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A constitutive model for entangled polydisperse linear flexible polymers with
entanglement dynamics and a configuration dependent friction coefficient. Part

II. Modeling “shear modification” following cessation of fast shear flows
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S. Monjezi and J. Parkb)
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(Received 7 April 2017; final revision received 7 August 2017; published 16 November 2017)

Abstract

The polydisperse Mead–Park (MP) “toy” molecular constitutive model developed in Paper I [Mead et al., J. Rheol. 62, 121–134 (2017)] as

well as our previously published work [e.g., J. Rheol. 59, 335–363 (2015)] is used in the “forward” direction to study model polydisperse

melts of entangled linear flexible polymers in severe, fast shear flows. The properties of our new model are elucidated by way of numerical

simulation of a representative model polydisperse polymer melt in step shear rate and interrupted shear flow. In particular, we demonstrate

how the MP model simulates the individual molecular weight distribution (MWD) component dynamics as well as the bulk material

properties. Additionally, we demonstrate that the polydisperse MP model predicts the phenomenon of “shear modification” for model

MWD’s with a long, high molecular weight tail. Specifically, the terminal dynamic moduli following cessation of severe, disentangling

deformation, are shown to slowly heal/recover on the orientational relaxation time scale of the longest chains in the MWD. This is the first

molecular constitutive equation to predict the phenomenon of shear modification. We provide detailed insight into the molecular mechanism

responsible for this previously enigmatic and important phenomenon. Additionally, the presence of shear modification is not necessarily

associated with the presence of shear stress peak overshoot transients in interrupted shear flow. Specifically, we examine and analyze the

interrupted shear experiments reported by Tsang and Dealy [J. Non-Newtonian Fluid Mech. 9, 203–222 (1981)] and demonstrate quantita-

tively their lack of a relationship to shear modification. We also demonstrate that the new MP model accurately predicts the Cox-Merz rule,

Laun’s rule and Gleissele’s mirror relations in steady shear. VC 2017 The Society of Rheology. https://doi.org/10.1122/1.5009187

I. INTRODUCTION

In our previous papers [1,2] and Paper I (Part I of our

three companion papers), we developed the Mead–Park

(MP) “toy” molecular constitutive model for entangled

mono and polydisperse linear flexible polymers that holds

forth promise in predicting both extensional and shear flow

properties in the highly nonlinear flow regime. In this paper,

we continue our study of the MP model by examining model

polydisperse systems in fast shearing flows. We shall con-

sider model molecular weight distributions (MWDs) with P
discrete weight fractions,

PP
j¼1 wj ¼ 1. Here and throughout

this paper subscripts denote discrete molecular weight com-

ponents not tensor component indices.

We shall choose to test the new polydisperse MP model by

modeling rheological phenomena that are thought to be partic-

ularly sensitive to the entanglement dynamics such as “shear

modification.” Shear modification is widely believed to be

related to deformation driven disentanglement of the high

molecular weight chains and a consequent lowering of the

modulus and all rheological properties related to it. Shear mod-

ification is a deformation induced reduction in modulus that

can persist for hours, or days following cessation of fast defor-

mation in some instances. Shear modification manifests itself

in many rheological properties of the melt following severe

disentangling deformation. Properties such as the dynamic

moduli, G�ðt;xÞ, die swell (unconstrained elastic recovery),

extensional viscosity and strain hardening, melt flow index

(MFI), melt strength and the recoverable compliance are all

impacted by severe disentangling deformations [3–5].

It was reported that MFI of linear polyethylene without

shear history increases after its being melted and sheared [6].

The changes of viscosity and elasticity of linear polyethylene

after capillary extrusion were compared to find that the elas-

ticity recovers with time while the viscosity remains the

same, which indicates the recovery of the entanglement

microstructure [7]. The viscosity and the elasticity of isotac-

tic polypropylene were found to be dependent on the shear

and thermal history [8]. The recovery of the storage modulus

after strongly shearing linear polypropylene was measured to

find that the rate of recovery is affected more by molecular

structure than initial modification [9].
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The phenomenon of shear modification is entirely revers-

ible upon healing/annealing the polymer sample above the

melt temperature for hours/days or alternatively, dissolving

it in solvent and precipitating it. Both procedures retrieve the

equilibrium entanglement microstructure with no chemical

change in the molecular architecture or MWD.

In this paper, we shall explicitly consider the case of

recovery of the terminal dynamic moduli following cessation

of fast, severe steady shear flow, G�ðt;xÞ. The linear visco-

elastic (LVE) dynamic moduli are a direct physical manifes-

tation of the entanglement microstructure [10,11]. Lower

dynamic moduli reflect a lower entanglement density for the

time scales being probed. We shall also consider “interrupted

shear” experiments which are also thought to be sensitive to

the entanglement microstructure. In this case, the rest time

between step shear rates, trest, is thought to partially allow

the entanglement microstructure to heal before the subse-

quent step shear rate is applied [12,13].

In order to make quantitative calculations with the new

MP model, we need to identify the molecular model

parameters in particular the set of orientational and stretch

relaxation times, fs0
d;ig and fs0

s;ig as a function of molecular

weight. In this manuscript, we use a na€ıve parameter iden-

tification scheme that does not account for contour length

fluctuations (CLF). The MP model collapses to the Double

Reptation model in the LVE limit. A fundamental flaw of

the Double Reptation model is that it ignores the effect of

CLF and the MP model inherits this defect. We defer until

Paper III the complication of determining the molecular

MP parameters that do include the impact of CLF the deri-

vation of which is complex and involved [14,15]. Our pur-

pose in this manuscript is to elucidate the fundamental

properties of the basic MP model that are not impacted by

CLF. In particular, we shall demonstrate that the MP model

predicts shear modification as well as the Cox-Merz rule

and its derivatives.

This paper is organized in the following manner: We do

not present or outline the polydisperse MP model which

has been described in Paper I along with our previously

published work [1,2,16,17], rather we elucidate some of

the unique properties of the model by way of example.

Specifically, we shall show that the new model can predict

the phenomenon of shear modification in polydisperse lin-

ear polymers [5–9]. To this end, Sec. II uses the polydis-

perse MP model in the forward direction to simulate fast,

transient shear flow experiments for model MWD’s.

