
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

27 Aug 1985

Method and Apparatus for Performing Hashing Operations using Method and Apparatus for Performing Hashing Operations using

Galois Field Multiplication Galois Field Multiplication

John L. Carter

George Markowsky
Missouri University of Science and Technology, markov@mst.edu

Mark N. Wegman

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
J. L. Carter et al., "Method and Apparatus for Performing Hashing Operations using Galois Field
Multiplication," U.S. Patents, Aug 1985.

This Patent is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in
Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work
is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

United States Patent (19)
Carter et al.

(54) METHOD AND APPARATUS FOR
PERFORMINGHASHING OPERATIONS
USING GALOIS FELD MULTIPLICATION

75) Inventors: John L. Carter, Putnam Valley;
George Markowsky, Mount Kisco;
Mark N. Wegman, New York, all of
N.Y.

International Business Machines
Corporation, Armonk, N.Y.

(21) Appl. No.: 454,912

73 Assignee:

22 Filed: Dec. 30, 1982
(51) Int. Cl. .. G06F 7/52
I52) U.S. C. 364/754; 364/715
58 Field of Search 364/754, 757, 715
56) References Cited

U.S. PATENT DOCUMENTS

4,037,093 7/1977 Gregg et al......................... 364/754
4,251,875 2/1981 Marver et al..... ... 364/754
4,473,887 9/1984 Odaka 364/754

OTHER PUBLICATIONS
Laws, Jr. et al., "A Cellular-Array Multiplier for
GF(2m)", IEEE Trans. on Computers, Dec. 1971, pp.
1573-1578.

Primary Examiner-David H. Malzahn
Attorney, Agent, or Firm-Roy R. Schlemmer
57 ABSTRACT
The invention comprises a method and apparatus for

B-REGISTER

WHERE esco OENOTES ANN-BF CABLE

4,538,240
Aug. 27, 1985

11) Patent Number:
(45. Date of Patent:

performing a hashing operation on an N bit number
under control of a prespecified N bit hashing constant
which comprises performing N/K finite field partial
multiplications of the object to be hashed by the hashing
constant, utilizing Klogic and combinatorial circuits all
of which operate in parallel to completely evaluate the
number in N/K operations.
Another feature of the present invention is that the
hashing constant loaded into the system may be
changed at will with a resultant changing of the hashing
characteristics to suit a particular class of objects to be
hashed. This is done by a "select” operation. In the
'select' operation, the hashing constant is sequentially
loaded into said K logic and combinatorial circuits,
each of which comprises a feedback shift register
(FSR), said feedback shift registers being so configured
that at the end of K operational sequences each of said
feedback shift registers contains said hashing constant
shifted and permuted in accordance with the particular
feedback configuration of said register, a number of bits
proportional to its location in the sequence of feedback
shift registers, such that the hashing constant in the shift
register FSR will be shifted in a predetermined direc
tion (i-1) N/K bit positions. Each of the operational
sequences referred to above comprises a hashing se
quence which includes N/K shifts of the feedback shift
registers.

9 Claims, 10 Drawing Figures

A-REGSER

o'Shift

RES REGISTER

U.S. Patent Aug. 27, 1985 Sheet 1 of6 4.538,240

FIG.

o "SHIFT"

B-REGISTER

WHERE as a DENOTES ANN-BIT CABLE

RESULT REGISTER

U.S. Patent Aug. 27, 1985 Sheet 2 of 6 4,538,240

FIG. 2

FEEDBACK
BT

U.S. Patent Aug. 27, 1985 Sheet 3 of6 4.538,240
HASH OPERATION
AFTER LOADING B-REGISTER F. G. 3.
AND INTAZING RESULT
REGISTER A-REG.

OOOH
B-REG.

AFTER ACCUMULATING
FIRST PARTAL RESULT A-REG.

OOO
B-REG.

salaws

U.S. Patent Aug. 27, 1985 Sheet 4 of 6 4,538,240

FG, 3.3
HASH OPERATION
AFTER PERFORMING A-REG.
FIRST SHIFT OOOH

B-REG.

AFTER ACCUMULATING
SECOND PARTIAL RESULT A-REC.
AND PERFORMING Oool SECOND SHIFT OOO

B-REG.

U.S. Patent Aug. 27, 1985 Sheet 5 of6 4.538,240

HASH OPERATION FG. 3.5
AFTER ACCUMULATING
THRD PARTAL RESULT A-REG.
AND PERFORMING THIRD OOO
Sf B-RE

FINAL STATUS OF REGISTERS
AFTER LOADING FSR FROM FIG. 36
RECISTERS ABOVE THEM
TO BE READY FOR NEXT A-REG.
OPERATION. OOO

B-REG.

