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Seventeenth International Specialty Conference on Cold-Fornled Steel Structures 
Orlando, Florida, U.S.A, November 4-5, 2004 

A new ultra long-spanning, combined steel formwork and 
reinforcement hybrid decking system 

using cold-formed components 

Mathias Gliisle1), Mark Patrick2), Ross Gref) 

Abstract 

A new ultra long-spanning, combined steel formwork and reinforcement system 
designed to span up to 6 or 7 metres (20.7 or 23 feet) without propping has been 
under development for nearly a decade in Australia. The steel decking system 
includes a number of innovative features that make it adaptable to almost any 
type of building construction ranging from conventional, shallow one-way 
composite slabs in steel-frame buildings to deep two-way post-tensioned slabs in 
concrete-frame buildings. The hybrid system comprises a number of distinctly­
different cold-formed steel components, which have efficient shapes and utilize 
different thicknesses, steel grades and coatings. The overall height of the main 
decking panel can vary from 90 to 260 mm (3.54 to 10.24 in) with an additional 
three intermediate sizes, despite the components being made from the same roll­
forming equipment. The panel has a closed cellular section and is precambered 
to limit the final deflection under wet-concrete conditions. These panels can be 
interconnected for maximum spanning capability, or else different types of infill 
panels can be fitted between them to form composite slabs with a variety of 
cross-sectional shapes and features. Slabs of minimum overall depth or 
minimum weight can be constructed using the system. The cellular section can 
form a void in the concrete, or it can have holes pre-punched in its webs 
allowing it to be filled with concrete either partially or completely along its 
length. Prestressing cables and reinforcing bars can be fitted longitudinally and 
if need be transversely in the slab, even in the soffit region. Comprehensive sets 
of structural tests, some quite innovative, are currently being performed to 
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thoroughly investigate the behaviour of the system for both the formwork and 
composite states. In particular, this involves developing a complete 
understanding of the complex behaviour of the main decking panel and its 
different cold-formed components under a variety of loading conditions that 
induce vertical and longitudinal shear, longitudinal and transverse bending, and 
torsion. The behaviour of the mechanical connection between the elements is 
being closely investigated experimentally, allowing the moment capacity of 
potentially critical cross-sections with partial shear connection to be accurately 
predicted and the spacing between connections optimised. 

1 Introduction 

Cold-formed steel decks have been part of floor systems in buildings for over 
70 years. In the early 1930's, the H. H. Robertson Co. laid the first cellular steel 
floor, called "keystone beam", at a warehouse in Pittsburgh, USA (Dallaire, 
1971). This was the "keystone" of the development of structural steel decking. 
In about 1950, the first composite floor appeared, with the steel decking 
connected to the concrete by a grid of wires welded to the decking surface 
(Dallaire, 1971). Today, composite slabs incorporating cold-formed steel 
decking are the preferred type of floor in steel-frame buildings in most 
developed countries. Unpropped composite decks have become increasingly 
popular to promote rapid construction, but maximum spans of U.S. decks, for 
example, have for many years only been about 4.57 m (15 ft) and typically only 
in the range of 2.44 to 3.05 m (8 to 10 ft) (Widjaja and Easterling, 2000). 
Nevertheless, research in the area of long-span slabs has been carried out, 
resulting in some new long-span flooring systems (Ramsden and Segerlind, 
1986), (Lawson and Mullet, 1993) and (Hillman and Murray, 1994). In 1999, an 
innovative (patented) long-spanning steel decking system, called TRUSSDEK®, 
was first released into the Australian construction market. In its initial form it 
was a lightweight, permanent, combined steel formwork and reinforcement 
system that allowed spans in excess of 5.5 m (18 ft) in the formwork stage 
without propping (patrick, 2002). Reinforcing trusses are welded to the pans of 
high-tensile, galvanized profiled steel sheeting (Bondek II), which further 
enhanced the mechanical interlock between the decking and the concrete, 
ensuring that the combined truss and decking system acted as fully-effective 
reinforcement in the fmal slab or beam at critical cross-sections under maximum 
positive bending moment. 