Specifically, Sec. II A details the model polystyrene (PS)

melt to be studied and how the model parameters are calcu-

lated. Section II B predicts the interrupted shear properties

of model PS melt systems. With the MP model properties

illustrated in the forward direction, in Sec. II C we then

proceed to demonstrate that the MP model predicts shear

modification for model MWD’s with high molecular

weight tails following fast, steady shear flow. Section III

addresses phenomena in interrupted shear experiments on

high density polyethylene (HDPE) melts as reported by

Tsang and Dealy [12,13] and their relationship to shear

modification. In Sec. IV, we summarize and discuss our

results.

II. ILLUSTRATION OF MP MODEL PROPERTIES IN
TRANSIENT SHEAR FLOWS FOR MODEL MWD’S
OF PS MELTS

In this section, we simulate severe, transient shear flows

of model MWD polymer systems using the polydisperse MP

model. This allows us to illustrate the properties and capabil-

ities of the model for classic rheometric flows. We are also

motivated to illustrate the model properties to subsequently

compare and contrast them with experimental data of Tsang

and Dealy [12,13] in Sec. III. The example we detail in this

section is for a fast, severe shear flow of PS whereas Tsang

and Dealy were limited by the onset of edge fracture and

hence worked with comparatively slow flow of polyethylene.

We will identify features of fast, severe flows of PS such as

shear modification that are not present in the comparatively

slow flows of polyethylene studied by Tsang and Dealy.

Fast, severe transient shear flow excites both stretch and

orientational relaxation modes of linear polymers in a com-

plex manner. Additionally, transient shear flow has orienta-

tion angles varying dynamically between 45� for linear

flows, and 0� for very fast shear flows thus fully testing the

differential description of the orientation dynamics, Eqs. (3)

and (4) of Paper I. Hence, transient shear flows present a rig-

orous, general illustration of all aspects of the polydisperse

MP model.

A. Description and characterization of the model
polymer melt examined in fast, stretching shear
flows

We shall proceed as follows. First, we shall select a model

MWD of a typical polymer melt. Specifically, we shall choose

a Wesslau log-normal MWD of a PS melt at T¼ 170 �C. We

shall subject this model system to step shear rate and inter-

rupted shear rate experiments and thereby elucidate some of

the properties and capabilities of the polydisperse MP model.

The weight average molecular weight, Mw, of the PS system is

250 000 Daltons and the polydispersity index for the log-

normal MWD is Mw=Mn ¼ 4. The MWD is discretized into

seven slices for computational speed and ease of interpretation.

The discrete MWD is plotted in Fig. 1 and logged in Table I.

To compute the set of stretch and longest relaxation times

fs0
d;ig and fs0

s;ig we shall assume a universal functional form

based on the method described by Pattamaprom and Larson

[18–20] and previously employed by Mishler and Mead

[16,17]. The longest bare orientational relaxation time, s0
d;i,

for PS, and other linear melts, has the following universal

form (see Fig. 2),

so
d;i Mi; Tð Þ ¼

so
s;i Mi; Tð Þ for Mi < Mc

2se Tð Þ Mi

Mc

� �a

for Mi > Mc:

8><
>: (1)

Here, the material dependent constants are the “critical”

molecular weight for entanglement, Mc, an equilibrium time

of entangled segments, seðTÞ and the power law exponent, a.

The fundamental idea in invoking the above structure is to

exploit the near universal structure of the longest relaxation
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time of linear polymers as a function of Mi, sd;iðMi; TÞ
� ðgoðMi; TÞÞ=Go

N , as first demonstrated in the classic work

of Berry and Fox [21] (see Fig. 2). For PS melts seð170�Þ
¼ 2:7� 10�3 s [19,22]. Physically, the parameter seðTÞ is

equal to the Rouse relaxation time at Mc. For PS, Mc

¼ 26 000 and is usually about twice the entanglement molec-

ular weight, Me. The power law exponent a is� 3.4 for PS

melts with molecular weights in this range. The above

parameter values for PS melts are consistent with other

researchers [19,20].

The prefactor of 2 in Eq. (1) appears as a consequence of

the double reptation expression for the longest relaxation

time in terms of the orientational relaxation time in a hypo-

thetical matrix of fixed obstacles, i.e., orientational relaxation

without constraint release effects. Note that for components

of the MWD below the critical molecular weight for

entanglement we are setting the longest orientational relaxa-

tion time equal to the Rouse time.

The corresponding monodisperse stretch (Rouse) relaxa-

tion times for a PS melt are simply calculated as [20]

ss;i Mi; Tð Þ ¼ se Tð Þ Mi

Me

� �2

: (2)

The above parameter identification scheme does not
include the effects of CLF. In this sense, the parameter iden-

tification is na€ıve and only strictly applies to polymer sys-

tems with more than �30 entanglements, i.e., where CLF’s

are relatively unimportant compared to reptation. A parame-

ter identification procedure that does include CLF has been

previously detailed by Ye et al. [14,15] for the polydisperse

Mead-Larson-Doi (MLD) model which, like the MP model,

also collapses to the Double Reptation model in the LVE

limit. We defer establishing a comprehensive and detailed

parameter identification scheme until Paper III. This paper

is directed at determining the properties of the MP model,

such as shear modification, which are independent of the

parameter identification scheme used.

B. Simulation of interrupted shear experiments for
a model PS system

In this section, we simulate the interrupted shear experi-

ment on the PS melt described in Sec. II A above and thereby

illustrate a number of features of the new MP model for

polydispersity as well as establish a base case to subse-

quently study the interrupted shear data of Tsang and Dealy

[12,13]. We start with a an interrupted shear protocol com-

prised of shearing at 10 s�1 for 20 s followed by a shear free

“rest period” of trest¼ 10 s and finished off by a restart of

shear at 10 s�1. Before examining the bulk response of the

material, we note with reference to Table II that at a shear

rate of 10 s�1 we anticipate exciting the stretch modes of the

upper half of the MWD, i.e., those MWD components where

FIG. 1. Plot of the discrete MWD (wi vs Mi) of the model PS melt studied in

Sec. II B. We use a Wesslau log-normal MWD typical of many commercial

addition polymers as our model MWD. Only seven discrete MWD fractions

were used in the simulation for clarity and simplicity of interpretation.

