
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Business and Information Technology Faculty
Research & Creative Works Business and Information Technology

01 Jan 2022

Information Systems Analysis and Design: Past Revolutions, Information Systems Analysis and Design: Past Revolutions,

Present Challenges, and Future Research Directions Present Challenges, and Future Research Directions

Keng Siau
Missouri University of Science and Technology, siauk@mst.edu

Carson Woo

Veda C. Storey

Roger H.L. Chiang

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/bio_inftec_facwork/444

Follow this and additional works at: https://scholarsmine.mst.edu/bio_inftec_facwork

 Part of the Technology and Innovation Commons

Recommended Citation Recommended Citation
Siau, K., Woo, C., Storey, V. C., Chiang, R. H., Chua, C. E., & Beard, J. W. (2022). Information Systems
Analysis and Design: Past Revolutions, Present Challenges, and Future Research Directions.
Communications of the Association for Information Systems, 50(1), pp. 835-856. Association for
Information Systems.
The definitive version is available at https://doi.org/10.17705/1CAIS.05037

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Business and Information Technology Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/bio_inftec_facwork
https://scholarsmine.mst.edu/bio_inftec_facwork
https://scholarsmine.mst.edu/bus_inftec
https://scholarsmine.mst.edu/bio_inftec_facwork/444
https://scholarsmine.mst.edu/bio_inftec_facwork?utm_source=scholarsmine.mst.edu%2Fbio_inftec_facwork%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=scholarsmine.mst.edu%2Fbio_inftec_facwork%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17705/1CAIS.05037
mailto:scholarsmine@mst.edu

Communications of the Association for Information Systems Communications of the Association for Information Systems

Volume 50 Article 33

6-27-2022

Information Systems Analysis and Design: Past Revolutions, Information Systems Analysis and Design: Past Revolutions,

Present Challenges, and Future Research Directions Present Challenges, and Future Research Directions

Keng Siau
City University of Hong Kong

Carson Woo
University of British Columbia

Veda C. Storey
Georgia State University

Roger H. L. Chiang
University of Cincinnati

Cecil E. H. Chua
Missouri University of Science and Technology

See next page for additional authors

Follow this and additional works at: https://aisel.aisnet.org/cais

Recommended Citation Recommended Citation
Siau, K., Woo, C., Storey, V. C., Chiang, R. H., Chua, C. E., & Beard, J. W. (2022). Information Systems
Analysis and Design: Past Revolutions, Present Challenges, and Future Research Directions.
Communications of the Association for Information Systems, 50, pp-pp. https://doi.org/10.17705/
1CAIS.05037

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for
inclusion in Communications of the Association for Information Systems by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/cais
https://aisel.aisnet.org/cais/vol50
https://aisel.aisnet.org/cais/vol50/iss1/33
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol50%2Fiss1%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17705/1CAIS.05037
https://doi.org/10.17705/1CAIS.05037
mailto:elibrary@aisnet.org%3E

Information Systems Analysis and Design: Past Revolutions, Present Challenges, Information Systems Analysis and Design: Past Revolutions, Present Challenges,
and Future Research Directions and Future Research Directions

Authors Authors
Keng Siau, Carson Woo, Veda C. Storey, Roger H. L. Chiang, Cecil E. H. Chua, and Jon W. Beard

This special sections is available in Communications of the Association for Information Systems:
https://aisel.aisnet.org/cais/vol50/iss1/33

https://aisel.aisnet.org/cais/vol50/iss1/33

C

ommunications of the

A

I

S

 ssociation for nformation ystems

Special Section DOI: 10.17705/1CAIS.05037 ISSN: 1529-3181

Volume 50 Paper 37 pp. 835 – 856 June 2022

Information Systems Analysis and Design:
Past Revolutions, Present Challenges, and Future
Research Directions

Keng Siau

City University of Hong Kong

 Carson Woo

University of British Columbia

Veda C. Storey

Georgia State University

 Roger H.L. Chiang

University of Cincinnati

Cecil E.H. Chua

Missouri University of Science and Technology

 Jon W. Beard

Iowa State University

Abstract:

Systems Analysis and Design (SAND) is undoubtedly a pillar in the field of Information Systems (IS). Some
researchers have even claimed that SAND is the field that defines the Information Systems discipline and is the core
of information systems. The past decades have seen the development of Structured SAND methodologies and
Object-Oriented Methodologies. In the early 1990s, key players in the field collaborated to develop the Unified
Modeling Language and the Unified Process. Agile approaches followed, as did other dynamic methods. These
approaches remain heavily employed in the development of contemporary information systems. At the same time,
new approaches such as DevOps and DevSecOps continue to emerge. This paper curates these trends in SAND. It
reviews past and present SAND research, discusses current challenges, and provides insights that can assist SAND
researchers in identifying future SAND research streams and important future research directions.

Keywords: Abstraction, Agile, Conceptual Modeling, DevOps, Information Systems Research, Internet of Things,

Modeling Methods, Systems Analysis and Design.

This manuscript underwent editorial review. It was received 9/20/2020 and was with the authors for ten months for two revisions.
Jacob Tsai served as Associate Editor.

Communications of the Association for Information Systems 836

Volume 50 10.17705/1CAIS.05037 Paper 37

1 Introduction

Systems Analysis and Design (SAND) consists of methods for studying and understanding aspects of the
real world that should be captured and represented in an information system. SAND is an indispensable
foundation for information systems development (Bajaj et al., 2005) because it deals with the business-
oriented and technical aspects of the problem environment and, when done well, successfully identifies
and addresses relevant behavioral, cognitive, economic, organizational, and social issues. A variety of
methods have evolved and developed in over six decades of computerization and automation, ranging
from very structured approaches to more iterative, incremental, and adaptable techniques.

The successful implementation of information systems depends heavily on a thorough and well-executed
SAND effort. However, this is much more difficult than anticipated! Information system (IS) failures have
remained a common occurrence during the development of information systems (Sardjono &
Retnowardhani, 2019; Odtadmin, 2019; Shen et al., 2018; Siau & Rossi, 2011; Siau et al., 2010; Avison &
Fitzgerald, 2006; Siau & Tan, 2005c; Hardgrave et al., 2003; Schmidt, et al. 2001; Smith et al., 2001; Siau
et al., 1997). The Standish Group, for example, reports that 83.9% of IT projects partially or completely
fail, with the top factor in failed projects being incomplete requirements (Odtadmin, 2019).

Several major revolutions in SAND have occurred over the past decades. They include the emergence of
concepts such as Flow Charts, Data Flow Diagrams (DFD), Entity Relationship Diagrams (ERD), Object-
Oriented modeling (OO), Unified Modeling Language (UML), Unified Process (UP), Agile Modeling (AM),
and DevOps. One revolution involves the movement from structured systems development to an object-
oriented approach (Armstrong & Hardgrave, 2007) triggered by a more-or-less wholesale move towards
object-oriented programming in the 1980s. Another revolution is forward engineering, whereby models
developed can be automatically translated into programming code. While the goal of complete executable
modeling remains tantalizingly elusive, progress has made it possible, in some cases, to make more than
40-50 percent of the modeled code executable. The application of techniques from artificial intelligence
may increase the degree of automation. Advances in systems development have improved our ability to
reuse codes rather than always writing new codes. Component-based software engineering is another
step in the SAND revolution (Zhao & Siau, 2002). Web services or service-oriented architectures (SOA)
(Erickson & Siau, 2008) support application development by combining services. In addition, new ideas
and emphases such as Agile (Erickson et al., 2005), DevOps, extreme programming, agent-oriented
approach, and cognitive modeling (Siau & Tan, 2005a, 2005b; Wei et al., 2006), within the context of
SAND have assumed increasing importance for academics and practitioners. Continuing research in
these areas, especially for large systems development projects and dynamic and fast-evolving web
services, remains a high priority. The ultimate goal is to enhance systems development success.

This paper curates the revolutions within the area of systems analysis and design. In addition to providing
the historical development of SAND, we chronicle and analyze the SAND methodologies. Doing so
enables us to demonstrate how SAND methodologies have evolved to keep pace with advancing
information technologies, and we expect this trend to continue. We also identify patterns that SAND
methodologies exhibit: a higher-level abstraction of concepts; and business or ecosystem abstraction.

The remainder of the paper is organized as follows. First, the paper categorizes the different SAND
revolution and evolution eras and presents the key SAND methodologies in each. Second, in reporting on
the main developments within each era, the paper drills down to highlight the contextual circumstances
that prompted and/or resulted in such revolutions and evolutions. Third, the paper discusses some of the
current challenges facing SAND. Finally, the paper presents future research directions for SAND.

2 Classification Schemes for Curating and Research

To comprehend the revolutions and evolution of the concepts and methodologies of SAND, we organize
and curate SAND development over six decades from several perspectives, as reviewed below.

2.1 Systems Development Concepts

Hirschheim and Klein (1989) presented the concept of systems development paradigmatic thinking by
creating the "four paradigms of systems development." They describe the first paradigm as functionalism,
in which systems development is driven from the outside, using formal and well-defined plans and tools.
The elements of each system are viewed as physical entities, and the structured methodologies are

837

Information Systems Analysis and Design:

Past Revolutions, Present Challenges, and Future Research Directions

Volume 50 10.17705/1CAIS.05037 Paper 37

examples of this paradigm. Their second paradigm is "social relativism," which views systems
development as happening from the inside. Entities and structures are considered to be changing,
dynamic, or evolutionary. Various ethnographic systems development methodologies are examples of this
paradigm. The third paradigm is radical structuralism, which emphasizes the need to transcend the
limitations placed on existing social and organizational arrangements. This paradigm underlines the
structure and analysis of economic power relationships. The last paradigm, neohumanism, seeks radical
change, emancipation, and potentiality. This paradigm stresses the role that different social and
organizational forces play in understanding change, as well as their importance in the information systems
development process.