U.S. Patent Aug. 27, 1985 Sheet 6 of 6 4,538,240

SELECT OPERATION
Aftflop. Aft(SIER FIG. 4.
AND COPY ING TS VALUE
NTO FSR OOO
NOTE: REGISTERS WITH

Y--/ NO WALUES IND CATED
ARE ARBTRARY

AFTER PERFORMING FIRST HASH OPERATION
(IN THIS CASE, SINCE K=2, ONLY ONE HASH
OPERATION IS REQUIRED TO COMPLETE
THE SELECT OPERATION.)

O: OO
F. G. 4.2

4,538,240
1.

METHOD AND APPARATUS FOR PERFORMING
HASHING OFERATIONS USING GALOIS FIELD

MULTIPLICATION

BACKGROUND OF THE INVENTION

The present invention relates to the design of a hard
ware implemented device to perform a "hash' opera
tion in a digital computer. The essential purpose of a
hash function is to transform an unknown and possibly
skewed distribution of values into a more uniform distri
bution, often over a smaller range of values. One appli
cation of a hash function is in an associative memory.
Here, an identifier, such as a person's name or account
number, is transformed by a hash function into an ad
dress in a computer's Inemory which is used as a starting
point for a search for the data associated with the identi
fier. For the associative memory to perform efficiently,
it is important that the addresses given by the hash
functions be spread relatively evenly over the possible
addresses, even when the identifiers are highly corre
lated. There are many other uses of hash functions,
including uses in operating systems, compilers, inter
preters, database management, cryptographic schemes,
spelling checkers, error correction and detection
schemes, etc.

In addition to the above noted uses of a hash function
another very important utilization is for the efficient
translation of virtual addresses to main storage real
addresses by means of a hash index table which contains
main storage addresses. A hashing function is provided
for generating a uniform distribution of hash index table
entry addresses from a nonuniform distribution of vir
tual addresses in a data processing system, where the
size of the hash index table is variable and is based on
the size of main storage. If an adequate hashing function
is chosen, the hash index table may be kept to a mini
mum size and used or filled very efficiently.

For a much more detailed description of the use of
hashing refer to the following three publications: (1)
Donald E. Knuth, "The Art of Computer Program
ming,' Vol. III (Sorting and Searching). Addison-Wes
ley Publishing Company, Menlo Park, Calif. (1973); (2)
Aho, Hopcroft and Ullman, "The Design and Analysis
of Computer Algorithms,' Addison-Wesley Publishing
Company, Menlo Park, Calif. (1974); (3) M. N. Weg
man and J. L. Carter, "New Hash Functions and Their
Use in Authentication and Set Equality,' Journal of
Computer and System Sciences, Vol. 22, pp. 265-279
(June 1981).
Hash functions are usually implemented in software

(that is, by a computer program), however, according
to the teachings of the present invention an extremely
versatile circuit is provided to perform the hash opera
tion. There are two significant advantages to making
hardware perform hashing; firstly, the hashing opera
tion can be speeded up substantially, and secondly, a
significantly more Sophisticated hashing procedure or
algorithm can be economically used.
A potential disadvantage of performing hashing in

hardware is a particular function chosen might perform
poorly on a particular set of data.
That is, with a particular distribution of objects to be

hashed, poorly distributed hashed output would be
realized. Accordingly, in most known prior art systems
hardware or fixed hashing has been utilized only where
the input data has a more or less known, fixed character
istic. Conversely when more sophisticated hashing is

10

15

20

25

30

35

40

45

55

60

65

2
required more complex and time consuming hashing
algorithms have been embodied in software with a sig
nificant increase in the requisite time for performing
such hashing operations.

DESCRIPTION OF PRIOR ART

As stated previously, performing hashing operations
for the purposes of generating memory addresses is well
known in the art. Similarly, Galois field multiplication is
a well known mathematical procedure. The following
references represent the best art known to the Appli
cants, however, no representation is made that this art is
the closest anticipatory material on the subject.

U.S. Pat. No. 4,215,402 of Mitchell et a discloses a
large computer memory system wherein certain ad
dressing operations are accomplished through various
types of hashing operations. However, no Galois field
multiplication to achieve hashing is involved in this
patent.