TABLE I. Properties of the discrete Wesslau log-normal molecular weight

PS melt studied in Sec. III. Only seven discrete slices were used to simplify

data mining, presentation and interpretation. The variables in the tables are

(from the left to right) the index, the molecular weight, the weight fraction,

the longest relaxation time, the stretch relaxation time, the total number of

entanglements, the stretch dilution, and the effective stretch relaxation time of

each component at equilibrium, respectively (see the Nomenclature of Paper

I: “0” indicating equilibrium properties). Note that the stretch tube dilution is

significant for all high molecular weight components of the MWD.

i Mi� 106 wi s0
d,i (s) s0

s,i (s) N0
i W0

i
a seff

s,i¼ s0
s,i/W

0
i

1 0.0300 0.147 0.0197 0.0197 2.31 1.00 0.0197

2 0.0604 0.226 0.130 0.0799 4.65 0.853 0.0937

3 0.122 0.250 1.40 0.324 9.36 0.627 0.5167

4 0.245 0.200 15.2 1.31 18.8 0.627 2.0893

5 0.493 0.115 164.0 5.33 37.9 0.376 14.176

6 0.993 0.0472 1.77� 103 21.6 76.4 0.176 122.73

7 2.00 0.0138 1.91� 104 87.6 154.0 0.176 497.73

a1�W0
i is the equilibrium “dilution” level of solvent like entanglements

with respect to stretch of the long chains defined by the cutoff criteria

s0
s;i=W

0
i s

0
d;j > 1.

FIG. 2. Sketch of the idealized universal form of the relationship between

the bare longest relaxation time, s0
d;i, the stretch relaxation time s0

s;i and

molecular weight, Mi, used in this work. The universal model parameters are

se, Mc, and a. These three parameters completely specify all the relaxation

times for an arbitrary molecular weight in a polydisperse system.
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_css;i > 1. We believe these fast, severe flow conditions are

representative of those in a typical extruder.

Figure 3 shows the shear stress vs time for the interrupted

shear experiment described above. The first thing to note is

that the peak stress levels exceed the magnitude of the pla-

teau modulus for PS (Go
N ¼ 200 000 Pa) [23]. This is a clear

signature that significant stretch is occurring in the melt [24].

Indeed, Fig. 4 shows the relative stretch of the diluted stretch

tube and partially disentangled tube stretch of component 6

vs time indicating clearly that the system is significantly

stretching. The stretch in the diluted stretch tube is calculated

from Eq. (6) of Paper I and that relative stretch value is fed

into the Mishler–Mead stretch [16,17] tube coupling equa-

tion (12b) via approximate analytic solution shown in

Appendix A of Paper I. Note that if we had used the Auhl

et al. stretch [25] tube coupling equation (12a) spurious

unphysical results are generated. Hence, in all calculations in

this manuscript we invoke the Mishler–Mead stretch tube

coupling equation (12b).

Figure 3 also illustrates that the peak shear stress is only

partially recovered after trest¼ 10 s to anneal the entangle-

ment microstructure. In Fig. 5, we plot the recovery of peak

shear stress as a function of rest time. The peak shear stress

is recovered on a time scale of order O(102) s which corre-

sponds to the longest stretch relaxation times in the system

(see Table I). However, as we shall subsequently demon-

strate, recovery of the peak overshoot stress does not

necessarily signal the end of shear modification for these

severe flow conditions.

The next bulk figure we examine is the average orienta-

tion angle v vs time, Fig. 6. The average (bulk) orientation

angle vðtÞ of a polydisperse system is defined as

v tð Þ ¼ 1

2
arctan

2rxy tð Þ
rxx tð Þ � ryy tð Þ

" #

¼ 1

2
arctan

2
P

i
rxy;i tð ÞP

i
rxx;i tð Þ � ryy;i tð Þ
� �

2
664

3
775; (3)

where rxy;iðtÞ, rxx;iðtÞ, and ryy;iðtÞ are the i MWD component

stresses.

The bulk orientation angle displays interesting transients

and clearly illustrates that the flow is highly nonlinear since

the steady state orientation angle is, vss � 10�. The v transi-

ents during and after the rest period are associated with the

fast, preferential relaxation of the low molecular weight

components of the MWD. Specifically, in steady shear flow

the orientation of the seven molecular weight components is

splayed out like a fan with the low molecular weight compo-

nents more closely oriented to 45� and the high molecular

TABLE II. Properties of the model polyethylene melt used to simulate the experiments of Tsang and Dealy [12,13]. Note the small 2.5 wt. % high molecular

weight “spike” at 1� 107 Daltons. Only seven discrete slices of the MWD have been taken for simplicity and ease of presentation and interpretation (see Fig. 11).

i Mi� 106 wi s0
d,i (s) s0

s,i (s) N0
i W0

i seff
s,i¼ ss,i/Wi

1 0.0500 0.343 7.93� 10�5 1.75� 10�6 50.0 1.00 1.75� 10�6

2 0.121 0.305 1.60� 10�3 1.75� 10�6 121 1.00 1.75� 10�6

3 0.292 0.197 3.21� 10�2 5.98� 10�5 292 1.00 5.98� 10�5

4 0.707 0.0922 0.647 3.50� 10�4 707 0.657 5.33� 10�4

5 1.71 0.0312 13.0 2.05� 10�3 1.71� 103 0.353 5.81� 10�3

6 4.14 0.00758 262 0.0120 4.14� 103 0.353 0.0340

7 10.0 0.0250 5280 0.070 1.00� 104 0.156 0.449

FIG. 3. Plot of the shear stress, rxy, vs time, t, for the interrupted shear experi-

ment performed on the model PS melt displayed in Fig. 1. Note that the second

shear stress overshoot is partially muted by the previous deformation history

even though virtually all the shear stress is relaxed during the rest period.

FIG. 4. Plot of the relative stretches of the diluted stretch tube (Kd,I (t):
lower line) and the partially disentangled tube (KI (t): upper line) for compo-

nent 6 in the interrupted shear experiment performed on the model PS melt

displayed in Fig. 1. Clearly significant stretch of the high molecular weight

components is occurring in shear flow that requires a diluted stretch tube to

describe quantitatively.
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weight components more closely aligned in the flow direc-

tion, 0� (see Fig. 7). During the rest period, only the high

molecular weight highly oriented components are unrelaxed

and bear any residual stress which is reflected in the decrease

in v during this period since the relaxed low molecular

weight components act effectively as isotropic solvent.