Hirschheim and Klein's (1989) concept of systems development paradigmatic thinking was further
developed in Iivari, Hirschheim, and Klein's (2001) framework that consists of paradigms, approaches,
methodologies, and techniques. In the social sciences, the term "paradigm" is usually reserved to describe
the basic assumptions underlying coexistent theories (Burrell & Morgan, 1979). Within the context of
SAND, examples of paradigms are Waterfall and Plug-and-Play. An approach can be considered in terms
of the basic principles, goals, and concepts that anchor how systems development is understood and
developed. Examples are the Structured Approach and Object-Oriented Approach. Methodologies, which
are composed of specific procedures, are closely related to the more general and goal-driven approaches
such as the Unified Process. Methodologies are used to guide information systems development. Finally,
techniques can be considered as "well-defined sequence(s) of basic operations." Examples of techniques
are a Class Diagram and Use Case Diagram. If the techniques are properly completed, they can lead to
specific (and measurable) results. One issue with this framework is that it is often not easy to clearly
distinguish between paradigms, approaches, methodologies, and techniques. Most researchers and
practitioners use these definitions loosely.

2.2 Systems Development Methodologies

In this paper, we adopt a more commonly used definition of methodologies: a methodology is a systematic
approach to information systems planning, analysis, and design (Rowley, 1993; Avison & Fitzgerald,
2006). Methodologies offer a series of phases and steps through which a project must proceed and a
series of tools and techniques to assist in analysis and design (Rowley, 1993).

Another way to classify SAND research is to consider the underlying philosophies of the approaches,
methodologies, or techniques. Hirschheim, Klein, and Lyytinen (1995) distinguished between ontological
and epistemology perspectives. Ontologies are ways to classify the world in terms of its unchangeable,
foundational, and universal structures. The world of ontologies can be further decomposed into realism
and nominalism. Whereas realism proposes that a set of absolute laws and structures underlies the
universe, the nominalism perspective posits that there is no absolute set of laws and structures and that
those that exist are created by humans via social networks and structures. The Bunge-Wand-Weber
(BWW) ontology is an example of philosophy in the SAND field (Wand & Weber, 1993, 2017; Burton-
Jones et al., 2017; Lukyanenko et al., 2021).

The epistemology perspective of the world proposes to set a basis for what constitutes knowledge, how
new knowledge is acquired, and what investigations into the world might be as well as how they should be
conducted. The two endpoints of the epistemology dimension are Positivism and Interpretivism. Positivism
proposes that the scientific method can be used to explain relationships between entities in terms of their
causes and to discover the universal truth underlying the world. Interpretivism assumes that there are no
absolute truths.

Avison and Fitzgerald (2006) classified systems development methodologies into different time-based
eras, in which popular methodologies reflected the state of the art of systems development within the
general time frame or era. They described the 1960s and 1970s as the Pre-Methodology Era. In the Pre-
Methodology Era, attention was placed on technical issues and hardware limitations. Analyzing the
business needs underlying the development effort was nearly always secondary during this era. The Early
Methodology Era was the period between the late 1970s and early 1980s. The Software/Systems
Development Life Cycle (SDLC) is a well-known approach of this time during which systems development
shifted from hardware and technical constraints to the process itself. Although the process was receiving
more attention, identifying business needs was still not receiving adequate emphasis and focus. The
Methodology Era, encompassing the late-1980s through the late-1990s, saw a proliferation of
methodologies in a variety of genres. The methodologies were (more or less) aimed at ameliorating the
deficiencies of SAND approaches in the earlier eras. Finally, from the late-1990s to the present,

Communications of the Association for Information Systems 838

Volume 50 10.17705/1CAIS.05037 Paper 37

developers have gradually realized that strict adherence to any given methodology, no matter how
efficacious it might have been in the portrayal of other projects, does not guarantee the success of the
next project in which it is used. This is the start of the Post-Methodology Era.

2.3 Classification Scheme

Avison and Fitzgerald's (2006) time-based analysis of information systems analysis and design
methodologies provides a good outline to understand the revolutions and evolutions of the methodologies
over time. In this research, we use Avison and Fitzgerald's (2006) time-based eras as one dimension of
our curation, with Iivari, Hirschheim, and Klein's (2001) framework consisting of paradigms, approaches,
methodologies, and techniques as part of the second dimension. Several other important features are
added to the second dimension to provide the Contextual/Situational factors.

Our classification is significantly different from Avison and Fitzgerald's (2006) in that we added a second
dimension, the Contextual/Situational (i.e., paradigms, approaches, methodologies, techniques, IT
focuses, IT impacts, IT scope, etc.) to their time-based dimension (Pre Methodology era, Early
Methodology era, Methodology era, and Post Methodology era). Using Avison and Fitzgerald's (2006)
time-based eras as one dimension and expanding on Iivari, Hirschheim, and Klein's (2001) framework as
a second dimension helps to distinguish the progress of the SAND field based on various
Contextual/Situational factors. The two-dimensional table enables us to document the accumulation of
knowledge at a finer level and facilitates the identification of future research directions.

Further, instead of having one Methodology era, we divide the Methodology era into two separate eras – a
Methodology Proliferation era and a Methodology Standardization era. In Avison and Fitzgerald's (2006)
classifications, they mentioned that "Methodologies can be classified into several movements. The first
are those methodologies designed to improve upon the traditional Waterfall model. The second movement
is the proposal of new methodologies that are somewhat different to the traditional Waterfall model (and
from each other)" The term "YAMA"—Yet Another Modeling Approach—was coined to describe the
proliferation of modeling methodologies during the Methodology Proliferation era. Nevertheless, the
Methodology era also saw the development of standards that synthesized and integrated many
approaches, methodologies, and techniques developed before and during the era (e.g., Unified Modeling
Language, Business Process Model and Notation). Because these standards integrate the ideas of the
Methodology era, it is more meaningful to classify them as a separate era (i.e., the Methodology
Standardization era) and differentiate it from the era where many different approaches, methodologies,
and techniques were proposed (i.e., Methodology Proliferation era).

Finally, when Avison and Fitzgerald wrote their paper in 2006, they said, "it is not at all clear how [the Post
Methodology era] will pan out" Sixteen years later, we have a lot more to consider and digest. In addition,
newer technologies developed after 2006 (e.g., blockchain and Internet of Things) can potentially disrupt
organizations and societies at a different magnitude than those technologies before 2006. However, the
ad hoc and reactive approach to proposing methodologies (mentioned as a potential trend by Avison and
Fitzgerald (2006)) will not be able to keep up with the pace of new technologies being adopted by
organizations and societies. In this regard, the second dimension used in this paper to complement the
methodological eras dimension by Avison and Fitzgerald becomes critical because it allows us to learn
from the past eras in an organized and systematic manner to identify future research directions.

3 Evolutions of Systems Analysis and Design

This section highlights major benchmarks and trends in SAND. The needs and demands of SAND can be
understood by using a historical timeline of the evolution of the challenges related to developing computer
software and related hardware and networking capabilities,identifying user requirements, and satisfying
information needs. The usage of information systems in organizations and the impact of information
systems on organizational performances affect the revolutions and evolutions of SAND methodologies.

Table 1 summarizes the important methodological approaches that emerged during the different eras of
SAND due to the advancement in technical capabilities and/or developers'experience. Table 1 also
depicts the increased business focus of information systems in organizations as information systems
extended their support from the operational level to the strategic management level and expanded from
intra-organizational systems to inter-organizational systems to social media systems.

839

Information Systems Analysis and Design:

Past Revolutions, Present Challenges, and Future Research Directions

Volume 50 10.17705/1CAIS.05037 Paper 37

Table 1. Eras of Information Systems Analysis and Design Methodologies

 Pre-
Methodology
Era (1960s to
1970s)

Early
Methodology
Era (1970s to
early-1980s)

Methodology
Proliferation
Era (late-1980s
to mid-1990s)

Methodology
Standardization
Era (mid-1990s
to early-2000s)

Post
Methodology
Era (late-1990s
to present)

Paradigm Computational
problems or
Calculations

Centralized,
Waterfall

Decentralized,
Plug-and-play

Decentralized,
Plug-and-play

Dynamic,
Flexibility,
Adaptability

Approaches Hardwired Structured Object-oriented Object-oriented,
Agile

Agile, DevOps,
DevSecOps

Methodologies Documentation,
Algorithm

Software
Development
Life Cycle
(SDLC)

Unified Process Unified Process Scrum, Extreme
Programming

Data/File
Structures

File System Hierarchical,
Network
Database

Relational,
Entity-
Relationship,
Object-oriented

Relational,
Object-oriented

Relational, In
memory,
Vertical, Web-
based, Data
warehouse/Data
lake, NoSQL

Techniques Flowchart ER Model, DFD Object-oriented
methodologies
(e.g., OMT,
OOSE,
FUSION)

UML, BPMN Coarse-grained
conceptual
model

Goals of IT
Systems

Efficiency Effectiveness Effectiveness,
Strategy

Effectiveness,
Strategy,
Value creation

Strategy,
Value creation,
Societal impacts

Information
Technology
Capability Driver

Mainframe
"centralized"
processing

Minicomputer,
mostly
centralized
processing

Microcomputer,
Client-server,
Decentralized,
and Distributed
processing

Client-server,
Decentralized,
and Distributed
processing

Internet, Internet
of Things, Social
Media, Cloud
Computing, Off-
the-shelf
software

Applications and
Information
Focus

Application-
specific

Data and User-
driven

Business and
Knowledge
management
driven

Business and
Knowledge
management
driven

People,
Relationship,
Security, User
experience, and
Data exchange
driven

IT Development
Justification

Return on
investment
(ROI)

Increase
productivity,
Higher-quality
decision

Competitive
advantage,
Strategic
positioning

Competitive
necessity,
Strategic
positioning

Value addition,
Relationship
Enhancement,
Automated
information
interchanged,
Internet as a
platform

IT Development
Scope

Organization Organization,
Group,
Individual

Business
Processes

Business
Processes

Customer,
Employee,
Supplier
ecosystem,
Intelligent
Devices, Inter-
organizational

Communications of the Association for Information Systems 840

Volume 50 10.17705/1CAIS.05037 Paper 37

3.1 Pre-Methodology Era

The concept of SAND dates to the earliest days of computer hardware and software. SAND's origins
emerged from several sources whose ideas were consolidated. The earliest incarnation of SAND
emerged from engineering fields as computer engineering developed and evolved.

