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Sixteenth International Specialty Conference on Cold-Formed Steel Structures 
Orlando, Florida USA, October 17-18,2002 

FINITE ELEMENT MODELLING OF STAINLESS STEEL COLUMNS WITH 

VARIATION IN MECHANICAL PROPERTIES 

M.Macdonald1 and J.Rhodes2 

SUMMARY 

This paper describes the results obtained from a finite element investigation into the column 

capacity of Type 304 stainless steel column members of lipped channel cross-section. Stress

strain curves derived from tests were incorporated into non-linear finite element analyses of 

eccentrically loaded stainless steel columns. The results obtained are compared with test results 

on stainless steel channel columns with the same properties and dimensions, and also with design 

code predictions. 

INTRODUCTION 

The mechanical properties of stainless steels are significantly different from those of carbon steel. 

Stainless steels display a pronounced response to cold working resulting in anisotropic, non

linear stress-strain behaviour and low proportional limits. The material properties of various 

stainless steels have been thoroughly investigated since the 1960s by a number of investigators, 

e.g. refs. [1], [2], [3], [4]. It has been generally concluded that the stress-strain behaviour of 

stainless steels can be best described by the Ramberg-Osgood model [5], and Hill's [6] modified 

form of the Ramberg-Osgood equation is used in design specifications. 

The main design specification for cold formed stainless steel members in the USA is the ASCE 

specification [7] and in Europe, Eurocode 3: Part 1.4 [8] has been recently developed and is still 

under examination. The two codes use different approaches when dealing with the mechanical 

properties ot the material. The ASCE code employs the modified form of the Ramberg-Osgood 

model to describe the stress-strain behaviour of a material, whereas the Eurocode relies for most 

purposes on the specification of a linear stress-strain law, with the yield strength taken as the 

0.2% proof stress. In three recent publications refs. [9], [10], a comparison of the Eurocode and 

ASCE code load capacity predictions for lipped channel columns is illustrated. The simpler 

Eurocode analysis has been found to give reasonable estimates of concentrically loaded column 

1 Senior Lecturer, School of Engineering, Science and Design, Glasgow Caledonian University, Scotland. 

2 Professor, Department of Mechanical Engineering, University of Strathclyde, Glasgow. Scotland. 
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strength without taking account of the non-linearity of the stress-strain curve. As part of a 

previous investigation ref. [11], a series of tensile tests were carried out on coupons Gut from 

stainless steel lipped channel sections, and also on full sections, and the stress-strain 

characteristics are examined in this paper and incorporated into a non-linear finite element 

analysis. 

MECHANICAL PROPERTIES OF STAINLESS STEEL LIPPED CHANNEL MEMBERS 

In the formation of a profiled section, the cold working occurs in localised areas, with the 

material at the bends being strain hardened. Therefore the properties of the material vary 

throughout the cross-section where at the formed bends, higher yield and tensile strengths exist, 

leading to a more complex stress-strain relationship for cold formed members, and in partiCUlar, 

for stainless steel members. The level of increase of both yield and tensile strength is dependent 

on the ratio of corner radius to material thickness (r/t). The cold formed lipped channels under 

investigation are of stainless steel, of cross-sections with small web, flange and lip dimensions 

and are considered to be thick and hence four corner bends are formed with small rlt ratios (<1). 

These four corners wilI have an effect on the stress-strain response of the material obtained from 

a full section test, which could then be compared to that obtained for virgin material from a 

standard tensile test. Also, most commercially available finite element programs allow for a non

linear analysis and hence the inclusion of the actual stress-strain data obtained from tensile testing 

and from existing theories. 

The ASCE design specification adopts the modified form of the Ramberg-Osgood formula given 

by equation (1). It is a three-parameter equation for expressing the relationship between the stress 

and strain for stresses up to a value slightly greater than the yield strength of the material. 