An entirely new version of the TRUSSDEK® system has been developed 
(TRUSSDEK II) and is protected by a separate patent. The hybrid steel decking 
includes a number of innovative features that makes it adaptable to almost any 
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type of building construction ranging from conventional, shallow one-way 
composite slabs in steel-frame buildings to deep two-way post-tensioned slabs in 
concrete-frame buildings. It is designed to span up to 6 to 7 metres (20.7 to 
23 feet) without propping, and makes it possible to form a variety of innovative 
solutions for each application being considered. By increasing the span of the 
decking, significant savings in construction cost and time can be expected. 
During the construction stage, the need for temporary falsework can be reduced 
or eliminated. Also the number of permanent supporting elements, such as 
beams or walls, can be reduced, which creates outstanding open-plan designs. A 
broad comparison is made in Figure 1 between TRUSSDEK II and some other 
prominent composite steel decks available in the United States, Australia and 
Europe, regarding overall slab thickness d versus maximum span L in a single, 
unpropped span. Data, based on the companies' own publications, were used to 
define each product's performance. The nominal base metal thicknesses (in mrn) 
to form the upper and lower boundaries are shown in brackets underneath the 
product name. The following composite steel decks were examined: 
Condeck HP (Stramit Corporation Pty. Ltd., 2004), P-2432 (Canam Steel 
Corporation, 2004), CFD3 (Consolidated Systems Inc., 2004), ComFlor 100 and 
SD225, mainly used in the Slimdek® system (Corus - Panels and Profiles, 2004). 
Reinforced and prestressed concrete slabs are normally restricted to certain 
slenderness ratios, which form the outer borders for economy (Lid = 15) and 
deflection control (Lid = 40) within which TRUSSDEK II is normally used. 
TRUSSDEK II has been used in slabs with spans as short as 2.5 m (8.2 ft), while 
the longest panel length that can currently be made is 9.0 m (29.5 ft) (which 
would require propping, however). 

2 Ultra long-spanning hybrid steel decking system 

The ultra long-spanning hybrid steel decking system (TRUSSDEK II) is based 
on a modular approach, consisting of a number of complex cold-formed 
elements, which take on optimal shapes, thicknesses, steel grades and coatings. 
This approach gives the hybrid system great versatility compared to normal 
trapezoidal-shaped W -decks produced with a constant bare metal thickness 
around their perimeter. In the case of TRUSSDEK II, additional material can be 
efficiently concentrated in the flanges to strengthen and stiffen the panels to 
achieve longer spans during the formwork stage. The main decking panel 
comprises three basic components, viz.: a stiffened base panel with over-lapping 
joints; vertically-corrugated webs with or without holes; and a stiffened top 
plate. There are also diaphragms. The components are mechanically connected 
together after they have been roll-formed to produce a closed cellular section, 
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which can take on different heights h from 90 to 260 mm (3.54 to 10.24 in). The 
mechanical connection between the elements is established by press-joining. A 
typical section of the assembled main decking panel is shown in Figure 2. 

2.1 Base panel 

The base panel is specially designed to suit the unique demands of the system 
and is made of thin cold-formed high-tensile (500 to 550 MPa; 72.5 to 79.8 ksi) 
galvanized steel that provides significant tensile or compressive capacity acting 
as longitudinal reinforcement in the composite slab. The longitudinal stiffeners 
in the pan serve a number of purposes, viz: (i) they reduce the degree of 
waviness of the flat surfaces, known as oil canning, which can otherwise be the 
source of large imperfections and amplify local buckles as well as being a 
problem aesthetically; (ii) they improve the compressive capacity of the panel in 
negative moment regions; (iii) their outer edges are used to locate the webs; and 
(iv) they make the panel compact in negative or positive bending (noting that the 
panel can be used by itself as an infill element). The narrow, re-entrant open 
steel lapping ribs are only 20 mm (0.79 in) high, so unlike profiles with deep 
ribs, they do not impact on the behaviour of the slab in the transverse direction. 
The passage of reinforcing bars or prestressing cables in the transverse direction 
to provide two-way action in a solid slab is then possible. The base panel has a 
constant nominal width b =250 mm (9.84 in) for all section heights h and is 
available in different base metal thicknesses up to 1.2 mm (0.047 in). Prominent 
embossments on top of the steel ribs provide extra longitudinal shear resistance 
in the composite slab, which supplements the resistance provided by the 
mechanical connections along the pan due to grip of the webs in the concrete. 

2.2 Top plate 

The top plate is supplied with either one or two, deep longitudinal intermediate 
stiffeners, depending on the height of the panel, and a simple lip stiffener along 
each longitudinal edge to increase its compressive capacity, and also to allow 
the mechanical connections to possibly be more widely spaced. Embossments 
enhance the shear connection between the concrete and the top plate. The 
350 MPa (50.7 ksi) plate is available in different base metal thicknesses (1.0 to 
3.5 mm; 0.039 to 0.138 in) and produced in three widths up to 200 mm (7.87 in) 
such that each width is used for a pair of sequential section heights, i.e. 90 and 
110 mm, 140 and 160 mm, and 210 and 260 mm (3.54 and 4.33 in, 5.51 and 
6.30 in, and 8.27 and 10.24 in), where the higher of each pair is the more critical 
design case due to the greater length of outstand beyond the webs. 

