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Abstract. A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of 
Science and Technology research reactor (MSTR), this heat is removed by natural convection where the 
coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water 
eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess 
heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel 
(U3Si2Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A 
study was carried out to map out heat flow as well as to predict the system’s performance via STAR-CCM+ simulation. 
The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is 
approximately 1.07+E7 Wm-3. An MSTR model consisting of 20% of MSTR’s nuclear core in a third of the reactor pool 
was developed.  At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of 
the pool at a rate 1.28 kg s−1 from the 4” pipe, and predicted pool surface temperature not exceeding 30◦C.  

INTRODUCTION 

Computational fluid dynamics (CFD) codes has emerged as a safety analysis tool for understanding nuclear 
reactor behavior. The code allows in-depth analysis of local temperature and flow fields around fuel geometries as 
well as flow in reactor coolant system [1][2][3][4][5]. While the predictive capabilities of such codes provide 3D 
view of thermal flow changes, the certainty of such prediction relies on reactor data that essentially provide code 
validation.  

The Missouri University of Science and Technology Reactor (MSTR) is a 200kW research reactor, and have 
been in operation since 1961 [6]. Several studies were carried out to prepare for a reactor uprate, and neutronic and 
thermal-fluid models were developed for this purpose [7][8][9]. In this work, both experimental work and 
computational calculations were performed to study thermal flow in the MSTR. CFD models were developed and 
provided analysis of the natural convection cooling of the MSTR core. Results from experimental works described 
the thermal flow evolution in the core area.  

REACTOR DESCRIPTION 

The MSTR is fuelled with plate-type fuel, U3Si2-Al, at 19.75 wt% U-235 enrichment [6]. The reactor core 
consists of fifteen fuel elements, four control rods and two irradiation fuel elements. A standard fuel element has 18 
fuel plates and a control rod fuel element consists of 10 fuel plates (Figure 1). The irradiation fuel element contains 
9 fuel plates. The “fuel meat” dimension is approximately 0.05cm x 6.10cm x 60.96cm. The gap between plates is 
0.315cm. In all fuel elements, the plates are encased in an aluminum sleeve, which allows water (coolant) to flow 
through the gaps between the plates to remove the heat generated from fission. The reactor pool has a rectangular 
shape with dimensions approximately 5.79 m long, 2.74 m wide and 8.23 m deep. It contains about 113.56 kiloliters 
of highly purified water.  Pool walls are made of ordinary reinforced concrete. The core cooling is by natural 
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convection, and the heated pool water evaporates into the reactor space. The specific configuration of the MSTR 
core in this study is 120W, where the fuel elements and control rod fuel element are arranged in a 9 x 5 grid (Fig. 2). 
There are a total of 310 fuel plates and approximately 295 channels through which coolant flows.  

 
 

  
(a) (b) 

FIGURE 1. (a) Standard Fuel Element and (b) Control Rod Fuel Element. 

TEMPERATURE MEASUREMENT 

In this work, three locations in the MSTR core were selected for monitoring temperature changes at 100kW and 
200kW. A thermocouple tree (TC-tree) consisting of 17 Type K thermocouples attached to a half-inch PVC pipe 
was extended into the MSTR pool. The pipe is approximately 8 meters long, and wires connected to the 
thermocouples are securely wrapped around the pipe. The thermocouple is arranged so that it is one feet apart from 
each other for thermocouple #1 to #8 and two feet apart for thermocouples #9 to #17. Averaged temperature 
readouts are taken from FLUKE 54 II Thermometer readers. At the end of the pipe, there is a notch that is used to 
set it on the fuel element or the grid plate. From the measurements, vertical temperature distributions were obtained.  
Two locations, C9 and D3, were selected at the periphery of the core and the location F14 is above the center of the 
core (Fig. 2). The three locations selected represent three points along an approximate middle cross-section of the 
core; C9 and D3 are easily accessible locations at the core periphery, and F14 is in the core center where the flux is 
highest. 

MODEL DESCRIPTION 

A simplified model of the MSTR was developed for CFD analysis [10]. The model consist of one third of the 
reactor pool, three fuel elements (1.86E+6 Wm-3), an eductor , a 4” pipe inlet with cone-shaped 6” opening, and a 
fuel storage area (Fig. 3). The inlet serves to remove heated water from the pool into a heat exchanger system. The 
cooled water is returned to the pool through an eductor that is attached to a pipe which is angled 30° downward from 
bulkhead wall. MSTR’s heat flux has a cosine shape [7] and this flux was applied on the fuel surfaces. The fuel 
region was defined as porous region with porosity of 0.7027 [9, 11]. Temperature of the reactor walls were at 294K 
to correspond with the wall temperature at the start of reactor power up. The walls and the bulkhead surface were 
maintained at 294K as their locations are far enough from the core that they are not highly affected by the core heat. 
Top of the pool was set to be adiabatic; evaporation mode is neglected. The model does not consider conjugate or 
radiation heat transfer. 
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RESULTS AND DISCUSSION 

MSTR Thermal Flow 

The TC-tree was lowered into the pool at locations D3, F14 and C9 (Figure 2). Temperature measurements were 
recorded, and were plotted against elevation to show coolant temperature variation in the vertical direction. To 
obtain an accurate temperature distribution at both D3 and C9 positions, the TC-tree was aligned as closely as 
possible to fuel elements F4 and F2 respectively. This alignment is made so that the temperature changes along the 
vertical fuel plate can be captured. At position F14, the TC-tree was placed right above the core to obtain heat plume 
measurements. Two sets of thermocouple are permanently fixed at the bottom and at the top of the pool, and pool 
temperatures are continuously monitored during reactor operation. Temperature of the pool during power up is 
different than at the end of the temperature measurements. Measurement values recorded by the TC-tree are 
corrected according to the pool temperature at the time of reading.  