(I) 

where e = unit strain 

o = unit stress (N/mm2) 

E = modulus of elasticity (N/mm2) 

K and n are constants for a given curve, which are evaluated through two secant yield strength 

values for slopes of O.7E and O.85E. Equation (1) was modified by HilI [6], and, instead of using 

secant yield strengths, K and n can be evaluated in terms of two yield strength values: (i) OJ at an 

offset eJ; (ii) 02 at an offset e2. 
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Using the most common offset of 0.002 for the yield stress (<12) and assuming that the modulus of 

elasticity E is equal to the initial value Eo, equation (1) becomes: 

E=~+O.OO',( ~Jn 
Eo 1uy (2) 

The ASCE design code makes use of this modified equation 2, and the three points on the stress

strain curve are defined as: (i) the origin; (ii) the point of 0.2% proof stress; (iii) another offset 

strength (e.g. 0.01 %). If these points are substituted into equation (2), then on' can be evaluated. 

The term on' is referred to in the ASCE design code as the plasticity factor. The accuracy of the 

above method is largely based on how well the analytical equation fits the stress-strain 

relationship of the material. The code lists for particular grades of stainless steel, tables of yield 

stress, tangent modulus and plasticity factors. 

The results obtained for the stress-strain relationship from both virgin material and full section 

tensile tests will be used for comparison with the ·results obtained from the above ASCE 

Ramberg-Osgood approach and by a trial and error 'best fit' method using the experimental 

stress-strain curves. These will then be incorporated into a non-linear finite element analysis of 

eccentrically loaded stainless steel columns. 

LOAD CAPACITY OF STAINLESS STEEL LIPPED CHANNEL COLUMNS 

SUBJECTED TO COMBINED BENDING AND AXIAL COMPRESSION LOADING 

Rhodes et. al. [9], [10], investigated both concentric and eccentric loading of cold formed 

stainless steel lipped channel section columns. The findings showed that the relevant design 

codes [7], [8] provided very accurate predictions of load capacity for the concentric loading case 

using both virgin and full section material properties when compared to experimental results. A 

finite element analysis also produced a very accurate correlation to both the experimental results 

and the design code predictions. However, for shorter length eccentrically loaded columns, the 

design codes were very conservative in their prediction of load capacity using both virgin and full 

section material properties. It was concluded that the design codes' interaction formulae wen; 

inadequate in predicting the load capacity of short-to-medium length columns. The ASCE [7] 

interaction formula to determine the axial strength Pu is given by equation (3). 

(3) 
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where Pn = O.85AFn (N) 

F/xx 
M = -- = moment capacity of the cross section (Nmm) n y 

2 

Pe = 1C ~~l xx = Euler buckling capacity (N) 

e = distance from centroid (eccentricity) = 8 mm 

and all other terms are as defined in ref. [9]. 

The Eurocode (8) interaction formula to determine the axial strength Nsd is given by equation (4). 

where e = distance from centroid (eccentricity) = 8 mm, 
. fl = moment capacIty = y _ xx (Nmm), 

y 

and all other terms are as defined in ref. [9]. 

(4) 

Both equations produced very conservative estimates of load capacity and an attempt to improve 

the interaction formulae was proposed by Macdonald ref. [12]. This modification to the 

interaction formulae involved replacing the linear moment capacity Mn with the true moment 

capacity of the lipped channel cross-section Mexp obtained from bending tests. Hence the ASCE 

interaction formula was modified as given by equation (5). 

(5) 

The Eurocode interaction formula was modified as given by equation (6). 

(6) 
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In both equations (5) and (6), Mexp is the cross-section true moment capacity and the 0.2% proof 

stress is taken from the full section tensile test results, and all other terms are defined in ref. [12] 

The results obtained from equations (5) and (6) for the load capacity of the eccentrically loaded 

columns are shown in Table 4. 