Isotropic solvent does not contribute to the optical or stress

orientation angle determination. Note that all components of

the MWD relax their stress monotonically during the rest

period but at very different rates.

Upon resumption of the flow following the rest period the

relaxed isotropic components of the MWD are excited and

reorient from equilibrium starting at 45� while the partially ori-

ented high molecular weight components do not project signif-

icantly onto the velocity gradient resulting in the observed

overshoot in v upon resuming the flow. The distinctive features

of Fig. 6 provide a useful basis to experimentally evaluate the

polydisperse MP model in the future using standard rheo-

optical experiments such as those discussed in our previous

papers [26,27] where similar interpretations with respect to dif-

ferential component relaxation have been made.

Continuing to data mine the interrupted shear experiment

we next examine the entanglement dynamics of the diluted

stretch tube of components 6 and 7 (Table I) in Fig. 8. The

first thing to note is that the number of diluted stretch tube

entanglements monotonically decreases while the material is

being sheared. Since the orientational relaxation times for

entanglement recovery [see Eq. (2)] are very large the num-

ber of entanglements only slowly recovers during the rest

period. It is remarkable to note that the number of entangle-

ments continues to decrease even after hundreds of strain

units have been applied to the material. Evidently, Eq. (16)

of Paper I only slowly approaches steady state as the material

is sheared. This is related to the speed of convection of

entanglements off the chain tips, j : S
tube;i
¼ _c Sxy, which is

typically small in shear flows, relative to the rate of re-

entanglement (see Paper I for the variable definitions).

C. Shear modification of model MWD systems
of linear polymers following fast shearing flow

In this section, we simulate the phenomenon of shear

modification for the model polydisperse PS system described

in Sec. II A above. As outlined in the Introduction, shear

modification is a deformation induced reduction in modulus

that can persist for hours, or days following cessation of

deformation in some instances [5–9]. Rheological properties

such as the dynamic moduli, G�ðt;xÞ are impacted by severe

disentangling deformations [3,4]. Here, the variable t is the

rest time following cessation of the severe deformation. The

phenomenon is entirely reversible upon healing/annealing

the sample above the melt temperature for hours/days or

FIG. 5. Plot of the fractional recovery of the peak shear stress, rm, as a func-

tion of rest time, trest, for the interrupted shear experiment performed on the

model PS melt displayed in Fig. 1. The equilibrium peak stress is completely

recovered on time scales of order O(102) seconds. This corresponds to the

stretch relaxation times of the high molecular weight components of the

MWD (see Table I).

FIG. 6. Plot of the average (bulk) orientation angle, v, vs time, t, for the inter-

rupted shear experiment performed on the model PS melt displayed in Fig. 1.

The flow is highly nonlinear and exhibits distinctive transients associated with

differential relaxation/excitation of various components of the MWD [26].

Such behavior can be observed in standard rheo-optical experiments and pro-

vides a useful basis for quantitatively evaluating the MP model.

FIG. 7. Qualitative sketch of the steady state orientation angle of each of the

seven discrete components in the model PS MWD. In steady state shear, the

components splay out and orient systematically according to their molecular

weight (relaxation time), i.e., vi ¼ ð1=2Þarctan½2rxy;i=ðrxx;i � ryy;iÞ�. Upon

cessation of shear, the fast relaxers effectively “disappear” with respect to

their optical contribution to the birefringence leaving only the highly ori-

ented, slow relaxing species to define the bulk orientation angle. This is

reflected in a drop in the bulk orientation angle during the rest period. Upon

restart of shear the relaxed, isotropic low molecular weight components

once again contribute to the bulk orientation angle starting from their linear

(equilibrium) value of 45�.
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alternatively, dissolving it in solvent and precipitating it.

Both procedures are believed to retrieve the equilibrium

entanglement microstructure.

We shall explicitly consider the case of recovery of the

terminal dynamic moduli following fast, severe steady shear

flow, G�ðt;xÞ. The LVE dynamic moduli are a direct physi-

cal manifestation of the entanglement microstructure

[10,11]. Lower dynamic moduli reflect a lower entanglement

density for the time scales being probed.

To analyze the flow, we assume that following cessation

of deformation the system has relaxed to the extent that the

stretch in all components is relaxed. For the system

described in Sec. II A, Fig. 3 demonstrates that virtually all

of the stress has relaxed after �10 s following cessation of

shear. Additionally, we assume that the system is then

homogenized such that the average orientation is zero, i.e.,

nearly isotropic, prior to placing it into the rheometer to mea-

sure the LVE properties. In this case, we can approximately

calculate the evolution of the LVE material properties in

time from stress equation (19) of Paper I as

G� t;xð Þ �
X

i

wi

P
k

Nik tð Þ

N0
i

0
@

1
A

G0
N

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i chain modulus

�
X

j

Nij tð Þ
Ni tð Þ|ffl{zffl}

j entanglement

f raction

on an i chain

ixsd;ij þ xsd;ijð Þ2

1þ xsd;ijð Þ2

" #
; (4)

where sd;ij ¼ ðsd;isd;jÞ=ðsd;i þ sd;jÞ is calculated from Eq.