U.S. Pat. No. 4,162,480 of Berlekamp discloses a
Galois field computer. However, this reference does
not disclose a circuit organization in any way resem
bling that of the present circuit. Nor does this reference
disclose using a separate loading operation combined
with a precomputation of the various shifts of the hash
ing constant. U.S. Pat. No. 4,037,093 of Gregg et al and
U.S. Pat. No. 3,805,037 of Ellison both disclose specific
Galois field circuits which are in no way related to
hashing operations nor do they disclose a circuit config
uration resembling that set forth in the present inven
tion.

SUMMARY OF THE INVENTION

It is the primary object of the present invention to
provide a hardware implementation of an extremely
efficient hashing procedure which provides excellent
results near the theoretical limits and which would not
normally be practically realizable utilizing software
implementations for many applications.

It is a further object of the invention to provide such
a hashing mechanism which is readily alterable in terms
of changing the hashing constant whereby the perfor
mance of the circuit may be significantly altered to
tailor the system, with very little delay, for an input
stream of numbers (objects to be hashed) having a sig
nificantly different distribution characteristic.

It is yet another object of the invention to provide
such a hashing circuit which may be readily imple
mented in current technology large scale or very large
scale integration circuitry and which operates with
very little delay.
Other objects, features and advantages of the inven

tion will be apparent from the following description of
the preferred embodiment of the invention.
The objects of the present invention are accom

plished in general by the herein disclosed hashing gen
erator which is capable of performing a highly parallel
Galois field multiplication of an N-bit object to be
hashed under the control of an N-bit hashing constant.
The generator comprises an N-bit standard shift register
for storing the N-bit object to be hashed and an N-bit
register for storing the hashing constant. A conven
tional N-bit output register is also utilized for accumu
lating the result of the hashing operation. KN-bit feed
back shift registers are utilized for storing rotated ver
sions of the hashing constant. The contents of said shift
registers are exclusive-OR'ed together under control of

4,538,240
3

selected bits in said object register together with the
current contents of the register to form an intermediate
partial product. This operation continues N/K times at
which time the current hashing object is completely
evaluated and located in the Result register.
A significant feature of the circuitry is that, at the end

of a hashing operation, the various shifts of the hashing
constant are reloaded into the feedback shift registers
by copying the final contents of register FSR into regis
ter FSR-1 for i=1, 2, . . . , K-1, and copying the
hashing constant register into FSR1.
Another significant feature of the present hashing

circuitry is that during a loading operation the various
shifts of the hashing constant may be in effect precom
puted and loaded into the feedback shift registers by a
sequence of operations which are almost identical to the
actual hashing operations insofar as the operation of the
feedback shift registers is concerned. By performing
this precomputation, the hashing constant is in effect
partially multiplied and loaded into the feedback shift
registers in proper format for the subsequent highly
parallel hashing operation.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 comprises a combination functional block
diagram and data flowchart of the present hashing gen
erator.
FIG. 2 comprises a logical schematic diagram of a

typical register bit storage location which receives a
feedback bit within the feedback shift registers and must
perform an exclusive-OR operation.
FIGS. 3.1-3.6 comprise a tabular example of a “hash'

operation, illustrating the data flow, in a simple version
of the present hashing generator.
FIGS. 4.1 and 4.2 comprise a tabular example of a

"select' operation, illustrating the data flow, in a simple
version of the present hashing generator.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

According to the teachings of the present invention,
the previous enumerated disadvantages of a hardware
implemented hashing generator have been circum
vented by the present design which allows a program to
change its hashing function and thus the distribution
characteristics by what is referred to herein as a “se
lect' operation, in which a new hashing constant may
be easily and quickly implemented. This has the effect
of changing the output and thus the distribution of the
hashed values. This feature is not known to exist in any
prior hardware hashing generators. In order to ensure
that the distribution of values produced by the hash
function have a high probability of being evenly distrib
uted no matter what the input values are, the present
invention incorporates the techniques of universal hash
ing. The essential idea of universal hashing is that for
any set of values to be hashed, almost all of the possible
choices of hash functions specified by the particular
hashing constant utilized in the "select” operation will
result in a relatively even distribution of output values.
Thus, any randomly chosen hash function or constant is
very likely to perform well. For a more in depth discus
sion of the underlying concepts of universal hashing
reference is made to an article by J. L. Carter and M. N.
Wegman, "Universal Classes of Hash Functions,’ Jour
nal of Computer and Systern Sciences, Vol. 18, pp
143-154 (April 1979).