FINITE ELEMENT ANALYSIS 

Finite element analysis results for concentrically loaded columns showed excellent correlation 

with both test results and design code predictions as shown by Figures 3 and 4 for THN and THK 

sections respectively. A finite element analysis was performed using the ANSYS software 

package to determine the load capacity of eccentrically loaded columns. Two types of buckling 

analyses are available within the ANSYS package - eigenvalue analysis and non-linear analysis. 

Both types of analyses were used, however, the eigenvalue analysis was used only to verify that 

the finite element model boundary conditions (i.e. column pin ends and eccentric loading) were 

accurate, as this type of analysis takes no account of material non-linearity. A full non-linear 

analysis was conducted using shell elements (ANSYS SHEIL181) which are four-noded 

elements with six degrees of freedom at each node, i.e. translations in x, y and z directions, and 

rotations about x, y and z axes. 

The non-linear material properties of the stainless steel were defined in ANSYS using the initial 

elastic modulus, Poisson's ratio and stress-strain data obtained from: (i) coupon tensile tests on 

material cut from section webs; (ii) full-section tensile tests; (iii) ASCE (Ramberg-Osgood) 

approach (varying 'n' factors); (iv) 'best fit' stress-strain curves. 

The non-linear solution breaks the load up into a series of load increments that can be applied 

over several load steps. At the completion of each incremental solution, the program adjusts the 

stiffness matrix to reflect the non-linear changes in the structural stiffness before proceeding to 

the. next load increment. For a non-linear buckling analysis to be accurate using ANSYS, it is 

necessary to set an initial imperfection in the structure being modelled. This was achieved by 

modelling a mid-span deflection which produced a very large radius of curvature for the lipped 

channel columns which would approximate any actual imperfections. 

A parametric model was constructed by defining positions of keypoints to allow for easy 

alterations to the model for the two different column lipped channel section thicknesses and for 

the variation in column length. A half-model of a column was modelled using appropriate 

symmetry commands that helped to reduce the considerable computer processing time. The 

boundary conditions were applied and the results are shown in Table 5 for THN columns and 

Table 6 for THK columns. 
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Figure 1 shows a typical cross-section of the cold formed stainless steel lipped channel member 

under investigation. The member is commercially available and was supplied in two different 

sizes of cross-section and all the specimens were accurately measured at a number of points, with 

the values averaged to obtain the finished dimensions, and all calculations were based on mid-line 

dimensions. The details are given in Table 1. In order to determine the material properties of the 

sections, tensile tests were set-up where the applied load and gauge specimen elongation were 

recorded continuously until fracture of the specimen occurred. The measured load and elongation 

were normalised to give a stress-strain relationship. Due to the anisotropy of stainless steel, a full 

analysis of the material properties would require tensile tests in the longitudinal and transverse 

directions, as well as compression tests in the same directions. Indeed, provision is made in the 

ASCE design code to enable use to be made of them in specific applications. However, 

compression tests were not carried out as there would be difficulty in establishing the true 

material properties of the material due to likely buckling effects. Also, transverse direction tensile 

tests could not be carried out because of the limitations in the geometry of the sections. Hence 

tensile testing was limited to the longitudinal direction. 

All tensile tests were carried out in accordance with BSENlO002-1 [13]. Standard tensile tests 

were performed to ascertain the material properties of the stainless steel for the 2 different 

thicknesses. Coupons were cut from the webs of the columns and tested to obtain the 0.2% proof 

stress and the modulus of elasticity. 

Tensile tests were also performed on full sections to include the effects of the cold formed 

corners and from these tests, the 0.2% proof stress and the initial modulus of elasticity were 

determined. 

For the standard coupons, a total of three thin (THN) specimens and six thick (THK) specimens 

were tested and the average results were noted. For the full section tests, two THN and two THK 

specimens were tested and again, the average results were noted. It should be mentioned here that 

the thick sections have wider webs than the thin sections, and in the graphs reference is often 

made to 'w' sections (which are THK specimens) and 'T' sections (THN specimens). 

