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Estella A. Atekwana4, and Stephen S. Gao1

1Geology and Geophysics Program, Missouri University of Science and Technology, Rolla, Missouri, USA, 2Department of
Physics, University of Botswana, Gaborone, Botswana, 3Department of Geography, Geology, and Planning, Missouri State
University, Springfield, Missouri, USA, 4Boone Pickens School of Geology, Oklahoma State University of Agriculture and
Applied Science, Stillwater, Oklahoma, USA

Abstract Rifting incorporates the fundamental processes concerning the breakup of continental
lithosphere and plays a significant role in the formation and evolution of sedimentary basins. In order to
decipher the characteristics of rifting at its earliest stage, we conduct the first teleseismic crustal study of
one of the world’s youngest continental rifts, the Okavango Rift Zone (ORZ), where the magma has not
yet breached the surface. Results from receiver function stacking and gravity modeling indicate that the
crust/mantle boundary beneath the ORZ is uplifted by 4–5 km, and the initiation of the ORZ is closely
related to lithospheric stretching. Possible decompression melting of the subcrustal lithosphere occurs
beneath the ORZ, as evidenced by a relatively low upper mantle density based on the gravity modeling.

1. Introduction

The Cenozoic Okavango Rift Zone (ORZ) is located at the southernmost extent of the southwest branch of
the East African Rift System [Reeves, 1972; Modisi et al., 2000] and hosts the Okavango Delta which is the
largest inland alluvial fan in the world. Based upon early studies of gravity anomalies and persistent seismic-
ity [Reeves, 1972; Reeves and Hutchins, 1975; Scholz et al., 1976; Leseane et al., 2015] as well as sparse heat flow
measurements in the vicinity of the rift zone [Ballard et al., 1987], the ORZ is believed to be a modern incip-
ient rift forming in an intraorogenic environment along the margins of the Paleoproterozoic Magondi Belt,
Paleo-Mesoproterozoic Rehoboth Province, and the Neoproterozoic Damara Belt (Figure 1) [Begg et al., 2009].
Toward the northwest and east lie the Archean Congo and Kalahari cratons, respectively. Convergence of
these cratons throughout the Mesoproterozoic and the earliest Neoproterozoic (∼1 Ga) led to crustal shorten-
ing and uplift within the mobile belts situated along the cratonic margins [Weckmann, 2012]. Uplift-induced
erosion synchronous with isostatic equilibration has contributed to the reduction of crustal thicknesses within
the region of the ORZ since the final stages of Precambrian orogenic activity [Vauchez et al., 1997]. The onset
of rifting in the ORZ possibly started in the Holocene around the time between 120 ka and 40 ka [Modisi et al.,
2000; Moore and Larkin, 2001], and consequently, the ORZ is an ideal locale to investigate rifting mechanisms
at the incipient stage.

The surface expression of the ORZ is mostly obscured by unconsolidated Quaternary sediments, including
Kalahari alluvium and lacustrine deposits [e.g., Cooke and Verstappen, 1984; Ringrose et al., 2005]. A half-graben
similar in shape to what is observed within mature rift zones with a throw of ∼200–300 m along the major
border faults (Figure 1) has developed within the ORZ [Modisi et al., 2000; Kinabo et al., 2008]. The localization
and development of rift-associated faults were concluded to be primarily controlled by preexisting basement
fabrics [Kinabo et al., 2008], and the initiation of rifting was proposed to be supported by hydrothermal meta-
somatism and strain weakening of the lithospheric mantle, based on a recent gravity/magnetic study [Leseane
et al., 2015]. The absence of active involvement from a lower mantle plume is evidenced by a normal mantle
transition zone thicknesses [Yu et al., 2015a] and by the NE-SW oriented seismic azimuthal anisotropy that is
observed across much of Southern Africa [Yu et al., 2015b].

The magnitude, lateral extent, geometry, and deformation style of crustal thinning beneath mature rifts have
been investigated extensively using a variety of seismic and potential field techniques. Those investigations
provided essential information regarding rifting mechanism (e.g., passive versus active rifting), extension style
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Figure 1. Topography map showing the distribution of seismic stations and major tectonic units of the study area.
SAFARI stations are represented by red triangles, and the white triangles indicate the SASE stations used in the study.
Gray lines represent the boundaries of major tectonic units modified from McCourt et al. [2013]. The gray area with
white boundaries is the Okavango Delta, in which the dashed lines show major faults and the thick dashed lines
indicate main border faults (modified from Modisi et al. [2000] and Kinabo et al. [2008]). The dashed line along the profile
indicates the cross sections shown in Figure 3, and the blue star marks the origin (zero distance) of the cross sections.
The inset is a topographic map showing the East African Rift System. The blue lines in the inset represent the rift axes,
and the black rectangle indicates the study area.

