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Abstract
In the mixed-criticality job model, each job is characterized by two execution time parameters,
representing a smaller (less conservative) estimate and a larger (more conservative) estimate on
its actual, unknown, execution time. Each job is further classified as being either less critical or
more critical. The desired execution semantics are that all jobs should execute correctly provided
all jobs complete upon being allowed to execute for up to the smaller of their execution time
estimates, whereas if some jobs need to execute beyond their smaller execution time estimates
(but not beyond their larger execution time estimates), then only the jobs classified as being more
critical are required to execute correctly. The scheduling of collections of such mixed-criticality
jobs upon identical multiprocessor platforms in order to minimize the makespan is considered
here.

1998 ACM Subject Classification D.4.1 Scheduling, D.4.7 Real-time systems and embedded
systems

Keywords and phrases Scheduling, Mixed criticality, Identical parallel machines, Makespan min-
imization, Approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.7

1 Introduction and motivation

The problem studied in this paper has its genesis in a collaborative project between our
universities-based research group and a major US defense contractor. The defense contractor
is developing fleets of unmanned aerial vehicles (UAVs) that are capable of coordinating
with one another autonomously in order to accomplish goals that are broadly specified at
a relatively high level. The embedded computer control systems on board such UAVs are
responsible for two general classes of functions:
1. safety-critical functions relating to the safe flight of the UAV – these functions are

expected to be subject to mandatory certification by the US Federal Aviation Authority
(FAA); and

2. mission-critical functions that enable the UAV to actually accomplish its stated mission.
The mission-critical functions are not subject to certification (although our collaborator –
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7:2 Mixed-Criticality Scheduling to Minimize Makespan

the defense contractor manufacturing the UAV – will subject them to analysis using their
own correctness criteria).

Systems such as this are mixed-criticality systems; in mixed criticality (MC) systems,
functionalities of different degrees of importance (or criticalities) are implemented upon a
common platform. As stated above, the more critical functionalities may be required to have
their correctness validated to a higher level of assurance than less critical functionalities.
This difference in correctness criteria may be expressed by different Worst-Case Execution
Time (WCET) estimates for the execution of a piece of real-time code. For validating the
timing correctness of critical functionalities it is desirable to use WCET estimates that
are obtained using extremely conservative tools (for example, some certification standards
require that particular “certified" tools based on static code-analysis be used for determining
WCET of highly safety-critical code), while less critical functionalities are often validated
using (less conservative) measurement-based WCET tools. Vestal [11, page 239] articulated
the practical implication of such practices in this manner: “the more confidence one needs
in a task execution time bound [...] the larger and more conservative that bound tends
to become.” He proposed that each piece of code therefore be characterized by multiple
WCET parameters, which are obtained by analyzing the (same) piece of code using different
WCET-analysis tools and methodologies. Different sets of WCET estimates are then used
to validate different correctness properties. We illustrate the essence of Vestal’s idea via a
simple (contrived) example.

I Example 1. Consider two jobs J1 and J2 executing upon a shared processor, with job J1
being more critical than J2. Both jobs are released at time 0, and share a common deadline
at time 10. Let us suppose that the WCET of J1, as determined by a more conservative
WCET tool, is equal to 5, while the WCET of J2, as determined using a less conservative
WCET tool (since J2 is less critical), is equal to 6. Since the sum of these WCETs exceeds the
duration between the jobs’ common release time and their deadline, conventional scheduling
techniques cannot schedule both jobs to guarantee completion by their deadlines. However,
Vestal observed in [11] that

with regards to validating the more critical functionality (e.g., from the perspective of a
certification process), it may be irrelevant whether the less critical job J2 completes on
time or not; and
assigning J1’s WCET parameter the value of 5 may be deemed too conservative for
validating less critical functionalities.