COMPRESSION TESTS 

In the experimental investigation a series of compression tests to failure were made on stainless 

steel columns of the lipped channel cross-section as described above. The specimen parameters 

investigated were as follows: 
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1. Column lengths varied from 222 mm to 1222 mm in increments of 100 mm. (The 

slenderness ratios varied from 42 to 234 for the THN sections and from 38 to 207 

for the THK sections. 

2. Two thicknesses of lipped channel section, of small cross-section, were examined. 

The channels of 2.43 mm thickness were denoted 'THN' while those of 3.05 mm 

thickness were denoted 'THK'. 

3. Thirty-three tests to failure (2 sets of THN columns and 1 set of THK columns) 

were carried out with the loading applied 8 mm eccentric to the centroid of the 

cross-section. 

Each length of column tested was cut to the specified length and then milled flat at each end to 

avoid any possible gripping problems. The end grips were designed such that they would hold the 

ends of the column and allow the loading to be applied at the required eccentricity through knife 

edges. The specimens were tested using a Tinius Olsen electro-mechanical testing machine, with 

the column vertical displacement and mid-span horizontal deflection measured during the tests 

using displacement transducers. Figure 2 shows a schematic diagram of the column test 

configuration. 

RESULTS 

Tensile tests 

All results obtained from tensile tests to establish vlrgm material and full cross-section 

mechanical properties are detailed in ref. [11] and are shown in Table 2. 

The results obtained for the plasticity factors n from the ASCE design code, i.e. the modified 

form of the Ramberg-Osgood equation given by equation (2), are also detailed in ref. [11] and 

shown in Table 3. Also shown in Table 3 are the plasticity factors obtained from a comparative 

plots/trial and error (,best fit') process using the stress-strain curves obtained from the tensile 

tests, as reported in ref. [11]. 

Compression tests 

Figures 3 and 4 show the graphs of Load Capacity v. Column Length for concentrically loaded 

THN and THK section columns respectively, showing curves for the test results, the Eurocode 
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and ASCE design code predictions (for both virgin material properties and full section properties) 

and also finite element predictions, and are detailed in ref. [12]. 

The results obtained for the load capacity of eccentrically loaded lipped channel section columns 

are shown in Table 4. Also shown are the predictions obtained from the design codes based on 

virgin and full section material properties, and on the modification to the design code interaction 

formulae given by equations (5) and (6). 

Figures 5 and 6 show the graphs of Load Capacity v. Column Length for eccentrically loaded 

THN and THK section columns respectively, showing curves for the test results and the 

Eurocode, ASCE, modified Eurocode and modified ASCE design code predictions. 

Finite element analysis 

Tables 5 and 6 show the results for column load capacity obtained from finite element modelling 

of eccentrically loaded, cold formed, stainless steel lipped channel THN and THK columns 

respectively, incorporating the four different stress-strain curves into the non-linear analyses. 

OBSERVATIONS 

Figures 3 and 4 show the results obtained for the load capacity of concentrically loaded THN and 

THK stainless steel lipped channel section columns from tests, design codes (using virgin 

material properties and full section properties) and from finite element analysis. The design code 

and finite element predictions show excellent correlation with the test results for all but the 

shortest of the THK columns as was reported in ref. [12]. 

Figures 5 and 6 show the results obtained for the load capacity of eccentrically loaded THN and 

THK stainless steel lipped channel section columns from tests, design codes (using virgin 

material properties and full section properties) and from modifications to the design codes as 

described by equations (5) and (6). All design code predictions show conservatism in prediction 

of load capacity for the shorter range of columns with improvements gained when full section 

properties are used and further improvements are gained in using the modified forms. The best 

correlation obtained was for THN section columns where the modified design codes predicted 

accurate load capacities for all column lengths. For the THK section columns, the modified 

design codes provided accurate predictions of load capacity for all but the shortest columns. 