Early computer systems were large machines with centralized processing. Initially, these physically large
computers were often special-purpose devices with limited computational capabilities that focused on
specific types of problems, such as complex mathematical or engineering problems and census tabulation
and processing. These computer systems dealt with computationally expensive types of problems with
large numbers or many significant digits, or they focused on business-related types of calculations
(Campbell-Kelly & Aspray, 1996).

During the Pre-Methodology Era, SAND required a detailed understanding of the algorithm. This
requirement was necessary both to logically organize the steps required to solve the problem and also to
'hardwire' (cf. ENIAC) the program into the computer (i.e., physically rewiring the data paths and
computational operations before the program was executed), which required its own set of detailed
knowledge about the logical design of the computer. Once one program was completed, the wiring was
reconfigured as appropriate to set up (i.e., program) for the next procedure, followed by program
execution. Computer operations were essentially one program at a time, as opposed to a set of
interrelated programs (an information system). Thus, flowcharting was a popular technique, and data were
stored as file structures with the program. The areas of emphasis were efficiency for the specific problem
type and the return on investment in terms of cost savings for an organization.

Technology improved rapidly. These types of task-specific machines were soon replaced by general-
purpose computers that were flexible enough to be programmed for almost any type of computation or
calculation. This general-purpose nature added another layer of complexity that required an additional
understanding of the details of the types of problems to be executed.

The processing power of the computers increased as the capabilities of the hardware improved, including
the addition of memory (initially to hold input data and output, and subsequently to also hold programs)
(Campbell-Kelly & Aspray, 1996; Ceruzzi, 2003). Although not articulated until 1965, Moore's Law
captured the essence of the rapid improvement in computing speed and capabilities (Moore, 1965). In
these early years of computing, SAND remained a relatively straightforward process focused on individual
programs for specific organizations, although these programs could be quite complex.

3.2 Early Methodology Era

By the early 1970s, computers were more powerful with increased computing power (processing speed
and larger storage capacities), and minicomputers started to emerge. In response to these more capable,
flexible machines (cf. the UNIVAC computer), more ambitious software projects were attempted with
engineering-, scientific-, and business-focused software solutions. Procedural programming languages
emerged (cf. FORTRAN, ALGOL, and COBOL, followed by PL/I in the 1960s). SAND became more
formalized as the demands for the software grew more complex and sophisticated to capitalize on the
expanding capabilities of the hardware. Data started to be centralized rather than specific to a particular
program and network. Hierarchical and network databases emerged so that different groups, and even
individuals, could share the data to enhance productivity and increase decision-making quality.

The mid-to-late 1970s saw the development of much larger software environments with interrelated
software components, the expectation of data-sharing across multiple computers, and the emergence of
real-time processing. For example, SAGE (Semi-Automatic Ground Environment) was an ambitious multi-
year effort to develop a computer-based air-defense system that could integrate and synthesize radar
data for tracking unknown (possible enemy) aircrafts entering the U.S. airspace. It was built from many
design and development lessons learned with Whirlwind, an MIT-based project (Astrahan & Jacobs,
1983). While ultimately limited in its capabilities and not sufficiently advanced to track the nuclear-tipped
ballistic missiles that became prevalent among the superpowers in the 1970s and 1980s, SAGE became
an exemplar of a systematic approach to developing large-scale information systems (Hughes, 1998).

Bennington (1983) noted several factors that contributed to the general success of SAGE that has
important implications for the development of SAND. First, the development team was comprised of
engineers who organized their thinking and design with a strong formal and detailed structure. Many
systems development efforts were in government or military procurement, which were some of the most

841

Information Systems Analysis and Design:

Past Revolutions, Present Challenges, and Future Research Directions

Volume 50 10.17705/1CAIS.05037 Paper 37

significant and demanding clients of the era. They developed expectations that all software projects
proceed in the same way irrespective of whether one is manufacturing spacecraft or boots (Bennington,
1983, p. 352). Further, there was a consensus that programs needed to be "rationalized"-- meaning that
requirements were clearly defined and tasks carefully planned; detailed documentation was created,
produced, organized, and archived; human interfaces were designed; substantial testing tools were
created and executed; and detailed record-keeping to trace problems and track fixes were generated. This
structured and systematic approach was one part of the early foundation for what came to be known as
the Waterfall Methodology, a term first used by Bell and Thayer (1976). During this period, early structured
methodologies, such as Data Flow Diagram (DFD) (Gane & Sarson, 1977), Entity-Relationship Diagram
(ERD) (Chen, 1976), and others (e.g., DeMarco, 1979; Yourdon, 1979, 1988; Page-Jones, 1988), were
proposed to facilitate the system development process.

3.3 Methodology Proliferation Era

The Methodology era, as used by Avison and Fitzgerald (2006), saw a flurry of methodological
innovations and activities. Numerous methodologies were invented or created during this period (in the
spirit of "let a thousand flowers bloom!").

The late 80s and early 90s saw the shift from structured programming and approaches to object-oriented
programming and thinking. This shift resulted in the creation and proliferation of object-oriented
methodologies. A relevant subset of the object-oriented SAND methodologies is listed in Table 2. The
object-orientated approach is different from the structured approach because object-orientation is based
on the concept of "objects" that contain both code (i.e., procedures) and data (i.e., fields). The object-
oriented movement also impacted the data/file structure. Although relational databases remained the
prominent databases at that time, object-relationship, and object-oriented databases were discussed and
proposed. Early object-oriented databases included Gemstone (GemStone Systems), Gbase (Graphael),
and Vbase (Ontologic). The SAND methodologies in this era needed to account for technology
development and incorporate business needs. Microcomputers, client-server computing, and distributed
processing were emerging technologies. With microcomputers and personal computers, the development
scope moved to the business-process level. Instead of focusing on efficiency and productivity as in the
earlier eras, businesses in this era also expected the information systems to be effective and to address
the strategic needs of the organizations.

Table 2. Examples of Object-Oriented Methodologies

Name Reference

Stroustrup Methodology Stroustrup (1988)

Colbert Methodology Colbert (1989)

Wasserman Methodology Wasserman et al. (1990)

Responsibility Driven Design (RDD) Methodology Wirfs-Brock et al. (1990)

Coad/Yourdon Methodology Coad et al. (1991)

Embley Methodology Embley et al. (1991)

EVB Methodology Jurik & Schemenaur (1992)

Business Object Notation (BON) Methodology Nerson (1992)

Shlaer and Mellor Methodology Shlaer & Mellor (1992)

Berard Methodology Berard (1993)

Booch Methodology Booch (1993)

de Champeaux Methodology De Champeaux et al. (1993)

Object Oriented Software Engineering (OOSE) Methodology Jacobson (1993)

FUSION Methodology Coleman et al. (1994)

Martin/Odell Methodology Martin & Odell (1994)

Object Modeling Technique (OMT) Methodology Rumbaugh et al. (1994)

ROOM Methodology Selic et al. (1994)

OOram Methodology Reenskaug (1996)

Meyer Methodology Meyer (1997)

HOOD Methodology European Space Agency (2006)

Communications of the Association for Information Systems 842

Volume 50 10.17705/1CAIS.05037 Paper 37

3.4 Methodology Standardization Era

YAMA (Yet Another Modeling Approach) is a term used to describe the flurry of activities that happened in
the Methodology Proliferation era, which resulted in numerous object-oriented methodologies. As a result
of this methodology explosion, calls were put forth for a unified approach. UML (Unified Modeling
Language) was jointly developed by Grady Booch, Ivar Jacobson, and James Rumbaugh at Rational
Software (a subsidiary of IBM since 2003) in 1994–1995. UML is intended to be a general-purpose and
developmental modeling language. There are three types of UML diagrams:

 Behavior diagrams – A group of diagrams that depicts behavioral and dynamic features of a
system or business process. The diagrams in this group are activity, state machine, and use
case diagrams, as well as the four interaction diagrams.

 Interaction diagrams – A subset of behavior diagrams that emphasize object interactions. This
group includes communication, interaction overview, sequence, and timing diagrams.

 Structure diagrams – A type of diagrams that depicts the elements of a specification that are
irrespective of time. This group consists of class, composite structure, component, deployment,
object, and package diagrams.

UML has been extended several times over the years and has become the Object Management Group's
(2020)(OMG) standard. UML 2.5 was released in June 2015.

In addition to UML, the Business Process Model and Notation (BPMN) approach is becoming the leader
and de-facto standard in business process modeling. BPMN is a graphical representation for specifying
business processes in a business process model. The main difference between UML and BPMN is that
UML is object-oriented whereas BPMN takes a process-oriented approach that is more suitable within a
business process domain. The latest version is BPMN 2.0.2 and was published in January 2014.

In 1999, Ivar Jacobson, Grady Booch, and James Rumbaugh also came up with the Rational Unified
Process (RUP) (Jacobson et al., 1999). It was developed by Rational Software and served as a supportive
process framework for contemporary software engineering. RUP, as an adaptable and iterative software
development process, is not prescriptive. RUP's emerging process is tailorable with tools that help to
automate the development process and services. RUP's features include iterative development,
requirements management, component-based architecture, visually modeling, constant quality
verification, and change management and control. The RUP was later termed the Unified Process (UP).
UP divides a project into four phases: inception, elaboration, construction, and transition.