Let us suppose that the WCET of J1 is estimated once again, this time using the less
conservative WCET-determination tool; J1’s WCET is determined by this tool to be equal
to 3 (rather than 5). If we were now to schedule the jobs by assigning J1 greater priority
than J2,

In validating the more critical functionalities, we would determine that J1 completes by
time-instant 5 and hence meets its deadline.
The validation process for less critical functionalities concludes that J1 completes by
time-instant 3, and J2 by time-instant 9. Hence they both complete by the deadline.

We thus see that the system is deemed as being correct in both analyses, despite our initial
observation that the sum of the relevant WCETs (5 for J1; 6 for J2) exceeds the duration
between the jobs’ common release time and deadline.

The idea exposed in Example 1 – that the same system, represented using more and
less conservative models, may be demonstrated to satisfy different correctness criteria for
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functionalities of different criticalities – has been widely explored since first proposed by
Vestal [11]; there is a nice review of the current state of the art in [3].

This research. Much of the prior study on mixed-criticality scheduling has focused upon
the scheduling of mixed-criticality workloads that are executed upon a single processor. A
few pieces of work (e.g., [2, 9, 8, 7]) have considered multiprocessor scheduling, but they have
all dealt with a very different workload model: systems of recurrent (periodic or sporadic)
tasks that need to meet deadlines, rather than collections of independent jobs. In this paper,
we seek to initiate the study of mixed-criticality scheduling of collections of independent jobs
upon multiprocessor platforms, by considering a simple multiprocessor scheduling problem
for such workloads – that of scheduling a given collection of mixed-criticality jobs (each of the
kind described in Example 1 above) upon a specified number of identical processors in order to
minimize the makespan of the resulting schedule. Makespan minimization is one of the basic
and fundamental problems studied in multiprocessor scheduling, and we are optimistic that
obtaining a better understanding of this fundamental problem will facilitate the development
of a more comprehensive theory of multiprocessor mixed-criticality scheduling. Although this
specific mixed-criticality problem is a highly simplified version of the motivating application
problem – it was obtained by applying a large number of simplifying assumptions to the
actual application system under analysis – it is hoped that exposing this problem domain to
the FST&TCS community will motivate further work upon less simple, but more realistic,
variants.

Our results. We derive algorithms for both non-preemptive scheduling (in which a job, once
it begins execution, is allowed to execute through to completion upon the same processor
on which it started to execute), and preemptive scheduling (in which an executing job may
be preempted during execution, and its execution resumed later upon any processor) of
collections of mixed-criticality jobs to minimize makespan upon identical multiprocessor
platforms. The non-preemptive problem is NP-hard, but can be solved approximately in
polynomial time to any desired degree of accuracy by a polynomial-time approximation
scheme. We do not yet know whether or not the preemptive version of the problem is solvable
in polynomial time; we derive here a polynomial-time 4

3 ’rds-approximation algorithm for
solving it. To our knowledge, the precise computational complexity of determining the
minimum makespan under preemptive scheduling remains open.

2 System model

In this section we formally define the semantics of the mixed-criticality model and specify the
problem that we are seeking to solve. An instance I of the scheduling problem we consider is
specified as follows.
1. A collection J of n mixed-criticality jobs J1, J2, . . . , Jn. Each job Ji is characterized

by the parameters (χi, cLi , cHi ), with χi ∈ {lo,hi} and cLi ≤ cHi . The χi parameter
denotes the criticality of job Ji; a job Ji with χi = lo is called a lo-criticality job,
and one with χi = hi is called a hi-criticality job. The parameters cLi and cHi are the
lo-criticality WCET estimate and the hi-criticality WCET estimate of job Ji; since the
lo-criticality WCET estimates are assumed to be made using a less conservative tool
than the hi-criticality WCET estimates, we require that cLi ≤ cHi for all Ji ∈ J . (For
lo-criticality jobs, we assume that cLi = cHi .)

2. A number m of unit-speed processors upon which the jobs in J are to to be executed.

FSTTCS 2016
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Some additional notation: let JH ⊆ J denote the collection of all the jobs Ji ∈ J for which
χi = hi, and JL ⊆ J denote the collection of all the jobs Ji ∈ J for which χi = lo.

