reduction in frictional

drag based on the relative orientation of individual chains, whereas the MLD model cal-

culates the reduction using the order parameter tensor, which is an averaged quantity.

The order parameter tensor overestimates the relative orientation of individual chains.

Hence, we would expect that k must be lower in the MLD model relative to the stochastic

simulator.

FIG. 15. Steady-state extensional viscosity as a function of strain rate: Comparison between the experimental

data of polymer solution PS-Y [Ye et al. (2003)] and predictions of the original MLD model (k¼ 0, b¼ 0.056),

the MLD model with adjustment of extensibility (k¼ 0, b¼ 0.12), and the MLD model with CDFC (k¼ 0.4,

b¼ 0.056). Lines are drawn to guide the eye.

FIG. 16. Steady-state extensional viscosity as a function of strain rate (normalized by 2sD): Comparison

between the experimental data of polymer solution PS-B [Bhattacharjee et al. (2003)] and predictions of the

original MLD model (k¼ 0, b¼ 0.043), the MLD model with adjustment of extensibility (k¼ 0, b¼ 0.096), and

the MLD model with CDFC (k¼ 0.4, b¼ 0.043). Lines are drawn to guide the eye.
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V. CONCLUSIONS

We are able to improve the simulation of high shear rate data by slightly modifying

the re-entanglement algorithm in the XDS stochastic model of Xu et al. (2006) in order

to ensure conservation of the total length of tubes during constraint release and creation.

The major improvement of our PMD stochastic model, however, comes from including a

configuration-dependent friction coefficient into the algorithm to account for changes in

the entanglement microstructure far from equilibrium. In that case, the stochastic model

is able to do an effective job of simulating both shear and extensional stress data over a

wide range of deformation rates. Incorporation of CDFC accelerates the relaxation pro-

cess at high rates. The parameter k is in principle adjustable, but a value close to unity,

wherein the friction coefficient varies between the equilibrium value in weak flows and a

very small value for perfect alignment, appears to be adequate for the polystyrene sys-

tems studied.

CDFC is not a new concept. It was incorporated into continuum modeling more than 30

years ago by Giesekus, and it is equivalent in its effect on relaxation to segment-scale non-

affine tube deformations that are contained in other models. The success in simulating non-

linear shear and extension data by incorporating CDFC into the stochastic model, which is

a tool for exploring mechanisms at a segmental level, suggested that CDFC might be effec-

tive in continuum tube models, and that is indeed the case for the MLD model [Mead et al.
(1998)]. CDFC is applied to an averaged quantity for the continuum model, and the best

value of the parameter is smaller than unity. In this case, however, the number of adjustable

parameters in the model remains unchanged, since the parameter that has been arbitrarily

adjusted in the original MLD formulations no longer needs to be changed.

There have long been hints that relaxation processes may be speeded up in nonlinear

flows, consistent with our simulation results. Attempts at measuring the dynamic moduli

during nonlinear steady shear flow indicate that the relaxation modulus is cut off at the

long time scales and decreases as steady shear is applied, although this result may par-

tially be an orientational effect due to a decrease in orientation angle and not exclusively

FIG. 17. Transient extensional stress at a rate of 1.1 s�1 as a function of Hencky strain: Comparison between

the experimental data of polymer solution PS-B [Bhattacharjee et al. (2003)] and predictions of the original

MLD model (k¼ 0, b¼ 0.043), the MLD model with adjustment of extensibility (k¼ 0, b¼ 0.096), and the

MLD model with CDFC (k¼ 0.4, b¼ 0.043).
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due to entanglement microstructure modification (reduction) [Booij (1966, 1968);

Simmons (1968); Somma et al. (2007)]. Further experimental work in this area to guide

and direct theoretical studies would be helpful.