A unified approach has its advantages. Instead of developing more and more similar methodologies and
naming them differently, the Methodology Standardization Era saw joint efforts at improving and extending
the unified approaches. For example, the OpenUP and Agile UP are different versions of UP. The Open
UP is a part of the Eclipse Process Framework (EPF), an open-source process framework developed
within the Eclipse Foundation. Agile UP (AUP) is a simplified version of UP developed by Scott Ambler.
The Methodology Standardization also has the benefit of focusing the organizations' effort on enhancing
the effectiveness of the business processes rather than spending time determining the best SAND
methodologies to choose and adopt.

3.5 Post Methodology Era

In the late 1990s and early 2000s, the growing popularity of the Internet and rapidly changing business
environment meant that businesses had to focus on strategy, value creation/addition, and even societal
impacts as they are increasingly connected to customers through information systems. These evolving
needs pushed the scope of systems development to shift to an increasing emphasis on the customers and
users of the system. Therefore, SAND methodologies needed to be responsive to these different and
evolving needs. Dynamic and flexible approaches became prevalent and necessary. The concept of
"agility" in information systems development emerged as represented by the Agile approaches (Conboy,
2009).

3.5.1 Agile Approaches

Boehm and Turner (2004) noted that SAND approaches could be placed on a continuum that ranges from
"adaptive" to "predictive" in their methodologies and outcomes. Agile approaches fall at the adaptive end

843

Information Systems Analysis and Design:

Past Revolutions, Present Challenges, and Future Research Directions

Volume 50 10.17705/1CAIS.05037 Paper 37

of what some characterize as a 'rolling wave' of project planning and development. On the other hand, the
Waterfall approach is conceived as being predictive.

During the 1990s, approaches were emerging in response to what many regarded as too detailed, over-
regulated, excessively documented, and micro-managed approaches of the Waterfall or other
heavyweight approaches that were common at the time. Instead, methodologies with an emphasis on
iterative and incremental methods were expanding in use during the 1990s, including Rapid Application
Development (RAD) (1991), the Unified Process (UP) (1994), and Extreme Programming (XP) (1996),
Scrum, probably the best-known and currently among the most popular Agile approaches, originated in
1995, with the first recorded use of the term in 1986 (Schwaber & Sutherland, 2017). Similar changes
toward iterative and incremental (i.e., Agile) development were underway in manufacturing and
aerospace.

The Agile Manifesto (Beck et al., 2001), written by seventeen software 'anarchists,' consolidated the
thinking behind the movement. Consisting of four core software development values and 12 development
principles, Agile represented the movement toward more 'lightweight' methods of software development
that emphasized dynamic, iterative, incremental, and non-deterministic thinking with more substantial
involvement of the users. The four broad values emphasize individuals and interactions rather than
processes and tools, the completion and delivery of working software even if the full project is not yet
complete, significant collaboration with customers, and responding to evolving or emerging requirements
instead of a predictive plan. Although formally codified in 2001 with the Agile Manifesto (Beck et al., 2001),
elements of the Agile approach have been around since the late 1950s. For example, Weinberg (as
quoted in Larman & Basili (2003)) noted the use of incremental and iterative approaches in programming
work in which he was involved in Los Angeles in 1957. According to his recollections, most people on
these projects "thought waterfalling of a huge project was rather stupid" and that mentality helped us to
"realize that we were doing something else."

Also developed in the 1990s, Crystal is an extremely lightweight, adaptable approach to software
development. Its features were derived from research on best practices of successful teams. A basic tenet
of Crystal is that each project may require policies, practices, and processes that are tailored to its unique
needs. Furthermore, teams also may have different needs based on team size, project criticality, and the
urgency of the project. Other Agile frameworks often have a more fixed structure. Crystal consists of a
family of agile methods, such as Crystal Clear, Crystal Orange, and Crystal Yellow. Some of the common
features for Crystal are frequent delivery, reflective improvement, co-location (to support 'osmotic' or an
easy flow in the communication), personal safety, a focus on work, access to appropriate tools, and
access to subject-matter experts and users. By reviewing the most recent SAND-related articles published
by AIS-sponsored conferences (AMCIS, ECIS, ICIS, and PACIS) in the past five years (2016-2020), Agile
is a dominant topic that has been studied.

Extreme Programming (XP) is another framework for Agile software development and is the most specific
about the use of appropriate engineering practices. Its emphasis is on producing higher-quality software
and a higher quality of life for developers. Four specific characteristics are most important: working with
dynamic (i.e., changing requirements); dealing with the risks of projects with fixed deadlines; using small,
co-located teams; and using technology that supports automated unit and integration tests of the software.
Five values focusing on the human side of development are also important – communication, simplicity,
feedback, courage, and respect. XP's specificity on the engineering practices may make it a less desirable
approach for some teams or projects. Its structure is in almost direct opposition to the approach used in
Crystal.

Lean software development is the interpretation of lean manufacturing principles adapted from Toyota's
Production System approach and applied to software development (Poppendieck & Poppendieck, 2003).
It is a reliable and well-understood conceptual framework that is derived from experience with values,
principles, and identified good practices. The Agile community has willingly adopted 22 Lean principles.
The main principles of lean software development are: to eliminate waste, amplify learning, decide as late
as possible, deliver as fast as possible, empower the team, build integrity into the product, and optimize
the whole.

3.5.2 DevOps Approach

Two of the pillars of the Agile approach are an increase in "interactions" and "customer collaboration"
during the development process between the developers and the users (Beck et al., 2001). However,

Communications of the Association for Information Systems 844

Volume 50 10.17705/1CAIS.05037 Paper 37

while the Agile approach supports continuous integration of components as they are developed, there is
minimal emphasis on the final implementation (i.e., 'go-live' transition) and maintenance (or Operations
and Maintenance) of the system (Ambler, 2009; Leite et al., 2019). Yet the maintenance phase of the
Systems Development Life Cycle is typically the longest (Dennis et al., 2014). Many software-
development approaches do not actively consider operational concerns (Roche, 2013). To address this
deficiency, the concept of DevOps (Development + Operations) has emerged as an additional critical
approach for Agile software development, where there is an added emphasis on implementation and the
operations of high-quality software that can quickly contribute to business results (Bhat & Herschmann,
2020; DeGrandis, 2011; Spafford & Herschmann, 2019). Based on the definition of a methodology we use
in this paper, DevOps, in its current form, is not a methodology but an expansion of the agile approach.
Instead, DevOps is characterized as a(n) practice, paradigm, approach, method, discipline, mindset, or
philosophy (Jabbari et al., 2016; Lwakatare et al., 2019). Others see it as an extension of agile and Scrum
(Erich et al., 2017). Because of its importance in information systems development, we expect DevOps to
evolve into a slightly more systematic approach (although not to the extent of traditional methodologies).
We, therefore, include DevOps in this paper as one of the major movements in the Post Methodology era.
Its focus on strategic emphasis, value creation, and value addition, as well as being people- and
relationship-driven, also puts it in the Post Methodology era.

DevOps is often defined as "a set of practices intended to reduce the time between committing to a
change to a system and the change being placed into normal production while ensuring high quality"
results (Bass et al., 2015). The speed of delivery and integration—continuous integration, often occurring
several times a day, requires designing for operations and maintenance from the earliest phase of product
inception (Dennis et al., 2014; Svensson et al., 2015). At the macro level, successful DevOps requires an
organizational shift in the development culture through the use of broad cross-functional teams that bridge
all business (i.e., users) and IT roles. DevOps is a community approach (Erich et al., 2017; Hemon, et al.,
2019; Sánchez-Gordón & Colomo-Palacios, 2020; Wiedemann et al., 2019). This change suggests
opportunities to improve an organization's understanding of how the development community becomes
aware of and understands problems, requirements, how work progresses, who possesses what
knowledge, and whether and how people share knowledge. Mao et al. (2020) noted that "it is crucial that
software teams have ownership and responsibility to deploy software changes" (p. 450).

The DevOps movement is evolving rapidly. As Tomas, Li, and Huang (2019) noted, a security culture also
needs to be cultivated because security education is often lacking, security is too often ignored, and
security assessments are often neglected. DevSecOps (Development + Security + Operations) is an
extension of DevOps (Sánchez-Gordón & Colomo-Palacios, 2020), where security practices also become
the development team's responsibility instead of being the sole responsibility of a testing-focused group.
Including security issues in the earlier phases in the development process within the cross-functional
teams allows the cooperation of business (i.e., users), information systems, and security groups
(Myrbakken & Colomo-Palacios, 2017). The goal is to create a higher level of awareness of and
proficiency in security issues for the rapidly changing software product.

In the Post Methodology era, the speed of software design and development is being driven by surging
demand for digital capabilities to provide organizations with opportunities to accomplish strategic goals
and better meet and create customer demand(s). The Agile approach to software development sought to
create closer and more involved collaboration between the developers and users. Agile also worked
toward more rapid delivery and continuous integration of the software, but this has often been hindered by
the lack of involvement of those doing the implementation and maintenance work until product delivery.
DevOps evolved to enhance the involvement of the developers with the operations specialists responsible
for these end-phase activities to improve system design for continuous delivery into the large IT
ecosystem. Further, DevSecOps emerged to extend these benefits by explicitly incorporating security into
the earliest phases of design as software has become an increasingly important part of systems
development and operation. Also, with the growing importance of user experience, especially in social
media and online environments, DevUXOps may be the next extension. Agile, DevOps, DevSecOps, and
DevUXOps aim to provide greater "agility" in developing software that is more rapid to build, more flexible
to use, and takes into account issues that are currently mostly an afterthought (e.g., security, user
experience).