System behavior. Our mixed-criticality model has the following semantics. Each job
Ji is released at time 0, and needs to execute for a total duration γi. This execution
must be sequential, meaning Ji is not allowed to simultaneously execute on more than one
processor. The value of γi is not known prior to running time; it can only be discovered by
actually allowing Ji to execute until it signals that it has completed execution. These values
〈γ1, γ2, . . . , γn〉 upon a particular execution of the collection of jobs J together define the
kind of behavior exhibited by J during that execution.

If γi ≤ cLi for each i (i.e., each Ji signals completion without exceeding cLi units of
execution), J is said to have exhibited lo-criticality behavior .
If cLi < γi ≤ cHi for any i (i.e., some job Ji only signals completion upon executing for
more than cLi but no more than cHi units of execution), J is said to have exhibited
hi-criticality behavior .
If cHi < γi for any i (i.e., some job Ji does not signal completion despite having executed
for cHi units), J is said to have exhibited erroneous behavior .

Correctness criteria. We define an algorithm for scheduling mixed-criticality instances to be
correct if it is able to schedule any instance in such a manner that (i) during all lo-criticality
behaviors of the instance, all jobs receive enough execution to be able to signal completion;
and (ii) during all hi-criticality behaviors of the instance, all hi-criticality jobs receive enough
execution to be able to signal completion. This is formally stated in the following definition:

I Definition 2 (MC-correct). A scheduling algorithm for mixed-criticality instances is MC-
correct if it ensures that:

during any execution of an instance in which it exhibits lo-criticality behavior, all jobs
signal completion; and
during any execution of an instance in which it exhibits hi-criticality behavior, all
hi-criticality jobs signal completion (although lo-criticality jobs may fail to do so).

We point out that upon some job failing to signal completion despite having executed
for up to its lo-criticality WCET, (i) an MC-correct scheduling algorithm may immediately
discard all lo-criticality jobs; and (ii) only those hi-criticality jobs that have not already
signaled completion may need to execute for up to their hi-criticality WCETs – those that
have already signaled completion (upon executing for ≤ their lo-criticality WCET) do not
now need further execution.

Problem statement. Given an instance I comprising a collection J of n mixed-criticality
jobs to be scheduled uponm unit-speed processors, obtain an MC-correct scheduling algorithm
that minimizes the makespan of the resulting schedule.

Since the instance I may generate arbitrarily many different behaviors (the values of the
actual running times 〈γ1, γ2, . . . , γn〉) during different executions, we clarify what we mean
by minimizing makespan: we desire that the maximum makespan over all non-erroneous
behaviors of the instance be minimized.
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3 MC-correct scheduling algorithms that minimize makespan

Observe that the maximum amount of execution that could be required in any lo-criticality
behavior is equal to

(∑
Ji∈J c

L
i

)
, while in any hi-criticality behavior in which each hi-

criticality job executes to its hi-criticality WCET, the amount of execution that must occur
is at least equal to

(∑
Ji∈JH

cHi
)
. It is therefore evident that upon an m-processor platform,

max
{∑

Ji∈J c
L
i ,
∑
Ji∈JH

cHi
}

m

is a lower bound on this desired makespan. An obvious upper bound on the makespan is
given by∑

Ji∈J
cHi .

If we had a procedure for validating whether mixed-criticality instance I could be scheduled
by some MC-correct scheduling algorithm with a makespan no larger than some specified
constant, we could use bisection search (“binary search") between the upper and lower
makespan bounds obtained above, in order to determine the minimum makespan to any
desired degree of accuracy. In the remainder of this section, we will therefore attempt to
design MC-correct scheduling algorithms that generate schedules with makespan no greater
than some specified constant D.