(e.g., pure shear versus simple shear), as well as the role that magmatic intrusions played in rift development
[e.g., Thybo and Nielsen, 2009]. Teleseismic investigations of the crust beneath incipient rifts such as the ORZ,
on the other hand, are rare. Here we present results from the first joint receiver function and gravity study of
the ORZ and provide evidence for strain localization and accommodation in the crust by incorporating results
from recent geological and geophysical investigations.

2. Data and Methods

In the summer of 2012, we installed 17 broadband seismic stations traversing the ORZ along a NW-SE profile in
the northern half of Botswana (Figure 1). This array, which recorded continuously over a 2 year period, is part
of the Seismic Arrays for African Rift Initiation (SAFARI) experiment [Gao et al., 2013], which is a component
of an interdisciplinary project funded by the United States National Science Foundation (NSF) Continental
Dynamics Program. The seismic data set used in the study was expanded with the addition of data from three
nearby seismic stations belonging to the Southern African Seismic Experiment (SASE) [Nair et al., 2006].

Data from teleseismic events with epicentral distances greater than 30∘ were used. The cutoff magnitude (Mc)
was defined as Mc = 5.2+ (Δ− 30.0)∕(180.0− 30.0) −D∕700.0, where Δ is the epicentral distance in degrees
and D is the focal depth in kilometers [Liu and Gao, 2010]. All the seismograms were windowed 20 s before
and 300 s after the theoretical first arrival based on the IASP91 Earth model and prefiltered by a band-pass
filter with corner frequencies of 0.04 and 0.8 Hz.

2.1. H-𝜿 Stacking
The filtered seismograms with signal-to-noise ratio of 4.0 or greater on the radial component were selected
to generate receiver functions (RFs) following the improved frequency domain water level deconvolution
[Clayton and Wiggins, 1976] procedure of Ammon [1991] with a water level of 0.05. The resulting radial RFs for
each of the stations were visually verified to reject those with weak first P arrivals or with anomalously large
arrivals in the P wave coda. The remaining high-quality RFs were moveout corrected and stacked in a grid
search procedure (hereafter referred to as H-𝜅 stacking) to determine the optimal pair of crustal thickness
(H) and Vp/Vs (𝜅) corresponding to the maximum stacking amplitude [Zhu and Kanamori, 2000]. In order to
conduct H-𝜅 stacking, an average crustal P wave velocity of 6.5 km/s is used based upon a previous seismic
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Figure 2. RFs from station B08TS. (a) Original reverberatory RFs plotted against back azimuth. The red line is the result
of simple time domain stacking of all the receiver functions. (b) H-𝜅 plot based on the conventional H-𝜅 stacking using
RFs in Figure 2a. The black dot shows the maximum stacking amplitude. (c) RFs after removing the reverberations using
the approach of Yu et al. [2015c]. (d) H-𝜅 plot from H-𝜅 stacking using the filtered RFs in Figure 2c.

refraction study in the Kaapvaal Craton [Durrheim and Green, 1992]. The optimal pair of crustal thickness and
velocity ratio correspond to the maximum stacking amplitude on the H-𝜅 plot (see Figure 2 for an example).
The mean and standard deviation of the optimal crustal parameters for each station were estimated using the
bootstrap resampling approach [Efron and Tibshirani, 1986] with 20 iterations.

Some of the RFs from three stations located near the border faults demonstrate systematic azimuthal varia-
tions in the arrival time of the P-to-S conversions from the Moho. For those stations, we separate the observed
RFs into two groups according to the back azimuth (BAZ) of the events. P waves from the first group of events
traverse the Moho on the northwest side of the faults and thus sample the rift zone, while the second group
samples the area to the SE of the ORZ. H-𝜅 stacking was applied separately to these two groups of RFs to iden-
tify possible lateral variations of crustal properties across the main faults [e.g., Liu and Gao, 2010]. Note that
no reliable results were obtained at station B07DX for the SE group.