845

Information Systems Analysis and Design:

Past Revolutions, Present Challenges, and Future Research Directions

Volume 50 10.17705/1CAIS.05037 Paper 37

4 Discussions

The field of SAND has developed over six decades, with several eras of revolutions and continuous
evolutions. In this paper, we classified these eras into Pre-Methodology, Early Methodology, Methodology
Proliferation, Methodology Standardization, and Post Methodology. Research results from the academic
world have been adopted by practitioners. Practitioners, in turn, have developed their own methodologies,
which were later studied by researchers. Some practitioners, for example, are starting to take the 'best' of
both the Waterfall and Agile approaches; also known as 'Watergile' or 'Aquagile.' They often include the
structure, documentation, and 'big-picture' view of Waterfall merged with the incremental, iterative, and
rapid-delivery approach, especially for systems with ill-defined, evolving, or emerging requirements. There
are, thus, many ways in which continued and further integration of academic research and practice is both
important and challenging.

In this section, we examine the different SAND methodology eras as summarized in Table 1 to derive our
insights into how the SAND field is moving forward. The two insights are (1) moving towards a higher level
of abstraction and (2) moving towards a business-level (or even society-level) abstraction. We then use
three examples to illustrate the various stages of this movement. We use the Work System Method (Alter,
2006) to illustrate how higher-level business level abstraction can be accomplished. We use the current
popular DevOps approach to illustrate what can be done. Finally, we use the Internet of Things (IoT) to
illustrate what might be forthcoming.

4.1 Moving Towards a Higher Level of Abstraction

From examining the SAND methodology eras, some common themes arise. As technology advances, its
capability increases in magnitude, resulting in organizations wanting more of it. The technological
advancements in each era are facilitated by abstraction. Abstraction provides a general representation of
the details without sacrificing an overview of the system to be built and is a mechanism to manage
complexity. Different eras provide different abstractions. For example, in the Pre Methodology era,
abstraction is provided by algorithms. Designers are not concerned with how the programming is done but
rather want an overview of the programming. In the Early Methodology era, the abstraction is on the flow
of data, as captured in data flow diagrams, without being concerned with how the data is stored and how a
program is going to be written. This is a higher-level abstraction than an algorithm because the software
has more capabilities in that era. In the Methodology Standardization era, the abstraction is on the
business process (e.g., BPMN), which focuses on the needs of businesses without having to be
concerned with data. It should be clear that, as time progresses, technology can do more, and
organizations expect more. Therefore, to manage the complexity of a larger system, a higher level of
abstraction is needed.

Nevertheless, the introduction of new technology does not imply the need to replace existing systems.
Many traditional applications continue to be important and well-used. These include airline reservation
systems, database systems, enterprise systems, Internet-based systems, and AI applications, with a
recent surge in the latter. As our dependence on these systems continues to rise in our society, well-
designed and well-executed systems are critical for building a larger future ecosystem. Given the
complexity of these future ecosystems, some forms of independence are needed. We, thus, predict the
return of object-oriented analysis. It might not be the same as those in the 90s. It might even be called by
a different name (e.g., agent-oriented analysis, role-oriented analysis, service-oriented analysis, or
resource-oriented analysis). Nevertheless, the concept of autonomous entities operating in a
decentralized ecosystem, interacting with each other to accomplish their own goals, will be needed.

4.2 Moving Towards a Business and Ecosystem Level Abstraction

When business environments change, the scope of the systems being considered as important for
supporting business strategies and success also change. For example, in the Pre Methodology era,
computational problems or calculations are the focus. In the Methodology eras (i.e., Methodology
Proliferation and Methodology Standardization), the focus is on business (especially business processes
and business operations). Progressing to the Post Methodology era, instead of focusing on clearly defined
business processes, businesses want to be able to react quickly to competition, necessitating SAND to
move away from the structured and slow business process thinking to understand strategy and value.
Even within an era, considerations usually start from a smaller scope and move to a larger one,
sometimes following the business or the ecosystem's needs. For example, in the Post Methodology era,

Communications of the Association for Information Systems 846

Volume 50 10.17705/1CAIS.05037 Paper 37

the move to DevOps is not unique in information systems. For example, marketing research has often
considered the customer life-cycle or customer lifetime value. Analogously, we can view DevOps as a
customer lifetime value where the customer is the user of information systems, and the lifetime value is
providing what these users want from existing information systems, via operations and maintenance,
when business changes (which is the dynamic nature of the business ecosystem in this Post Methodology
era). Using the same deduction, we predict that the scope in the future will be expanded to include
resolving societal issues. We are beginning to see this trend. To reduce greenhouse emissions, we
research smart cities. To sustain healthcare, we analyze how to integrate their interacting components
such as hospitals, labs, pharmacies, and other patient care organizations. This is being done at a time
when new technologies, such as the Internet of Things (IoT), are becoming more popular and can support
such initiatives.

The object-oriented analysis resulted from the attempt to introduce more efficiency into systems
development efforts. One area where object-oriented analysis can be enhanced is to address the different
conceptualizations needed between the efficiency of development and the effectiveness of using systems
in organizations. For example, a flowchart is an abstraction for systems development, whereas business
process modeling is an abstraction at the business process and operation level. Research is needed to
develop the equivalent of this abstraction at the business level. Further, there is the need to map, align, or
convert the business level abstraction to the systems development level abstraction.

The recognition of these two levels of abstractions is important as new technologies are being developed.
For example, Blockchain and the Internet of Things both have the systems-level abstraction but lack the
business-level abstraction. SAND, given its history, is positioned to be the perfect field to develop this
business-level abstraction and its mapping to the systems-level abstraction. This is because SAND can
consider factors beyond technological feasibility when using technology to develop a new business
application.

4.3 Example of a Higher-Level Business Abstraction – Work System Method

The work system method is a semi-formal method for analyzing and understanding IT-enabled systems in
organizations (Alter, 2003a, 2003b). The work system method is based on three components of work
system theory: the definition of work system, the work system framework, and a work system life-cycle
model (Alter, 2006, 2013). A work system is a system in which human participants and/or machines
perform work (processes and activities) using information, technology, and other resources to produce
specific products and/or services for specific internal or external customers. Information systems are
special cases of work systems. An information system is a work system whose processes and activities
are devoted to processing information -- capturing, transmitting, storing, retrieving, manipulating, and
displaying information.

In the work system framework, nine elements are identified as part of a rudimentary understanding of a
work system. Four of these elements (processes and activities, participants, information, and
technologies) constitute the core of the work system. The other five elements (environment, infrastructure,
strategies, customers, and products and services) fill out a basic understanding of the situation. The work
system life cycle model consists of four main phases (initiation, development, implementation, and
operation and maintenance).

The major differentiation between the work system framework and traditional systems analysis
frameworks is the higher level of abstraction at the business level in a larger scope of consideration. At
the business level, for example, products and services need to be linked to processes and activities. And
according to Alter (2006), it is necessary to distinguish between customers and participants and not
combine them into a single concept called "users" because customers belong to the business level,
whereas participants belong to the systems level. Traditional systems analysis focuses mainly on the
information systems themselves. The work system extends this consideration outside the information
systems. For example, a solution to a problem that originated from an information system can now be
found outside the information system (e.g., in products and services).

Alter has continued his work on the Work System Method to develop a Work System Theory (WST) (Alter,
2013). He argues that "WST is the core of an integrated body of theory that emerged from a long-term
research project to develop a systems analysis and design method for business professionals called the
Work System Method (WSM)."

847

Information Systems Analysis and Design:

Past Revolutions, Present Challenges, and Future Research Directions

Volume 50 10.17705/1CAIS.05037 Paper 37

4.4 DevOps Approach: A Potential Higher-Level Business Abstraction

DevOps expands the scope of development to include operations and maintenance. This includes help
desk support, automation of as much of the development process as possible, and the management of
the information system. The management part requires an understanding of higher-level business
management. There is a large body of research literature on maintenance and management (e.g., work by
E. Burton Swanson in the 1980s and 1990s (see, Lientz & Swanson, 1980; Swanson, 1994), industry
standards and best practices (e.g., ITIL), help desk and support services, literature on workflow and
business process modeling (automation still needs coordination), and literature in product management.
We can learn from product management about which features to release and in what sequence should
they be released as there are usually a lot of features to maintain and add. This requires a great deal of
integration and, obviously, is not a simple task. Abstraction of important concepts in these fields for
DevOps needs to be researched, developed, and explored.

Similarly, the move to DevSecOps means the need to include an understanding of how security impacts
the higher-level business abstraction needed for development and operations. DevSecOps triggers other
similar considerations, such as user experience (UX) that, similar to security, is usually an afterthought.
Perhaps there should be DevUXOps or DevSecUXOps?

4.5 Example of Recent Technology that Needs Abstraction at Ecosystem Level –
Internet of Things

Another rapidly emerging challenge for SAND is to support the analysis, design, and development of
advanced technologies such as the Internet of Things (IoT) systems. In this paper, we use IoT as an
example to illustrate the need for abstraction at the ecosystem level. For IoT, the abstractions may have to
begin from the technical side. Several concepts are either unique to or more salient in IoT systems
analysis and design than in other forms of systems analysis and design. Here, we discuss two main ones:
(1) designing for automatons and (2) stream semantics.

Designing for Automatons. SAND has principally focused on managing human-driven systems. As an
example, consider the concept of normalization (Codd, 1970; Codd, 1971; Codd, 1974; Fagin, 1977;
Fagin, 1981). First Normal Form exists principally because humans have difficulty manipulating the
concept of "many." But modern autonomous devices do not have this problem—they handle dynamic
arrays well. Indeed, normalizing data in an IoT environment could be argued to be a poor design because
it increases the risk of programmer error by making programming more difficult but does not facilitate the
detection or management of errors caused by the autonomous device.