3.1 Non-preemptive scheduling
The non-preemptive version of this problem is easily seen to be solved by transforming it to
a two-dimensional vector scheduling problem [12], for which a PTAS is known [4, 5]. The
transformation is fairly straightforward: given an instance I of the mixed-criticality scheduling
problem comprising the n jobs J to be scheduled upon m processors with a makespan ≤ D,
we seek to partition J into the sub-sets J1,J2, . . .Jm satisfying the constraints that for each
j, 1 ≤ j ≤ m,( ∑

Ji∈Jj

cLi ≤ D
)

and
( ∑
Ji∈Jj∧χi=hi

cHi ≤ D
)
.

If such a partitioning is found, then during run-time we would execute the hi-criticality jobs
in Jj upon the j’th processor first for each j, 1 ≤ j ≤ m. If each job Ji completes within cLi
units of execution, then we execute the lo-criticality jobs in Jj next upon the j’th processor
for each j, while if some Ji does not complete within cLi units of execution we simply discard
the lo-criticality jobs and execute the hi-criticality jobs each to completion.
Observe that obtaining such a partitioning is equivalent to
1. First representing each job Ji by a 2-dimensional vector of size cLi along the first dimension,

and size along the second dimension depending upon the value of χi: if χi = hi then
the size along this dimension is set equal to cHi while if χi = lo then the size along this
dimension is set equal to zero.

2. Next, partitioning the n vectors so obtained into m sub-sets, such that each partition
sums to ≤ D along each of the two dimensions – this is exactly the 2-dimensional vector
scheduling problem of [12].
The non-preemptive version of our scheduling problem, which is easily seen to be NP-hard

(since the specialization of the problem to “regular” – non mixed-criticality – scheduling, in
which all the jobs in J are of the same criticality, is already known to be NP-hard), is thus
solvable in polynomial time to any desired degree of accuracy by a PTAS.

FSTTCS 2016
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Each Ji is initially executed at a constant rate φLi
If some Ji does not signal completion despite having received cLi units of execution, then

All lo-criticality jobs are immediately discarded, and
Each hi-criticality job henceforth executes at a constant rate φHi until completion

Figure 1 Our preemptive run-time scheduling algorithm.

3.2 Preemptive scheduling

In contrast to the regular (i.e., not mixed-criticality) case, where preemptive scheduling of
independent jobs to minimize makespan is easily seen to be solvable optimally in polynomial
time using McNaughton’s rule [10], this problem turns out to be surprisingly challenging
for mixed-criticality instances. Indeed, we have not yet been able to determine whether the
problem is solvable in polynomial time or not; what we have instead is a polynomial-time
approximation algorithm with approximation factor 4/3 for solving this problem1.

Given instance I and a desired makespan D, our strategy, which is based upon an
algorithm called MC-Fluid [8, 1] for scheduling mixed-criticality sporadic tasks in order to
meet all deadlines, is as follows. We will seek to determine a schedule for the jobs in J upon
the m unit-speed processors under a fluid scheduling model, which allows for schedules in
which individual jobs may be assigned a fraction ≤ 1 of a processor (rather than an entire
processor, or none) at each instant in time, subject to the constraint that the sum of the
fractions assigned to all the jobs do not exceed m at any instant. That is, we will determine
execution rates φLi and φHi for each task τi such that the scheduling algorithm depicted in
Figure 1 constitutes an MC-correct scheduling strategy for the jobs in J upon m processors.
(Standard techniques are known for converting such a fluid schedule to schedules in which
there is no processor-sharing; see, e.g., [6, page 116] for details.)
We will now describe how the values for the φLi and φHi parameters are determined. We
start out defining some additional notation:

For each job Ji ∈ J , let flow rates fLi and fHi be defined as follows:

fLi
def= cLi /D

fHi
def= cHi /D

Intuitively, a fluid schedule in which Ji is executed at a constant rate fLi (fHi , respectively),
over the interval [0, D] will complete at or before time-instant D in any lo-criticality
behavior (hi-criticality behavior, resp.) of the instance. It should be evident that it is
necessary that fLi be ≤ 1 for each job Ji, and that fHi be ≤ 1 for each hi-criticality job
Ji, if we are to be able to guarantee a makespan D.