(15) of Paper I in the slow deformation or small strain limit

(see Paper I for the variable definitions). Since we have

ignored any residual orientation in the system, Eq. (4) consti-

tutes an upper bound on G�ðt;xÞ.
Note that for very long times following cessation of

steady disentangling deformation the long chain-long chain

entanglement microstructure heals via diffusion and, as

expected, we retrieve the equilibrium entanglement micro-

structure result for the dynamic moduli [16,17]

G� t ¼ 1;xð Þ

�
X

i

wiG
0
N

� �|fflfflfflffl{zfflfflfflffl}
i chain

modulus

X
j

wj|{z}
j entanglement

f raction

ixsd;ij þ xsd;ijð Þ2

1þ xsd;ijð Þ2

" #

¼ G0
N

X
i

X
j

wiwj

ixsd;ij þ xsd;ijð Þ2

1þ xsd;ijð Þ2

" #
: (5)

Examining Eq. (4) reveals that there are two separate, but

related, effects leading to the lowered dynamic modulus fol-

lowing cessation of fast flows. The first is a lowering of the

i-chain modulus/tension by the entanglement dilution factorP
k NikðtÞ=N0

i . However, this effect is generally smaller and

shorter lived in polydisperse systems than the related effect

of lowering the j-entanglement fraction on an i-chain by the

factor NijðtÞ=NiðtÞ. Lowering the j-entanglement fraction is

the principal cause for the prolonged, delayed healing of the

terminal dynamic moduli following cessation of severe, dis-

entangling deformation. Physically, lowering the j-

entanglement fraction on an i-chain reduces the number of

Kuhn bonds associated with the given ij-entanglement pair

thereby reducing the associated dynamic moduli. This spe-

cifically impacts the long-long entanglement pairs which

control the terminal dynamic modulus.

An illustration of these ideas is shown in Fig. 8 where we

plot ðNijðtÞÞ=ðwjNiðtÞÞ versus t during and after cessation of

severe, disentangling deformation illustrated in Fig. 3 for

pairs of long–long entanglements. Recall that NijðtÞ=NiðtÞ
represents the fraction of Kuhn bonds on an i-chain oriented

by j-entanglements. At equilibrium NijðtÞ=NiðtÞ is equal to

wj. Hence, ðNijðtÞÞ=ðwjNiðtÞÞ represents the departure of the

ij entanglement pairs from their equilibrium entanglement

microstructure value.

Figures 10(A) and 10(B) show a plot of the storage and

loss modulus vs frequency for the same polydisperse mate-

rial studied in Sec. II B following application of a severe

steady shear of 1000 strain units at a shear rate of 10 s–1.

This system corresponds to Fig. 9 of Sec. II B with additional

severe, steady shear applied. The first thing to observe in

Fig. 10(A) is that only the terminal moduli due to the long-

long entanglements are impacted by the deformation history.

The terminal modulus is severely attenuated by the previous

deformation history. This correlates closely with the curve

showing the healing of the long-long entanglements

ðNLLðtÞÞ=ðwLNLðtÞÞ where “L” refers to long chains in the

MWD in Table I and Fig. 1. Specifically, components 5, 6,

and 7 comprise the L components. The modulus slowly

recovers as the entanglement microstructure heals to its equi-

librium configuration in �5000 s (O(100) min).

FIG. 8. Plot of the entanglement dynamics in the diluted stretch tube [Nd,i

(t)] for components 6 and 7 for the interrupted shear experiment performed

on the model PS melt and conditions displayed in Fig. 1 and described in

Table I. Almost 90% of the viable stretch entanglements (i.e., diluted tube

entanglements) for each high molecular weight component are annihilated

with no indication of abating with further deformation. It takes many hun-

dreds of strain units for Eq. (16) of Paper I to reach its steady state for this

polymer system (see Appendix A).
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This important point is corroborated in Fig. 10 which

plots ðNijðtÞÞ=ðwjNiðtÞÞ for long-long chain entanglement

pairs during and after cessation of shear at 10 s–1 for 100 s

(1000 strain units!). Here, the dynamics of the individual

entanglement pairs can be seen clearly. During shear the fast

relaxing entanglement pairs reach a steady state value rela-

tively quickly. Similarly, the fast relaxing pairs recover their

equilibrium entanglement density relatively quickly while

the slow relaxers languish on time scales of their diffusion

driven reorientation. These points can easily be understood

by examining Eq. (16) of Paper I in conjunction with the rel-

evant time relaxation time constants in Table I.

The disparate time scales controlling the peak shear stress

recovery in the interrupted shear experiment and shear modi-

fication experiment suggest that the two phenomena are not
directly related to one another. We shall probe this point fur-

ther in Sec. III where we examine interrupted shear data sets

for polyethylene from Tsang and Dealy [12,13]. We also

developed a method to analytically determine the approxi-

mate number of strain units required to induce shear modifi-

cation (see Appendix A).

III. INTERRUPTED SHEAR FLOW OF TSANG AND
DEALY

A phenomenon previously thought to be related to shear

modification can be seen experimentally in the interrupted

shear experiment [12,13,28,29]. The original idea behind the

interrupted shear experiment is that it takes a finite time for

the entire entanglement microstructure to heal completely

following cessation of fast steady shearing flow. If a step

shear rate is initiated prior to complete healing of the entan-

glement microstructure a different, muted transient response

of the material is observed. Previous studies have focused on

the peak transient shear stress above the steady state value

[12,13], rmðtrest; _cÞ. These effects are observed for long-

chain branching (LCB) polymer melts and linear polymer

systems with a long, high molecular weight tail such as

HDPE with a log-normal MWD [28,29].

It has been hypothesized by Dealy and Tsang that the

interrupted shear flow effect is related to re-entanglement

processes, particularly of the high molecular weight species.

The molecular model presented in Sec. II provides the means

to study in detail the interrupted shear experiment since the

entanglement microstructure is known in detail for each

component of the MWD. In particular, the orientational

relaxation times of the highest molecular weight components

in the melt will control the recovery of the long-long chain

entanglement microstructure.

With these ideas in mind, we shall approximately simu-

late the data presented in Dealy and Tsang for the polydis-

perse linear HDPE resin described in their paper, “Resin 22”

[12,13]. In order to proceed to simulate this system, we shall

require an approximate MWD and the stretch and longest

relaxation times for a PE melt at 170 �C. For the MWD, we

FIG. 10. (A) Plot of the dynamic moduli calculated using Eq. (4) for the vir-

gin PS melt of Fig. 1, Table I and for the shear modified melt 50 s after ces-

sation of steady shear. The melt was “modified” by applying 1000 strain

units of 10 s�1 shear. Both the storage and loss moduli are significantly

diminished by the severe disentangling shear flow. (B) As time elapses the

entanglement microstructure slowly heals on a time scale of the long–long

entanglements [see Eq. (16) of Paper I] and the equilibrium dynamic moduli

are recovered. The dynamic moduli curves for other values of time follow-

ing cessation for shear are shown to illustrate this point.