Finite strip analysis (THIN-WALL, 1994), supported by test results, has been 
used to find suitable geometries for the top plate in compression with the known 
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boundary conditions. The model incorporates the upper web flanges, which are 
mechanically connected to the top plate. The junction between the webs and 
their upper flanges are idealized as fixed supports, with the web flanges assumed 
to terminate at the connections with a simple joint. To account for the 
longitudinal spacing of the connections, an effective thickness of the web 
flanges, teff, has been calculated which takes into account the effective length of 
the web flange in the longitudinal direction of the panel when the flange is bent 
restraining the top plate from buckling. Based on test results, the following 
equation has been derived to calculate the effective thickness teff of the web 
flanges: 

4.121 t 
teff = if; (1) 

where t is the base metal thickness of the web and s is the longitudinal spacing 
between the connections. The results of a finite strip analysis are shown in 
Figure 3 for a 200 mm (7.87 in) wide top plate with a base metal thickness of 
only 1 mm (0.039 in) and a web thickness of 0.7 rom (0.028 in). Three 
fundamental buckling modes can be identified, viz.: local (a); flange distortional 
(b); and overall distortional (c). It can be seen, that the buckling stress is over 
350 MPa (50.7 ksi), the nominal yield stress of the top flange steel, up to a 
buckling half wavelength of350 rom (13.78 in). 

2.3 Web 

A pair of webs is mechanically connected to the base panel and the top plate to 
form the cellular section. Grade 350 MPa (50.7 ksi) steel was chosen for 
economics, and also because the steel has high formability to make the 
corrugations. Holes, 90 rom long by 40 rom high (3.54 by 1.57 in), can be 
punched in the webs as close as at 190 mm (7.48 in) centres. This allows the 
cellular section to optionally be filled with concrete making a solid composite 
slab, and to possibly fit reinforcing bars or prestressing cables in ducts 
transversally through the holes close to the soffit of the slab. To improve the 
flow of concrete into the voids, the holes may be staggered on each side of the 
trusses when bars or cables are not to be passed through. Alternatively, the 
cellular section can be left closed to form a void in a one-way composite slab. 
The web is inclined at a fixed angle of 74 degrees to the horizontal irrespective 
of the height of the panel. Like the base panel and the top plate, the web is 
available in different base metal thicknesses, typically 0.7 or 0.9 mm (0.028 or 
0.035 in). Thin-gauge diaphragms are essential at the ends of the panels where 
they fall on supports. These are needed to prevent premature buckling of the 
webs particularly in the lower portions where the support reactions are 
concentrated. Additional connections are also required in these regions to resist 



608 

transverse shear forces that act through the connection between the webs and the 
base panel. Vertical corrugations with a pitch of 35 mm (1.38 in) are pressed 
into the webs to increase their shear capacity and flexural stiffness. Significant 
shear distortion of the webs can occur at ultimate load if they are holed, but tests 
have shown that very high shear forces can be carried. The inner comers of the 
channel-shaped webs are regularly crimped, which increases the flexural 
stiffness of the web flanges by reducing the cantilever length, which in tum 
helps resist overall buckling of the top plate. A fma1 feature of the webs is that 
they can be produced with a curve, which means that the main decking panel 
can be upwardly precambered a variable amount, this being an essential feature 
of a long-spanning formwork system to minimise self-weight. 

2.4 Mechanical connections 

The mechanical connections between the components of the main decking panel 
are formed by press-joining, also referred to as clinching. Press-joining is a 
relatively old technique, the first patent being granted as early as 1897 (Thies, 
1897). However, its potential was not fully appreciated until the 1980's, and it is 
now widely used in the automotive and white goods industries. The advantages 
of press-joining compared to traditional screwing or welding are now well 
recognized in the building industry, especially in steel-frame housing. A simple 
punch presses the materials to be joined into the die cavity. As the force 
continues to increase, the punch side material is forced to spread outwards 
within the die side material (TOX Pressotechnik, 2002). Some of the main 
advantages of press-joining are that: 

• consumab1es such as bolts or rivets are not needed; 
• pre-processing work such as drilling or surface cleaning is not needed; 
• protective coatings such as galvanising and paint can be present and are 

undamaged; 
• the connections can be formed rapidly, taking only seconds to form a 

joint and move to the next position; 
• multiple connections can be made simultaneously (TRUSSDEK II is 

made with four at a time); and 
• it is environmentally friendly with no fumes. 