Various cumulative flow requirements are defined for J as follows – here, FLL denotes the
cumulative lo-criticality flow rates of all lo-criticality jobs; FLH denotes the cumulative lo-
criticality flow rates of all hi-criticality jobs; and FHH denotes the cumulative hi-criticality

1 A trivial algorithm with approximation factor 2 can be obtained using McNaughton’s rule as follows.
First schedule the hi-criticality jobs based on their hi-criticality WCET estimates in the time interval
[0, D], and then schedule the lo-criticality jobs based on their lo-criticality WCET estimates in the
time interval [D, 2D].
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1. Define a scaling factor ρ as follows:

ρ← max
{(FLL + FLH

m

)
,
(FHH
m

)
, max
Ji∈JH

{
fHi
}}

(1)

2. If ρ > 1 then declare failure; else assign values to the execution-rate variables as follows:
φHi ← (fHi /ρ) for all Ji ∈ JH (2)

φLi ←


fL

i

φH
i
−(fH

i
−fL

i
) × φ

H
i , if Ji ∈ JH

fLi , else (i.e., if Ji ∈ JL)
(3)

3. If ∑
Ji∈J

φLi ≤ m (4)

then declare success else declare failure

Figure 2 Computing execution rates.

flow rates of all hi-criticality jobs:

FLL
def=

∑
Ji∈JL

fLi

FLH
def=

∑
Ji∈JH

fLi

FHH
def=

∑
Ji∈JH

fHi

The following observation directly follows from the definitions of FLL , FLH , and FHH :

I Observation 3. It is necessary that
(
FLL +FLH) ≤ m, and FHH ≤ m, if we are to be able to

guarantee a makespan D for J upon m processors.

As stated in Figure 1, our run-time scheduling algorithm requires that values be assigned
to the execution-rate variables {φLi }Ji∈J

⋃
{φHi }Ji∈JH

prior to run-time. In Figure 2 we
describe, in pseudo-code form, the algorithm for computing the values of these execution-rate
variables. Before proving the correctness of this algorithm (in Section 3.3), we first illustrate
its application via an example.

An example. Consider the following collection of 4 mixed-criticality jobs, to be scheduled
preemptively upon a 2-processor platform with a target makespan D ← 10.

χi cL
i cH

i

J1 hi 3 8
J2 hi 4 7
J3 hi 1 1
J4 lo 5 5

FSTTCS 2016



7:8 Mixed-Criticality Scheduling to Minimize Makespan

The flow rates for the jobs are obtained by dividing the corresponding WCET parameters by
10 (the value of D); the cumulative flow requirements are then computed as follows:

FLL = fL4 = 0.5
FLH = fL1 + fL2 + fL3 = 0.3 + 0.4 + 0.1 = 0.8
FHH = fH1 + fH2 + fH3 = 0.8 + 0.7 + 0.1 = 1.6

The scaling factor ρ is therefore

ρ = max
{0.5 + 0.8

2 ,
1.6
2 ,max{0.8, 0.7, 0.1}

}
= max

{
1.3/2, 1.6/2, 0.8

}
= 0.8

The hi-criticality jobs J1, J2, and J3, are assigned φHi values as follows:

φH1 = 0.8
0.8 = 1.0

φH2 = 0.7
0.8 = 0.875

and φH3 = 0.1
0.8 = 0.125

All the jobs are assigned φLi values as follows:

φL1 = 1.0× 0.3
1.0− (0.8− 0.3) = 0.6

φL2 = 0.875× 0.4
0.875− (0.7− 0.4) = 14

23 < 0.61

φL3 = 0.125× 0.1
0.125− (0.1− 0.1) = 0.1

and φL4 = 0.5

Since
∑4
i=1 φ

L
i <

(
0.6 + 0.61 + 0.1 + 0.5

)
= 1.81, which is ≤ 2 (the number of processors),

our algorithm declares success.