FIG. 9. Plot of ðNijðtÞÞ=ðwjNiðtÞÞ vs time for the interrupted shear experi-

ment performed on the model PS melt displayed in Fig. 1. The factor

NijðtÞ=NiðtÞ is divided by wj to illustrate the departure of the long-long

entanglements from their equilibrium entanglement microstructure. Recall

that for an equilibrium ij-entanglement microstructure ðNijðtÞÞ=ðwjNiðtÞÞ is

unity.
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choose a model Wesslau log-normal MWD with Mw=Mn

¼ Mz=Mw � 10 since Dealy and Tsang report that Mn ¼ 1:8
�104, Mw ¼ 1:8� 105 and Mz ¼ 1:4� 106 for this HDPE

resin (see Fig. 11). Additionally, note that we have added a

high molecular weight spike of 2.5 wt. % at 1:0� 107

Daltons to the model MWD. This spike was necessary to

improve fits to the rheological data reported by Tsang and

Dealy (Fig. 12).

Following the method described in Sec. II A for PS, the

longest relaxation time for PE has the same universal form

as described in Eqs. (1) and (2) (see Fig. 7). It is appropriate

to comment on the order of magnitude of seðTÞ for PE at

170�. In particular seðTÞ is very small, seð170�Þ � Oð10�9Þ.
Hence for ordinary commercial molecular weights and ordi-

nary deformation rates at these temperatures it is compara-

tively difficult to stretch PE even with stretch tube dilution

factored in, i.e., sef f
s;i ¼ s0

s;i=W
0
i . Compare this to the case

studied in Sec. II above. There we did see significant stretch

however for PS seð170�Þ � Oð10�3Þ. The molecular weights

and properties of the model system used to simulate the

experiments of Tsang and Dealy is summarized in Table II

below.

The first figure we examine is a representative interrupted

shear stress vs time plot for the Tsang and Dealy system,

Fig. 13. The interrupted shear flow consisted of 60 s of shear

at 0.1 s�1 followed by a rest time of varying durations. After

the rest period, the flow is restarted at the same shear rate

and the magnitude of the shear stress overshoot is noted,

rmðtrest; _cÞ.
The first thing to note in Fig. 13 is the magnitude of the

shear stresses, O(1) kPa, three orders of magnitude less than

the plateau modulus for PE (2.6 MPa) [23]. Hence, we can

immediately conclude that there is very little chain stretch of

the main MWD components occurring in this system even

though the flow is highly nonlinear [24]. This point can be

corroborated by referring to the stretch relaxation times in

Table II and applying the test _css;i > 1. The nonlinearity of

the flow is demonstrated by the steady state orientation angle

corresponding to 0.1 s�1, v � 19�.
Figure 14 displays the recovery of the peak shear stress

transient vs rest time, the function rmðtr; _cÞ. Here we see

that, unlike the example discussed in Sec. II B, the peak

shear stress is recovered on a time scale of the longest orien-

tational relaxation times. Evidently there is more than one

means to generate and relax interrupted shear stress peak

transients. Additionally, by interrogating the entanglement

FIG. 11. Plot of NijðtÞ=wjNiðtÞ vs time for three long-long entanglement

pairs of PS from Fig. 1, Table I during and following the cessation of shear

at 10 s�1 for a 100 s period. The time scale for the healing of the long-long

entanglements [see Eq. (2)] is identical to that for the recovery of the shear

modified dynamic moduli (Fig. 10). This point can be seen directly from the

model for shear modification of the dynamic moduli, Eq. (4).

FIG. 12. Plot of the discrete model MWD used to simulate the Tsang and

Dealy interrupted shear experiments. Note that a 2.5 wt. % high molecular

weight spike has been added to the log-normal model MWD to improve the

fit to the rheological data. Additionally, all the low molecular weight species

were lumped together into a single low molecular weight fraction. This was

done to increase the size of the time step used for computational speed in the

numerical integration scheme and does not change the rheological predic-

tions for these experiments. In the same context, we have selected only

seven slices for the discrete MWD. In principle, we can choose an arbitrary

number of slices at the expense of computation time and comprehensibility

when data mining the results.

FIG. 13. Plot of the shear stress vs time for the Resin-22 model polyethylene

system used to simulate the interrupted shear experiments of Tsang and

Dealy [12,13]. Note that the stress levels are of order O(kPa) whereas the

plateau modulus for polyethylene is 2.6 MPa. Hence the stress levels are

very low and little if any chain stretch is anticipated [24]. Also note that dur-

ing the rest period shown the stress levels do not hit zero. There is still some

residual orientation of the very long chains. This residual orientation is what

mutes the subsequent overshoot for this system.
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microstructure we determine that the overall entanglement

density remains effectively constant at these low shear rates,

0.1 s�1. Consequently, there is relatively little shear modifi-

cation as defined in Sec. II C above, despite the fact that

there are significant shear stress peak transients. Hence, in

this limit the MP model effectively collapses to the polydis-

perse MLD model [16,17,30] with a constant entanglement

density. We conclude that the experiments of Tsang and

Dealy are not due to shear modification as defined in this

manuscript. Rather, the muted stress overshoots are due to

residual orientation of very small amounts of high molecular

weight species.

We believe that the following mechanism is responsible

for the peak shear stress transients reported by Tsang and

Dealy. Following the cessation of deformation only a small

fraction of the long-long entanglements remain viable,

highly oriented in the flow direction and consequently sup-

presses the subsequent reorientation of the long chains. The

reason for the orientation suppression is that the projection

of the oriented long-long entanglements on the velocity gra-

dient is _c Sxy. However, the long chains are still highly ori-

ented in the flow direction and hence their xy component

orientation is Sxy � 0.

Hence even though the shear stress contribution of the

long-long entanglements is negligible, the impact on the

interrupted shear experiment is profound. This is in large

measure a consequence of the diluted stretch tube mecha-

nism for stretching the long chains in a polydisperse matrix

that is largely relaxed. Understanding the detailed entangle-

ment microstructure is imperative to properly interpret the

interrupted shear experiment.

We can discern yet more detailed information about this

flow system from the MP model. The MP model can be

interrogated to reveal that all activated high molecular

weight species contribute equally to the bulk stress while the

low molecular weight species act effectively as solvent [30].