Figures 7 and 8 show the results obtained for the load capacity of eccentrically loaded THN and 

THK stainless steel lipped channel section columns from tests and from finite element analysis 

using the various stress-strain curves described earlier. The predictions of the finite element 

analysis show an excellent correlation to the test results and a real improvement on the 
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predictions of the design codes. For the THK section columns shown in Figure 8, the stress-strain 

curve obtained from the full section tensile test and incorporated into the non-linear finite element 

analysis shows a curve that is almost identical to the test curve. However, for both graphs, any 

differences between finite element predictions and test results are very slight and occur mainly 

for very short length columns. 

CONCLUSIONS 

It has been shown in this paper that finite element analysis can be used with a high level of 

confidence in predicting the load capacity of concentrically and eccentrically loaded cold formed 

stainless steel, short-to-medium length columns of lipped channel section. This has been shown 

to be true for various stress-strain curves including that obtained from virgin material tensile tests. 

Using the virgin material properties in Eurocode 1.4, and the ASCE design code by using the 

modified Ramberg-Osgood model, leads to very conservative estimations of load capacity, 

particularly for eccentrically loaded columns. 
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Figure 2: Schematic Diagram of Eccentrically-Loaded Column Test 
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TABLE! 

Average Dimensions of Lipped Channel Cross-Sections 

Section Web, Flange, Lip Thickness, Radius, Radius, 
Ref: bl,mm) b2, (mm) b3, (mm) t, (mm) rl, (mm) r2, (mm) 

THN (T) 28.00 14.88 7.45 2.43 1.10 1.10 
THK (W) 38.00 17.19 9.99 3.05 0.735 2.255 

TABLE 2 

Tensile Test Results: Virgin Material and Full Section (FS) Mechanical Properties 

Material Thickness Av. Virgin Av. Virgin Av.FS Av.FS 
Ref: t 0.2%P.S. UTS 0.2%P.S. UTS 

(mm) (N/mm2) (N/mm2) (N/mm2) (N/mm2) 

THN (T) 2.43 480 553 520 689 
THK (W) 3.05 460 541 540 744 

TABLE 3 

Plasticity Factors 

Tensile n n 
Test (ASCE) (Best Fit) 

Coupon - THN (T) 3.80 6.22 
Coupon - THK (W) 4.66 7.50 

Full Section - THN (T) 5.02 6.65 
Full Section - THK (W) 3.62 6.00 
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TABLE 4 

Eccentrically Loaded THN and THK Section Columns: Test Results and Design Code 

Predictions 

Specimen Column Test ASCE ASCE Euro.1.4 Euro.1.4 ASCE Euro.1.4 

Ref. Length Load (Virgin) (FS) (Virgin) (FS) (Mexp,FS) (Mexp,FS) 