3.3 Preemptive scheduling – proof of correctness
We will now show that the preemptive scheduling algorithm described above is correct: if
the execution rates are computed as specified in Figure 2 without declaring failure for a
given instance I, then the schedule resulting from using these execution rates in the manner
described in Figure 1 does indeed constitute an MC-correct scheduling algorithm that always
generates schedules of makespan ≤ D upon all non-erroneous behaviors. Our proof proceeds
in several steps.
1. We first prove, in Lemma 4 below, that the rate-assignment in Figure 2 is correct, by

showing that the sum of the lo-criticality and the hi-criticality execution rates assigned
to the jobs in Figure 2 do not exceed m, the number of available processors.

2. Next, we show in Lemma 5 that each execution rate is assigned a valid value in Figure 2:
a non-negative real number that is no larger than one.

3. We then prove, in Lemma 6, correctness upon all lo-criticality behaviors, by showing
that the φLi values assigned in Figure 2 are no smaller than the corresponding fLi values.
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4. Finally, we prove correctness upon all hi-criticality behaviors by examining the actions of
the scheduling algorithm in the event that some job does not signal completion despite
having executed for up to its lo-criticality WCET (which indicates that the instance is
exhibiting a hi-criticality behavior rather than a lo-criticality one).

I Lemma 4. The sum of the lo-criticality execution rates assigned to all the jobs, and the
sum of the hi-criticality rates assigned to all the hi-criticality jobs (i.e., the jobs in JH),
each does not exceed the number of processors m.

Proof. It follows from Condition 4 of Figure 2 that our algorithm declares success only if
the assigned lo-criticality execution rates sum to ≤ m.

To show that the assigned hi-criticality rates also sum to no more than m, observe that∑
Ji∈JH

φHi =
∑
Ji∈JH

fHi
ρ

(By Eqn 2) = 1
ρ
FHH (By definition of FHH )

By Equation 1, ρ ≥ (FHH /m); hence

1
ρ
FHH ≤

( m
FHH

)
FHH = m

and the lemma is proved. J

I Lemma 5. Each φLi and φHi is assigned a value ≤ 1 in the algorithm of Figure 2.

Proof. Observe that Line 1 of Figure 2 assigns ρ a value ≥ fHi for all Ji ∈ JH . Since Line 2
of Figure 2 assigns each φHi a value fHi /ρ, it follows that each such φHi has a value ≤ 1, as
required.

With regards to the φLi ’s, the value assigned to φLi for each Ji ∈ JL is equal to fLi (and
hence ≤ 1).

For each Ji ∈ JH , we will now show that φLi ≤ φHi . It follows from the assignment of
values to φLi (Equation 3 in Figure 2) that this will hold provided (Removed the justification
in the last derivation step.)

fLi
φHi −

(
fHi − fLi

) ≤ 1

⇔ fLi ≤ φHi −
(
fHi − fLi

)
⇔ fHi ≤ φHi

which follows from the requirement that ρ be ≤ 1 (else, the algorithm in Figure 2 would
declare failure in Step 2).

We have thus shown that φLi ≤ φHi for each Ji ∈ JH (i.e., the execution rate guaranteed
to each hi-criticality job does not decrease upon identification of hi-criticality behavior).
Since we saw above that all such φHi values are ≤ 1, it follows that the φLi variables are also
assigned values ≤ 1. J

I Lemma 6. The instance is scheduled with a makespan ≤ D in all lo-criticality behaviors.

Proof. We will first prove that for each Ji ∈ J

φLi ≥ fLi (5)

Let us separately consider jobs in JL and JH . Observe that by the definition of φLi
(Equation 3),

FSTTCS 2016
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1. For each Ji ∈ JL , φLi = fLi .
2. For each Ji ∈ JH ,

φLi = fLi ×
φHi

φHi −
(
fHi − fLi

)
≥ fLi ×

φHi
φHi

(Since (fHi − fLi ) ≥ 0)

= fLi

These two cases together establish that φLi ≥ fLi for all Ji ∈ J ; it hence immediately follows
that φLi · D, the amount of execution that would be received by Ji if it were allowed to
execute at a rate φLi over the entire duration [0, D) in any lo-criticality behavior of J , is
≥ cLi . From this we conclude that the makespan in any lo-criticality behavior is ≤ D. J

I Lemma 7. The instance is scheduled with a makespan ≤ D in all hi-criticality behaviors.