Although a significant amount of research has been undertaken into the strength 
and behaviour of press-joints, little has been published relating to the use of high 
strength structural steels (Liebig and Bober, 1986), in particular for round joints 
(Varis, 2002). Therefore testing of the joints is required and a series of shear 
tests with various combinations of base metal thickness and steel grade has 
already been performed. Some typical results from the tests are shown in Figure 
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4, where the punch and die side material IS indicated with a P and D, 
respectively. 

2.5 Features 

The TRUSSDEK II system comprises some innovative features that make it 
adaptable to many different applications. 
The main hybrid decking panels can be pre-cambered to allow for deflection 
during the formwork stage, inm1ediately after the concrete is poured before 
composite action develops between the steel and the concrete. This feature 
allows good visual appearance and general alignment of the slab soffit to be 
achieved. This is especially important when the residual deflections would 
otherwise be large, for example in long spans. Considerable savings can be 
achieved in the amount of steel used in the panels, and by a voiding excess, 
ponded concrete. 
By using internal formers, the cellular sections can be partially filled with 
concrete, such as at their ends where welded studs can be fixed or over internal 
walls, where a solid concrete slab is advantageous for a variety of reasons. As 
already mentioned, the voids can also be completely filled with concrete, to 
make a solid composite slab throughout. 
Prestressing cables can be fitted longitudinally between the main decking panels 
to achieve very long spans of the finished composite slabs by reducing the 
immediate vertical deflection if propping is used. 
Infill panels of various shapes can be fitted alternately between decking panels. 
Currently the infill panel is very similar in shape to the base panel except that 
the lap joints have been modified to allow the panel to simply "hang" between 
two cellular panels. It can also include a snap-in voided unit (see Figure 5). The 
voids are non-structural and serve to reduce the volume of concrete and weight 
of the floor. By non-structural it is meant that the voids are not longitudinally 
connected to the infill panels and therefore do not increase the flexural stiffuess 
or strength of the panels. Voiding units can be deep resemble a deep W -deck, or 
very shallow (in which case it is called a "pan plate") such that they do not 
interfere with reinforcing bars or prestressing cables but transfer the weight of 
the wet concrete to the lapping ribs which avoids excessive transverse deflection 
of the infill panels. 

3 Test program 

Comprehensive series of innovative tests are currently being conducted to 
thoroughly investigate the behaviour of the system in both the formwork and 
composite states. This will give rise to a complete understanding of the complex 
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behaviour of the main decking panel and its different cold-formed components. 
The behaviour of the mechanical connection between the components is being 
closely studied experimentally, allowing the moment capacity of potentially 
critical cross-sections with partial shear connection to be accurately predicted. 
Full-scale flexural and/or shear tests on single and double span specimens are 
being performed to investigate the behaviour in positive and negative bending, 
and a variety of failure modes have already been identified. Detailed test results 
and design methods will be published in the future. As an example of an 
innovative loading system, a well-articulated loading frame has been built to 
conduct tests under distributed loading that accurately determine the flexural 
stiffness and the strength of the hybrid steel deck. The load is introduced into 
sets of loading fingers via crossbeams and then transmitted onto the top side of 
the base panel through loading brackets. A roller bearing at the end of each 
loading fmger minimises the longitudinal frictional restraint that can develop. 
Several of the test series currently being undertaken are briefly described below, 
noting that a number of other types of tests will be performed. 

3.1 Flexural tests 

Single span tests under distributed loading (see Figure 6) are used to gain 
essential information about the behaviour of the main decking panel in positive 
bending, when the base panel is in tension and the top plate in compression. The 
principal mode of failure depends on the degree of longitudinal shear connection 
existing between the components, i.e. between the corrugated web and the top 
plate, or the web and the base panel. A state of complete shear connection can 
be assumed to have existed if a bending failure occurs at a critical cross-section 
and its moment capacity was not governed by the strength of the longitudinal 
shear connection. This condition can be achieved when the number of 
connections nbetween the end of the panel and the critical cross-section equals 
or exceeds the number required for complete shear connection, i.e. n ~ nco The 
strength of the shear connection between the top plate and the webs, and the 
webs and the bottom panel, must be determined separately to see which governs. 
In this case, either the base panel yields and possibly fractures in tension or the 
top plate yields or buckles in compression. If the nominal moment capacity is 
governed by the strength of the connections, the critical cross-section can be 
deemed to exhibit partial shear connection, i.e. n < nco Depending on the spacing 
and strength of the mechanical connections, the material properties and 
thicknesses of the top plate, web and base panel, different failure modes can 
occur and different degrees of shear connection can be exhibited. The 
connections between the base panel and the webs normally fail well before the 
top connections, because they are normally weaker with the thin base panel 
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sheeting (see Figure 7) and also, because of the equipment used, equal numbers 
of connections are made in the top and the bottom of the main decking panel. If 
the connections in the top plate fail in the mid-span region by pull-out, the top 
plate can buckle distortionally before yielding. In this case the longitudinal 
spacing of the connections becomes critical. To improve manufacturing 
productivity, the number and distribution of the connections must be optimised 
and can be programmed for production. 