15

20

25

30

35

40

45

50

55

60

65

4
The herein disclosed hashing generator is readily

adaptable to fabrication in integrated circuit chip tech
nology and is designed to perform its two operations
with a small amount of control hardware. The two
operations are “select(A)' and "hash(B)' wherein A
and B refer to the hashing function or constant (A)
which is stored in register A of FIG. 1, and the hashing
object or object to be hashed (B) which is stored in
register B, FIG. 1. "Select(A)' specifies that the func
tion denoted by the argument A (the hashing function)
is to be used for all subsequent "hash' operations, until
the next hashing constant is entered into the system and
an appropriate “select' function executed. "Select'
does not compute any result, but allows some precom
putation to be performed by the hardware which will
speed up all subsequent "hash' operations utilizing the
same hashing constant. The "hash(B)' operation is the
procedure which causes the argument B to be hashed
by the hashing function A specified by the most recent
“select' operation.

It will be noted in the following description that N
represents the number of bits per word, wherein the
hashing constant A, the object to be hashed B, and the
value returned by the "hash' operation are all similarly
N-bit numbers. For purposes of the present embodiment
it is assumed that one would desire an N-bit result as this
is very useful for certain applications. However, for
certain other uses specifically address hashing, it may be
desired that the value returned by the hashing operation
be in the range of 0, 1, 2, ... 2-1, where M is less than
N. If so, one can shift the result either right or left
N-Mbits so that the desired Mbits would be available
for the intended purpose. It should be noted that any
other contiguous or discontiguous subset of M bits
could similarly be chosen with equal reliability. The
advantages of universal hashing wherein a good distri
bution of results may be expected for any input are
retained after the shifting or some other bit selection
procedure. The disclosed hashing generator actually
performs the operation of multiplication in the finite
field GF(2N). Referring to FIG. 1, the “select” opera
tion sets the multiplier into the device in register A and
allows some precomputation to be performed. The ar
gument or object of the hashing operation which is
loaded into register B of the disclosed embodiment is
used as the multiplicand. Hardware to perform finite
field arithmetic per se is not new. See for example, the
previously referenced Berlekamp and Gregg et al pa
tents and also the book "Algebraic Coding Theory," E.
R. Berlekamp, McGraw Hill, New York (1968). The
present method of obtaining speed up of the multiplica
tion operation through precomputation and also allow
ing the multiplier or hashing constant to be changed is
not believed to be taught in the prior art.

In the presently disclosed hashing generator the mul
tiplication of field elements is performed in a manner
very analogous to the ordinary multiplication of binary
numbers. The multiplier is shifted left one bit position at
a time and the value of said multiplier is added to the
running total or not depending upon whether or not the
bit of the multiplicand currently being evaluated is a 1
or a 0. The difference between the finite field arithmetic
and ordinary arithmetic is firstly that the addition is
performed by an exclusive-OR (XOR) operation and
secondly that the shifts must be performed by a prop
erly chosen feedback shift register which in effect alters
the value of the bits of the multiplicand as the operation

4,538,240
5.

proceeds. This is, of course, significantly different from
an ordinary shift register.
A very significant feature of the present hashing gen

erator is that this finite field multiplication is speeded up
by the evaluation of several bits of the multiplicand in
parallel. The number of bits is determined, as will be
seen, subsequently, by the number of feedback shift
registers (FSRs) utilized.

In order to effectuate this operation it is necessary
that a precomputation of the multiplier be performed in
order to obtain proper alignment of the multiplier with
the selected bits of the multiplicand.
As stated previously, the herein disclosed hashing

generator may be implemented in any well known large
scale integration (LSI) or very large scale integration
(VLSI) technology. Thus all of the registers, data paths,
combinatory logic, etc. could easily be placed on sev
eral LSI or a single VLSI chip.

In the subsequent description of the invention the
following terminology is used. N represents the number
of bits in a machine word. Thus this is the number of bits
in the A register which holds the hashing constant (mul
tiplier) as well as the B register which holds the object
to be hashed or multiplicand. Similarly, all of the feed
back shift registers 1 through K and the Result register
are all N-bits wide. All of the AND gates 10 through 16
shown in FIG. 1 in essence, comprise N individual
AND gates having as one input N bits from the associ
ated feedback shift register and as a second input the
appropriate bit from the B register which controls the
AND function. Block 18 marked parity comprises a
collection of N parity circuits which produce a logical
"1" upon the occurrence of an odd number of "l's at
the circuit input terminals and a logical "O' upon the
occurrence of a even number of "l's at the circuit input
terminals. Each of the N parity circuits receives an
appropriate input from the corresponding bit from each
of the K feedback shift registers and also from the Re
sult register. Thus the i-th parity block receives the i-th
bit from each of the K feedback shift registers, as well as
the i-th bit from the Result register. The output of the
block 18 comprises again N-bits which are gated into
and replace the former contents of the Result register.
The number K, as indicated previously, is the paran