Proof. Consider any hi-criticality behavior of the instance, and let to denote the first
time-instant at which some job does not signal completion despite having executed for its
lo-criticality WCET. We will prove below that any hi-criticality job that is active (i.e., that
has not yet completed execution) at time-instant to receives an amount of execution no
smaller than its hi-criticality WCET by time-instant D.

Suppose that hi-criticality job Ji is active at time-instant to. Over the interval [0, to),
this job will have received an amount of execution equal to φLi × to; since the job is still
active, it must be the case that

to ≤ cLi /φLi (6)

Henceforth job Ji will execute at a rate φHi . Hence for it to complete within a makespan D,
it is sufficient that

toφ
L
i + (D − to)φHi ≥ cHi

⇔ DφHi − to(φHi − φLi ) ≥ cHi

⇐ DφHi −
cLi
φLi

(φHi − φLi ) ≥ cHi (By Inequality 6)

⇔ DφHi ≥
cLi
φLi

(φHi − φLi ) + cHi

⇔ DφHi ≥
cLi φ

H
i

φLi
− cLi + cHi

⇔ D ≥ cLi
φLi

+
(cHi − cLi

φHi

)
⇔ 1 ≥ fLi

φLi
+
(fHi − fLi

φHi

)
(Dividing by D, and applying definitions of fLi , fHi ) (7)

Also by Equation 3, for each Ji ∈ JH we have

φLi = fLi φ
H
i

φHi −
(
fHi − fLi

)
⇔
φHi −

(
fHi − fLi

)
φHi

= fLi
φLi
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⇔ 1−
(fHi − fLi

φHi

)
= fLi
φLi

⇔ 1 = fLi
φLi

+
(fHi − fLi

φHi

)
thereby establishing Condition 7 and completing the proof of the lemma. J

3.4 Preemptive scheduling – A 4/3’rds approximation Bound

We now prove that MC-correct scheduling algorithm described in Section 3.2 is a 4/3’rds
approximate algorithm for preemptive scheduling to minimize makespan. Our approach
towards showing this is as follows. A straightforward generalization of Observation 3 leads us
to conclude that for mixed-criticality instance J to be schedulable with makespan s×D upon
m processors, it is necessary that (FLL + FLH) and FHH for the instance both be ≤ m× s, and
that in addition fHi ≤ s for each Ji ∈ JH and fLi ≤ s for each Ji ∈ JL. It therefore follows
that the scaling factor ρ that is computed in Expression 1 of the algorithm of Figure 2 for
such a system is ≤ s. We will show below, in Lemma 9, that if ρ ≤ 3/4 and the φHi , φLi values
are computed as specified in Expressions 2–3 of Figure 2, then the φLi ’s so computed are
guaranteed to sum to ≤ m and therefore satisfy Condition 4 of Figure 2 (which in turn means
that the system is scheduled with makespan ≤ D upon m processors). The approximation
ratio follows, by observing that 4/3 is the multiplicative inverse of 3/4.

First, a technical lemma.

I Lemma 8. Let c denote any positive constant. The function

f(x) def= x(c− x)
c
3 + x

is ≤ c
3 for all values of x ∈ [0, c].

Proof. (This lemma is easily proved rigorously using standard techniques from the calculus;
we skip the details here in favor of a high-level outline.) Taking the derivative of f(x) with
respect to x, we see that the only value of x ∈ [0, c] where this derivative equals zero is
x ← c/3. We therefore conclude that f(x) takes on its maximum value over [0, c] for one
of the values of x ∈ {0, c/3, c}. Explicit computation of f(x) at each of these values reveals
that the value is maximized at x = c/3, where it takes on the value c/3. J

I Lemma 9. If ρ ≤ 3/4 and φHi , φLi values are computed as specified in Expressions 2–3 of
Figure 2, then the φLi values so computed satisfy Condition 4.