The two tube models studied here differ in one significant way: The entanglement den-

sity in the stochastic simulator decreases with the rate of deformation, whereas it is con-

stant in the MLD model, yet both formulations, when incorporating CDFC, give nearly

equivalent predictions for shear and extensional data. Furthermore, the entanglement den-

sity can increase in the GLaMM molecular model [Graham et al. (2003)]. The stochastic

model enables us to “turn on or off” various physical mechanisms easily, and we have

briefly explored this issue of the microstructural changes in tube segments in fast flows in

terms of the entanglement dynamics. These results are summarized in the Appendix.
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APPENDIX: ENTANGLEMENT DENSITY DYNAMICS

All models of entangled polymers predicted a constant entanglement density

( Zh i � Zeq) in the linear viscoelastic limit that is effectively defined by the plateau modu-

lus [Fetters et al. (1999)]. The plateau modulus defines the fundamental length scale (mo-

lecular weight between entanglements) and is arguably the most basic parameter in any

molecular model of entangled polymers [Tzoumanekas and Theodorou (2006)]. What

happens to the modulus, and consequently the fundamental entanglement length scale,

far from equilibrium is not yet fully understood. More specifically, whether the entangle-

ment density changes in fast dynamic flow situations is still an open question. We can

define three distinct categories of molecular models on the basis of the predicted entan-

glement density in fast flows:

(1) Decreased entanglement density in fast nonlinear flows ( Zh i < Zeq). This behavior is

characteristic of most of the stochastic models, including the PMD stochastic model

in this work and the antecedent XDS model of Xu et al. (2006) and the slip-link

models of Doi and Takimoto (2003), Schieber et al. (2007), and Dambal et al.
(2009).

(2) Constant entanglement density in fast nonlinear flows ( Zh i ¼ Zeq). The basic Doi–-

Edwards model and its derivatives [Doi and Edwards (1986); Mead (1995a, 1995b);

Pearson et al. (1991)] have a constant entanglement density independent of deforma-

tion rate or type, including the MLD model and all its derivatives [Mead et al.
(1998); Mead (2007)].

(3) Increased entanglement density in fast nonlinear flows ( Zh i > Zeq). The GLaMM

model (which is subsequently recast into a closed deterministic form) predicts that

the entanglement density increases as the chain stretches in fast flows [Graham et al.
(2003)].

The stochastic model developed in this work affords an opportunity to test the impor-

tance of the entanglement density on the predicted rheological properties by adjusting the

way in which the entanglement density is controlled. Following the re-entanglement pro-

cess described in Sec. II C, hZi is evaluated. If the goal is a constant entanglement den-

sity, Zeq � Zh i
� �

NC entangled segments must be newly created. For an increased

entanglement density, Zeq is multiplied by the average chain stretch relative to the
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equilibrium chain length to determine the new value of hZi. These new entanglements

are placed at randomly selected core segments, in contrast to the re-entanglement algo-

rithm in the basic stochastic model, which always takes place between a tip and a core.

Simulation results for the transient viscosity and first normal stress coefficient data for

the polystyrene solution PS-K of Kahvand (1995) are shown in Figs. 18 and 19, respec-

tively, with a decreasing entanglement density (i.e., without any entanglement control), a

constant entanglement density, and an increasing entanglement density. There is no

FIG. 18. Transient shear viscosity as a function of time at various shear rates: Comparison between the experi-

mental data (symbols) of polystyrene solution PS-K [Venerus and Kahvand (1994); Kahvand (1995)] and the

simulation results from the modified PMD models (CDFC k¼ 0.99) with entanglement density control algo-

rithm (constant/increasing) and without (decreasing).

FIG. 19. Transient first normal stress coefficient as a function of time at various shear rates: Comparison

between the experimental data (symbols) of polystyrene solution PS-K [Venerus and Kahvand (1994); Kahvand

(1995)] and the simulation results from the modified PMD models (CDFC k¼ 0.99) with entanglement density

control algorithm (constant/increasing) and without (decreasing).
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significant difference between the three entanglement assumptions at shear rates up to

4 s�1. At the very high shear rate of 40 s�1, the transient shear data are best represented

by a decreasing entanglement density and the transient normal stress data by an increas-

ing entanglement density, but these are the most difficult data for the models considered

in this work. It is not clear why the theoretically predicted rheological properties are so

insensitive to such a seemingly fundamental parameter as the entanglement density,

which characterizes the entanglement microstructure. This issue needs to be thoroughly

addressed in future work. We do note in passing that the conventional view is that appa-

rent wall slip in shear and rupture in rapid stretching are consequences of a reduction in

entanglements. The recent study by Kushwaha and Shaqfeh (2011) proposed that the

decreasing entanglement density may be related to the scaling of the extensional viscosity

reduction at low to moderate strain rates. On the other hand, Malkin et al. (2011) have

recently offered a provocative picture of entanglements that would suggest an increasing

entanglement density.
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