During the experimental studies, careful attention will be given to the behaviour 
of the cold-formed components and their connections in transverse bending. 
Prying can occur in the connections, for example when the webs are holed and 
the wet concrete fills the cellular deck. In particular, the weight of concrete on 
the base panel can cause significant transverse bending within the closed section 
and relatively large bending moments to occur at the connections. Prying causes 
additional tensile forces to develop in the connectors. On the other hand, the 
transverse deflection of the base panel is greatly reduced due to the rotational 
stiffness of the web, which is even further enhanced by the crimps located at the 
junction of the web with its lower flange. Calculations have shown that the 
additional tensile forces on the connections are normally relatively small. Other 
forces can also act on the connections, e.g. hanging forces from the infill panel. 
A detailed investigation of these effects is being undertaken, with the 
connections being systematically subjected to different combinations of tension 
and shear in a purpose-built test rig. 

3.2 Shear tests 

A series of vertical shear tests, including end shear tests, is currently being 
undertaken to investigate the shear behaviour of the hybrid steel deck. The web 
is stiffened by vertical corrugations to increase the shear capacity. Shear 
distortion of the webs occurs particularly if the webs are holed (see Figure 8). 
Specimens with the unreinforced, rectangular holes are being studied with single 
and multiple holes located within the shear span. Vierendeel action over the 
length of the penetration takes place and causes additional secondary bending 
moments to develop in the upper and lower parts of the webs across the 
penetration, followed by local buckling at diagonally opposite comers of the 
hole. Over supports where there are concentrated reaction forces, the web can 
fail due to out-of-plane buckling or a combined shear/pull-out failure of the 
mechanical connections between the web and the base panel. Diaphragms 
located over the support region largely prevent web buckling and significantly 
increases the load-carrying capacity of the panel. An investigation is being made 
into the mechanisms by which shear is transferred in the end regions, with a 
view to developing open-ended types of diaphragms that will allow access 
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through the ends of the panels for fitting services as well as the flow of concrete 
when required. The effects of varying the degree of shear connection of critical 
sections under combined bending and shear are also being studied. 

4 Conclusions 

Some details about a new ultra long-spanning hybrid decking system developed 
in Australia have been presented. The main decking panel comprises three basic 
components, viz. a base panel, a pair of vertically-corrugated webs and a top 
plate, all mechanically connected to form a very stiff and strong, closed cellular 
section. The system has numerous innovative features such as: pre-cambering 
for deflection control; pre-punched holes in webs to allow the cellular section to 
be filled with concrete and reinforcement to be fitted transversally through the 
webs; infill panels of various shapes to reduce the volume of concrete and 
weight of the floor as well as improve economy. Comprehensive sets of full­
scale structural tests are cUrrently being performed to investigate the many 
different types of behaviour that can be exhibited. The experimental work is 
being supported by analytical studies including [mite-element modelling, and 
will allow the development of simplified behavioural models and design rules. 
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Appendix - Notation 

b 
d 
h 
L 
s 
t 
t,rr 

Nominal width of base panel 
Overall slab thickness 
Nominal height of hybrid deck 
Maximum unpropped single span 
Nominal spacing between the connections 
Base metal thickness of the web 
Effective thickness of the web flanges 

Appendix- Figures 
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Figure 1 Range of application of different composite steel decks 
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Figure 2 Typical cross-section of main TRUSSDEK II decking panel (note: only 

one longitudinal stiffener fits in the top plate in the highest sections) 
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Figure 3 Typical buckling analysis of top plate 
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Figure 4 Typical deformation behaviour of mechanical connections 
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Figure 5 TRUSSDEK II without (top) and with (bottom) infill panel 
using different snap-in voiding units 

Figure 6 Single-span test under simulated distributed loading 
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Figure 7 Result from a single-span test under simulated distributed loading 

Figure 8 Shear distortion of the holed web 
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