eter which affects the size and speed of the design. The
larger the value of K the more individual components
will be required on the chip but the faster the "hash'
operation will be due, of course, to the greater degree of
parallelism in the multiplication operation. Referring
specifically to FIG. 1, it may be seen readily that the
number K is determined by the number of the feedback
shift registers utilized in the design. Since each shift
register evaluates N/K bits of the object to be hashed it
follows that K should ideally be an integer divisor of N.
In other words if N=32 K could have the value 2, 4, 6,
8 or 16.
As stated above, all of the registers in the embodi

ment shown in FIG. 1 are N-bit registers, the A register
which stores the hashing constant and the Result regis
ter which receives the intermediate and the final results
of the hashing operation are simple registers which may
be accessed essentially in parallel. The B register is a
shift register having K output lines as shown and shift
ing from left to right under control of the "shift” signal
shown. The feedback shift registers FSR through
FSRK are, as the name implies, shift registers which in
the described embodiment shift from right to left, as
indicated by the direction of the "shift' line over which

5

10

5

20

25

30

35

40

45

50

55

60

65

6
an appropriate shift signal is provided. Additionally, the
feedback shift registers shift the left most bit back into
the right most position, and also modify certain other bit
positions (as will be described below). As stated previ
ously, the design of such shift registers is known and is
specifically discussed in greater detail in the previously
referenced Berlekamp book on page 47.
To design a suitable feedback shift register of size N,

one first chooses an irreducible polymonial of degree N
over the field GF(2). A book by W. W. Peterson and E.
J. Weldon, Jr., "Error Correcting Codes,” MIT Press,
Cambridge, Mass., (1971), discloses tables of such
polymonials for different sizes of N on pages 251
through 270. Any choice of a polymonial for a given
Value of N is suitable, however, one with a minimal
number of non "O' coefficients is the most practical as
can be seen from the following discussion.
The FSR consists of an N-bit shift register with posi

tions numbered 0, 1, 2, ...,N-1 from right to left. A
shift consists of moving the i-th bit into the (i+1)-th bit,
and also exclusive-ORing the bit in position N-1 into
several of the other bit positions of the FSR. The posi
tions into which this bit gets exclusive-OR'd are the bit
positions representing those exponents of the chosen
irreducible polymonial which have non "0" coefficients
(except for the high-order coefficient). For instance, if
the polymonial were X6--X3-1 then the bit in position
5 would be fed back into bit positions 3 and 0. Notice
that the new value in bit position 3 would be derived
from both positions 2 and 5 as described above. These
two values are combined via an exclusive-OR opera
tion. However, no exclusive-OR is needed for bit posi
tion 0 since there is no other bit coming into that posi
tion.
FIG. 2 is shown for the purpose of illustrating the

internal contents of one of the bit positions of the FSR
which receives a feedback bit. It also shows the two
adjacent bit positions. This FIGURE illustrates in logi
cal schematic form how the feedback bit enters the
particular bit position (other than the 0-th bit position
for which no exclusive-ORing occurs) and is exclusive
OR'd with the bit immediately to the right of the feed
back location to produce a resultant output value which
is stored in the latch connected to the output of the
exclusive-OR. Operation of such a circuit is considered
completely straightforward and well understood by
those skilled in the art.

Returning briefly to the B register, it will be specifi
cally noted that outputs are specifically taken from the
0-th, (N/K)-th, (2N/K)-th, ... bit positions. Referring
briefly to FIGS. 3 (3.1 through 3.6) and 4 (4.1 and 4.2)
for a value of N = 6 and K=2, the outputs from the B
register are taken from the zero-th and third bit posi
tions as described above.

It should also be noted in passing that the A register
which holds the hashing constant and all of the feed
back shift registers in addition to being shift registers are
assumed to have the capability of being loaded and
unloaded in parallel. This circuitry is not shown in FIG.
1, as it would have made the drawing overly difficult to
follow, however, it is shown functionally in the data
flow diagram of FIGS. 4.1 and 4.2 which illustrate an
example of the "select” operation which will be ex
plained subsequently. Such registers are well known in
the art. The capability allows the rapid transference of
a complete N-bit number from the A register to FSR1,
from FSR1 to FSR2, etc.