Humans tend to make more random errors, whereas autonomous devices tend to make more systematic
errors. SAND problems in IoT often arise from difficulties modeling the physical world in the digital
representation, i.e., digital twin (Bolton et al., 2018; El-Saddik, 2018). For example, we might model the
location of the user as the geolocation of the user's mobile phone. However, the user and mobile phone
are two distinct objects, e.g., it is possible for the user to have left the phone at the office and arrive home
or for someone to have stolen the user's mobile phone.

In IoT systems, small differences between the physical world and the digital twin can have profound
consequences, especially when those small differences trigger or fail to trigger actions in the digital twin.
For example, Ibrahim Diallo lost his job when his manager was dismissed and failed to update Diallo's
electronic paperwork (Wakefield, 2018). Because the paperwork had not been filed, a computer program
then determined that Diallo's contract had not been renewed, canceled his security card, ordered security
to escort him from the building, canceled his access to electronic systems, and so on.

The system behaved correctly as specified, but this resulted in negative consequences. Furthermore, the
specification itself was correct—the failure lies in user error in that the terminated manager did not file the
paperwork. However, in non-digital physical systems, it is unlikely that this would have happened. A quick
phone call to HR once the firing process was underway would have remedied and reversed the problem.
IoT SAND research thus must also grapple with this new problem of designing systems to be self-aware
enough to recognize that frantic attempts by system administrators and users to reverse computer activity
indicate that the system is doing something wrong.

Stream Semantics. Many, if not most, IoT devices either produce or consume data streams. Even simple
IoT devices, such as IoT switches, are stream-based. When the switch is "on," it generates a steady

Communications of the Association for Information Systems 848

Volume 50 10.17705/1CAIS.05037 Paper 37

stream of electricity -- it generates a stream of 1s when it is on, and when it is off, it generates a steady
stream of 0s. A pushbutton switch is identified by the fact that it sends a stream of 0s, a stream of 1s, and
then a stream of 0s. Most electronic sensors are stream-based. For example, an IoT thermometer will
generate a continuous stream of temperature readings.

Almost all systems analysis and design efforts are based on the concept of states and transitions between
them. For example, in UML, execution behavior is captured in the UML activity diagram and state machine
diagram. Streams, however, are not single states but recurrent patterns of states. Further, we are often
not interested in the individual values of the data stream itself but rather the trends and transitions in the
data stream. Thus, to represent and capture a more complex set of data requires a recognition of the
difference and different methods of representation in the analysis and design of IOT systems.

Trends. Individual values in a stream are meaningless. It is not particularly useful to know that a
thermometer is currently measuring 37.5 degrees Celsius because, in the very next microsecond, it may
be measuring 37.4 degrees Celsius. Instead, what is valuable is to know the trend, i.e., is the trend rising,
falling, or remaining stable? Stream trends are similar to traditional aggregate descriptive statistics (e.g.,
sum, minimum, maximum, average, standard deviation). However, most of them have "blocking"
properties (Raman et al., 1999). That is, the calculation of these statistics requires knowledge of all data
points, but these cannot be obtained in the stream (e.g., Chen & Chen, 2020).

Transitions. In addition to stream trends, in the IoT systems, we are often interested in stream transitions.
Consider pushing a button to activate a lightbulb. The designer is not interested in the stream of 0s
indicating 'off' or a stream of 1s indicating 'on' but in the transition from 0 to 1 and then back to 0 -- that is
when the button is pushed and released. Stream transitions are not necessarily cleanly identifiable. For
example, a specific proximity sensor could detect a human presence when the pattern changes from a
stable capacitance of 100-300 to a stable capacitance pattern above 1000. A second proximity sensor has
other low- and high-range values. When there is a human presence, it must be calibrated.

Existing state-based SAND techniques do not have a vocabulary to express concepts of streams such as
trends and transitions. This makes it challenging to specify the behavior of IoT devices using traditional
information systems models. SAND methodologies in the Post Methodology era might need to be adapted
to address SAND issues for these advanced technologies.

5 Conclusions

This paper has identified the progression of systems analysis and design, emphasizing the major
developments in the different eras that have defined this field. Starting from general algorithms and the
need to provide structure to systems implementation, SAND has progressed to modeling complex,
advanced, and emerging technologies, such as the Internet of Things. Not only do SAND methodologies
need to evolve to keep pace with advancing IT technologies, but they also need to address changing
business needs. Such revolutions and evolutions of SAND methodologies will continue.

In analyzing the progression, we identified a pattern. SAND methodologies are moving towards (1) higher-
level abstraction and (2) business- or ecosystem-abstraction. Both are due to the need to manage the
complexity of wanting to achieve more with a faster speed. We illustrate using three examples at different
stages of this movement. The Work System Method is a higher-level business abstraction. The DevOps
approach has identified its scope (development and operations), and by understanding the pattern of
movement to higher-level abstraction, we can identify the foundations in relevant fields (e.g., customer
life-cycle in marketing, management issues in maintenance, and international standards for supporting
help desk) to facilitate the development of SAND methodologies for DevOps and DevSecOps. The final
example is illustrated through an emergent technology, the Internet of Things (IoT), where its potential is
still expanding. Because the complexity of using IoT in an ecosystem (e.g., smart city) remains unclear,
SAND's role will be to identify the necessary higher-level business/ecosystem abstraction to facilitate the
exploration of IoT in an ecosystem. Nevertheless, we need to start by identifying the lower-level technical
abstraction before moving to a higher-level one.

In addition to discussing SAND challenges for new technologies such as IoT and identifying future
research directions of SAND, this paper extends the classification proposed by Avison and Fitzgerald
(2006). First, the time eras are expanded where the Methodology era was divided into the Methodology
Proliferation era and Methodology Standardization era. This extension is important because of the many
SAND methodologies and activities that happened during the Methodology era. Further, the Methodology

849

Information Systems Analysis and Design:

Past Revolutions, Present Challenges, and Future Research Directions

Volume 50 10.17705/1CAIS.05037 Paper 37

era can clearly be distinguished into the Methodology Proliferation era and the Methodology
Standardization era. Second, the classification proposed by Avison and Fitzgerald (2006) is one-
dimensional, which is based on different time periods. In our classification, another dimension (i.e., a
Contextual/Structural dimension) is added where circumstances and situations that prompted or resulted
from the methodology revolutions and evolutions are depicted. This Contextual/Situational dimension
allows us to discuss the factors initiating, impacting and resulting from the changing eras and the
characteristics of technologies and business concerns in each era.

In summary, SAND methodologies have evolved and advanced to deal with evolving levels of abstraction
and the complexity of the business problems being modeled. The field of SAND has succeeded in
providing methodologies for systems analysis, design, and development while not ignoring the practical
and theoretical implications. The future for SAND will involve the exploration of many research ideas and
challenges that are highlighted in this paper.

Communications of the Association for Information Systems 850

Volume 50 10.17705/1CAIS.05037 Paper 37

References

Alter, S. (2003a). Sidestepping the IT artifact, scrapping the IS silo, and laying claim to "systems in
organizations." Communications of the Association for Information Systems, 12, 494-526.

Alter, S. (2003b). 18 reasons why IT-reliant work systems should replace "the IT artifact" as the core
subject matter of the IS field. Communications of the Association for Information Systems, 12, 366-
395.

Alter, S. (2006). The work system method: Connecting people, processes, and IT for business results.
Work System Press.

Alter, S. (2013). Work system theory: Overview of core concepts, extensions, and challenges for the
future. Journal of the Association for Information Systems, 14(2), Article 1.

Ambler, S. W. (2009). The Agile Scaling Model (ASM): Adapting agile methods for complex environments.
IBM Rational Technical Report. Retrieved from
https://www.researchgate.net/profile/Scott_Ambler/publication/
268424579_Adapting_Agile_Methods_for_Complex_The_Agile_Scaling_Model_ASM_Adapting_Ag
ile_Methods_for_Complex_Environments.pdf ; Accessed: October 10, 2020.

Armstrong, D. & Hardgrave, B. (2007). Understanding mindshift learning: The transition to object-oriented
development," MIS Quarterly, 31(3).

Astrahan, M. M. & Jacobs, J. F. (1983). History of the design of the SAGE computer—The AN/FSQ-7.
Annals of the History of Computing, 5(4), 340-349.

Avison, D., & Fitzgerald, G. (2006). Methodologies for developing information systems: A historical
perspective. In D. Avison, S. Elliot, J. Krogstie, & J. Pries-Heje (Eds.), The past and future of
information systems: 1976-2006 and beyond (vol. 214, pp. 27-38). Springer.

Bajaj, A., Batra, D., Hevner, A., Parsons, J. & Siau, K. (2005). Systems analysis and design: Should we
be researching what we teach? Communications of the Association for Information Systems, 15,
478-493.

Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A software architect's perspective. Addison-Wesley
Professional.

Beck, A., Grenning, J., Martin, R. C., Beedle, M., Highsmith, J., Mellor, S. van Bennekum, A., Hunt, A.
Schwaber, K. Cockburn, A. Jeffries, R., Sutherland, J., Cunningham, W. Kern, J., Thomas, D.,
Fowler, M. Marick, B. (2001). Manifesto for agile software development. Agile Alliance. Retrieved
from http://agilemanifesto.org/.

Bell, T. E. & Thayer, T. A. (1976). Software requirements: Are they really the problem? In Proceedings of
the 2nd International Conference on Software Engineering.

Benington, H. D. (1983). Production of large computer programs. Annals of the History of Computing,
5(4), 350-361.

Berard, E. V. (1993). Essays on object-oriented software engineering (Vol. 1). Prentice-Hall.

Bhat, M., & Herschmann, J. (2020). Agile and DevOps primer for 2020. Gartner.com. Retrieved from
https://www.gartner.com/en/documents/3979994/agile-and-devops-primer-for-2020.

Boehm, R. & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Addison-
Wesley.