L Pexp Pn Pn Nb.Rd Nb.Rd Pn Pn 

(mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 

THNI 1222 3.261 2.739 2.774 3.270 3.326 3.078 3.676 

THN2 1122 3.691 3.141 3.186 3.709 3.780 3.605 4.279 

THN3 1022 4.352 3.638 3.695 4.230 4.322 4.255 5.000 

THN4 922 4.954 4.258 4.332 4.852 4.972 5.116 5.977 

THN5 822 6.182 5.042 4.141 5.595 5.753 5.976 6.932 

THN6 722 7.402 6.055 6.188 6.478 6.690 7.465 8.442 

THN7 622 9.218 7.379 7.567 7.520 7.804 9.084 10.000 

THN8 522 11.457 9.112 9.404 8.719 9.103 12.209 12.500 

THN9 422 14.759 11.238 11.753 10.033 10.547 15.538 15.000 

THNlO 322 18.703 13.476 14.278 11.433 11.995 19.767 18.210 

THNII 222 24.299 15.687 16.716 13.778 14.593 24.143 21.514 

THKl 1222 6.933 5.620 5.806 6.403 6.687 6.666 7.143 

THK2 1122 7.771 6.421 6.654 7.215 7.572 8.023 8.352 

THK3 1022 9.117 7.397 7.687 8.166 8.622 8.714 9.524 

THK4 922 10.990 8.616 8.994 9.283 9.870 10.400 11.473 

THK5 822 13.160 10.132 10.623 10.591 11.354 11.905 13.429 

THK6 722 15.177 12.068 12.730 12.109 13.110 15.253 16.179 

THK7 622 18.388 14.537 15.438 13.844 15.164 18.571 19.048 

THK8 522 22.749 17.591 18.884 15.761 17.501 23.969 23.441 

THK9 422 31.886 20.775 22.804 17.738 20.013 29.048 27.619 

THKI0 322 40.853 23.799 26.826 20.370 22.834 35.888 32.933 

THKll 222 53.595 26.767 30.949 23.609 27.043 42.143 37.619 
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TABLES 

Eccentrically Loaded THN Section Columns: Test Results and Finite Element Predictions (PEA) 

Specimen Column PEA PEA PEA PEA Test 

Ref. Length (Virgin) (FS) (n=3.80 - ASCE) (n=6.22 - Best Fit) Load 

L Pvir Prs p .... Pbestfil Pexp 

(mm) (kN) (leN) (kN) (kN) (leN) 

THNI 1222 2.900 3.358 3.000 3.000 3.261 

THN2 1122 3.375 3.878 3.606 3.500 3.691 

THN3 1022 4.000 4.598 4.000 4.350 4.352 

THN4 922 4.750 5.400 4.850 4.850 4.954 

THN5 822 5.625 6.458 5.800 6.302 6.182 

THN6 722 7.125 7.500 7.000 7.500 7.402 

THN7 622 8.700 9.500 8.700 9.305 9.218 

THN8 522 10.900 11.858 10.850 11.350 11.457 

THN9 422 14.405 15.500 14.350 14.700 14.759 

THNI0 322 19.000 20.350 19.000 19.350 18.703 

THNll 222 25.128 27.000 26.700 25.710 24.299 

TABLE 6 

Eccentrically Loaded THK Section Columns: Test Results and Finite Element Predictions (PEA) 

Specimen Column PEA PEA PEA PEA Test 

Ref. Length (Virgin) (FS) (n=4.66-ASCE) (n=7.50 - Best Fit) Load 

L Pvir P's p",. Pbestfil Pexp 

(mm) (kN) (kN) (kN) (kN) (kN) 

THKl 1222 6.500 6.800 6.500 6.900 6.933 

THK2 1122 7.800 8.000 7.800 8.000 7.771 

THK3 1022 8.900 9.000 8.900 9.400 9.117 

THK4 922 10.500 10.800 10.500 10.900 10.990 

THK5 822 12.454 12.000 12.500 13.282 13.160 

THK6 722 14.900 15.600 14.900 15.800 15.177 

THK7 622 18.000 19.000 18.000 19.141 18.388 

THK8 522 22.500 24.000 22.500 23.400 22.749 

THK9 422 28.500 30.900 28.500 28.900 31.886 

THKI0 322 36.000 40.180 36.500 36.450 40.853 

THKll 222 45.978 53.000 47.800 46.500 53.595 
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Figure 4: Graph of Load Capacity v. Column Length: Concentric Loading-THK Sections 
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Figure 5: Graph of Load Capacity v. Column Length: Eccentric Loading-THN Sections 
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Figure 6: Graph of Load Capacity v. Column Length: Eccentric Loading-TIlK Sections 
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Figure 7: Graph of Load Capacity v. Column Length: Eccentric Loading-THN Sections 
(TestIFinite Element Analysis) 
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Figure 8: Graph of Load Capacity v. Column Length: Eccentric Loading-THK Section 
(TestlFinite Element Analysis) 
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