4,538,240
7

Referring again to FIG. 1, the heavy lines represent
N-bit buses, and each of the AND gates 10 through 16
are actually a collection of AND gates arranged in
parallel, one for each bit of the FSR register to which it
is attached as described previously.
To very briefly describe the function of the logic

circuitry of FIG. 1, assume that a shift operation has just
been completed causing the B register to shift 1 bit to
the right and all of the feedback shift registers to shift 1
bit to the left, the values appearing on all of the N-bit
cables 30 through 36 will represent the current contents
of the FSRs 1 through K. Where the binary value in
those bit storage locations of the B register attached to
lines 20 through 26 are logical “ls', the appropriate
AND gates (10-16) would be activated allowing the
current contents of the associated FSR (1-K) to be
placed on lines 30-36. Alternatively, for those bit stor
age locations of the B register containing a logical "0",
this value would be placed on the lines 20 through 26,
where associated AND circuits 10 through 16 would
not be activated and all "Os' would appear on the re
spective output lines 30 through 36. As stated previ
ously, an additional or (K-1)-th input is applied to each
of the N individual logic circuits within the parity block
18 to produce a new result which is placed in the Result
register.
The particular way, in which this basic circuit opera

tion is utilized iteratively to perform the "hash' opera
tions will now be described.

In the "hash' operation an N-bit object operand is
loaded into the B register. Before the operation is be
gun, both register A and FSR1 will contain the hashing
constant A (as set by a previous "select' operation as
will be described subsequently), and the values in each
of the remaining FSR registers is the result of perform
ing N/K feedback shift on the value in the register
immediately above it. When the "hash(B)' operation is
initiated, the N-bit object B is put into the B register and
the Result register is set to all zeros. The contents of the
Result register and the FSR registers are selectively
combined in parity block 18 wherein it will be noted
that the contents of each particular FSR register is
gated through to block 18 only if the bit in the associ
ated bit of B register is a logical '1'. The output from
block 18 is stored in the Result register. Next, a shift
signal is applied to the system and the FSR registers
shift their contents (with feedback) one bit position and
similarly the B register also shifts one position. The
current contents of the B register and all of the FSR
registers as well as the Result register are now automati
cally combined, as described previously, via AND cir
cuits 10 through 16 and parity block 18 to place a new
value in the Result register. This process of logically
combining the contents of the feedback shift registers

10

15

20

25

30

35

40

45

50

and the Result register under control of the contents of 55
B register followed by a one bit shift of the B register
and the FSRs continues for a total of N/K times, at
which point the entire object in the B register is evalu
ated. At this point the Result register will contain the
desired answer of the hashing operation A*B.
At this point it is desirable to reset all of the FSR

registers to the initialized state with the proper shifted
values of the hashing constant A so that the next "hash'
operation may take place. This is accomplished by shift
ing all of the FSR registers and the A register down
ward one position so that FSR1 contains the unrotated
hashing constant A, FSR2 contains the previous con
tents of FSR1, etc. It will be noted that the former

60

65

8
contents of shift register FSRK will simply be dis
carded. It also should be noted that the contents of the
A register which is the hashing constant never change
during the hashing operations.
The following program-like statement of operations

in essence synopsizes the above described "hash' opera
tion. It will be noted that the operation involves three
basic steps, all described above, wherein step 2 is essen
tially a loop which is repeated N/K times before the
process goes on to step 3. It is believed that this chart is
completely self-descriptive and need not be described
further.

(1) Load B register with object to be hashed and load
Result register with all zeros;

(2) Repeat N/K time:
XOR FSRs specified by appropriate bit of B regis

ter together with Result register, store into Re
sult register;

Shift B register and FSRs one bit;
(3) Move all FSRs and A register down one register

position.
The "select' operation will now be described

wherein a new hashing constant A is loaded into the A
register and various shifts of the hashing constant A are
in effect precomputed and loaded into the various FSRs
so that subsequent "hash' operations may be performed
with minimum delay and maximum parallelism. The
argument or hashing constant A is loaded into the A
register and then a complete "hash' operation is per
formed K-1 times. It should be remembered that each
hash operation comprises N/K individual shift opera
tions followed by a complete shifting downward of all
of the FSR registers and the A register. Thus at the end
of the "select' operation all of the FSR registers are
loaded with the correct versions of the hashing constant
rotated the correct number of times so that a "hash'
operation on a particular object to be hashed may now
be implemented.