 
(a) (b) 

FIGURE 1. MSTR 120W Core configuration  
(F:Fuel elements, C:Control rods, CRT/BRT: Cadmium/Bare Rabbit Tube, HC: Hot Cell). 

 

 

 

(a) (b) 

FIGURE 2. MSTR Model (a) Fluid region of the entire pool and complete fuel elements (b) A third of pool and 20% fuel. 
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In the core map, location F14 is approximately the center of the MSTR core. Location C9 is a position bordered 
by fuels F17 and F2. Location D3 is in the periphery of the core and is adjacent to fuel F4. The coolant temperature 
rise in F14 is the largest, followed by temperatures in locations C9 and D3. These temperature distributions showed 
the expected trends, whereby the highest temperature corresponds to the center of the core where the highest flux is 
located. At C9, the fuels F17 and F2 contributes to a higher temperature rise compared to peripheral temperatures at 
location D3. Reactivity variation exist between standard fuel element at the center of core (2.5% ∆k/k to 5.6% ∆ k/k) 
and standard fuel element at the core periphery (0.5% Δk/k to 1.5% Δk/k) and these variation contributes to the 
temperature trends as well. The F14 data showed that there is a 14K temperature drop from 317K (44°C) to 303K 
(30°C). This drop is seen from the top of the core to a distance 1.2 meters away from the core top. At 3.5 meters 
above F14, the coolant temperature was recorded to be between 298K (25°C) and 300K (27°C). The data suggest 
that the upward convective flow is strongest at F14, and coolant mixing starts approximately 1.5 meters away from 
the top of the core. As the heat flow from F14 slows-down, the coolant temperature increases between 300K (27°C) 
and 303K (30°C) in locations C9 and D3. 

 

 
FIGURE 3. Temperature measurement at locations D3, C9 and F14.  

 
 
Figure 5 shows the F14 temperature distributions at three power levels at 200kW, 100kW and 10kW. The highest 

temperature recorded is at the position closest to the core; at 200kW, 100kW, 10kW the values are approximately 
317K (44°C), 311K (38°C) and 300K (27°C) respectively. The heat dissipates, and coolant temperature starts to 
come to equilibrium at about 4.5 meters above the core. Measurement uncertainty from the thermocouples is ± 
2.2°C or 0.75% above 0°C. Each reading from the thermocouple is taken in a 1-minute average. Experimental 
statistical methods were applied to obtain error bars in Figs. 4 and 5. Part of this experimental result was used to 
provide validation for the MSTR model [9]. 

 
 
 
 

  

293.0

298.0

303.0

308.0

313.0

318.0

0 1 2 3 4 5 6

T
em

pe
ra

tu
re

 (K
) 

Distance from the edge of grid plate (m) 

F14 C9 D3

020002-4



 

 
 
 
 

 
FIGURE 4. Temperature distribution at the core center (F14 location). 

CFD Result 

Through CFD analysis, users are not only able to visualize the thermal flow in the reactor, but also obtain 
predictions about the bulk heat removal in various reactor operating conditions.    

Figure 6(a) shows the temperatures at location C9 where in this case only natural convection is at work for heat 
removal. The graph shows a gradual temperature increase in the coolant adjacent to fuel element F2 and F17. The 
approximate length of the fuel is 0.61m. At 0.6m distance above the core, the coolant temperature begins to come 
into equilibrium with the bulk pool temperature. Compared with the simulation results, the model predicts a higher 
temperature rise up to 1.8m and then follows the experimental data trend above 1.8m. The higher rise is due to the 
model not incorporating the mechanical assembly of the fuel core, which influences flow at the core area. The 
average temperature difference between simulated result and experimental data is approximately 2K. Figure 6(b) 
shows the velocity field for the MSTR operated at 200kW. Cool water is discharged at a constant rate 0.4536 kgs-1 
into the pool through the eductor, and is mixed with the bulk pool water. Heated water is drawn to the inlet where 
the mass flow rate was predicted to be 1.28kgs-1. According to reactor records, previous pool cooling rate was 2 F 
per 48 hours, however, the active cooling system allows 1.5 hour to cool the 30,000 gallon pool down from 31 C to 
20 C [12].  
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(a) (b) 

FIGURE 6. Simulation results at 200kW (a) Temperatures at C9 (b) Cross-sectional view of the MSTR showing the velocity 
field.  

 

SUMMARY 

This work was done to map out heat flow in the Missouri S&T reactor both experimentally and via computer 
simulation. The temperature data showed the values at three different locations in the pool for both reactor powers 
200kW and 100kW. From CFD analysis, both temperature and flow field of the coolant/moderator was predicted. 
The results provided MSTR users the ability to analyze thermal flow as well as the tools to predict future operating 
conditions of the reactor.     
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