Stations B08TS, B15MW, and B17CI situated in the interior of the Okavango Delta are underlain by a
low-velocity unconsolidated sedimentary layer, which is indicated by strong reverberations in the resulting
RFs (see Figure 2a for an example). Such reverberations are caused by P-to-S conversions (Ps), and their multi-
ples associated with the strong impedance contrast across the bottom of the low-velocity sedimentary layer
and can completely mask the Ps phases from the Moho [Yu et al., 2015c], making it impossible for the conven-
tional H-𝜅 stacking approach to find the correct crustal parameters (Figure 2b). For such stations, we apply the
recently developed reverberation-removal technique [Yu et al., 2015c] to isolate the Moho phases (Figure 2c)
for the purpose of accurately determining the crustal thickness and Vp/Vs (Figure 2d).

2.2. Migration Profile
In order to demonstrate the high quality of the RFs and the resulting robust Moho, as well as to identify poten-
tial intracrustal discontinuities, we convert the RFs into depth series traces by stacking moveout-corrected
RFs for each station using the common-conversion point procedure [Dueker and Sheehan, 1998] in the depth
range of 15–60 km with an interval of 0.5 km. This procedure requires P and S wave velocities as functions of
depth in order to calculate the moveout times. For the crustal portion, crustal thicknesses and velocity ratios
obtained from H-𝜅 stacking and a crustal P wave velocity of 6.5 km/s are used, while standard IASP91 velocities
are applied for the mantle part of the depth series.

YU ET AL. OKAVANGO CRUSTAL STRUCTURE 8400
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Figure 3. Cross sections of the results projected to the thick dashed line in Figure 1. (a) Elevation. (b) Observed (red
crosses) and calculated (solid line) Bouguer gravity anomalies from two-dimensional forward modeling. (c) Results of
gravity modeling. The triangles are the resulting Moho depths from H-𝜅 stacking, and the values are densities in g/cm3.
(d) Migrated and depth-converted RFs. The triangles represent the crustal thickness beneath the stations obtained from
H-𝜅 stacking. (e) Station-averaged crustal Vp/Vs measurements.

2.3. Gravity Modeling
The Bouguer gravity anomaly data were obtained from a variety of sources including the National Geospatial
and Imaging Agency, the Botswana Geological Survey, and a detailed (2 km station spacing) survey in
northern Botswana [Leseane et al., 2015]. The 1967 International Gravity Formula [Morelli, 1976] was employed
to merge the data set of Bouguer gravity anomalies, which was further corrected using sea level as a datum
and 2.67 gm/cm3 as a reduction density. Given the lack of significant topographic variations (Figure 3a),
terrain corrections were not applied. The merged data set contains over 39,000 stations with a station
spacing between 1 and 4 km over the entire country and is sufficient for regional gravity studies and
modeling. Forward modeling of the observed Bouguer gravity (Figure 3c) anomaly was conducted by employ-
ing RF-determined H and 𝜅 values as constraints. The final gravity model was determined by varying the
RF-determined crustal thicknesses by ∼10% and densities estimated from previous East African Rift gravity
models [e.g., Simiyu and Keller, 2001] by∼20%. During the modeling process it was determined that the gravity
minimum over the ORZ could be caused by a low-density region in the lower crust or upper mantle where the
densities should be at least 3% lower than the surrounding regions. The exact placement of the low-density
region cannot be determined by gravity modeling alone. However, based on the elevated Curie isotherms
under the ORZ [Leseane et al., 2015], this low-density body is most likely in the uppermost mantle.

YU ET AL. OKAVANGO CRUSTAL STRUCTURE 8401



Geophysical Research Letters 10.1002/2015GL065811

Table 1. Observations of H and k for the 20 Stations

Station Latitude (deg) Longitude (deg) H (km) k N

Area A (Congo Craton)

B12SS −18.746 22.197 46.2 ± 0.5 1.77 ± 0.01 69

B13NX −18.579 21.994 46.6 ± 0.4 1.75 ± 0.01 75

B14MH −18.295 21.792 45.8 ± 0.3 1.80 ± 0.01 91

Area B (Okavango Rift Zone)