It should be clearly understood that the "select' op
eration operates solely on the contents of the FSR regis
ters and the A register. The contents of the B register
and the Result register play no essential part in the
“select' operation nor do the combinatorial circuits 10
through 16 and 18. In fact, these may be functionally
omitted and for purposes of clarity in FIGS. 4 and 4.2
which show an example of a "select' operation on a
simple hashing generator this has been done.
The following is a brief listing of the sequence of

operations in a "select' operation similar to the above
listing for a "hash' operation. As will be apparent there
are three primary steps with the "select” operation
which are clearly indicated and wherein the third step
includes a loop which is repeated K-1 times. It will be
noted that the contents of this loop are stated to be
"hash'. In this particular case, as is conventional in
programming technology, this statement would call the
complete "hash' operation set forth above and would
repeat the said complete hashing operation a total of
K-1 times in order to complete the “select' operation.

(1) Load A register with hashing constant A;
(2) Load FSR1 from A register;
(3) Repeat K-1 times
HASH Op.

It should be noted that various changes in these oper
ations could be made by those skilled in the art without
significantly departing from the spirit and scope of the
present invention. For example, in the "hash' proce
dure, step 3 could be relocated in the procedure and

4,538,240
9

renumbered step 2, and step 2 would appropriately be
renumbered step 3. Concurrently with this, step 2 of the
"select” operation could be completely deleted and the
system would work properly. Other, similiar changes
could be made by those skilled in the art without depart- 5
ing from the teaching of the present invention.
FIG. 3 which comprises FIGS. 3.1 through 3.6 and

FIG. 4 which comprises FIGS. 4.1 and 4.2 will now be
briefly described to more clearly illustrate the operation
of the present invention by actually placing particular
binary values into the system for the hashing constant
or argument A which is loaded into the A register and
a particular object to be hashed loaded into the B regis
te.

A "hash' operation is self-explanatory especially
when taken into consideration of the legends accompa
nying each FIGURE. Thus one may readily follow the
progress of the hashing operation through these FIG
URES until FIG. 3.5, at which point the object in the B
register has been completely evaluated and produces
the result 111011. Similarly, in FIG. 3.6 it may readily
be seen how the contents of the FSR registers have been
moved and that they now are identical to the contents
of the FSR registers in FIG. 3.1 which represented the
initial state. At this point the new object to be hashed
may be gated into the B register and another hashing
operation performed.

Referring briefly to FIGS. 4.1 and 4.2 it will be noted
that all non-functional and thus unnecessary circuitry
has been deleted from these FIGURES and instead the
two N bit cables 40 and 42 connecting the A register
and the FSR registers are shown to indicate the path by
which the contents of the A register and FSR registers
are sequentially moved downwardly as the final step of
each "hash' operation is performed during the "select' 35
phase of the hashing circuitry's operation. As in FIGS.
3.1 through 3.6, the legends accompanying FIGS. 4.1
and 4.2 clearly indicate what has happened in each of
the illustrated cases. It should be noted in FIG. 4.2 that
all of the FSRs have been loaded and the system is 40
ready to perform the first "hash” operation.

CONCLUSIONS

The above description of the preferred embodiment
of the invention taken together with the simplified ex- 45
amples of FIGS. 3 and 4 would allow one skilled in the
art to build a hashing generator following the teachings
of the present invention, suitable for most any hashing
purpose.

It is to be understood specifically that the simple 50
version of the system as shown in FIGS. 3 and 4 was for
the purpose of illustration only and that in fact values of
N on the order of 32 would be more common and a
typical value for K, the number offeedback shift regis
ters, would probably be 4 or 8. In addition, as stated
previously in the specification, for a given value of N
more than one irreducible polymonial would probably
exist and any of the required configurations of the shift
registers could be utilized. However, the optimal con
figuration would probably be one with the fewest feed
back points which would reduce the cost of the cir
cuitry.

In addition, other minor hardware modifications
could be made, for example, the relative directions of
shifting and the designation of high and low order bit 65
positions is also arbitrary and a matter of design, it being
kept in mind only that the complete Galois field multi
plication must occur.

O

15

20

25

30

55

60

10
A second modification would be choosing K to be a

number which is not a divisor of N. This would necessi
tate an addition to register B which would provide a
Zero bit into the left most bit position each time a shift is
performed.
A third modification is the use of the B register to

count the number of times the hash operation is per
formed during the execution of a "select” operation.
These and other modifications could readily be made

by those skilled in the art without departing from the
spirit and scope of the invention as set forth in the fol
lowing claims.