Proof. Let us first rewrite Condition 4 to an equivalent form expressed in Condition 8 below.∑
Ji∈J

φLi ≤m

⇔
∑
Ji∈JL

φLi +
∑
Ji∈JH

φLi ≤ m

⇔FLL +
∑
Ji∈JH

fLi φ
H
i

φHi −
(
fHi − fLi

) ≤ m

FSTTCS 2016
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⇔FLL +
∑
Ji∈JH

fLi

(
1 +

(
fHi − fLi

)
φHi −

(
fHi − fLi

)) ≤ m
⇔FLL +

∑
Ji∈JH

fLi +
∑
τi∈JH

fLi (fHi − fLi )
φHi −

(
fHi − fLi

) ≤ m
⇔FLL + FLH +

∑
Ji∈JH

fLi
(
fHi − fLi

)
φHi −

(
fHi − fLi

) ≤ m (8)

We will show, in the remainder of this proof, that if ρ ≤ 3/4 then Condition 8 is satisfied;
this will serve to establish the correctness of Lemma 9.

Let us assume henceforth that ρ ≤ 3/4. From the definition of ρ (Expression 1), it follows
that

FLL + FLH ≤ 3
4m (9)

FHH ≤ 3
4m (10)

∀Ji ∈ JH fHi ≤ 3
4 (11)

Additionally, since φHi ← fHi /ρ, it must hold that

∀Ji ∈ JH φHi ≥
4
3 f

H
i (12)

Let us use Inequalities 9–12 to further simplify Condition 8.

FLL + FLH +
∑
Ji∈JH

fLi
(
fHi − fLi

)
φHi −

(
fHi − fLi

) ≤ m
⇐ 3

4m+
∑
Ji∈JH

fLi
(
fHi − fLi

)
φHi −

(
fHi − fLi

) ≤ m (By Ineq. 9)

⇐ 3
4m+

∑
Ji∈JH

fLi
(
fHi −Li

)
4
3 f

H
i −

(
fHi − fLi

) ≤ m (By Ineq. 12)

⇔ 3
4m+

∑
Ji∈JH

fLi
(
fHi − fLi

)
fH

i

3 + fLi

≤ m

⇔
∑
Ji∈JH

fLi
(
fHi − fLi

)
fH

i

3 + fLi

≤ m

4

⇐
∑
Ji∈JH

fHi
3 ≤ m

4 (By Lemma 8)

⇔ 1
3 · (F

H
H ) ≤ m

4
⇐

(1
3 ·

3
4m ≤

m

4

)
(By Inequality 10)

⇔
(m

4 ≤
m

4

)
and Lemma 9 is thereby proved. J
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4 Summary and conclusions

Mixed-criticality scheduling is emerging as an increasingly important topic in the design,
analysis, and implementation of safety-critical embedded systems. Most prior work on this
topic has been restricted to uniprocessor scheduling; what little work has been done on
multiprocessor scheduling has primarily focused upon recurrent (periodic and sporadic)
workload models that are very different from the one we consider in this paper. We have
adapted ideas from some such prior work, and have applied them to our problem of scheduling
collections of independent jobs in order to minimize makespan. We have designed algorithms
for both preemptive and non-preemptive scheduling of such workloads, but have not yet
been able to classify the computational complexity of preemptive scheduling to minimize
makespan – we leave this as an open problem.

We reiterate a point we had made earlier in this manuscript – although the particular
problem we have presented here was obtained by applying a large number of simplifying
assumptions to the actual application system under analysis, we hope that exposing this
very interesting and important problem domain to the FST&TCS community will encourage
members of this community to work upon more realistic, and more complex, variations.
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