B06ORa −19.901 23.527 43.6 ± 0.5 1.85 ± 0.02 36

B06ORb −19.901 23.527 37.5 ± 0.3 1.88 ± 0.01 81

B07DXb −20.549 22.649 40.5 ± 0.5 1.95 ± 0.02 47

B08TSc −20.164 22.459 37.8 ± 1.0 1.78 ± 0.03 52

B09NK −19.663 22.194 41.8 ± 0.2 1.71 ± 0.01 71

B10PP −18.913 22.543 39.9 ± 0.5 1.89 ± 0.02 74

B11ETa −19.016 22.316 39.3 ± 0.5 1.82 ± 0.01 34

B11ETb −19.016 22.316 44.3 ± 0.5 1.72 ± 0.01 45

B15MWc −19.631 23.827 34.0 ± 0.4 1.81 ± 0.01 61

B17CIc −19.294 22.909 38.8 ± 0.5 1.77 ± 0.02 36

Area C (Rehoboth Province + Magondi Belt)

B03SL −21.121 24.764 40.8 ± 0.3 1.76 ± 0.01 92

B04KH −20.474 24.514 42.6 ± 0.7 1.79 ± 0.02 86

B05MO −20.218 24.132 40.7 ± 0.2 1.76 ± 0.01 85

Area D (Kalahari Craton)

B01KR −22.238 26.718 43.7 ± 0.2 1.81 ± 0.01 66

B02LT −21.393 25.581 42.8 ± 0.3 1.73 ± 0.01 84

B1665 −22.825 27.229 42.6 ± 0.3 1.75 ± 0.01 88

SA64 −22.969 26.202 41.5 ± 0.4 1.73 ± 0.02 31

SA65 −22.818 27.222 42.7 ± 0.3 1.75 ± 0.01 36

SA66 −21.900 26.373 44.7 ± 0.4 1.81 ± 0.02 32
aUsing RFs with back azimuth between 45 and 225∘ .
bUsing RFs with back azimuth of 0–45∘ and 225–360∘.
cAfter applying the reverberation-removal technique.

3. Results

The resulting crustal thicknesses range from 34.0 km beneath the SE border faults to 46.6 km beneath the
northern end of the profile with a mean value of 41.7 ± 3.1 km, and the Vp/Vs ranges from 1.71 to 1.95
with an average of 1.79 ± 0.06 (Figure 3 and Table 1). As the crustal structure is closely related to the base-
ment terranes, we divided the results into four groups based on the location of the geological boundaries
[Hanson, 2003; Begg et al., 2009; McCourt et al., 2013] (Figure 3a). Area A belongs to the Archean Congo Craton
and has an average H of 46.2 ± 0.4 km and 𝜅 of 1.78 ± 0.03. Area B is mainly superimposed by the
Neoproterozoic Damara Belt where the ORZ is located. The resulting average crustal thickness of area B is
39.8 ± 3.0 km, while the 𝜅 measurements have a mean value of 1.82 ± 0.08. Area C is composed of the
Paleoproterozoic to Mesoproterozoic Magondi Belt and Rehoboth Province and has an average H of
41.4 ± 1.0 km and 𝜅 of 1.77 ± 0.02. Area D is mainly in the Neoarchean Limpopo Belt comprising a major
intracratonic mobile belt within the Kalahari Craton. H-𝜅 stacking from six stations in Area D results in a mean
crustal thickness of 43.0 ± 1.1 km and Vp/Vs of 1.76 ± 0.04. An estimated 5 km difference of the crustal
thickness across the main border faults of the ORZ is observed, indicating that the influence of the border
faults may extend to the Moho. Relative to the immediate surrounding areas (Figure 3c), the crust beneath
the ORZ is thinned by 4–5 km, which corresponds to a stretching factor of about 1.1 over an original ∼45 km
crust. The low amount of thinning is consistent with the insignificant surface expression of the ORZ relative
to mature rifts (Figure 3a).

YU ET AL. OKAVANGO CRUSTAL STRUCTURE 8402
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The resulting gravity model shows a lower density (3.18 g/cm3) mantle (Figure 3c) underlying the region of
thinned ORZ crust. High-density (2.80–2.85 g/cm3) bodies located near the surface, which may be fragments
of an ancient Paleoproterozoic volcanic island arc or suites of metamorphic granulite complexes [Hanson,
2003], are required to explain local Bouguer gravity anomaly maxima. Regional low-density anomalies are
modeled near the southern edge of the Congo Craton as Mesoproterozoic granite complexes [Hanson, 2003].