Bolton, R. N., McColl-Kennedy, J. R., Cheung, L., Gallan, A., Orsingher, C., Witell, L., & Zaki, M. (2018).
Customer experience challenges: Bringing together digital, physical and social realms. Journal of
Service Management, 29(5), 776-808.

Booch, G., (1993). Object-oriented analysis and design with applications (2nd Edition). Benjamin
Cummings.

Burrell, G. & Morgan, G. (1979). Sociological paradigms and organizational analysis. Heineman.

Burton-Jones, A., Recker, J., Indulska, M., Green, P., & Weber, R. (2017). Assessing representation
theory with a framework for pursuing success and failure. MIS Quarterly, 41(4), 1307-1333.

851

Information Systems Analysis and Design:

Past Revolutions, Present Challenges, and Future Research Directions

Volume 50 10.17705/1CAIS.05037 Paper 37

Campbell-Kelly, M. & Aspray, W. (1996). Computer: A history of the information machine. Basic Books.

Ceruzzi, P. E. (2003). A history of modern computing, second edition. The MIT Press.

Chen, D., & Chen, L. (2020). Sliding-window probabilistic threshold aggregate queries on uncertain data
streams. Information Sciences, 520, 353-372.

Chen, P. P. S. (1976). The entity-relationship model—Toward a unified view of data. ACM Transactions
on Database Systems, 1(1), 9-36.

Coad, P., Yourdon, E., & Coad, P. (1991). Object-oriented analysis (Vol. 2). Yourdon Press.

Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the ACM
13(6), 377-387.

Codd, E. F. (1971). Further normalization of the data base relational model. In Courant Computer Science
Symposia Series 6- Data Base Systems.

Codd, E. F. (1974). Recent investigations in relational data base systems. Information Processing, 74,
1017-1021.

Colbert, E. (1989). The object-oriented software development method: A practical approach to object-
oriented development. In Proceedings of the Conference on Tri-Ada '89: Ada Technology in
Context: Application, Development, and Deployment (pp. 400-415).

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., & Jeremaes, P. (1994). Object-
oriented development: The fusion method. Prentice-Hall.

Conboy, K. (2009). Agility from first principles: Reconstructing the concept of agility in information systems
development. Information Systems Research, 20(3), 329-354.

De Champeaux, D., Lea, D., & Faure, P. (1993). Object-oriented system development. Addison-Wesley
Longman Publishing.

DeGrandis, D. (2011). DevOps: So you say you want a revolution? Cutter IT Journal, 24(8), 34-39.

DeMarco, T. (1979). Structure analysis and system specification. Yourdon Press.

Dennis, A. R., Samuel, B. M., & McNamara, K. (2014). Design for maintenance: How KMS document
linking decisions affect maintenance effort and use. Journal of Information Technology, 29(4), 312-
326.

El-Saddik, A. (2018). Digital twins: The convergence of multimedia technologies. IEEE Multimedia, 25(2),
87-92.

Embley, D. W., Kurtz, B. D., & Woodfield, S. N. (1991). Object-oriented systems analysis: A model-driven
approach. Yourdon Press.

Erich, F., Amrit, C., & Daneva, M. (2017). A qualitative study of DevOps usage in practice. Journal of
Software: Evolution and Process, 29(6), e1885.

Erickson, J. & Siau, K. (2008). Web services, service oriented computing, and service oriented
architecture: Separating hype from reality. Journal of Database Management, 19(3), 42-54.

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software development, and extreme
programming: The state of research. Journal of Database Management, 16(4), 88-100.

European Space Agency. (2006). HOOD. Retrieved from
https://www.esa.int/TEC/Software_engineering_and_standardisation/TECKLAUXBQE_0.html.

Fagin, R. (1977). Multivalued dependencies and a new normal form for relational databases. ACM
Transactions on Database Systems, 2(3), 262-278.

Fagin, R. (1981). A normal form for relational databases that is based on domains and keys. ACM
Transactions on Database Systems, 6(3), 387-415.

Gane, C. & Sarson, T. (1977). Structured systems analysis: Tools and techniques. Improved Systems
Technologies. McDonnell Douglas Information.

Communications of the Association for Information Systems 852

Volume 50 10.17705/1CAIS.05037 Paper 37

Hardgrave, B. C., Davis, F. D., & Riemenschneider, C. K. (2003). Investigating determinants of software
developers' intentions to follow methodologies. Journal of Management Information Systems, 20(1),
123-151.

Hemon, A., Lyonnet, B., Rowe, F., & Fitzgerald, B. (2019). From Agile to DevOps: Smart skills and
collaborations. Information Systems Frontiers, 22, 927-945.

Hirschheim, R. & Klein, K. (1989). Four paradigms of information systems development. Communications
of the ACM, 32(10), 1199-1216.

Hirschheim, R., Klein, K., & Lyytinen, K. (1995). Information systems development and data modeling:
Conceptual and philosophical foundations. Cambridge University Press.

Hughes, T. P. (1998). Rescuing prometheus. Vintage.

Iivari, J., Hirschheim, R., & Klein, H. (2001). A dynamic framework for classifying information systems
development methodologies and approaches. Journal of Management Information Systems, 17(3),
179-218.

Jabbari, R., bin Ali, N., Petersen, K., & Tanveer, B. (2016). What is DevOps? A systematic mapping study
on definitions and practices. In Proceedings of the Scientific Workshop Proceedings of XP2016 (pp.
1-11).

Jacobson, I. (1993). Object-oriented software engineering: A use case driven approach. Pearson
Education India.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software development process. Addison
Wesley Professional.

Jurik, J. A. & Schemenaur, R. S. (1992). Experiences in object-oriented development. In Proceedings of
the Conference on TRI-Ada '92 (pp. 189-197).

Larman, C. & Basili, V. R. (2003). Iterative and incremental development: A brief history. IEEE Computer,
36(3), 47-56.

Leite, L., Rocha, C., Kon, F., Milojicic, D., & Meirelles, P. (2019). A survey of DevOps concepts and
challenges. ACM Computing Surveys, 52(6), Article 127.

Lientz, B. P., & Swanson, E. B. (1980). Software maintenance management. Addison-Wesley.

Lukyanenko, R., Pastor, O., & Storey, V.C. (2021). Foundations of information technology based on
Bunge's systemist philosophy of reality. Software and Systems Modeling, 20, 921-938.

Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., Kuvaja, P., Mikkonen, T.,
Oivo, M., & Lassenius, C. (2019). DevOps in practice: A multiple case study of five companies.
Information and Software Technology, 114, 217-230.

Mao, R., Zhang, H., Huang, H., Rong, G., Shen, H., Chen, L., & Lu, K. (2020). Preliminary findings about
DevSecOps from grey literature. In Proceedings of the 20th IEEE International Conference on
Software Quality, Reliability, and Security (QRS), (pp. 450-457).

Martin, J., & Odell, J. J. (1994). Object-oriented methods. Prentice-Hall PTR.

Meyer, B. (1997). Object-oriented software construction (vol. 2, pp. 331-410). Prentice-Hall.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8), 114-117.

Myrbakken H., Colomo-Palacios R. (2017). DevSecOps: A multivocal literature review. In A. Mas, A.
Mesquida, R. O'Connor, T. Rout, A. Dorling (Eds.), Software process improvement and capability
determination. SPICE 2017. Communications in computer and information science (vol. 770, pp.
17-29). Springer.

Nerson, J. M. (1992). Applying object-oriented analysis and design. Communications of the ACM, 35(9),
63-74.

Object Management Group. (2020, September 13). Business process model and notation. Retrieved from
http://www.bpmn.org.

853

Information Systems Analysis and Design:

Past Revolutions, Present Challenges, and Future Research Directions

Volume 50 10.17705/1CAIS.05037 Paper 37

Odtadmin, (2019). The Standish Group report 83.9% of IT projects partially or completely fail.
Opendoortechnology. Retrieved from https://www.opendoorerp.com/the-standish-group-report-83-
9-of-it-projects-partially-or-completely-fail/.

Page-Jones, M. (1988). The practical guide to structured systems design. Yourdon Press.

Poppendieck, M. & Poppendieck, T. (2003). Lean software development: An agile toolkit. Addison-Wesley
Professional.

Raman, V., Raman, B., & Hellerstein, J. M. (1999). Online dynamic reordering for interactive data
processing. In Proceedings of the 25th Vldb Conference.

Reenskaug, T. (1996). Working with objects OOram framework design principles. Retrieved from
https://www.semanticscholar.org/paper/Working-With-Objects-OOram-Framework-Design-
Reenskaug/d826bac400be957ca5296f672e678cfe9aae8ad0

Roche, J. (2013). Adopting DevOps practices in quality assurance. Communications of the ACM, 56(11),
38-43.

Rowley, J.E. (1993). Information systems methodologies: A review and assessment of their applicability to
the selection, design and implementation of library and information systems. Journal of Information
Science, 19(4), 291-301.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. E. (1994). Object-oriented modeling
and design. Prentice-Hall.

Sánchez-Gordón, M. & Colomo-Palacios, R. (2020). Security as culture: A systematic literature review of
DevSecOps. In Proceedings of the 1st International Workshop on Engineering and Cybersecurity of
Critical Systems (EnCyCriS 2020) (pp. 266-269).

Sardjono, W. & Retnowardhani, A. (2019). Analysis of failure factors in information systems project for
software implementation at the organization. In 2019 International Conference on Information
Management and Technology (ICIMTech) (vol. 1, pp. 141-145).

Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying software project risks: An international
Delphi study. Journal of management information systems, 17(4), 5-36.

Schwaber, K. & Sutherland, J. (2017). The Scrum guide: The definitive guide to Scrum: The rules of the
game. Retrieved from https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-
US.pdf.

Selic, B., Gullekson, G., & Ward, P. T. (1994). Real-time object-oriented modeling. John Wiley & Sons.