Specifically, the dimensionless parameter rxy;i=ðwirxy;bulkÞ is

a measure of the fractional weight based contribution to the

bulk stress of the i-component. For exaggerated component

contributions to the shear stress rxy;i=ðwirxy;bulkÞ > 1. The

activated high molecular weight components in Fig. 13 all

have rxy;i=ðwirxy;bulkÞ � 11! Consequently, by following the

dynamics of the long chains alone we can understand the

Tsang and Dealy experiments in detail since these activated

components totally dominate the rheological response.

Finally, in Figs. 15 and 16 we examine properties of the

MP model in steady shear flow. Specifically, in Fig. 15 we

display the calculated steady shear viscosity versus shear

rate for Resin 22 and compare it with calculated predictions

from the Cox-Merz rule and Gleissele’s mirror relation

[28,31]. Only the nonlinear portion of the flow curve is

shown since the Cox-Merz rule is an identity at low shear

rates [30]. Clearly, the MP polydispersity model is in quanti-

tative agreement with both the Cox-Merz rule and

Gleissele’s mirror relation as it must be to be a viable consti-

tutive relation for polydisperse linear polymer melts. Note

that the MP model extends the validity of the Cox-Merz rule

relative to the MLD model into the flow regime where signif-

icant stretch is anticipated in shear flow [30].

Similarly, Fig. 16 shows the calculated predictions of the

steady first normal stress coefficient versus shear rate for

Resin-22 using the MP model. Also shown are predictions of

FIG. 14. (A) Plot of the peak stress overshoot, rm, vs rest time for the inter-

rupted shear experiment and the Dealy and Tsang model MWD of Fig. 12.

The equilibrium peak shear stress is recovered on a time scale of the longest

orientational relaxation times of the MWD (see Table II). In Fig. 5 for the

model PS system, the peak shear stress was recovered on a time scale of the

stretch relaxation times. (B) Experimental data adapted from [12,28].

FIG. 15. Plot of the steady state viscosity vs shear rate for the Tsang and

Dealy model system Resin-22 shown in Fig. 12. Also shown are the predic-

tions of the Cox-Merz rule and Gleissele’s mirror relations. Clearly, the new

polydispersity model adheres closely to these well-established empirical

relations. Only the nonlinear portion of the flow curve is simulated since the

Cox-Merz rule is an identity at low shear rates.
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the first normal stress coefficient using Laun’s rule [28,31].

Although the predictions from Laun’s rule are slightly higher

uniformly they are still in good agreement with the calcu-

lated values from the MP model. The agreement of the MP

model with Laun’s rule, the Cox-Merz rule and Gleissele’s

mirror relation strongly supports the general viability of the

polydisperse MP model.

IV. DISCUSSION AND SUMMARY

It has long been known that a polymer melt’s rheological

properties reflect the underlying fluid microstructure.

Microstructure here refers to the MWD, entanglement den-

sity and long chain branching [10,11]. Consequently, rheol-

ogy is commonly used in industry to characterize polymer

resins using relatively crude rheological criteria such as the

MFI [28,32,33]. Such rheological criteria were until recently

largely based on empiricism rather than sound molecular the-

ory. However, molecular rheology has advanced to the point

where it is now possible to definitively and quantitatively

characterize commercial polymer resins from their rheology

alone. These ideas form the motivation and basis of “analytic

rheology” as a science.

The ideas and molecular model presented in this paper

will allow the science of Analytic Rheology to be extended

to include the nonlinear viscoelastic material properties

whereas in the past only the LVE material properties were

used [34]. Analytic Rheology to determine the MWD using

nonlinear material functions, such as transient extensional

viscosities, has never been attempted let alone accomplished.

Transient uniaxial extension will be of particular interest in

our subsequent work because of their proven ability to exper-

imentally determine the stretch relaxation spectrum [25].

There are several inherent advantages in nonlinear analytic

rheology relative to linear analytic rheology. The conceptual

advantages of nonlinear analytic rheology are qualitatively

illustrated in Fig. 17.

The principal reason why we have chosen to simulate and

emphasize shear modification experiments for broadly polydis-

perse system with our new molecular model of polydispersity

is to distinguish the MP model from other models for polydis-

persity. For example, none of the MLD family of models

[16,17,35–37], or the Graham-Likhtman-McLeish-Milner

(GLaMM) family of models [38–40], can possibly simulate

shear modification experiments. The reason for this is that both

families of polydispersity models assume a constant entangle-

ment density. We believe that a detailed description of the

entanglement dynamics is necessary to understand shear modi-

fication. Our very simple description of the entanglement

dynamics is one example of the type of molecular model

required to capture the phenomenon of shear modification.

We have demonstrated that shear modification is an impor-

tant feature of the rheology of polydisperse linear polymers.

We now argue that shear modification is a dominant feature of

polydisperse systems with LCB such as low density polyethyl-

ene [3,4]. For polymer systems with LCB s1
d;iðtÞ in Eq. (16) of

Paper I will explode in magnitude such that shear modification

will occur at even the most trivial deformation rates and subse-

quently take an exorbitant amount of time to heal (days).

Indeed, this is what is observed experimentally [3,4]. Despite

this fact, theoretically shear modification, and the entangle-

ment dynamics required to describe it, have been absent from

nonlinear molecular models for systems with LCB such as the

“pom-pom” family of constitutive equations [41]. The pom-

pom model and its relatives all assume a constant entangle-

ment density which is reflected in the fact that the equilibrium

plateau modulus scales the stress.

The key to understanding the shear modification experi-

ments is following the entanglement dynamics of the long

chains in the MWD. Experimentally, uniaxial extension is

FIG. 16. Plot of the steady state first normal stress coefficient vs shear rate

for the Tsang and Dealy model system (Resin-22) shown in Fig. 12. Also

shown are the predictions of Laun’s rule. Clearly, the new polydispersity

model adheres closely to this well-established empirical relationship.

FIG. 17. Sketch of a typical broad MWD for a commercial polymer system

with orientational and stretch relaxation spectra overlap. The experimentally

accessible time scale window is superimposed on the relaxation time scale

axis. For many commercial polymer systems, the longest orientational relax-

ation times lie beyond the longest experimentally accessible time scale.