4. Discussion and Conclusions

The resulting crustal thicknesses and Vp/Vs values are in general agreement with those obtained by previ-
ous RF studies, which mainly focused on the adjacent Kalahari Craton. Three of the SAFARI stations in area D
reported results consistent with nearby SASE stations [e.g., Nair et al., 2006]. Recently, Kachingwe et al. [2015]
investigated the crustal structure of Southern Africa using data from 39 stations by conducting H-𝜅 stacking
and jointly inverting the RFs with Rayleigh wave phase and group velocities. One (station MAUN of the Congo
Craton network) of the stations is cosited with SAFARI station B06OR. They obtained a crustal thickness of
44 km from the H-𝜅 stacking of five RFs and 38 km by jointly inverting P wave RFs with surface wave disper-
sion curves. Interestingly, the former value is similar to the crustal thickness that we obtained using 36 RFs
from the southeast, while the latter is almost identical to that obtained using 81 RFs from the northwest
(Table 1).

The observations provide important information about crustal composition and possible modification by
orogenic and rifting processes. Based on studies of crustal rocks, Holbrook et al. [1992] concluded that
the Vp/Vs of common rock types varies from 1.63 to 2.08, wherein low (1.76), intermediate (1.76–1.81),
and high Vp/Vs (>1.81) values are characteristic of felsic, intermediate, and mafic compositions, respec-
tively. The resulting 𝜅 values observed in the study area generally fall within the range of 1.76–1.81, which
corresponds to an intermediate crustal composition. Crust with an intermediate composition was observed
beneath the Proterozoic orogenic provinces as well as the surrounding Archean terranes, implying that
localized post-Precambrian orogenic and rifting episodes of Southern Africa [Hanson, 2003] did not signifi-
cantly modify the bulk composition of the continental crust. The boundaries of the ORZ are characterized by
relatively high 𝜅 values (Figure 3e). They may possibly be related to fluid-filled deep fractures, which reduce
the S wave velocity more significantly than P wave and lead to an increased Vp/Vs.

A potential intracrustal discontinuity is observed beneath the stations in the ORZ at the depth of about
25 km (Figure 3d). The positive polarity of this arrival suggests that it represents the upper boundary of a
high-velocity body in the lower crust. This observation, if confirmed by additional study such as the active
source seismic and magnetotelluric components of the interdisciplinary project, could indicate the existence
of magmatic intrusions into the lower crust. Such an intrusion has been suggested beneath the Baikal rift to
compensate for crustal thinning [Thybo and Nielsen, 2009].

The uplifted Moho along the profile is approximately symmetric and centered along the rift axis (Figure 3),
satisfying a model invoking pure shear extension [McKenzie, 1978]. Similar models have been proposed to fit
the observations beneath the Baikal [Gao et al., 2004], southern Kenya [Birt et al., 1997], and northern Rhine
Graben [Brun et al., 1992; Thybo and Artemieva, 2013] rift zones. Finally, the low-density mantle lithosphere
beneath the ORZ can be explained by the existence of partial melting induced by lithospheric stretching
associated with the incipient rift, leading to shallow Curie isothermal depths, which are about 8–15 km based
on three-dimensional inversion of aeromagnetic data [Leseane et al., 2015]. Further rifting can lead to the
development of volcanism, similar to that observed in more developed continental rifts such as the Rio Grande
[Perkins and Anthony, 2011] and Kenya rifts [Biggs et al., 2009].

In summary, for the first time, the crustal structure beneath the incipient Okavango Rift is imaged using RF
stacking and gravity modeling. The resulting crustal thickness shows that the crust beneath the ORZ is thinned
by 4–5 km and infilled by relative low-density mantle materials possibly caused by decompression melting.
The low level of crustal stretching, when combined with the absence of an active mantle plume, elevated
topography, as well as results from previous investigations of mantle anisotropy and mantle transition zone
thermal structure, is consistent with a “passive rifting” model in which transtensional movements between
Archean cratonic blocks along ancient orogenic belts drive the initiation and early-stage development of the
Okavango Rift Zone.

YU ET AL. OKAVANGO CRUSTAL STRUCTURE 8403
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