Shen, Z., Tan, S., & Siau, K. (2018). Challenges in learning UML: From the perspective of diagrammatic
representation and reasoning. Communications of the Association for Information Systems, 43,
Article 30, 545-565.

Shlaer, S. & Mellor, S. J. (1992). Object life-cycles: Modeling the world in states. Yourdon Press.

Siau, K., Long, Y. & Ling, M. (2010). Toward a unified model of information systems success. Journal of
Database Management, 21(1), 80-101.

Siau, K. & Rossi, M. (2011). Evaluation techniques for systems analysis and design modelling methods: A
review and comparative analysis. Information Systems Journal, 21(3), 249-268.

Siau, K. & Tan, X. (2005a). Improving the quality of conceptual modeling using cognitive mapping
techniques. Data And Knowledge Engineering, 55(3), 343-365.

Siau, K. & Tan, X. (2005b). Technical communication in information systems development: The use of
cognitive mapping. IEEE Transactions on Professional Communications, 48(3), 2005b, 269-284.

Siau, K. & Tan, X. (2005c). Evaluation criteria for information systems development methodologies.
Communications of the Association for Information Systems, 16, 856-872.

Siau, K., Wand, Y., & Benbasat, I. (1997). The relative importance of structural constraints and surface
semantics in information modeling. Information Systems, 22(2-3), 155-170.

Communications of the Association for Information Systems 854

Volume 50 10.17705/1CAIS.05037 Paper 37

Smith, H. J., Keil, M., & Depledge, G. (2001). Keeping mum as the project goes under: Toward an
explanatory model. Journal of Management Information Systems, 18(2), 189-227.

Spafford G. & Herschmann, J. (2019). Hype cycle for DevOps, 2019. Gartner.com. Retrieved from
https://www.gartner.com/en/documents/3947533.

Stroustrup, B. (1988). What is object-oriented programming? IEEE Software, 5(3), 10-20.

Svensson, R. B., Claps, G. G., & Aurum, A. (2015). On the journey to continuous deployment: Technical
and social challenges along the way. Information and Software Technology, 57, 21-31.

Swanson, E. B. (1994). Information systems innovation among organizations. Management Science, 40
(9), 1069-1092.

Tomas, N., Li J., & Huang, H. (2019). An empirical study on culture, automation, measurement, and
sharing of DevSecOps. In International Conference on Cyber Security and Protection of Digital
Services (Cyber Security) (pp. 1-8.).

Wakefield, J. (2018). The man who was fired by a machine. BBC News. Retrieved from
https://www.bbc.com/news/technology-44561838. Retrieved August 21, 2020.

Wand, Y. & Weber, R. (1993). On the ontological expressiveness of information systems analysis and
design grammars. Journal of Information Systems, 3(4), 217-237.

Wand, Y. & Weber, R. (2017). Thirty years later: Some reflections on ontological analysis in conceptual
modeling. Journal of Database Management, 28(1), 1-17.

Wasserman, A. I., Pircher, P. A., & Muller, R. J. (1990). The object-oriented structured design notation for
software design representation. Computer, 23(3), 50-63.

Wei, C., Chiang, R., & Wu, C. (2006). Accommodating individual preferences in the categorization of
documents: A personalized clustering approach. Journal of Management Information Systems,
23(2), 2006, 173-201.

Weinberg, G. M. (1982). Rethinking systems analysis and design. Little, Brown Boston.

Wiedemann, A., Forsgren, N., Wiesche, M., Gewald, H., & Krcmar, H. (2019). Research for practice: The
DevOps phenomenon. Communications of the ACM, 62(8), 44-49.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing object-oriented software. Pearson.

Yourdon, E. (1979). Structured design: Fundamentals of a discipline of computer program and systems
design. Yourdon Press.

Yourdon, E. (1988). Modern structured analysis. Yourdon Press.

Zhao, L. & Siau, K. (2002). Component-based development using UML. Communications of the
Association for Information Systems, 9, 207-222.

855

Information Systems Analysis and Design:

Past Revolutions, Present Challenges, and Future Research Directions

Volume 50 10.17705/1CAIS.05037 Paper 37

About the Authors

Keng Siau is the Department Head and Chair Professor of Information Systems at the City University of
Hong Kong. Prior to joining the City University of Hong Kong, he was the Head of Business Programs at
the Missouri University of Science and Technology. Before joining the Missouri University of Science and
Technology in June 2012, Professor Siau was Edwin J. Faulkner Chair Professor and Full Professor of
Management at the University of Nebraska-Lincoln (UNL). He was also the Director of the UNL-IBM
Global Innovation Hub. Professor Siau is Editor-in-Chief of the Journal of Database Management (SCI,
ABDC's A journal). He has served as the North America Regional Editor of the Requirements Engineering
journal (2010-2016). He has also served as the Vice President of Education for the Association for
Information Systems (AIS) and the AIS representative on the Board of Partnership for Advancing
Computing Education from July 2011 to June 2014. Professor Siau has more than 250 academic
publications. According to Google Scholar, he has a citation count of more than 16,000. His h-index and
i10-index, according to Google Scholar, are 65 and 158, respectively. Professor Siau is consistently
ranked as one of the top information systems researchers in the world based on his h-index and
productivity rate. In 2006, he was ranked as one of the top ten e-commerce researchers in the world
(Arithmetic Rank of 7, Geometric Rank of 3). In 2006, the citation count for his paper "Building Customer
Trust in Mobile Commerce" was ranked in the top 1% in the field as reported by Essential Science
Indicators. He is also on the 2020 and 2021 Stanford University's lists of top 2% most-cited scientists in
the world and ranked as one of the top computer scientists in the U.S. and the world.

Carson C. Woo is Stanley Kwok Professor of Business at the Sauder School of Business, University of
British Columbia. His research interests include systems analysis and design, requirements engineering,
conceptual modelling, and design science research. In particular, he is interested in using conceptual
models to acquire relevant contextual information (e.g., business goals) and utilizing it to design new
information systems, or aligning it to existing information systems design, so that future changes can be
accommodated to business needs without social-technical challenges. Dr. Woo is editor-in-chief of the
Data and Knowledge Engineering journal by Elsevier, editor of Information Technology and Systems
Abstracts Journal at the Social Science Research Network (SSRN), and member of the steering
committee of the International Conference of Conceptual Modeling, where he served as chair of the
committee during 2019-2020.

Veda C. Storey is the Tull Professor of Computer Information Systems and professor of computer science
at the J. Mack Robinson College of Business, Georgia State University. Her research interests are in data
management, conceptual modelling, and design science research. She is particularly interested in the
assessment of the impact of new technologies on business and society from a data management
perspective. Dr. Storey is a member of AIS College of Senior Scholars and the steering committee of the
International Conference of Conceptual Modeling.

Roger Chiang is a Professor of Information Systems at Carl H. Lindner College of Business, University of
Cincinnati. He received his Ph.D. in Computers and Information Systems from the University of Rochester.
His research interests are in business intelligence and analytics, data and knowledge management, and
intelligent systems. He has published over sixty refereed articles in journals and conferences, including
ACM Transactions on Database Systems, ACM Transactions on Management Information Systems,
Communications of the ACM, The DATA BASE for Advances in Information Systems, Data & Knowledge
Engineering, Decision Support Systems, Journal of American Society for Information Science and
Technology, Journal of Database Administration, Journal of Management Information Systems, Marketing
Science, MIS Quarterly, and the Very Large Data Base Journal. He has also served as a Senior Editor
and Associate Editor at some of these leading journals.

Cecil Eng Huang Chua is an associate professor at the Missouri University of Science & Technology. He
received a Ph.D. in Information Systems from Georgia State University, a Masters of Business by
Research from Nanyang Technological University and both a Bachelor of Business Administration in
Computer Information Systems and Economics and a Masters Certificate in Telecommunications
Management from the University of Miami. Cecil has several publications in such journals as Information
Systems Research, Journal of the AIS, MIS Quarterly and the VLDB Journal. He is a senior editor for
both AIS Transactions on Human-Computer Interaction and the Pacific Asia Journal of the Association for
Information Systems, desk editor for the Project Management Journal and an associate editor for both
Information & Management and the Information Systems Journal. Cecil has consulted for a range of

Communications of the Association for Information Systems 856

Volume 50 10.17705/1CAIS.05037 Paper 37

organizations including Daimler SEAsia, General Motors Singapore, the Singapore Ministry of Defense,
and Fonterra- the New Zealand milk cooperative that produces 1/3

rd
 of the world's globally traded milk.

Jon W. Beard is an Associate Teaching Professor in the Information Systems and Business Analytics
Department in the Ivy College of Business at Iowa State University. He has worked in industry as a
systems engineer and a management and IT consultant. His research and teaching are on Systems
Thinking, Design Thinking, Systems Analysis and Design, Business Process Management, Project
Management, and Strategic Information Systems. Jon has published research in the IEEE Transactions
on Engineering Management, the Journal of Strategic Information Systems, Communications of the
Association for Information Systems, the Journal of Business Ethics, and the Journal of Information
Systems Education. He is the editor of a book on Information Technology Applications for Crisis
Response and Management and two books on impression management and information technology.

Copyright © 2022 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to
publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints are via e-
mail from publications@aisnet.org.

	Information Systems Analysis and Design: Past Revolutions, Present Challenges, and Future Research Directions
	Recommended Citation

	Information Systems Analysis and Design: Past Revolutions, Present Challenges, and Future Research Directions
	Recommended Citation

	Information Systems Analysis and Design: Past Revolutions, Present Challenges, and Future Research Directions
	Authors

	Siau, Keng; Woo, Carson; Story, Veda C.; Chiang, Roger H. L.; Chua, Cecil E.H.; Beard, Jon W.: Information Systems Analysis and Design:Past Revolutions, Present Challenges, and Future Research Directions, Communications of the Association for Information