With respect to Analytic Rheology, both the stretch and orientational relaxa-

tion spectra are functionals of the MWD. Note that the high molecular

weight tail of the MWD maps into the experimentally accessible time scale

window for the stretch relaxation spectrum but not the orientational relaxa-

tion spectrum. It is this effect we wish to exploit in our nonlinear analytic

rheology inversion scheme. Thus, there are both experimental and theoreti-

cal reasons for turning to nonlinear analytic rheology to determine the

underlying MWD.
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known to yield the highest degree of shear modification [3].

This can be understood by examining Eq. (16) of Paper I

which describes the entanglement dynamics. When the con-

vection term j : S
tube;i

is large, entanglements will be

stripped off the chains at a faster rate in uniaxial extensional

flow relative to shearing flows which have a smaller projec-

tion of the velocity gradient onto the orientation tensor.

Although shear modification may seem a subtle feature of

the rheology of polymer melts it can have profound effects

on crystallization mechanisms in commercially important

polymers such as polyethylene and polypropylene [42–44].

In particular, polymer melt crystallization mechanisms are

significantly impacted by long chain-long chain entangle-

ments [45] which we have demonstrated to be severely

impacted by fast flows. These flows lead to disentanglement

and highly extended conformations (see Fig. 4 in Paper I

[46]) which directly impact the crystallization kinetics and

morphology as well as the rheology. Only models with

entanglement dynamics can predict highly extended chain

conformations. Neither the MLD family or GLaMM family

of molecular models can predict the development of such

entities after many hundreds of strain units of deformation

because they have an assumed constant entanglement

density.
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NOMENCLATURE

In this Glossary, we list all the terms and their definitions for

quick reference. Please also see the Glossary of Paper I for

the terms defined in Paper I.

se an equilibrium time of a single entangled segment

Mc critical molecular weight for entanglement

a power law exponent for equation (1)

trest the time interval for the shear free rest period

v(t) average bulk orientation angle

vss steady state average bulk orientation angle

rm the peak transient shear stress after a rest

kij asymptotic time constant

Nij
ss the number of ij pair entanglement at steady state

T* the characteristic time scale to achieve a steady state

after startup of shear flow

css the amount of extensional strain to achieve steady

state

APPENDIX A: ANALYSIS TO DETERMINE THE
APPROXIMATE NUMBER OF STRAIN UNITS
REQUIRED TO INDUCE SHEAR MODIFICATION

In this Appendix, we analytically calculate the approxi-

mate number of strain units that need to be applied to

achieve steady state entanglement dynamics. Since entangle-

ment dynamics control shear modification this is equivalent

to determining the number of strain units required to shear

modify a melt at a prescribed shear rate. Our analysis begins

with the ED equation (16) of Paper I,

_Nij tð Þ ¼
N0

ij � Nij tð Þ
s1

d;i tð Þ � b j : S
tube;i
�

_Ki tð Þ
Ki
þ _ai tð Þ

ai tð Þ

" #

� Nij tð Þ þ
N0

ij � Nij tð Þ
s1

d;j tð Þ : (A1)

In order to proceed, we shall have to make some simplify-

ing approximations. Specifically, we shall assume that all

transient effects in the entanglement convection term of Eq.

(A1) are negligible. Initially, we shall consider shear flow

and subsequently generalize the analysis to consider exten-

sional flow. With these assumptions and restrictions, Eq.

(A1) simplifies to

_Nij tð Þ �
N0

ij � Nij tð Þ
kij

� b _cSxyNij tð Þ; (A2)

where kij 	 ðs1
d;iðtÞs1

d;jðtÞÞ=ðs1
d;iðtÞ þ s1

d;jðtÞÞ � ðsd;isd;jÞ=
ðsd;i þ sd;jÞ and the steady state xy orientation is Sxy. (Note

that kij is a time constant in this Appendix and not the rela-

tive stretch.) We have suppressed the complex time depen-

dence of kij such that it is approximately constant and equal

to the reduced diffusive reptation time of the ij pair. With

this assumption Eq. (A2) is a first order ordinary linear dif-

ferential equation. The steady state solution Nss
ij can be deter-

mined by inspection as

Nss
ij �

N0
ij

1þ bSxy _ckij
: (A3)

Note that Nss
ij ! 0 smoothly as _ckij !1.

The general solution to Eq. (A2) can be also be written

immediately as

Nij tð Þ ¼ Nss
ij 1� exp �t

1

kij
þ b _cSxy

� �� �	 


¼ Nss
ij 1� exp � t

T�

� �	 

: (A4)

The characteristic time scale T� to achieve a steady state

after startup of shear flow is therefore

T� ¼ kij

1þ bSxy _ckij
: (A5)

We now have enough information to address the question of

how many strain units are required to achieve shear modifi-

cation. Recall that b � 0:12 and Sxy � 0:15 for fast shear

flows. Hence, bSxy � Oð10�2Þ for shear flows. For fast flows,

the high molecular weight ij component pairs will generally

satisfy _ckij 
 100 and hence, T� � 100= _c. The correspond-

ing shear strain required to achieve steady state is therefore

css ¼ T� _c � 100. Hence it will take at least 100 shear strain

units to shear modify a melt for marginal cases such as that
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of Tsang and Dealy. We can also calculate Nss
77=N0

77 � 0:91

from Eq. (A3) for the worst case ij entanglement pair sce-

nario for the Tsang and Dealy Resin-22. This approximate

calculation is in line with what we calculate rigorously with

our computer program. Hence we should not expect shear

modification for Resin-22 which is precisely what we

calculated.

Note that the onset of shear modification is controlled by

the magnitude of the ij entanglement pair orientation time

and not the stretch relaxation time. We now repeat the above

analysis for the case of extensional flow and demonstrate

that extensional flows are much more efficient at generating

shear modification. For fast extensional flows, j : S
tube;i
� _e.

The analysis for extensional flows is identical except that

_cSxy is replaced by _e. Hence, T� ¼ kij=ð1þ b_ekijÞ � 10=_e
for _ekij 
 10 and the characteristic time T� is reduced by an

order of magnitude. Similarly, the amount of extensional

strain is greatly reduced to css ¼ T� _e � 10. This brief analy-

sis demonstrates what is observed experimentally, i.e., that

extensional flows are much more efficient at generating shear

modification than shear flow.
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