Having thus described our invention, what we claim
as new, and desire to secure by Letters Patent is:

1. A hashing generator for performing a hashing
operation on an N bit operand as a function of a prede
termined N bit hashing constant, said generator com
prising a shift register for receiving the operand to be
hashed, a register for receiving and storing the hashing
constant, K feedback shift registers wherein K is an
integer factor of N, means for loading each of said K
feedback shift registers with said hasing constant shifted
from the low to the high order direction N/K-bit posi
tions with respect to each of its adjacent feedback shift
registers, means including a result register and combina
torial circuit means for accumulating the contents of
each of said K feedback shift registers as a function of
the binary state of an associated bit in said operand shift
register together with the results of the immediately
preceding accumulation and means for sequentially
shifting all of said K feedback shift registers and said
operand shift register and successively accumulating
the interim results in said result register a total of N/K
times to perform a complete hashing operation.

2. A hashing generator as set forth in claim 1 wherein
the i-th feedback shift register has its output accumu
lated as a function of the state of the (i-1)xN/K bit
position of said operand shift register and means for
sequentially shifting said operand shift register so that
the contents therein are shifted in a direction from the
high to low order bit positions.

3. A hashing generator as set forth n claim 2 wherein
the combinatorial circuit means for combining the cur
rent values in the feedback shift registers includes K.
N-bit AND gates or equivalent circuitry each of which
is controlled by the state of an associated bit of the
operand shift register, and a (K-1) input parity block,
the output of all of siad KAND gates forming Kinputs
to said parity block wherein the (K-1)-th input com
prises the current state of said accumulation means.

4. A hashing generator as set forth in claim 3 includ
ing means operable during a "select' mode of operation
of the hashing generator for preloading the K feedback
shift registers which includes means for gating the com
plete contents of the hashing constant register into the
first feedback shift register and the contents of the i-th
feedback shift register into the (i+1)-th feedback shift
register and for selectively causing each of said K feed
back shift registers to shift N/K bit positions with re
spect to its adjacent feedback shift register.

5. A hashing generator as set forth in claim 4 includ
ing means for introducing a predetermined hashing
constant into the hashing constant register and for per
forming said "select' operation whereby the hashing
generator will produce a different distribution of output
values as a functioning of a different hashing constant.

6. A hashing generator as set forth in claim 5 wherein
each of said feedback shift registers comprises bits des

4,538,240
11

ignated 0, 1, 2 . . . N-1 and means for shifting the i-th
bit into the (i+1)-th bit position and also exclusive
ORing the bit in position N-1 into those bit positions
which represent the coefficient of an irreducible
polymonial of degree N which have a non-zero value
except for bit position 0, and shifting the bit in position
N-1 directly into bit position 0.

7. A hashing generator for performing a hashing
operation on an N bit operand as a function of a prede
termined N bit hashing constant, said generator com
prising a shift register for receiving the operand to be
hashed, a register for receiving and storing the hashing
constant, K feedback shift registers wherein K is not an
integer factor of N, means for loading each of said K
feedback shift registers with said hashing constant
shifted from the low to the higher order direction L bit
positions with respect to each of its adjacent feecback
shift registers where L is the greatest integer less than
N/K, means for loading a zero into the high order bit
position of the operand shift register each time a shift is
performed, means including a result register and combi
natorial circuit means for accumulating the contents of
each of said K feedback shift registers as a function of
the binary state of an associated bit in said operand shift
register together with the results of the immediately

5

O

5

25

30

35

40

45

50

55

60

65

12
preceding accumulation and means for sequentially
shifting all of said K feedback shift registers and said
operand shift register and successively accumulating
the interim results in said result register a total of L
times to perform a complete hashing operation.

8. A hashing generator as set forth in claim 7 includ
ing means operable during a "select' node of operation
of the hashing generator for preloading the K feedback
shift registers which includes means for gating the con
plete contents of the hashing constant register into the
first feedback shift register and the contents of the i-th
feedback shift register into the (i-1)-th feedback shift
register and for selectively causing each of said feed
back shift registers to shift L bit positions with respect
to its adjacent feedback shift register.

9. A hashing generator as set forth in claim 8 wherein
each of said feedback shift registers comprises bits des
ignated 0, 1, 2 . . . N-1 and means for shifting the i-th
bit into the (i-1)-th bit position and also exclusive
ORing the bit in position N-1 into those bit positions
which represent the coefficient of an irreducible
polymonial of degree N which have a non-zero value
except for bit position 0, and shifting the bit in position
N-1 directly into bit position 0.

:k xx ck e ck

	Method and Apparatus for Performing Hashing Operations using Galois Field Multiplication
	Recommended Citation

	1498418522580579786-04538240

